
Improving Feature Stability during Upsampling –
Spectral Artifacts and the Importance of Spatial Context

Shashank Agnihotri1 , Julia Grabinski1,2,3 , and Margret Keuper1,4

1 Data and Web Science Group, University of Mannheim
2 Fraunhofer ITWM, Kaiserslautern

3 Institute for Machine Learning and Analytics (IMLA), Offenburg University
4 Max-Planck-Institute for Informatics, Saarland Informatics Campus

{shashank.agnihotri,julia.grabinski,keuper}@uni-mannheim.de

Abstract. Pixel-wise predictions are required in a wide variety of tasks such as
image restoration, image segmentation, or disparity estimation. Common mod-
els involve several stages of data resampling, in which the resolution of feature
maps is first reduced to aggregate information and then increased to generate a
high-resolution output. Previous works have shown that resampling operations
are subject to artifacts such as aliasing. During downsampling, aliases have been
shown to compromise the prediction stability of image classifiers. During up-
sampling, they have been leveraged to detect generated content. Yet, the effect of
aliases during upsampling has not yet been discussed w.r.t. the stability and ro-
bustness of pixel-wise predictions. While falling under the same term (aliasing),
the challenges for correct upsampling in neural networks differ significantly from
those during downsampling: when downsampling, some high frequencies can not
be correctly represented and have to be removed to avoid aliases. However, when
upsampling for pixel-wise predictions, we actually require the model to restore
such high frequencies that can not be encoded in lower resolutions. The applica-
tion of findings from signal processing is therefore a necessary but not a sufficient
condition to achieve the desirable output. In contrast, we find that the availability
of large spatial context during upsampling allows to provide stable, high-quality
pixel-wise predictions, even when fully learning all filter weights.

1 Introduction

Most computer vision models addressing perceptual tasks such as image restoration [16,
89], semantic segmentation [7,35,70], optical flow estimation [20,43,83] and disparity
estimation [6, 11, 50] in realistic scenarios are required to behave in a stable way, at
least under mild corruptions. Interestingly, for the slightly simpler task of image clas-
sification, recent progress has shown that a model’s robustness does not only depend
on its training but also on its architecture [29–32, 41, 42, 45, 58, 91, 95]. Specifically,
aliasing, i.e. spectral artifacts that emerge from naïve image resampling, have shown to
compromise prediction stability, in particular in the context of classical convolutional
models [33, 37, 48, 52, 69, 80, 82] which predominantly use small filter kernels in com-
bination with severe data aggregation during downsampling [30, 58]. Principled cures

ar
X

iv
:2

31
1.

17
52

4v
2

 [
cs

.C
V

]
 1

2
Ju

l 2
02

4

https://orcid.org/0000-0001-6097-8551
https://orcid.org/0000-0002-8371-1734
https://orcid.org/0000-0002-8437-7993

2 S. Agnihotri et al.

B
as

el
in

e
[1

6]

Pi
xe

lS
hu

ffl
e

Tr
an

sp
.c

on
v.

L
ar

ge
C

on
te

xt
Tr

an
sp

.c
on

v.
(O

ur
s)

Clean - within domain Attacked 2D Frequency Spectra

Fig. 1: Image restoration example using NAFNet [16] variants on GoPro [63]. Upsampling tech-
niques like Pixel Shuffle [77] (first row) and transposed convolution [22] using small learnable
filters (2×2 or 3×3) (second row) are used by most prior art. Both lead to spectral artifacts for
which the model needs to compensate. The clean (in-domain) restored images look appealing -
while adversaries (here 5-step PGD [49] attack) can leverage aliases such that artifacts become
easily visible. When observed in the frequency domain, they manifest as repeating peaks all over
the spectra. Based on sampling theoretic considerations, we propose Large Context Transposed
Convolutions (7×7 or larger) (bottom row). They significantly increase the model’s stability dur-
ing upsampling, observable in the restored image under attack and the frequency spectrum.

usually refer to basic concepts from signal processing such as anti-aliasing by blur-
ring before downsampling [29, 91]. While this discussion on classifier (i.e. encoder)
networks is insightful, it does not provide a recipe to counteract aliases emerging dur-
ing upsampling for pixel-wise prediction tasks such as image restoration. Specifically,
naïve upsampling introduces artifacts in the feature representation, such as grid arti-
facts [4, 65] or ringing artifacts [62]. As shown in Fig. 1, these artifacts, an inherent
property of inadequate upsampling (refer Sec. 3) are not always visible to the human
eye, are accentuated under adversarial attack such that they can also be seen with a
human eye. We leverage this effect in our analysis. When observed in the frequency
domain, these artifacts are apparent as multiple peaks, i.e. aliases of the original data.

While for downsampling, signal processing laws basically prescribe which part of
the information can be retained at lower resolutions without aliases [76], “correct”,
alias-free upsampling can not restore the original high-resolution information. Thus,
learning to upsample feature maps such that the feature stability is not harmed is of
paramount importance. In this paper, we therefore first provide a synopsis of differ-
ent aliases that emerge from different upsampling techniques. Based on this work, we
propose a simple, transposed convolution-based upsampling block. We study our pro-
posed operation in the context of various models, from image restoration [16, 89] over
semantic segmentation [70] to disparity estimation [50].

Improving Feature Stability during Upsampling 3

Our main contributions can be summarized as follows:

– Motivated by sampling theory [76], we study upsampling in models for diverse
pixel-wise prediction tasks. We find that the availability of large kernels in trans-
posed convolutions helps the feature stability and significantly improves over stan-
dard, small kernel transposed convolutions as well as pixel shuffle [77].

– While large kernels are required to allow for reduced aliasing and to provide the
necessary spatial context for increasing the resolution, additional small kernels can
add details and remain useful.

– We provide empirical evidence for our findings on diverse architectures (includ-
ing vision transformer-based architectures) and downstream tasks such as image
restoration, semantic segmentation, and depth estimation.

– We show empirically that our proposed upsampling operation complements other
feature stability-increasing approaches like adversarial training.

2 Related Work

In the following, we discuss recent challenges for neural networks regarding artifacts
introduced by spatial sampling methods [4, 62, 65]. Further, we review related work
on the most recent use of large kernels in CNNs. Finally, we provide an overview of
adversarial attacks to gauge the quality of representations learned by a network.

Spectral Artifacts. Several prior works have studied the effect of downsampling oper-
ations on model robustness, e.g. [2,29,30,42,46,91,95]. Inspired by [30], [29] propose
an aliasing-free downsampling in the frequency domain which translates to an infinitely
large blurring filter before downsampling in the spatial domain. Thus, for image clas-
sification, using large filter kernels has been shown to remove artifacts from downsam-
pled representations and it leads to favorable robustness in all these cases [30, 42, 46].
However, all these works focus on improving the properties of encoder networks.

Models that use transposed convolutions in their decoders5 are widely used for tasks
like image generation [27,68] or segmentation [7,55,64,70]. However, in simple trans-
posed convolutions, the convolution kernels overlap based on the chosen stride and
kernel size. If the stride is smaller than the kernel size, this will cause overlaps in the
operation, leading to uneven contributions to different pixels in the upsampled feature
map and thus to grid-like artifacts [4,65]. Further, image resampling can lead to aliases
that become visible as ringing artifacts [76]. In the context of deepFake detection, im-
age generation, and deblurring, several works analyzed [14, 18, 21, 23, 38, 44, 47] and
improved upsampling techniques [26, 46, 78, 87] to reduce visual artifacts.

Some architectures like PSPNet [93], PSANet [94], or PSMNet [15] simply use
bilinear interpolation operations for upsampling the feature representations. While this
reduces grid artifacts as bilinear interpolation smoothens out the feature maps, it also
has major drawbacks as they sample incorrectly. These new artifacts are sometimes
visible as overly smooth predictions, in particular, apparent in the PSPNet segmentation
masks. The segmentation masks over-smoothen around edges and often miss out on thin

5 For more details on Transposed Convolutions refer to [22].

4 S. Agnihotri et al.

details (predictions showing these are included in the Appendix B.4). This observation
already shows why image encoding and decoding have to be considered separately
when it comes to sampling artifacts. While during encoding, artifacts can be reduced by
blurring, the main purpose of decoder networks is reducing blur in many applications,
to create fine-granular, pixel-wise accurate outputs, which our approach facilitates.

Large Kernels. For image classification, [54] showed that using large kernels like 7×7
in the CNN convolution layer can outperform self-attention based vision transform-
ers [53, 84]. In [17, 33, 35, 51, 66], the receptive field of the convolution operations was
further expanded by using larger kernels, up to 31×31 and 51×51. These larger recep-
tive fields provide more context to the encoder, leading to better performance on clas-
sification, segmentation, or object detection tasks. [17,51] use a small kernel in parallel
to capture the local context along with the global context. In contrast to these works,
which are limited to exploring increased context only during encoding, we investigate
if larger kernels can benefit upsampling when considering pixel-wise prediction tasks
such as image restoration or segmentation.
Adversarial Attacks. The purpose of adversarial attacks is to reveal neural networks’
weaknesses [3, 30, 74, 81] by perturbing pixel values in the input image [12, 28, 49].
These perturbations should lead to a false prediction even though the changes are hardly
visible [28,61,81]. Especially attacks that have access to the network’s architecture and
weights, so-called white-box attacks, are a common approach to analyzing weaknesses
within the networks’ structure [12, 28]. They employ the gradient of the network to
optimize the perturbation, which is bounded within an ϵ-ball of the original image,
i.e. ϵ defines the strength of the attack. Most adversarial attacks are proposed to attack
classification networks like the one-step Fast Gradient Sign Method (FGSM) [28] or the
multi-step Projected Gradient Descent (PGD) attack [49]. However, they can be adapted
to other tasks as e.g. in [59, 67, 88]. Furthermore, there are dedicated methods like
SegPGD [34] for attacks on semantic segmentation models or PCFA [74] and [71, 73]
for optical flow models and CosPGD [3] and others [72] for other pixel-wise prediction
tasks. We evaluate the stability of upsampled features using adversarial attacks such as
PGD and CosPGD for image restoration and FGSM and SegPGD for segmentation.

3 Spectral Upsampling Artifacts and How They Can Be Reduced

Following, we first theoretically review artifacts that are caused during upsampling from
a signal processing aspect. We start by describing the spectral artifacts [76] induced by
the bed of nails interpolation, similar to the discussion in [23], and then extend the the-
oretical analysis to further upsampling schemes. Second, we derive from this analysis
two hypotheses for the prediction stability of encoder-decoder networks, depending on
their architecture. These hypotheses will motivate the remainder of the manuscript.

Consider, w.l.o.g., a one-dimensional signal I and its discrete Fourier Transform
F(I) with k being the index of discrete frequencies

F(I)k =

N−1∑
j=0

e−2πi· jkN · Ij , for k = 0, . . . , N − 1.

