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We study a classical Ising model on the honeycomb lattice with local two-body interactions and
present strong evidence that at low temperature it realizes a higher-rank Coulomb liquid with frac-
ton excitations. We show that the excitations are (type-I) fractons, appearing at the corners of
membranes of spin flips. Because of the three-fold rotational symmetry of the honeycomb lattice,
these membranes can be locally combined such that no excitations are created, giving rise to a
set of ground states described as a liquid of membranes. We devise a cluster Monte-Carlo algo-
rithm purposefully designed for this problem that moves pairs of defects, and use it to study the
finite-temperature behavior of the model. We show evidence for a first order transition from a
high-temperature paramagnet to a low-temperature phase whose correlations precisely match those
predicted for a higher-rank Coulomb phase.

One of the central concepts in condensed matter
physics is the notion of quasiparticles: the idea that
low energy excitations of a system are weakly interacting
particle-like objects. In general, these quasipaticles are
capable of independent motion, and it is via this motion
that energy inserted locally into the system can spread
out, thus allowing equilibration. Fractons are quasipar-
ticles outside this paradigm, being completely immobile
when isolated [1–11]. Fractons are intimately connected
with the conservation laws of exotic gauge theories in-
volving not only charge but higher moments (e.g. dipole
moment) of the charge density [12–16]. It is these con-
servation laws which render isolated fractons immobile.

Recent years have seen a concerted effort to establish
theoretical models in which higher moment conservation
laws and fracton physics appear [17–25]. Various lattice
models have been proposed to give rise to fractonic be-
havior, although these often require complicated multi-
body interactions. From the point of view of identifying
routes to experimental realization, it is preferable to find
models built-from short-ranged, two body interactions.

One setting in which the construction of such models
has been successful is classical spin systems [26–28]. Clas-
sical models have some advantages: a Hamiltonian can
be readily be constructed to enforce a local constraint of
choice in the low energy sector, and this constraint can be
chosen in such a way as to reproduce the Gauss’s law(s)
of a given gauge theory. Once the model is constructed,
it is in principle accessible to Monte Carlo simulation.

Thus far these models have been constructed from
continuous degrees of freedom, but this has the draw-
back that one cannot isolate and study discrete fractons.
Moreover, it is difficult to reintroduce quantum fluctu-
ations in a controlled way. If fracton physics could be
demonstrated in a classical Ising model, fractons will nat-
urally be present as discrete excitations, and there exists
a clear route to studying quantum effects by introducing
off-diagonal terms, e.g. via a transverse field.

Here, we present an Ising model exhibiting a fractonic
spin liquid regime. The model has an extensive degen-
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FIG. 1. Ground states of the honeycomb model fulfill the
constraint Mh = 0, illustrated in (a). A single spin flip, as
indicated by a red circle in (b) preserves total charge ρ as well
as all dipole moments. The minimal-energy excitation, shown
in (c) hence creates four distinct defects. These can be moved
in pairs by flipping another four spins as indicated by orange
dashed lines.

eracy of ground states, which may be thought of as the
classical limit of a gapless fracton phase. This is distinct
from fracton topological order, in which there is a subex-
tensive degeneracy of locally indistinguishable quantum
ground states. The excitations of the model are fractons
appearing at the corners of membranes of flipped spins.
Pairs of fractons can be bound into lineons, which can
move along a certain lattice direction, but not along the
perpendicular direction. We identify microscopic reso-
nance processes which take the system between differ-
ent ground states, consideration of which yields a lower
bound on the observed entropy. In order to simulate the
model’s properties we devise – to our knowledge, the first
– cluster algorithm for Monte Carlo simulations of frac-
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tons, which is purpose-built for the study of fractonic
Ising models. This allows numerical access to relatively
large systems and low temperatures.

Simulating the model, we find that it exhibits a first
order phase transition at low temperatures, but that the
low temperature state nevertheless lacks signs of conven-
tional order. Instead, the ground state correlations ex-
hibit four-fold pinch points in momentum space, which
are characteristic of systems described by a gauge theory
of tensor fields [29].