Improving Feature Stability during Upsampling 5

During decoding, we need to upsample the spatial resolution of I to get Iup. For exam-
ple for an upsampling factor of 2 (often used in DNNs [1, 16, 19, 82, 89]) we have for
k̄ = 0, . . . , 2N − 1

F(I)up
k̄

=

2N−1∑
j=0

e−2πi· jk̄
2·N · Iupj =

N−1∑
j=0

e−2πi· 2·jk̄2·N Ij +

N−1∑
j=0

e−2πi· (2j+1)k̄
2·N Īj , (1)

where Īj = 0 in bed of nails interpolation. Therefore, the second term in (1) can be
dropped and the first term resembles the original F(I). Equivalently, we can rewrite
Eq. (1), for Īj = 0, using a Dirac impulse comb as

(1) =
2N−1∑
j=0

e−2πi· jk̄
2·N ·

∞∑
t=−∞

Iupj · δ(j − 2t). (2)

If we now apply the pointwise multiplication with the Dirac impulse comb as convolu-
tion in the Fourier domain (assuming periodicity) [25], it is

F(I)up
k̄

=
1

2

∞∑
t=−∞

 ∞∑
j=−∞

e−2πi· jk̄
2N Iupj

(
k̄ − t

2

)
(3)

(1)
=

1

2

∞∑
t=−∞

 ∞∑
j=−∞

e−2πi· jk̄N · Ij

(
k̄ − t

2

)
=

1

2

∞∑
t=−∞

F(I)k̄

(
k̄ − t

2

)
.

We can see that such upsampling creates high-frequency replica of the signal at t
2 for

t in −∞, . . . ,∞ in F(I)up and spatial frequencies apparent beyond array positions N
2

will be impacted by spectral artifacts if no appropriate countermeasures are taken.
A standard countermeasure is interpolation of the inserted values with Īj =

Ij−1+Ij
2

for linear interpolation in Eq. (1). Linear interpolation (and in consequence bi-linear
interpolation in 2D signals) corresponds to a convolution with a triangular impulse with
width 2, which can be represented as the convolution of two rectangle functions with
width 1. Accordingly, the Fourier response for frequency ℓ, Fℓ of the triangular impulse
is a squared sinc function (sinc2(ℓ)) with sinc(ℓ) = sin(πℓ)

πℓ . Since the output signal after
interpolation is still discrete, i.e. sampled with sampling rate 1

2 , a replica of the interpo-
lation function, the sinc2 function, will appear with rate 2 in the resulting spectrum (see
also Fig. 2). The resulting interpolated signal is not optimal for several reasons. Most
importantly, the spectrum of the interpolation function is not flat although the estimated
values appear overly smooth (see Fig. 3.). This is arguably suboptimal for, for example,
image restoration or segmentation tasks, where fine structural details are supposed to
emerge in the upsampled data.

Note that, in Eq. (1), pixel shuffle [77] will set Īj to completely unrelated values of
a different feature map channel, leading to a highly non-smooth signal with frequencies
at the band limit. The resulting issues in the spectrum are similar to the ones caused by
the bed of nails interpolation. These spectral artifacts can be visually observed in Fig. 3.

Therefore, in transposed convolutions, the interpolation function is not fixed to a
predefined smoothing kernel but learned so that the resulting signal can represent fine

6 S. Agnihotri et al.

FFT

IFFT

Fourier domain Fourier domainSpatial domain Spatial domain

FFT

IFFT

aliasing

Fig. 2: (Left) Linear interpolation (pink) of the samples (green) causes aliases. (Right) Optimal
signal reconstruction (pink) is achieved by sinc interpolation. In practice our spatial context is
limited and the interpolation function is discrete. Yet, increasing the kernel size enables the ap-
proximation of larger sinc-like structures.

Artifact-free Ground Truth Bicubic Interpolation Nearest Neighbor Interpolation Small(3×3) Transposed Conv

Zoomed-in Ground Truth Bilinear Interpolation Pixel Shuffle Large(7×7+3×3) Transposed Conv

Fig. 3: An image from GoPro [63] downsampled with 3×3 MaxPooling and then upsampled
using various upsampling techniques. The resulting artifacts are compared on zoomed-in red box
regions for better visibility. Bilinear interpolation causes over-smoothing. Bicubic interpolation
causes overestimation along image boundaries while Pixel Shuffle and Nearest Neighbor cause
strong grid artifacts along with discoloration. Small kernel transposed convolutions cause grid
artifacts, however, on increasing kernel size we start getting better upsampling.

details after the initial bed of nails interpolation and potentially learn to add fine details.
One issue is that the learned convolution kernels may overlap based on the chosen stride
and kernel size. If the stride is smaller than the kernel size, this will cause overlaps in the
operation, leading to uneven contributions to different pixels in the upsampled feature
map and thus to grid-like artifacts [4, 65]. Besides this rather technical aspect, trans-
posed convolutions, if sufficiently large (thus also containing more context), could in
principle learn to approximate correct upsampling functions. This can be understood
when again looking at the Fourier representation. When interpolating, we want to in-
crease the signal array size so that all the original information is preserved and the
model can easily learn additional details. Such upsampling to preserve the information
from the original low-resolution data is most easily achieved by transforming the signal
to the Fourier domain, then padding the missing high-frequency parts with zeros and
transforming the resulting array back to the spatial domain [79]. In the Fourier domain,
this padding operation can be understood as a point-wise multiplication of the desired
full spectrum with a rectangle function with width N (denoted rectN). Conversely, this
operation corresponds to a convolution with F−1(rectN) = 1

N sinc(xN) in the spatial
domain. While the sinc function drops off as x increases, it never drops to zero. When
applied for interpolation, its crests and the troughs cancel out the aliasing to a large

Improving Feature Stability during Upsampling 7

extent as shown in Fig. 2. Thus, in order to allow the approximation of the optimal in-
terpolation function, the kernel size in transposed convolutions has to be chosen as large
as possible. This is, however, at odds with the “learnability” of suitable filter weights.
Note that for pixel-wise predictions, models not only need to correctly interpolate, but
they also need to “fill in” the missing details, which requires global as well as local
context. Therefore, we expect a trade-off on the kernel size of transposed convolutions,
where larger kernels improve the stability of the upsampled features and thus can reduce
artifacts while the absolute prediction quality can suffer from very large learnable ker-
nels. Sufficiently but not overly large kernels provide sufficient spatial context and are
appropriate to allow for the model to learn when to blur and when to preserve/sharpen
upsampled features. We illustrate this in Fig. 12 in Appendix C.4.

From this theoretical analysis of common upsampling methods, we derive the fol-
lowing hypotheses that we deem relevant for encoder-decoder architectures:

Hypothesis 1 (H1): Large Context Transposed Convolutions (LCTC) i.e. Large ker-
nels in transposed convolution operations provide more context and reduce spectral
artifacts and can therefore be leveraged by the network to facilitate better and more
robust pixel-wise predictions.

Hypothesis 2 (H2, Null Hypothesis): To leverage prediction context and reduce spec-
tral artifacts, it is crucial to increase the size of the transposed convolution kernels (up-
sample using large filters). Increasing the size of normal (i.e. non-upsampling) decoder
convolutions does not have this effect.

In the following, we show the proposed, simple, and principled architecture changes
that allow for studying the above hypotheses and improving robustness by improving
feature stability.

4 Upsampling using Large Context Transposed Convolutions

Driven by the observations on upsampling artifacts, we investigate the advantage of
larger kernel sizes during upsampling, for applications such as semantic segmentation
or disparity estimation. Therefore, we keep the models’ encoder part fixed and exclu-
sively change operations in the architecture of the decoder part of the model. There,
we have two design choices: Upsampling – The kernel size for the transposed convo-
lution operations that learn upsampling, and Decoder Block – The kernel size in the
convolution operations of blocks that learn to decode the features. Probing options for
Upsampling works towards proving H1 while a combination of both options proves
H2, i.e. shows that a pure increase in the decoder parameters does not have the desired
effect. This is considered in our ablation study in Sec. 5.2.

Figure 4 summarizes the studied options for an abstract encoder-decoder architec-
ture like [70]. The model decoder is depicted in the green box. Operations that we
consider to be executed along the red upwards arrows (Upsampling Operators) are de-
tailed in the top right part of the figure (operations a) to c)). Operations that we consider
to be executed along the blue sideways arrows (Decoder Building Blocks) are depicted
in the bottom right (operations d) to f)).

8 S. Agnihotri et al.

Fig. 4: Abstract representation of an encoder-decoder architecture. While for different tasks, the
implementation of the model encoder varies (including transformer-based encoders), our study
focuses on the model decoder (in green). The backbone for the decoder is commonly a ResNet-
like structure for feature extraction [7,70], additionally we also used a ConvNeXt-like [54] struc-
ture. We investigate variants of different upsampling operations (the operations along the red
arrows in the decoder) for fixed decoder blocks. We consider, as a probe for H1, the baseline
transposed deconvolution (a) in the top right), and for LCTC an increased convolution kernel size
(b) in the top right), and an increased convolution kernel with a second path using a small convo-
lution kernel (c) in the top right). To test whether the plain increase in parameters is responsible
for improved results (zero hypotheses, H2), we also ablate on the increase of convolution kernel
size in the decoder block (operations along the blue arrows in the green block), as shown on the
bottom right. We consider the common ResNet-like decoder building block structure (in d)) and
two ConvNext-like structured backbones for the decoder building block in e) and f), where f) has
an additional small convolution applied in parallel, analog to c).

Model Details. Here, we provide details on the studied models. All implementation
details are given in the Appendix A.
Transposed Convolution Kernels for Upsampling. The upsampling operation is typ-
ically performed with small kernels (2×2 or 3×3) in the transposed convolution op-
erations [8, 13, 70]. We aim to increase the spatial context during upsampling and to
reduce grid artifacts. Thus we use Large Context Transposed Convolutions (LCTC).
We either use 7×7 transposed convolutions or 11×11 transposed convolutions with a
parallel 3×3 transposed convolution. Adding a parallel 3×3 kernel is motivated by [17],
as large convolution kernels tend to lose local context, and thus adding a parallel small
kernel helps to overcome this potential drawback (see Appendix B.3).
Decoder Building Blocks. To verify that the measurable effects are due to the improved
upsampling and not due to merely increasing the decoder capacity, we ablate on decoder
convolution blocks similar to convolution blocks used in the ConvNeXt [54] basic block
for encoding. While the standard ConvNeXt block uses a 7×7 depth-wise convolution,
we consider 7×7 and 11×11 group-wise convolutions, followed by layers present in a
ConvNeXt basic block to analyze the importance of the receptive field within the block.