Fractons in the honeycomb model. We consider an
Ising model on the honeycomb lattice with Hamiltonian

H =
J

2

∑

h

M2
h , Mh =

∑

j∈h

σj +
1

2

∑

j∈⟨h⟩
σj , (1)

which is a sum over constraints Mh, defined on hexagons
h and their exteriors ⟨h⟩ as illustrated in Fig. 1 (a). A
Hamiltonian of this form was first considered for O(3)
Heisenberg spins in Ref. 27.

There, it was shown that the system upon coarse grain-
ing can be described in terms of a suitably defined rank-2
tensor field m, subjected to a Gauss law

∂µ∂νm
µν = ρ (2)

with Tr[m] = 0. The structure of this Gauss’s law implies
conservation of the dipole moments of charge density, and
hence fractonic excitations, as we discusss further below.

The field m relates to the microscopic degrees of free-
dom via a staggered, position dependent mapping. As
a result, the relationship between the charge ρ and the
microscopic constraint Mh breaks lattice symmetry by
hand. We choose a subset of hexagons such that each
site is a member of exactly one of them. One possible
choice is illustrated in Fig. 1 by a darker shade of some
hexagons. Denoting this subset as + hexagons and the
rest as −, the charge is then defined as

ρ =

{
Mh h is + hexagon

− 1
2Mh h is − hexagon

. (3)

Charges and moments of the higher-rank gauge theory
can be determined explicitly from the microscopic model.
The single spin flip, shown in Fig. 1 (b), preserves both
total charge ρ and the dipole moments dν = rνρ. The
lowest order moment of the charge distribution which
changes is the quadrupole moment qµν = rµrνρ.

An excitation with the lowest (non-zero) energy of Eq.
(1) involves four defects (hexagons with Mh = ±1); it
can be constructed from four spin flips, Fig. 1 (c). These
defects are fractons: no single defect can be moved by any
local combination of spin flips since that would change
the total dipole moment. Pairs of (oppositely charged)
fractons are lineons since they can be moved in the di-
rection perpendicular to their dipole moment by flipping
another four spins on the next-next hexagon, as indicated

Flippable motifs

(a)

(b) (c)

FIG. 2. Splitting of lineons and local resonance moves. (a)
Pairs of fractons form lineons, mobile along a one-dimensional
submanifold. These lineons can split in two, either the for-
wards or backward directions. (b) A local combination of six
membranes, can create, split and recombine lineons, in such
a way as to reach a new ground state configuration. This
amounts to flipping 24 spins. Application of this move to
the ground state in (c) does not create any excitation and
could be centered around any of the green shaded hexagons.
The move can be understood as a local combination of six
membranes as shown in (b), where each corner overlaps with
exactly one other corner of opposite charge. This is possible
because as shown in (c), a single two-fracton lineon can split
into two both in the forward (left) and in the backward di-
rection (right).

in Fig. 1 (c) in dashed-orange. Generally, fractons in our
model appear at the corners of a “membrane” of flipped
bonds. This, along with the ability to bind fractons into
lineons implies this is a “Type-I” fracton model, con-
strasting with “Type-II” models where fractons appear
on fractal structures without the possibility of mobile
bound states [8].

While the mapping between the microscopic model and
the coarse-grained field mµν in principle generalizes to
the Ising model, it is an open question whether the sys-
tem still realizes a higher-rank Coulomb phase or whether
restricting the degrees of freedom to be discrete yields a
set of ground states the average over which no longer cor-
responds to the deconfined phase of the gauge theory. For
the case of the ‘conventional’ Coulomb liquid, cases are
known where the hard-spin Ising and Heisenberg behav-
iors are (e.g. pyrochlore [30]), and are not (e.g. kagome
[31–34]) , in accord with that of the soft-spin theory. In
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FIG. 3. Thermodynamics of the fractonic Ising model. Energy E, Specific heat Cv, and residual entropy S0 are obtained from
Monte-Carlo simulations. Energy/specific heat are consistent with a first-order transition from a high-temperature paramagnetic
phase to a low-temperature phase where the constraint Mh = 0 is satisfied. Finite-size extrapolation of the ground state entropy
per site tends to a value significantly higher than the lower bound discussed in the main text, indicating a strongly fluctuating
regime below the first order transition.

the following, we argue for the former case, that is that
the Ising model [Eq. (1)] does also realize a higher-rank
Coulomb regime. To this end, we first show explicitly
that the number of ground states grows exponentially
with the number of sites N by identifying local “reso-
nance processses” between different ground states. Sec-
ond, using a novel cluster Monte-Carlo algorithm that
moves pairs of defects we gain access to the thermody-
namics of the model at large system size and low temper-
ature. This allows us to both quantitatively extrapolate
the residual entropy and compute the low-temperature
correlations.