Improving Feature Stability during Upsampling 9

PixelShuffle 3 × 3 7 × 7 + 3 × 3 (LCTC) 11 × 11 + 3 × 3 (LCTC)

D
eb

lu
ri

ng
cl

ea
n

in
pu

t
D

eb
lu

ri
ng

at
ta

ck
ed

in
pu

t

Fig. 5: NAFNet, as proposed, uses Pixel Shuffle for upsampling. We modify only the upsampling
operations to transposed convolution with kernel size (3×3) and LCTC (Ours) for comparisons.
We observe, for example, under a 10-step PGD attack with ϵ ≈ 8

255
our proposed H1 gains

validity. More examples for [16, 89] using different attacks and budgets are in Appendix C.3.

Table 1: Comparison of performances of different upsampling methods in SotA Image Restora-
tion Networks on the GoPro dataset. The architectures use Pixel Shuffle for Upsampling, we
propose replacing the Pixel Shuffle with Large Context Transposed Convolutions (LCTC). We
report additional results using adversarial training in Tab. 15. Note, that some trade-off between
clean performance and robustness is expected [85, 90].

Network Upsampling Method
Test Accuracy CosPGD (ϵ ≈ 8

255
) attack iterations PGD (ϵ ≈ 8

255
) attack iterations

5 10 20 5 10 20
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Restormer

Pixel Shuffle 31.99 0.9635 11.36 0.3236 9.05 0.2242 7.59 0.1548 11.41 0.3256 9.04 0.2234 7.58 0.1543
Transposed Conv 3×3 9.68 0.095 8.24 0.0452 8.53 0.0628 8.44 0.0631 7.66 0.0464 7.72 0.0577 8.64 0.0527

LCTC: 7×7 + 3 ×3 (Ours) 29.51 0.9337 13.69 0.4186 11.53 0.3136 10.16 0.2484 13.69 0.4183 11.54 0.3137 10.16 0.2483
LCTC: 11×11 + 3×3 (Ours) 29.44 0.9324 14.65 0.4251 12.83 0.3438 11.48 0.29 14.65 0.4253 12.84 0.3445 11.48 0.2893

NAFNet

Pixel Shuffle 32.87 0.9606 8.67 0.2264 6.68 0.1127 5.81 0.0617 10.27 0.3179 8.66 0.2282 5.95 0.0714
Transposed Conv 3×3 31.02 0.9422 6.15 0.0332 5.95 0.0258 5.87 0.0233 6.15 0.0332 5.95 0.0258 5.87 0.0234

LCTC: 7×7 + 3 ×3 (Ours) 31.12 0.9430 14.54 0.4827 11.05 0.3220 9.06 0.2213 14.53 0.4823 11.03 0.3201 9.08 0.2224
LCTC: 11×11 + 3×3 (Ours) 30.77 0.9392 14.34 0.4492 11.41 0.3244 9.54 0.2411 14.34 0.45 11.4 0.3236 9.55 0.2398

Figure 4 (bottom right e) and f)) shows the structure of a ConvNeXt-style building
block used in our work. First, a group-wise convolution is performed, followed by a
LayerNorm [5] and two 1×1 convolutions which, similar to [54], creates an inverted
bottleneck by first increasing the channel dimension and after a GELU [40] activation
compressing the channel dimension again. We consider the ResNet-style building block
(Figure 4, d)), with 3×3 convolution, yet without skip connection, as our baseline when
studying this architectural design choice.

5 Experiments

In the following, we evaluate the effect of the considered upsampling operators in sev-
eral applications. We start by evaluating the effect on the upsampled feature stability
of recent state-of-the-art (SotA) image restoration models [16,89], then provide results
on semantic segmentation using more generic convolutional architectures that allow us
to provide compulsory ablations. Last, we show that our results also extend to disparity
estimation [50]. We provide details on the used adversarial attacks, datasets, reported
metrics, and other experimental details in Appendix A.

10 S. Agnihotri et al.

In all cases, we observe that Large Context Transposed Convolutions (LCTC) im-
prove the results of the respective pixel-wise prediction task in terms of stability under
attack, showing that H1 holds. Further, our extensive ablation on image segmentation
shows that increasing the convolution kernel in the decoder building blocks does not
have this beneficial effect, providing experimental evidence for our hypothesis H2 and
confirming the impact of spectral artifacts on pixel-wise predictions.

5.1 Image Restoration

For image restoration, we consider the Vision Transformer-based Restormer [89] and
NAFNet [16]. Both originally use the Pixel Shuffle [77] for upsampling. Here, we com-
pare the reconstructions from these proposed architectures to their variants using the
proposed operators with large transposed convolution filters. We use the same metrics
as [16,89], Peak Signal-to-Noise Ratio (PSNR), and structural similarity index measure
(SSIM) [86]. We perform our experiments on the GoPro [63] image deblurring dataset,
following the experimental setup in [1].

Results on Image Restoration. We first consider qualitative results on NAFNet [16]
in Figure 5 and Restormer [89] in Fig. 10, Fig. 11(in Appendix C.3), where we see that
the proposed upsampling operators allow for visually good results in image deblurring
on clean data (similar to pixel shuffle). Yet, in contrast to pixel shuffle and the baseline
small transposed convolution filters, the proposed Large Context Transposed Convolu-
tions (LCTC) significantly reduces artifacts that arise on attacked images (in this case,
10-step PGD with ϵ ≈ 8

255). attacks with varying numbers of steps.
In Table 1, we report the average PSNR and SSIM values of the reconstructed im-

ages from the GoPro test set. These results confirm that at filter size 3×3, the perfor-
mance of the transposed convolution variant of both the considered networks is sig-
nificantly worse than the originally proposed Pixel Shuffle variant, justifying the com-
munity’s extensive use of Pixel Shuffle. However, we observe on increasing context
by increasing the kernel size to 7×7 that the performance of the transposed convolu-
tion variants significantly improves, especially making the networks more stable when
facing adversarial attacks. This boost in performance is further accentuated by increas-
ing the kernel size to 11×11 (both with parallel small kernels). These results provide
evidence for Hypothesis 1.

Note that the slightly reduced performance on clean images, seen in Table 1, is
expected to some degree: here, we only investigate sampling in the decoder, while
pixel unshuffle is used in the encoder, potentially causing a mismatch. Further, pre-
vious works have shown that there exists a trade-off between adversarial robustness and
clean performance [85, 90]. However, we do not observe this trade-off for matching
encoder-decoder architectures, e.g. in semantic segmentation.

5.2 Semantic Segmentation

As baseline architecture for semantic segmentation, we consider a UNet-like architec-
ture [70] with encoder backbone layers from ConvNeXt [54] (see Appendix B.2 on the
choice of encoder). This generic architecture facilitates providing a thorough ablation

Improving Feature Stability during Upsampling 11

In
pu

t
Im

ag
e

Pr
ed

ic
tio

n
D

iff
er

en
ce

Fig. 6: A comparison of semantic segmentation mask predictions for the shown input images.
The row labeled “Prediction Difference” shows the difference in predictions between the base-
line model and the model with Large Context Transposed Convolutions (11×11+3× 3 kernels).
On white pixels, both models agree. Red pixels indicate that the baseline model predicts correctly
but our modified model predicts incorrectly. Green pixels indicate that our modified model pre-
dicts correctly but the baseline does not. The ground truth segmentation boundaries are drawn in
black. Our modification improves the segmentation result along object boundaries, which can be
attributed to spectral artifact removal, but also in more extended regions, where the context plays
a more crucial role.

Table 2: Semantic Segmentation performance on the PASCAL VOC2012 validation set for UNet
with ConvNeXt encoder, and the baseline UNet decoder (see Figure 4) with differently sized
kernels in transposed convolution for feature map upscaling while keeping rest of the architecture
fixed. Additional results are provided in Tab. 7 and Tab. 8 in Appendix B.1.

Transposed
Convolution Kernels

Clean FGSM attack epsilon SegPGD (ϵ ≈ 8
255

) attack iterations
Test Accuracy 1

255
8

255
3 20

mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc

2×2 (baseline) 78.34 86.89 95.15 53.54 70.96 86.08 47.02 65.41 82.78 23.06 46.51 45.30 5.54 18.79 23.72
LCTC: 7×7 (Ours) 78.92 88.06 95.23 56.02 74.13 86.45 49.24 68.89 82.87 26.53 53.05 61.16 7.17 23.05 27.52
LCTC: 11×11 + 3×3 (Ours) 79.33 87.81 95.41 58.04 74.93 87.80 51.25 69.31 84.64 27.49 53.08 64.13 7.08 23.30 26.82

on all considered blocks in the decoder network. Our experiments are conducted on the
PASCAL VOC 2012 dataset [24]. We report the mean Intersection over Union (mIoU)
of the predicted and ground truth segmentation mask, the mean accuracy over all pixels
(mAcc), and the mean accuracy over all classes (allAcc).

Results on Semantic Segmentation. We first discuss the results for different upsam-
pling operations. The remaining architecture is kept identical, with ResNet-style build-
ing blocks in the decoder, throughout these experiments. The clean test accuracies are
shown in Table 2. We see that as we increase the kernel size of the transposed convo-
lution layers, there is a slight increase across all three evaluation metrics. Moreover,
Figure 6 visually demonstrates that, as we increase the size of the kernels in transposed
convolution from 2×2 (baseline) to 11×11, the segmentations of the thin end and pro-
trusions, for example, in the wing of the aircraft sample image are improving. The
baseline model with small transposed convolution kernels could not predict these de-
tails. As hypothesized in H1, we observe that increasing the context can reduce spectral
artifacts caused when representation and images are upsampled using LCTC.

Further, in Table 2, we evaluate the performance of the segmentation models against
FGSM [28] and the multi-step attack SegPGD [34] adversarial attacks for the indicated
ϵ values. As expected, with the increasing intensity of the attack, the performance of all
models drops. Yet, even at high attack intensities, the larger kernels perform better than

12 S. Agnihotri et al.

Table 3: Adversarially trained models using FGSM (ϵ ≈ 8
255

) from Table 2 tested against
SegPGD adversarial attacks (ϵ ≈ 8

255
) on UNet with ConvNeXt encoder and decoder with

different sized kernels in the transposed convolution for upsampling, while keeping rest of the
architecture identical. See Tab. 10 in Appendix B.6 for more evaluations including PGD training.

Transposed
Convolution Kernels

Clean SegPGD attack iterations
Test Data 3 20

mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc

2×2 78.57 86.68 95.23 26.59 48.99 67.71 7.6 24.06 31.37
LCTC: 7×7 (Ours) 78.41 86.22 95.20 28.11 53.39 66.30 8.36 28.54 28.13
LCTC: 11×11 + 3×3 (Ours) 79.57 88.1 95.3 30.37 55.54 68.3 9.4 29.79 32.37

Table 4: Empirical evaluations for H2 using a UNet with ConvNeXt encoder. We observe that
across different-sized kernels in transposed convolution, for a fixed kernel size, increasing the
context in the decoder building blocks by using larger kernels causes performance deterioration.
These observations for image decoding contrast the findings on image encoding by [17, 51, 54].