Extensive ground-state degeneracy. For periodic
boundary conditions, the fact that pairs of fractons
are lineons already implies a subextensive ground state
entropy: we can create a pair of lineons, move one
of them around the system in a nontrivial way and
annihilate the pair again, reaching a different ground
state. In addition to moving a lineon in a particular
direction, we can also split it into two, as shown in Fig. 2
(a). Note that such a move is only possible because of
sixfold rotation symmetry and would not be possible
with cubic symmetry and more generally in the absence
of at least three distinct orientations for the membranes.
Crucially, in our case it can be done in two ways which
we call forward and backwards split, shown on the left
and right of Fig. 2 (c) respectively. The backwards split
is particularly important since it allows us to close the
worldline of lineons locally, resulting in a local move
between different ground states. The minimal such
move is shown in Fig. 2 (b) and is a combination of six
membranes such that each corner defect is annihilated
with exactly one other corner of opposite charge. This
corresponds to flipping 24 spins simultaneously, as
indicated in dashed-orange in panel (c) of the same

figure. There, we also explicitly show a state with a
finite density of such flippable motifs. It is constructed
by starting form the Neél state (which has zero energy)
and flipping spins along lines as indicated in gray, which
also preserves the ground state constraint. The 24-spin
move as shown in Fig. 2 (b,c) could be centered on any
of the hexagons colored in green, and non-overlapping
motifs can be flipped independently. This establishes a
number of states exponential in the number of sites N
and in particular implies a lower bound on the residual
entropy

S0 ≥ N

72
log(2). (4)

Since this is a particular construction and there is a
wealth of possibilities to combine membranes locally such
that they create no defects, we do not expect this bound
to be tight. A more quantitative estimate can be ob-
tained from Monte-Carlo simulations (cf. Fig. 3) as dis-
cussed in the following.
Cluster Monte-Carlo algorithm. It is well established

that in the presence of fracton excitations, any local algo-
rithm will have a rapidly diverging relaxation time at low
tempearture [1, 2, 5]. Since single defects are immobile,
local algorithms generally fail to anneal them out at low
temperature and to gain access of the thermodynamics
of Eq. (1), clearly a cluster algorithm is desirable. We
have designed such an algorithm, which moves pairs of
defects by effectively attempting to span one row of a
membrane as shown in Fig. 2 (c). In the crucial step,
the algorithm starts by flipping two bonds on a single
hexagon and accepting this move with metropolis prob-
ability. In the case that the move is rejected, the algo-
rithm attempts to flip another four spins [as indicated in
dashed orange in Fig. 2 (c)], again trying to accept the
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FIG. 4. The structure factor in the low-temperature phase
at the system sizes studied shows no sharp features except
clearly visible four-fold pinch points. These pinch points are
the signature of an emergent higher-rank Gauss law [29] and
are of the same form as found for a higher-rank spin liquid in
a related continuous spin model [27].

move with metropolis probability, multiplied by a fac-
tor to account for the probability of rejecting the first
move. This additional factor is needed to ensure detailed
balance [35]. This is repeated until either the cluster is
accepted or is ultimately rejected while spanning the full
(linear) system size. If the move is accepted with zero
energy cost, it either moves a distant pair of defects by
one step in the direction perpendicular to the long side
of the (single-row) membrane or it changes the ground
state sector. While the relaxation time of this algorithm
still scales significantly with system size at low temper-
ature (we estimate τ ∼ L7.4), it constitutes a major im-
provement over local dynamics. To demonstrate this, we
performed a simulated annealing simulation using 100 in-
termediate temperatures between T = J and T = J/10
and 106 sweeps per temperature. When using a spin-flip
metropolis algorithm at L = 18, out of 500 runs not a sin-
gle one manages to anneal out all defects. In contrast, our
cluster algorithm in the same configuration reaches zero
energy in all cases. When augmented with the local 24
spin move shown in Fig. 2 (b-c), accepted with metropolis
probability, and using feedback-optimized parallel tem-
pering [36], we are able to equilibrate systems with up to

N = 1152 (L = 24) spins in the ground state regime. To
ensure equilibration, we compute the specific heat both
directly from energy fluctuations and also as the deriva-
tive of internal energy with respect to temperature, and
verify that these two estimators agree (cf. Fig. 3). This is
considered a “stringent criterion” and used for example
in computational studies of model glass formers [37].

Thermodynamic properties and low-temperature cor-
relations. We use the setup described in the previous
paragraph to study the thermodynamic properties of Eq.
(1) as a function of temperature for a range of system
sizes as shown in Fig. 3. Both internal energy and spe-
cific heat are compatible with a first-order transition
from a high-temperature paramagnetic phase to a low-
temperature phase corresponding to the ground state
regime ⟨E⟩ ≈ 0. Integrating the specific heat from high
temperature yields an estimate of the residual entropy
per site, S0/N for each system size. In the figure, we
show the result of integrating both the variance of the
internal energy (blue triangles) as well as its derivative
with respect to temperature (orange squares). Fitting
the system size dependence using both a linear fit to the
last four sizes and a quadratic fit to all system sizes yields
an estimate of S0/N = 0.037± 0.010. This is quite a bit
above the lower bound derived above [Eq. (4)], but also
comes with a large error bar due to significant finite size
effects. The presence of these even at relatively large sys-
tem sizes is not surprising given the size of the smallest
local move as shown in Fig. 2 (b,c). As a rough quan-
tification of the importance of finite-size effects, we note
that taking into account periodic boundary conditions,
the largest system size L = 24 has ⌊L/2⌋ = 12 indepen-
dent degrees of freedom on the boundary, compared to
⌊L/6⌋2 ≃ 16 in the bulk.

Finally, we show the structure factor within the low-
temperature phase in Fig. 4. It is fully consistent with a
low-temperature higher-rank Coulomb phase and shows
four-fold pinch-points at the zone boundaries [29], which
are sharp (that is exactly one pixel) for all system sizes
considered.

The presence of a sharp transition as a function of
temperature is somewhat surprising since in two dimen-
sions, the higher-rank Coulomb liquid expected to de-
scribe the ground state regime is continuously connected
to the paramagnet. It is however not inconsistent with
a low-temperature liquid phase since a first-order tran-
sition is always possible also between continuously con-
nected phases as demonstrated by the famous transition
between gaseous and liquid water. An alternative pos-
sibility is that the low-temperature phase is a so called
“fragmented liquid” [38], that is the set of ground states,
although extensive, breaks some symmetry on average. A
possible hint in this direction is that the maximum of the
structure factor along the line cut shown in Fig. 4 scales
roughly with linear system size. However, as discussed
already above there are still significant finite size effects.



5

Ultimately, it is impossible to exclude this possibility of
fragmentation in the absence of a more efficient algorithm
and we leave this question open for future studies.

Conclusion. In summary, we have demonstrated the
appearance of a fractonic spin liquid in the low temper-
ature state of an Ising model on the honeycomb lattice.
This low temperature state is separated from the high
temperature paramagnet by a first order phase transi-
tion, and exhibits correlations matching those predicted
for a Coulomb phase of rank-2 electric fields with scalar
charges [29]. Elementary excitations are Type-I fractons,
appearing at the corners of membranes of flipped spins.

The discovery of a relatively simple Ising model, with
finite-range, two-body interactions establishes a useful
platform for the further exploration of fractonic physics.
This could include the perturbative introduction of quan-
tum effects via transverse fields or transverse exchange.
This may be a better setting in which to study quan-
tum effects on fractons than in the Heisenberg models
suggested in Ref. 27, for which numerical calculations
suggest that quantum fluctuations wash out the multi-
fold pinch points [39]. Here, the emergent Gauss’s law is
protected by a finite gap, so it may be more robust. Even
if instanton effects drive the emergent gauge theory into
a confined phase (as they do for the ordinary U(1) gauge
theory in 2+1 D), the low temperature physics can still
show interesting features related to the liquid phase.