Transposed Convolution
Kernels Decoder Building Block Style

Test Accuracy FGSM attack epsilon SegPGD (ϵ ≈ 8
255

) attack iterations

mIoU / mAcc / allAcc
1

255
8

255
3 20

mIoU / mAcc / allAcc mIoU / mAcc / allAcc mIoU / mAcc / allAcc mIoU / mAcc / allAcc

2×2
ResNet Style 3×3 78.34 / 86.89 / 95.15 53.54 / 70.96 / 86.08 47.02 / 65.41 / 82.78 23.06 / 46.51 / 60.04 5.54 / 18.79 / 23.72

ConvNeXt style 7×7 77.17 / 86.86 / 94.81 49.98 / 72.22 / 83.93 42.04 / 64.86 / 79.08 17.94 / 44.81 / 47.96 3.20 / 14.73 / 9.81
ConvNeXt style 11×11 + 3×3 77.17 / 86.86 / 94.81 47.34 / 67.72 / 83.34 37.91 / 57.79 / 78.21 13.97 / 35.82 / 45.68 2.21 / 10.75 / 5.29

LCTC: 7×7 (Ours)
ResNet Style 3×3 78.92 / 88.06 / 95.23 56.02 / 74.13 / 86.45 49.24 / 68.89 / 82.87 26.53 / 53.05 / 61.16 7.17 / 23.05 / 27.52

ConvNeXt style 7×7 77.57 / 87.04 / 94.92 52.93 / 72.18 / 85.51 44.89 / 65.71 / 80.74 17.64 / 43.32 / 47.80 1.86 / 7.18 / 3.55
ConvNeXt style 11×11 + 3×3 77.99 / 87.86 / 94.96 51.61 / 73.01 / 84.85 43.93 / 66.22 / 80.73 17.07 / 42.30 / 48.78 1.80 / 7.11 / 3.04

LCTC: 11×11 +3×3 (Ours)
ResNet Style 3×3 79.33 / 87.81 / 95.41 58.04 / 74.93 / 87.80 51.25 / 69.31 / 84.64 27.49 / 53.08 / 64.13 7.08 / 23.30 / 26.82

ConvNeXt style 7×7 78.32 / 86.98 / 95.09 53.31 / 72.45 / 86.16 44.89 / 65.18 / 82.03 16.14 / 40.65 / 50.39 1.93 / 9.35 / 3.90
ConvNeXt style 11×11 + 3×3 77.42 / 86.24 / 94.94 54.48 / 72.53 / 86.25 46.67 / 66.59 / 82.29 18.76 / 44.60 / 51.49 2.31 / 8.70 / 3.50

the small ones, and we see a trend of improvement in performance as we increase the
kernel size, providing more evidence for Hypothesis 1.

Ablation Study. In the following, we first consider the effects of additional adversar-
ial training, then ablate on the impact of other decoder building blocks and the filter
size. Variations of the model encoder are ablated in the Appendix B.2, the impact of
using small parallel kernels in addition to large kernels is ablated and discussed in Ap-
pendix B.3, and competing upsampling techniques are ablated in Appendix B.5.

Adversarial Training. In Table 3, we report results for FGSM adversarially trained
models under SegPGD attack, with attacks as in Table 2. While the overall perfor-
mance under attack is improved as expected, the trend of LCTC providing better results
persists. More results for FGSM attack and SegPGD attacks with different numbers of
iterations are given in Tab. 7 and Tab. 8 in the Appendix. In Table 15, we additionally
evaluate image restoration models under adversarial training.

Change in the decoder backbone architecture. While all previous experiments fo-
cused on the upsampling using transposed convolutions in the decoder, we now eval-
uate the influence of the convolutional kernel size within the decoder which does not
upsample (see Section 4). For these experiments, we use a UNet-like architecture with
a ConvNeXt backbone in the encoder and the PASCAL VOC 2012 dataset.

In Table 4 we observe, for a fixed transposed convolution kernel size, as we increase
the size of the convolution kernel in the decoder building blocks, the performance of
the model decreases. This phenomenon extends to the performance of the architectures

Improving Feature Stability during Upsampling 13

2
×

2

3
×

3

5
×

5

7
×

7

9
×

9

1
1

×
1

1

1
3

×
1

3

1
5

×
1

5

1
7

×
1

7

1
9

×
1

9

3
1

×
3

1

kernel size

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

re
la

ti
v
e
 m

Io
U

2
×

2

3
×

3

5
×

5

7
×

7

9
×

9

1
1

×
1

1

1
3

×
1

3

1
5

×
1

5

1
7

×
1

7

1
9

×
1

9

3
1

×
3

1

kernel size

1.0

1.1

1.2

1.3

1.4

re
a
lt

iv
e
 m

A
cc

Clean

SegPGD (ϵ≈ 8/255) 3-Step

FGSM (ϵ≈ 8/255)

FGSM (ϵ≈ 1/255)

SegPGD (ϵ≈ 8/255) 5-Step

Fig. 7: Performance comparison on PASCAL VOC2012 using UNet with ConvNeXt encoder for
different LCTC sizes from 2 × 2 (small) to 31 × 31 (LCTC) kernels. All, besides the baseline
with 2 × 2 and 3 × 3, have a parallel 3×3 kernel, as shown in Figure 4 (bottom left). For the
decoder building block backbone, a ResNet Style 3× 3 style is used. See Tab. 9 for the values.

Table 5: Comparison of performances of different upsampling methods in the UNet-like archi-
tecture. All architectures use the baseline (ConvNeXt) encoder and 3×3 convolution kernels in
the decoder block. Please refer to Table 13 in Appendix B.5 for more evaluations and discussion,
including those with ConvNeXt style 7×7+3×3 Convolution kernels in the decoder blocks.

Upsampling Method
Test Accuracy FGSM attack epsilon SegPGD (ϵ ≈ 8

255
) attack iterations

1
255

8
255

5 20
mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc

Pixel Shuffle 78.54 87.32 95.18 53.82 71.58 85.88 46.67 65.03 81.71 15.06 38.85 41.71 6.69 23.43 24.05
Nearest Neighbour Interpolation 78.40 88.16 95.09 52.68 73.51 84.55 46.08 67.96 80.22 15.34 44.53 36.21 7.65 27.89 20.48
Transposed Convolution 2×2 78.45 86.66 95.20 53.76 70.62 86.32 47.33 64.58 83.16 14.43 35.50 45.30 5.54 18.79 23.72
LCTC: 11×11+3×3 (Ours) 79.33 87.81 95.41 58.04 74.93 87.80 51.25 69.31 84.64 18.15 43.51 49.36 7.08 23.30 26.82

under adversarial attacks, showing that a mere increase in parameters in the model
decoder does not have a positive effect on model performance or on its stability. This
proves the validity of hypothesis H2. An explanation for this phenomenon could be
that we only need to increase context during the actual upsampling step, increasing
context in the consequent decoder building blocks has a negligible effect on the quality
of representations learned. However, the increase in the number of parameters makes
the architecture more susceptible to adversarial attacks.
Ablation on filter size saturation. After proving H1 one could argue that networks will
consistently improve with increased kernel size for Large Context Transposed Convolu-
tions. Hence, we test larger kernel sizes of 15×15, 17×17, 19×19 and 31×31 kernels.
Yet, as seen in Figure 7, the effect of the kernel size appears to saturate: the perfor-
mance after 13×13 and the performance of 31×31 kernels is not better than for 11×11
kernels. Yet, they are significantly better than the baseline’s performance.
Ablation on different Upsampling Methods. Following, we compare different upsam-
pling techniques thus justifying our advocacy for using LCTC instead of other upsam-
pling techniques like interpolation and pixel shuffle in the real world.

We report the comparison in Table 5 and observe that both Pixel shuffle and Near-
est Neighbor interpolation perform better than the usually used Transposed Convolu-
tion with a 2×2 kernel size. However, as we increase the kernel size for Transposed
Convolution to 11×11 with a 3×3 small kernel in parallel, we observe that LCTC is
strictly outperforming Pixel Shuffle, on both clean unperturbed images and under ad-
versarial attacks, across all metrics used. Large Context Transposed Convolutions are
either outperforming or performing at par with Nearest Neighbor interpolation. Thus
we demonstrate the superior clean and adversarial performance of Large Context Trans-
posed Convolutions operation over other commonly used techniques.

14 S. Agnihotri et al.

5.3 Disparity Estimation

To show that the observations extend from image restorations and segmentation to
other tasks, we conduct additional experiments for disparity estimation. We consider
the STTR-light [50] architecture, built from STTR, which is a recent state-of-the-art
vision-transformer based model for disparity estimation and occlusion detection. To
implement the proposed modification, we alter the kernel sizes in the transposed con-
volution layers used for pixel-wise upsampling in the “feature extractor” module of the
architecture from 3×3 kernels to larger kernels. We conduct evaluations on FlyingTh-
ings3D [60] and keep all other details as implemented in [50].

Table 6: Comparison of performance of STTR-light
architecture with different sized kernels in transposed
convolution for upsampling the feature maps in the fea-
ture extractor (lower is better). The entire set of results
is provided as Tab. 17 in Appendix D.1.
Transposed
Convolution Kernels

Test Accuracy 3-Step PGD attack
epe↓ 3px error↓ epe↓ 3px error↓

STTR-light [50] reported 0.5 1.54 - -

3×3 [50] reproduced 0.4927 1.54 4.05 18.5
LCTC: 7×7 + 3×3 (Ours) 0.4788 1.50 4.02 18.3

In Table 6, we report the im-
provements in performance due to
our architecture modification of in-
creasing the size of the transposed
convolution kernels used for up-
sampling, from the 3×3 in the
baseline model to 7×7 (LCTC).
Similar to previous applications,
the increased kernel sizes with par-
allel 3×3 kernels further facilitate
to stabilize the model when attacked, as evaluated here for 3 attack iterations using
PGD with ϵ ≈ 8

255 on the disparity loss. Indicating that larger kernels in the transposed
convolutions can better decode learned representations from the encoder regardless of
the specific downstream task. We provide visual results in Appendix D.1.

6 Conclusion

We provide conclusive reasoning and empirical evidence for our hypotheses on the
importance of context during upsampling. While increasing the size of convolutions
during upsampling (LCTC) increases prediction stability, increasing the size of those
convolution layers without upsampling does not benefit the network. This indicates that
observations made for increased context during encoding do not translate to decoding.
Further, we show that our simple LCTC can be directly incorporated into recent models,
yielding better stability even in ViT-based architectures like Restormer, NAFNet, and
STTR-light as well as in classical CNNs. Our observations are consistent across several
architectures and downstream tasks.
Limitations. Current metrics for measuring performance do not completely account
for spectral artifacts. Spectral artifacts begin affecting these metrics only when they
become pronounced such as under adversarial attacks, and here LCTC consistently per-
forms better across tasks and architectures. Ideally, we would want infinitely large ker-
nels, however, with increasing kernel size and task complexity, training extremely large
kernels can be challenging. Thus, in this work, while having ablated over kernels as
large as 31×31, we propose using kernels only as large as 7×7 to 11×11 for good
practical trade-offs. Further improvements might be possible when jointly optimizing
the encoder and decoder. Moreover, there might exist other factors that contribute to the
introduction and existence of spectral artifacts such as spatial bias.

Improving Feature Stability during Upsampling 15

Acknowledgements.

Margret Keuper acknowledges funding by the DFG Research Unit 5336 - Learning to
Sense. The OMNI cluster of the University of Siegen was used for some of the initial
computations. Additionally, Shashank Agnihotri would like to thank Dr. Bin Zhao for
his help in translating [75].

References

1. Agnihotri, S., Gandikota, K.V., Grabinski, J., Chandramouli, P., Keuper, M.: On the unrea-
sonable vulnerability of transformers for image restoration-and an easy fix. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 3707–3717 (2023)

2. Agnihotri, S., Grabinski, J., Keuper, J., Keuper, M.: Beware of aliases–signal preservation is
crucial for robust image restoration. arXiv preprint arXiv:2406.07435 (2024)

3. Agnihotri, S., Jung, S., Keuper, M.: CosPGD: A unified white-box adversarial attack for
pixel-wise prediction tasks. In: International Conference on Machine Learning (2024)

4. Aitken, A., Ledig, C., Theis, L., Caballero, J., Wang, Z., Shi, W.: Checkerboard artifact free
sub-pixel convolution: A note on sub-pixel convolution, resize convolution and convolution
resize. arXiv preprint arXiv:1707.02937 (2017)

5. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450
(2016)

6. Badki, A., Troccoli, A., Kim, K., Kautz, J., Sen, P., Gallo, O.: Bi3D: Stereo depth estima-
tion via binary classifications. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2020)

7. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional encoder-decoder
architecture for image segmentation. IEEE transactions on pattern analysis and machine in-
telligence 39(12), 2481–2495 (2017)

8. Baranchuk, D., Rubachev, I., Voynov, A., Khrulkov, V., Babenko, A.: Label-efficient seman-
tic segmentation with diffusion models (2021)

9. Brigham, E.O., Morrow, R.: The fast fourier transform. IEEE spectrum 4(12), 63–70 (1967)
10. Brunton, S.L., Kutz, J.N.: Data-driven science and engineering: Machine learning, dynamical

systems, and control. Cambridge University Press (2022)
11. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end

object detection with transformers. In: European conference on computer vision. pp. 213–
229. Springer (2020)

12. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 ieee
symposium on security and privacy (sp). pp. 39–57. IEEE (2017)

13. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learn-
ing of visual features by contrasting cluster assignments. Advances in neural information
processing systems 33, 9912–9924 (2020)

14. Chandrasegaran, K., Tran, N.T., Cheung, N.M.: A closer look at fourier spectrum discrep-
ancies for cnn-generated images detection. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 7200–7209 (June 2021)

15. Chang, J.R., Chen, Y.S.: Pyramid stereo matching network. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 5410–5418 (2018)

16. Chen, L., Chu, X., Zhang, X., Sun, J.: Simple baselines for image restoration. In: European
Conference on Computer Vision. pp. 17–33. Springer (2022)

17. Ding, X., Zhang, X., Han, J., Ding, G.: Scaling up your kernels to 31x31: Revisiting large
kernel design in cnns. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. pp. 11963–11975 (2022)

16 S. Agnihotri et al.

18. Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics based on
deep networks. Advances in neural information processing systems 29 (2016)

19. Dosovitskiy, A., Brox, T.: Inverting visual representations with convolutional networks. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 4829–
4837 (2016)

20. Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., Van Der Smagt,
P., Cremers, D., Brox, T.: Flownet: Learning optical flow with convolutional networks. In:
Proceedings of the IEEE international conference on computer vision. pp. 2758–2766 (2015)

21. Dosovitskiy, A., Springenberg, J.T., Tatarchenko, M., Brox, T.: Learning to generate chairs,
tables and cars with convolutional networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence 39(4), 692–705 (2017)

22. Dumoulin, V., Visin, F.: A guide to convolution arithmetic for deep learning. arXiv preprint
arXiv:1603.07285 (2016)

23. Durall, R., Keuper, M., Keuper, J.: Watch your up-convolution: Cnn based generative
deep neural networks are failing to reproduce spectral distributions. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. pp. 7890–7899 (2020)

24. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PAS-
CAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html (2012)

25. Forsyth, D.A., Ponce, J.: Computer vision: a modern approach. Prentice Hall professional
technical reference (2002)

26. Gal, R., Hochberg, D.C., Bermano, A., Cohen-Or, D.: SWAGAN: A style-based wavelet-
driven generative model. ACM Transactions on Graphics (TOG) 40(4), 1–11 (2021)

27. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., Bengio, Y.: Generative adversarial networks. Communications of the ACM 63(11), 139–
144 (2020)

28. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572 (2014)

29. Grabinski, J., Jung, S., Keuper, J., Keuper, M.: Frequencylowcut pooling-plug and play
against catastrophic overfitting. In: European Conference on Computer Vision. pp. 36–57.
Springer (2022)

30. Grabinski, J., Keuper, J., Keuper, M.: Aliasing and adversarial robust generalization of cnns.
Machine Learning pp. 1–27 (2022)

31. Grabinski, J., Keuper, J., Keuper, M.: Aliasing coincides with cnns vulnerability towards ad-
versarial attacks. In: The AAAI-22 Workshop on Adversarial Machine Learning and Beyond.
pp. 1–5 (2022)

32. Grabinski, J., Keuper, J., Keuper, M.: Fix your downsampling asap! be natively more robust
via aliasing and spectral artifact free pooling (2023)

33. Grabinski, J., Keuper, J., Keuper, M.: As large as it gets – studying infinitely large con-
volutions via neural implicit frequency filters. Transactions on Machine Learning Research
(2024), https://openreview.net/forum?id=xRy1YRcHWj, featured Certifica-
tion

34. Gu, J., Zhao, H., Tresp, V., Torr, P.H.: Segpgd: An effective and efficient adversarial attack
for evaluating and boosting segmentation robustness. In: European Conference on Computer
Vision. pp. 308–325. Springer (2022)

35. Guo, M.H., Lu, C.Z., Hou, Q., Liu, Z., Cheng, M.M., Hu, S.M.: Segnext: Rethinking con-
volutional attention design for semantic segmentation. Advances in Neural Information Pro-
cessing Systems 35, 1140–1156 (2022)

36. Hariharan, B., Arbeláez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours from inverse
detectors. In: 2011 international conference on computer vision. pp. 991–998. IEEE (2011)

https://openreview.net/forum?id=xRy1YRcHWj

Improving Feature Stability during Upsampling 17

37. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–778
(2016)

38. He, Y., Yu, N., Keuper, M., Fritz, M.: Beyond the spectrum: Detecting deepfakes via re-
synthesis. In: Zhou, Z.H. (ed.) Proceedings of the Thirtieth International Joint Conference
on Artificial Intelligence, IJCAI-21. pp. 2534–2541. International Joint Conferences on Ar-
tificial Intelligence Organization (8 2021), main Track

39. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corrup-
tions and perturbations. Proceedings of the International Conference on Learning Represen-
tations (2019)

40. Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415 (2016)

41. Hoffmann, J., Agnihotri, S., Saikia, T., Brox, T.: Towards improving robustness of com-
pressed cnns. In: ICML Workshop on Uncertainty and Robustness in Deep Learning (UDL)
(2021)

42. Hossain, M.T., Teng, S.W., Lu, G., Rahman, M.A., Sohel, F.: Anti-aliasing deep image clas-
sifiers using novel depth adaptive blurring and activation function. Neurocomputing 536,
164–174 (2023)

43. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0: Evolution
of optical flow estimation with deep networks. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 2462–2470 (2017)

44. Jung, S., Keuper, M.: Spectral distribution aware image generation. In: Proceedings of the
AAAI conference on artificial intelligence. vol. 35, pp. 1734–1742 (2021)

45. Jung, S., Lukasik, J., Keuper, M.: Neural architecture design and robustness: A dataset. In:
Eleventh International Conference on Learning Representations. OpenReview.net (2023)

46. Karras, T., Aittala, M., Laine, S., Härkönen, E., Hellsten, J., Lehtinen, J., Aila, T.: Alias-free
generative adversarial networks. Advances in Neural Information Processing Systems 34,
852–863 (2021)

47. Khayatkhoei, M., Elgammal, A.: Spatial frequency bias in convolutional generative adver-
sarial networks. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 36,
pp. 7152–7159 (2022)

48. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. Advances in neural information processing systems 25 (2012)

49. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial machine learning at scale. In: Interna-
tional Conference on Learning Representations (2017), https://openreview.net/
forum?id=BJm4T4Kgx

50. Li, Z., Liu, X., Drenkow, N., Ding, A., Creighton, F.X., Taylor, R.H., Unberath, M.: Revisit-
ing stereo depth estimation from a sequence-to-sequence perspective with transformers. In:
Proceedings of the IEEE/CVF international conference on computer vision. pp. 6197–6206
(2021)

51. Liu, S., Chen, T., Chen, X., Chen, X., Xiao, Q., Wu, B., Kärkkäinen, T., Pechenizkiy, M.,
Mocanu, D., Wang, Z.: More convnets in the 2020s: Scaling up kernels beyond 51x51 using
sparsity. arXiv preprint arXiv:2207.03620 (2022)

52. Liu, S., Deng, W.: Very deep convolutional neural network based image classification us-
ing small training sample size. In: 2015 3rd IAPR Asian conference on pattern recognition
(ACPR). pp. 730–734. IEEE (2015)

53. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer:
Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV) (2021)

https://openreview.net/forum?id=BJm4T4Kgx
https://openreview.net/forum?id=BJm4T4Kgx

18 S. Agnihotri et al.

54. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s.
In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
pp. 11976–11986 (2022)

55. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp.
3431–3440 (2015)

56. Loshchilov, I., Hutter, F.: SGDR: Stochastic gradient descent with warm restarts. In: Interna-
tional Conference on Learning Representations (2017), https://openreview.net/
forum?id=Skq89Scxx

57. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Confer-
ence on Learning Representations (2019), https://openreview.net/forum?id=
Bkg6RiCqY7

58. Maiya, S.R., Ehrlich, M., Agarwal, V., Lim, S.N., Goldstein, T., Shrivastava, A.: A frequency
perspective of adversarial robustness (2021)

59. Mathew, A., Patra, A., Mathew, J.: Monocular depth estimators: Vulnerabilities and attacks.
ArXiv abs/2005.14302 (2020)

60. Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox, T.: A large
dataset to train convolutional networks for disparity, optical flow, and scene flow estimation.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp.
4040–4048 (2016)

61. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate method to
fool deep neural networks. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 2574–2582 (2016)

62. Mosleh, A., Langlois, J.M.P., Green, P.: Image deconvolution ringing artifact detection and
removal via psf frequency analysis. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.)
Computer Vision – ECCV 2014. pp. 247–262. Springer International Publishing, Cham
(2014)

63. Nah, S., Kim, T.H., Lee, K.M.: Deep multi-scale convolutional neural network for dynamic
scene deblurring. In: CVPR (July 2017)

64. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In:
Proceedings of the IEEE international conference on computer vision. pp. 1520–1528 (2015)

65. Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts. Distill 1(10),
e3 (2016)

66. Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J.: Large kernel matters – improve semantic
segmentation by global convolutional network. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (July 2017)

67. Pervin, M., Tao, L., Huq, A., He, Z., Huo, L., et al.: Adversarial attack driven data augmen-
tation for accurate and robust medical image segmentation. arXiv preprint arXiv:2105.12106
(2021)

68. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convo-
lutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

69. Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollar, P.: Designing network de-
sign spaces. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (June 2020)

70. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image
segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings,
Part III 18. pp. 234–241. Springer (2015)

71. Scheurer, E., Schmalfuss, J., Lis, A., Bruhn, A.: Detection defenses: An empty promise
against adversarial patch attacks on optical flow. arXiv preprint arXiv:2310.17403 (2023)

https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

Improving Feature Stability during Upsampling 19

72. Schmalfuss, J., Mehl, L., Bruhn, A.: Attacking motion estimation with adversarial snow.
arXiv preprint arXiv:2210.11242 (2022)

73. Schmalfuss, J., Mehl, L., Bruhn, A.: Distracting downpour: Adversarial weather attacks for
motion estimation (2023)

74. Schmalfuss, J., Scholze, P., Bruhn, A.: A perturbation-constrained adversarial attack for eval-
uating the robustness of optical flow (2022)

75. segcv: segcv/pspnet. https://github.com/segcv/PSPNet/blob/master/
Train.md (2021)

76. Shannon, C.E.: Communication in the presence of noise. Proceedings of the IRE 37(1), 10–
21 (1949)

77. Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert, D., Wang, Z.:
Real-time single image and video super-resolution using an efficient sub-pixel convolutional
neural network (2016)

78. Si-Yao, L., Ren, D., Yin, Q.: Understanding kernel size in blind deconvolution. In: 2019
IEEE Winter Conference on Applications of Computer Vision (WACV). pp. 2068–2076.
IEEE (2019)

79. Smith III, J.O.: Physical audio signal processing: For virtual musical instruments and audio
effects. (No Title) (2010)

80. Sommerhoff, H., Agnihotri, S., Saleh, M., Moeller, M., Keuper, M., Kolb, A.: Differentiable
sensor layouts for end-to-end learning of task-specific camera parameters. arXiv preprint
arXiv:2304.14736 (2023)

81. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.:
Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

82. Tan, M., Le, Q.: Efficientnetv2: Smaller models and faster training. In: International confer-
ence on machine learning. pp. 10096–10106. PMLR (2021)

83. Teed, Z., Deng, J.: Raft: Recurrent all-pairs field transforms for optical flow. In: Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Pro-
ceedings, Part II 16. pp. 402–419. Springer (2020)

84. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-
efficient image transformers & distillation through attention. In: International conference on
machine learning. pp. 10347–10357. PMLR (2021)

85. Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: Robustness may be at odds
with accuracy. In: International Conference on Learning Representations (2019), https:
//openreview.net/forum?id=SyxAb30cY7

86. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from er-
ror visibility to structural similarity. IEEE transactions on image processing 13(4), 600–612
(2004)

87. Xu, L., Ren, J.S., Liu, C., Jia, J.: Deep convolutional neural network for image deconvolution.
Advances in neural information processing systems 27 (2014)

88. Yamanaka, K., Matsumoto, R., Takahashi, K., Fujii, T.: Adversarial patch attacks on monoc-
ular depth estimation networks. IEEE Access 8, 179094–179104 (2020)

89. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer: Efficient
transformer for high-resolution image restoration. In: Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition. pp. 5728–5739 (2022)

90. Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., Jordan, M.: Theoretically principled
trade-off between robustness and accuracy. In: ICML (2019)

91. Zhang, R.: Making convolutional networks shift-invariant again. In: ICML (2019)
92. Zhao, H.: semseg. https://github.com/hszhao/semseg (2019)
93. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings

of the IEEE conference on computer vision and pattern recognition. pp. 2881–2890 (2017)

https://github.com/segcv/PSPNet/blob/master/Train.md
https://github.com/segcv/PSPNet/blob/master/Train.md
https://openreview.net/forum?id=SyxAb30cY7
https://openreview.net/forum?id=SyxAb30cY7
https://github.com/hszhao/semseg

20 S. Agnihotri et al.

94. Zhao, H., Zhang, Y., Liu, S., Shi, J., Loy, C.C., Lin, D., Jia, J.: PSANet: Point-wise spatial
attention network for scene parsing. In: ECCV (2018)

95. Zou, X., Xiao, F., Yu, Z., Lee, Y.J.: Delving deeper into anti-aliasing in convnets. In: BMVC
(2020)

Improving Feature Stability during Upsampling 21

Improving Feature Stability during Upsampling –
Spectral Artifacts and the Importance of Spatial Context

Supplementary Material

In the following, we present results and figures to support our statements in the
main paper and provide additional information. The following has been covered in the
appendix:

– Appendix A: Detailed experimental setup for all downstream tasks.

• Appendix A.1: Image Restoration experimental setup

• Appendix A.2: Semantic Segmentation experimental setup

• Appendix A.3: Disparity Estimation experimental setup

• Appendix A.4: Detailed setup of Adversarial attacks for all downstream tasks.

• Appendix A.5: Detailed setup of adversarial training for semantic segmentation
and image restoration.

– Appendix B: Semantic Segmentation: Additional Experiments and Ablations. In
detail:

• Appendix B.1: Detailed results from Sec. 5.2 and Sec. 5.2.

• Appendix B.1: Discussion on saturation of kernel size for upsampling.

• Appendix B.2: An ablation on the impact of the capacity of the encoder block
for standard options such as ResNet or ConvNeXt blocks.

• Appendix B.3: Ablation about including or excluding a small parallel kernel
during upsampling using transposed convolution.

• Appendix B.4: Short study on drawbacks of using interpolation for pixel-wise
upsampling.

• Appendix B.5: A comparison to different kinds of upsampling Operations on
Segmentation Models.

• Appendix B.6: A comparison of the performance of different sized kernels
in the transposed convolution operations of UNet-like models adversarially
trained using FGSM attack and 3-step PGD attack on 50% of the mini-batches
during training.

22 S. Agnihotri et al.

– Appendix C: Image Restoration : Additional Results:

• Appendix C.1: Here we report the number of parameters and latency study of
LCTC.

• Appendix C.2: Adversarial training evaluation for Restormer and NAFNet for
Image deblurring task.

• Appendix C.3: Qualitative results for image reconstruction models using Restormer
and NAFNet and evaluated on clean data, PDG and CosPGD attack with vary-
ing numbers of attack iterations.

• Appendix C.4: Visualizing Kernel Weights: Here we visualize kernel weights
from a random channel for models from Figure 5 to show the how different
kernels handle uneven contributions of pixels that leads to spectral artifacts.

• Appendix C.5: Out-Of-Distribution and Real World Generalization.

– Appendix D: Disparity Estimation : We provide additional results for Section 5.3:
including performance against adversarial attacks.

• Appendix D.1 Additional discussion on the results and importance of a parallel
3×3 kernel with large kernels for transposed convolution operation.

– Appendix E: Nomenclature- What are “Large Context Transposed Convolu-
tions?”: We discuss the nomenclature used in this work and describe what com-
prises a LCTC.

– Appendix F: Additional visualizations of Upsampling Artifacts and their Fre-
quency Spectra: Here we extend Figure 1 with more examples showing failure
of upsampling operations used in prior work and superiority of LCTC both in the
spatial and frequency domain.

– Appendix G: Limitations: Here we discuss the limitations of our work in detail.

A Experimental Setup

All the experiments were done using NVIDIA V100 16GB GPUs or NVIDIA Tesla
A100 40GB GPUs. For image restoration, models were trained on 1 NVIDIA Tesla
A100 40GB GPU. For the semantic segmentation downstream task, UNet [70] was
trained using 1 GPU. For the disparity estimation task, STTR-light [50] was trained
using 4 NVIDIA V100 GPUs in parallel.

Improving Feature Stability during Upsampling 23

A.1 Image Restoration

Architectures. We consider the recently proposed state-of-the-art transformer-based
Image Restoration architectures Restormer [89] and NAFNet [16]. Both architectures as
proposed use Pixel Shuffle [77] to upsample feature maps. We use these as our baseline
models. We replace this pixel shuffle operation with a transposed convolution operation.
Dataset. For the Image Restoration task, we focus on Image Deblurring. For this, we
use the GoPro image deblurring dataset [63]. This dataset consists of 3214 real-world
images with realistic blur and their corresponding ground truth (deblurred images) cap-
tured using a high-speed camera. The dataset is split into 2103 training images and 1111
test images.
Training Regime. For Restormer we follow the same training regime of progressive
training as that used by [89]. Similarly, for NAFNet we use the same training regime as
that used by [16].
Evaluation Metrics. Following common practice [1, 16, 89], We report the PSNR and
SSIM scores of the reconstructed images w.r.t. to the ground truth images, averaged
over all images. PSNR stands for Peak Signal-to-Noise ratio, a higher PSNR indicates
a better quality image or an image closer to the image to which it is being compared.
SSIM stands for Structural similarity [86]. A higher SSIM score corresponds to better
higher similarity between the reconstruction and the ground-truth image.

A.2 Semantic Segmentation

Here we describe the experimental setup for the segmentation task, the architectures
considered, the dataset considered and the training regime.
Architectures. We considered UNet [70] with encoder layers from ConvNeXt [54].
For the decoder, the baseline comparison is done with 2×2 kernels in the transposed
convolution layers and the commonly used ResNet [37] BasicBlock style layers for the
convolution layers in the decoder building blocks. In our experiments, we used larger
sized kernels, e.g. 7×7 and 11×11 in the transposed convolution while keeping the
rest of the architecture, including the convolution blocks in the decoder identical to
Sec. 5.2. When using kernels larger than 7×7 for transposed convolution we follow the
work of [17,51] and additionally include a parallel 3×3 kernel to keep the local context.
Usage of this parallel kernel is denoted by “+3×3" Further, we analyze the behavior of
a different block of convolution layers in the decoder, as explained in Sec. 4 and replace
the ResNet-style layers with ConvNeXt-style layers in Sec. 5.2.
Dataset. We considered the PASCAL VOC 2012 dataset [24] for the semantic seg-
mentation task. We follow the implementation of [92–94] and augment the training
examples with semantic contours from [36] as instructed by [75].
Training Regime. We follow a similar training regime as [92, 93], and train for 50
epochs, with an AdamW optimizer [57] and the learning rate was scheduled using
Cosine-Annealing [56]. In the implementation of [93], the authors slide over the images
using a window of size 473×473, however for computation reasons and for symmetry
we use a window of size 256×256. We use a starting learning rate of 10−4 and a weight
decay of 5× 10−2.