Our purpose-built Monte Carlo algorithm provides a
template for future numerical studies of Type-I fractonic
models. Future work could address in more detail the
topics of relaxation and disorder-free glassiness. The
successful demonstration of an Ising fracton spin liquid,
based on a Hamiltonian originally constructed for con-
tinuous spins [27], also raises the question of whether
other classical spin liquids with higher-moment conserva-
tion laws [40, 41] have Ising realizations, and what their
properties may be.

Given the rapid progress in physical simulation
platforms based on Rydberg atoms and superconducting
qubits, the dynamics of fractons in our model may not
be far from exploration in the laboratory.
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In this supplementary material, we provide additional details of the cluster Monte-Carlo algorithm

used in the main text and show some additional results on the correlations.
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S I. Detailed Description of the Cluster Algorithm

As explained in the main text, fractons have restricted mobility. They can only move in pairs, and a fixed pair can

only move in one fixed direction. Furthermore, moving a pair of fractons that is a distance d apart also necessitates

(c)(b)(a)

FIG. S1: Excitations of the honeycomb lattice model. (a) A single spin flip with respect to the ground state (indi-

cated by a red circle) creates six violations of the constraint, three single (Mh = ±1) and three double (Mh = ±2)

excitatons. (b) Flipping an antiferromagnetic bond creates six single excitations. Flipping also the next bond along

the bond direction (encircled in dashed, orange) moves three of these excitations as indicated by the dashed orange

arrows. (c) flipping two bond across a hexagon creates four single excitations (fractons), which is the lowest-energy

excitation possible. Flipping also the next-next hexagon, now perpendicular to the bond direction, moves two exci-

tations as indicated again in orange.
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flipping O(d) spins and hence it constitutes a nonlocal update of the spin configuration. In the following, we present

a cluster Monte-Carlo update rule fulfilling detailed balance which is able to move general pairs of fractons by one

step in their direction of mobility.

In particular, we will introduce two kind of cluster moves, which we call the parallel and perpendicular line update.

These are directly inspired by the creation of fractons by flipping membranes of spins with respect to a ground state

as shown in Fig. S1 (b) and (c), respectively. These updates are performed as follows:

1. Chose a random bond b0 = ⟨ij⟩. Initialize the cluster as C0 = {b0}.

2. Attempt to flip the cluster C with metropolis probability p = exp(−β∆E), where ∆E is the energy difference

when flipping all spins in C. If updated is accepted, go to 4.

3. If update was rejected add another bond b′ to the cluster:

(a) If performing the parallel line update, this bond will be the next bond in the lattice reached by going in

parallel to the last bond added to the cluster, see Fig. S1 (b).

(b) If performing a perpendicular update, this bond will be either the next bond reached when going perpen-

dicular to the cluster if the number of bonds in C is odd, or the next-nearest bond in the same direction,

when the number of bonds in C is even, see Fig. S1 (c).

Then go back to 2.

4. Accept the full cluster update with acceptance probability

pacc =
M−1∏

n=1

1−min[1, e−β(∆EM−n−∆EM )]

1− e−β∆En)
(S1)

where ∆En is the energy difference in the n-th iteration of the loop above andM is the number of total iterations,

that is the size of the cluster C.

The above procedure implements exactly the movement of fractons as shown in Fig. S1, with the parallel line move

corresponding to panel (b) and the perpendicular move corresponding to panel (c). The cluster C constructed in step

3 can be interpreted as one row of a flipped membrane. At low temperature, such a strip will be flipped if either

its endpoints coincide with the position of a configuration of fractons, or if it wraps around the system. The former

case will move a pair of defects, while the latter case changes the ground state sector. In order to ensure that the

construction of the cluster always terminates, we remove a bond from the cluster if it would be added a second time.

Then, a cluster that wraps around the system twice is empty and hence ∆E = 0.

The acceptance probability in Eq. (S1) accounts for the probability of choosing a certain cluster and is needed to

ensure detailed balance. For a in-depth discussion, see for example the derivation of the Wolff algorithm in Sec. 1.6

of Ref. S35.

S II. Performance of the Cluster Algorithm

A. Relaxation dynamics after a quench

To benchmark our algorithm and as a consistency check of ergodicity, we show in Fig. S2, the internal energy of

our model as a function of Monte-Carlo time, when starting from a random initial state at a temperature of T = J/5.

This temperature is well in the ground state regime, with much less than one excitation present on average. The

data between times TMC = 10m and TMC = 1.5× 10m+1 is obtained by alternating 9× 10m Monte-Carlo sweeps with

×10m measurements and repeating this 15 times. The data is averaged over 5000 runs for L = 6, 9 and over 2000

runs for L = 12, 15. We compare the long time limit of this quench dynamics with the results from parallel tempering

simulations (see main text). While the long term limits show reasonable agreement with the simulated annealing data
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FIG. S2: Evolution of the internal energy when starting from a random initial state in the ground state regime T =

J/5. Dashed lines indicate the results from parallel tempering simulations (see main text). Fitting an exponential

tail E − Eeq = exp(−tMC/τ) to the internal energy (solid lines) yields a system size dependence τ ∼ L7.4 as shown

in the inset.
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FIG. S3: Acceptance rates of the difference mocves during simulated annealing as a function of temperature. Here

“vertex move” denotes single-spin flips and “gauge move” denotes the 24-spin flip shown in Fig. 2 (b,c) in the main

text, both accepted with metropolis probability. The “line moves” are the two types of cluster moves as described

in Sec. S I. All results are averaged over 500 annealing runs.

within estimated errors, the equilibration time seems to diverge strongly with system size. Still, the cluster algorithm

poses a major improvement over any local version, which fails to reach the equilibrium value starting from a random

initial state within 107 sweeps for all system sizes shown.

B. Acceptance rates as a function of temperature

The superiority of the cluster algorithm is also well illustrated by inspecting the acceptance probabilities of the

difference types of moves as a function of temperatures as shown in Fig. S3. In the low temperature regime, single

spin flips almost never get accepted (virtually never during our simulation), while the cluster moves as well as the

“gauge move” (meaning the 24-site minimal local move shown in Fig 2 (b,c) in the main text) have low, but nonzero
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FIG. S4: Structure factor as a function of temperature for system size L = 24. While the onset of the four-fold

structure at the Brillouin-zone corners is already visible above the transition (T = J/4), the pinch points only

sharpen below the transition (T = J/5)

acceptance probabilities even in the low-temperature ground state regime.

S III. Additional data from Monte-Carlo simulations

A. Structure factor as a function of temperature

In Fig. S4, we show the structure factor as a function of temperature for a system with L = 24. Above the ground

state regime, at T = J/4, the four fold pinch points are already beginning to form, but only become sharp after the

first-order transition.

B. Higher-order correlations

As discussed in the main text, an open question in the absence of an exact solution is the degree to which the

gorund state manifold breaks symmetry. There are no strong indicators for symmetry breaking in the two-point

correlation function (see structure factor shown in Fig. 4 of the main text). However, in a system with such unusual

constraints one can imagine also order showing up only — or at least more prominently — in higher-order correlation

functions. While an exhaustive study of those is obviously not possible, a good intuition for order through entropy is

often obtained from correlations corresponding to the local moves connecting different ground states. To this end, we

show in Fig. S5 what we call the “gauge structure factor” in the low temperature regime for a system size of L = 24.

This quantity if defined as the Fourier transform of the correlation function between flippable gauge motifs. That is

for each hexagon, we define a “gauge flippability” as

g(h) =

{
0 gauge flip centered at h costs nonzero energy

±1 else, sign depending on the current configuration
(S2)

and accordingly

Sgauge(q) ∼
∑

h,h′

exp(−iq · (rh − rh′)) ⟨g(h)g(h′)⟩ . (S3)

While g(h) quantity shows short range correlations as evidenced by the structure factor in Fig. S5, we find no
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FIG. S5: Gauge structure factor at low temperature, corresponding to the Fourier transform of the correlation func-

tion of the 24-site local motif shown in Fig 2 (b,c) in the main text. The plot is the result of a parallel tempering

simulation of a L = 24 system.

evidence for long-range correlations at this system size.
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