24 S. Agnihotri et al.

Evaluation Metrics. We report the mean Intersection over Union (mIoU) of the pre-
dicted and the ground truth segmentation mask, the mean accuracy over all pixels
(mAcc) and the mean accuracy over all classes (allAcc).

A.3 Disparity Estimation

Following, we describe the experimental setup for disparity estimation and occlusion
detection tasks.
Architectures. We consider the STTR-light [50] architecture for our work. To analyze
the influence of implementing larger kernels in transposed convolution as described in
Section 4 we alter the kernel sizes in the transposed convolution layers used for pixel-
wise upsampling in the “feature extractor" module of the architecture. We consider
the STTR-light architecture as proposed by [50] with 3×3 kernels in the transposed
convolution layers as our baseline.
Dataset. Similar to [50] we train and test our models on FlyingThings3D dataset [60].
Training Regime. We follow the training regime as implemented in [50].
Evaluation Metrics. We report the end-point-error (epe) and the 3-pixel error (3px) for
the disparity estimation w.r.t. the ground truth.

A.4 Adversarial Attacks

We consider the commonly used [34,59,67,88] FGSM attack [28] and a new segmentation-
specific SegPGD attack [34] for testing the robustness of the models against adversarial
attacks. For the semantic segmentation downstream task, each crop of the input was
perturbed with FGSM and SegPGD, while for the disparity estimation downstream task,
each of the left and right inputs were perturbed using FGSM.
For FGSM, we test our model against epsilons ϵ ∈ { 1

255 ,
8

255}. Where, we follow com-
mon practice and use 1

255 ≈0.004 and 8
255 ≈0.03 .

For SegPGD we follow the testing parameters as originally proposed in [34], with
ϵ ≈ 8

255 , α=0.01 and number of iterations ∈ {3, 5, 10, 20, 40, 100}. We use the same
scheduling for loss balancing term λ as suggested by the authors. We use SegPGD
for the semantic segmentation task as it is a stronger attack specifically designed for
segmentation. Thus providing more accurate insights into the models’ performance and
giving a better evaluation of the architectural design choices made.

For the Image Restoration task, we follow the evaluation method of [1], and eval-
uate against CosPGD [3] and PGD [49] adversarial attacks. For both attacks, we use
ϵ ≈ 8

255 , α=0.01 and test for number of attack iterations ∈ {5, 10, 20}.
For the Depth Estimation task, we use the PGD attack with ϵ ≈ 8

255 , α=0.01 and
test for number of attack iterations ∈ {5, 10, 20}.

A.5 Adversarial Training

Following, we describe the adversarial training setup employed in this work for adver-
sarially training models for semantic segmentation and image restoration.

Improving Feature Stability during Upsampling 25

Semantic Segmentation. We follow the commonly used [34] procedure and split the
batch into two 50%-50% mini-batches. One mini-batch is used to generate adversarial
examples using FGSM attack with ϵ ≈ 8

255 and PGD attack with 3 attack iterations and
with ϵ ≈ 8

255 and α=0.01 during training.

Image Restoration. We follow the training procedure used by [1]. We split each train-
ing batch into two equal 50%-50% mini-batches. We use one of the mini-batches to
generate adversarial samples using FGSM attack with ϵ ≈ 8

255 .

A.6 Frequency spectrum analysis

To analyze the images in the frequency domain, we use the Fast Fourier Transform
[9] (FFT) Xc = FFT (xc) for all channels c of feature maps x and aggregate a 2D
representation over frequencies w. We compute the mean over C channels of the FFT
of the difference between the prediction and the ground truth.

2D Frequency Spectra =
1

C

∑
c∈C

FFT (xpred
c − xgt

c) (4)

Here, xpred are the predictions from the model, xgt is the ground truth, and in Fig. 1
and Fig. 14 C=3 for the RGB channels. For better visualization, we plot the log of the
magnitude of the Discrete Fourier Transform.

Next, we describe, from the literature, the process of performing a Discrete Fourier
Transform.

Fast Fourier Transform (FFT) [9]. The discrete Fourier transform has been used
in this work to convert the images from the spatial domain to the frequency domain.

“ DFT is a linear operator (i.e. a matrix) that maps the data points in f to the
frequency domain f̂ ” [10]

Equation 2.26 in [10] shows the formula to perform DFT is:

f̂k =

n−1∑
j=0

fjϵ
−i2πjk/n (5)

where f̂k from each sample n contains the amplitude and phase (of the sine and cosine
components) information at frequency k. These are integer multiples of ϵ−2πj/n, the
fundamental frequency, short-handed as ωn [10]. Equation 2.29 in [10] shows the Dis-
crete Fourier transform matrix (in terms of ωn) that when multiplied by the samples in
f, converts the information in those samples to frequency domain (a basis transforma-
tion). FFT is an algorithm by [9] to perform Discrete Fourier transform in an efficient
manner. In Eq. (4), we use these frequencies w (referred to as k in Eq. (5)) from sample
xc obtained using an FFT() function that uses the FFT algorithm.

B Additional Experiments and Ablation

Here we provide detailed results from Sec. 5 and Sec. 5.2 and additional results as
mentioned in the main paper.

26 S. Agnihotri et al.

B.1 Semantic Segmentation

2×
2

3×
3

5×
5

7×
7

9×
9

11
×1

1

13
×1

3

15
×1

5

17
×1

7

19
×1

9

31
×3

1
kernel size

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

re
la

tiv
e

m
Io

U

2×
2

3×
3

5×
5

7×
7

9×
9

11
×1

1

13
×1

3

15
×1

5

17
×1

7

19
×1

9

31
×3

1

kernel size

0.8

0.9

1.0

1.1

1.2

1.3

re
la

tiv
e

m
Ac

c

2×
2

3×
3

5×
5

7×
7

9×
9

11
×1

1

13
×1

3

15
×1

5

17
×1

7

19
×1

9

31
×3

1

kernel size

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

re
la

tiv
e

al
lA

cc +3x3 Clean
+3x3 FGSM 1/255
+3x3 FGSM 8/255
+3x3 SegPGD 8/255 3 iterations
+3x3 SegPGD 8/255 5 iterations

Fig. 8: Comparison of performance of different sizes of transpose convolutions from standard
sizes like 2× 2 as well as very large 31× 31 kernels with ConvNeXt style 11×11 + 3×3 style in
the decoder building blocks. All have a parallel 3×3 kernel, as shown in Figure 4 (bottom left).

Table 7 and Table 8 provide all the results of empirical performance (across the
considered upsampling blocks) on clean inputs images and input images perturbed by
varying intensities of FGSM and SegPGD attacks respectively.

Limit of large kernels for Upsampling As discussed in Sec. 5.2, the performance of
large kernels begins to saturate at a point. We report results from Figure 7 in tabular
form in Table 9. In Table 9, we find that 13×13 appears to be the saturation point for
this setting and 31×31 kernels are beyond this saturation point. While 31×31 performs
worse or on-par with 17×17, it still performs significantly better than the baseline of
2×2. In Section 5.2 we explain the kernel size limit and that larger kernels are difficult
to train. We also find that these results further strengthen our Hypothesis 2. For
ease of understanding, we visualize the trends from Table 9 in Figure 8.

B.2 Choice of encoder

Following we aim to understand the importance of the encoder and its influence on
the quality of representations later decoded during the upsampling. Consequently, we
justify our choice of using ConvNeXt tiny encoder for the majority of our studies.

In Table 11 we compare different encoders: ResNet50, ConvNeXt tiny, and SLaK [51]
while fixing the decoder to the baseline implementation. All encoders are pre-trained
on the ImageNet-1k training dataset.

We observe that using ConvNeXt tiny and SLaK as the encoder backbone gives us
significantly better performance than using ResNet50 as the encoder. This observation
holds true for both clean and adversarially perturbed samples. We additionally observe
that SLaK gives us marginally better performance than ConvNeXt. As shown by [51],
SLaK is a significantly better encoder than ConvNeXt tiny as it provides significantly
more context than ConvNeXt by using kernel sizes up to 51×51 in the convolution lay-
ers during encoding. This proves that better encoding can be harnessed during decoding
which can lead to better upsampling.

However, in this work, we used the ConvNeXt tiny encoder since the SLaK encoder
takes significantly longer to train for only a marginal gain in performance. We report

Improving Feature Stability during Upsampling 27

the performance results in Table 12. We observe that given our computation budget and
the wall-clock time limit of 24 hours, we are unable to even compute the performance
of the model with the SLaK encoder at 100 attack iterations.

B.3 Ablation over small parallel kernel

Following we ablate over the use of a small (3×3) kernel in parallel to a large (≥7×7)
kernel for Large Context Transposed Convolutions. This concept is inspired by [17,51]
who use a small kernel in parallel with the large kernels to preserve local context when
downsampling. Similar behavior is observed while upsampling. Table 7 compares the
usage of this small parallel kernel. We observe, that while not using the small kernel
results in marginal better performance on clean images (for a fixed backbone style), it
lacks context and thus performs poorly (when compared to using a small parallel kernel)
against adversarial attacks.

This is further highlighted inTab. 8 when the performance is compared against
strong adversarial attacks. Moreover, we observe that from medium-sized kernels i.e. ,
the upsampling seems to lose local context, and adding a kernel in parallel helps the
model in getting this additional context. This effect can also be observed in the adver-
sarial performances of the respective models.

B.4 Drawbacks of interpolation

As discussed in Section 3, architecture designs that use interpolation for pixel-wise
upsampling suffer with over-smoothening of feature maps. This can be seen in the final
predictions, as shown in Fig. 9b compared to the ground truth segmentation mask in
Fig. 9a and prediction from a model with 11×11 + 3×3 transposed convolution kernel
in Fig. 9c.

In their work, [34] showed that PSPNet has considerably lower performance against
adversarial attacks, similar to the analysis made in Section 5.2. This is explained by H2.

B.5 Different Upsampling Methods

Following we compare different upsampling techniques thus justifying our advocacy for
using Transposed Convolution instead of other upsampling techniques like interpolation
and pixel shuffle.

We report the comparison in Table 5 and observe that both Pixel shuffle and Nearest
Neighbor interpolation perform better than the usually used Transposed Convolution
with a 2×2 kernel size. However, as we increase the kernel size for Transposed Con-
volution to 11×11 with a 3×3 small kernel in parallel, we observe that Large Context
Transposed Convolutions are strictly outperforming pixel shuffle, on both clean unper-
turbed images and under adversarial attacks, across all metrics used. Transposed Con-
volution with a large kernel is either outperforming or performing at par with Nearest
Neighbor interpolation as well. Thus we demonstrate the superior clean and adversarial
performance of large kernel-sized Transposed Convolution operation over other com-
monly used upsampling techniques.

28 S. Agnihotri et al.

(a) Ground truth segmentation mask
of the third image in the test set.

(b) Prediction from PSPNet with
ResNet 50 backbone as implemented
by the authors.

(c) Prediction when using LCTC
(11×11 + 3×3) and 3×3 convolu-
tion kernels in the decoder building
blocks of UNet.

Fig. 9: A comparison of differences in the sharpness of final predictions due to different upsam-
pling techniques. Fig. 9a is the ground truth segmentation mask with sharp and thin edges in the
rear fin and wing with protrusions in the wing of the aircraft. We observe that PSPNet with a
ResNet50 backbone as implemented by [93] is not able to accurately predict the thin edges and
the protrusions, and is simply smoothening them out. This is due to the interpolation operation
used in upsampling. However in comparison, as shown in Fig. 9c, when a transposed convolution
operation is used for pixel-wise upsampling, the thin edges are sharper and protrusions are more
accurately predicted.

There might be speculation if other downsampling techniques can utilize larger
convolution kernels in the decoder building blocks better than transposed convolution.
Thus, we additionally experiment using a ConvNeXt-like 7×7+3×3 kernel in the Con-
volution operations in the decoder building blocks that follow the upsampling operation.
We report these results in Table 13 and observe that similar to transposed convolution,
other upsampling methods also do not benefit from an increase in the kernel size in the
decoder building blocks.

B.6 Adversarial Training

Following, we present the results from adversarial training for semantic segmentation.
In Table 10, we report the performance of different transposed convolution kernel-sized
adversarially trained UNet on clean input and adversarially perturbed inputs. The ob-
served performance improvement when increasing the transposed convolution kernel
size during normal training also extends to adversarial training.

C Additional Results on Image Restoration

Following we provide additional results for the Image deblurring tasks, like the per-
formance of models after adversarial training and some visual results of the deblurring
for a better understanding of the impact of increased spatial context against different
adversarial attack methods and strengths.

Improving Feature Stability during Upsampling 29

C.1 Latency Study

As PixelShuffle, when downsampling with a factor of 2, reduces the channel dims by
a factor of 4, works [16, 89] use a 1×1 convolution layer before the PixelShuffle to
increase the number of channels by a factor of 4. This added complexity is not needed
for Transposed Convolution. Thus, in Table 14 we report the number of parameters in
the models from Figure 5 and report latencies (mean over 1000 runs) of the upsam-
pling operations, and show that these are comparable. In practice, these differences are
negligible as other unchanged operations are more costly.

C.2 Adversarial Training

In Table 15 we provide additional results for adversarially training image restoration
network NAFNet using FGSM attack on 50% of the training minibatch of the GoPro
dataset each iteration. The state-of-the-art Image Restoration models are significantly
larger w.r.t. the number of parameters, compared to the models considered for semantic
segmentation. Thus, they are significantly more difficult to train adversarially. They
require more training iterations. Due to the limited computing budget, we have only
trained them for the same iterations as clean (non-adversarial) training iterations. We
already observe the advantages of using a larger kernel for transposed convolution over
pixel-shuffle in these experiments.

C.3 Visual Results

Figure 10 shows reconstruction under PGD attack for Restormer [89] and NAFNet [16].
Figure 11 shows reconstruction under CosPGD attack for Restormer [89] and NAFNet [16].

C.4 Visualizing Kernel Weights

An increase in kernel size leads to an increase in context and since the context is in-
creased, the effect of uneven contributions of pixels is negated leading to reduced spec-
tral artifacts. This can be seen in Figure 12. Here we observe that the weights for 3×3
are high at the edges, causing the described grid effect, whereas for 11×11 kernels there
is a smooth fading towards the border of kernels, negating this effect.

C.5 Real World and Out-Of-Distribution (ODD) Generalization

Since LCTC leads to improved sampling that provides stability to feature maps learned
by the network (not merely defense), inspired by observations from [29], we hypothe-
size that the trends on adversarial attacks should translate to Real-World noise. We show
this in Table 16 by applying 2D common corruptions (CC) (severity=3) from [39] on
images from the GoPro dataset and using NAFNet models from Figure 5. Since the task
is deblurring, we consider all common corruptions but additional blurring and weather
corruptions, as these would have to be captured before blurring.

30 S. Agnihotri et al.

D Additional Results Disparity Estimation

Following we report additional results for Disparity Estimation using STTR-light. In
Table 17 we report the performance of STTR-light architecture on clean test images
and under PGD attack. Whereas in Figure 13, we present a visual comparison of depth
estimation predictions by a vanilla STTR-light as proposed by [50] and our proposed
modification of increasing the kernel size of the transposed convolution operation in the
“feature extractor” module of the architecture from 3×3 to Large Context Transposed
Convolutions with kernel sizes 7×7+3×3 and 11×11+3×3.

D.1 Disparity Estimation Discussion

In Figure 13 as shown by the region in the red circle, both vanilla architecture and
the architecture with our proposed change perform well compared to the ground truth
on clean images. However, under a 10 iteration PGD adversarial attack, we observe
small protrusion’s depth(shown by the red arrow) is incorrectly estimated by the vanilla
architecture. The architecture with 7×7+3×3 and 11×11+3×3 transposed convolution
kernels preserves the prediction of the disparity.

Additionally from Table 17, we observe the significance of the parallel 3×3 small
kernel with the large 7×7 and 11×11 kernels. The stability of the performance of the
large kernels without the small parallel kernel compared to the baseline is better. How-
ever, the stability of performance when only using larger kernels compared to larger
kernels with small parallel kernels is marginally worse.

E Nomenclature: What are Large Context Transposed
Convolutions?

In Section 4 we introduce the term “Large Context Transposed Convolutions (LCTC)”.
In this work, we use this to describe the Transposed Convolution layers in the decoder
with large kernel sizes and thus a large spatial context. However, terms like “large” are
subjective, this in the following we discuss our interpretation of a “large” kernel size.

Most previous works use kernel sizes of 2×2 or 3×3 for any convolution operation,
be it for downsampling [37,52] or be it for upsampling [70]. [54] introduced performing
downsampling using convolution operations with a large kernel size which in their case
was 7×7. This “larger” kernel size for downsampling was further extended by other
works like [17, 35] to 31×31 and even up to 51×51.

In Section 3, we show how increasing context during upsampling can reduce spec-
tral artifacts from a theoretical perspective. Theoretically, we would want an infinite-
sized kernel when performing upsampling. However, this is not practical, thus we used
Transposed Convolution with kernel sizes sufficiently large to give a good trade-off
between theorized context and practical trainability and compute requirements.

Thus, inspired by encoding literature [17,35,54] we use kernel sizes for upsampling
that are larger than those used by previous works. Given that previous works used kernel
sizes like 2×2 or 3×3, anything bigger than this already provides more spatial context.

Improving Feature Stability during Upsampling 31

Thus, even a kernel size of 5×5 would be an interesting exploration and thus we explore
this as well in Tab. 7 and Tab. 8.

However, given the theoretically ideal kernel size is infinity, a kernel size of 5×5
does not provide enough spatial context and thus we start calling transposed convolution
operations as Large Context Transposed Convolution only when their kernel sizes are
7×7 or larger.

F Additional visualizations of Upsampling Artifacts and their
Frequency Spectra

Following, we extend the example from Figure 1 to Figure 14 showing similar upsam-
pling artifacts but on different input images to demonstrate that our findings are not
limited to one example.

G Limitations

Current metrics for measuring performance do not completely account for spectral ar-
tifacts. Spectral artifacts begin affecting these metrics only when they become pro-
nounced such as under adversarial attacks, and here Large Context Transposed Con-
volutions consistently perform better across tasks and architectures. Ideally, we would
want infinitely large kernels, however, with increasing kernel size and task complexity,
training extremely large kernels can be challenging. Thus, in this work, while having
ablated over kernels as large as 31×31, we propose using kernels only as large as 7×7
to 11×11 for good practical trade-offs. Further improvements might be possible when
jointly optimizing the encoder and decoder of architectures.

In this work, we are focused on the reduction of spectral artifacts in upsampled
images and features introduced due to the theoretical limitations of upsampling oper-
ations. However, there might exist other factors that contribute to the introduction and
existence of spectral artifacts such as spatial bias. This might also present an interesting
avenue to explore.

32 S. Agnihotri et al.

Table 7: Complete comparison of performances against FGSM attack, of UNet with ConvNeXt
encoder and decoder with architectures along with different sized kernels in transposed convolu-
tion and different convolution blocks in the decoder for upscaling the feature maps.

Transposed Convolution
Kernels Backbone Style

Test Accuracy FGSM attack epsilon

mIoU mAcc allAcc
ϵ= 1

255
ϵ= 8

255

mIoU mAcc allAcc mIoU mAcc allAcc

2×2
ResNet Style 3×3 78.34 86.89 95.15 53.54 70.96 86.08 47.02 65.41 82.78

ConvNeXt style 7×7 77.17 86.86 94.81 77.42 86.24 94.94 42.04 64.86 79.08
ConvNeXt style 7×7 + 3×3 77.24 86.03 94.84 51.09 70.53 85.29 43.52 63.74 81.18

ConvNeXt style 11×11 77.68 86.42 94.97 50.73 69.78 84.88 42.33 61.80 80.36
ConvNeXt style 11×11 + 3×3 77.17 86.86 94.81 47.34 67.72 83.34 37.91 57.79 78.21

3×3
ResNet Style 3×3 78.45 86.66 95.20 53.76 70.62 86.32 47.33 64.58 83.16

ConvNeXt style 7×7 77.70 86.89 94.99 52.30 71.56 85.73 44.80 65.38 81.99
ConvNeXt style 7×7 + 3×3 77.33 87.53 94.79 50.90 72.77 83.78 44.40 67.08 79.11

ConvNeXt style 11×11 77.86 86.75 94.99 51.30 70.39 85.33 42.78 62.76 81.08
ConvNeXt style 11×11 + 3×3 77.81 86.48 94.98 51.95 70.08 85.57 43.82 62.56 81.63

5×5 (Ours)
ResNet Style 3×3 79.19 87.62 95.36 55.57 73.51 86.65 48.96 67.97 83.41

ConvNeXt style 7×7 76.94 86.92 94.75 51.32 72.37 84.96 44.19 66.56 81.13
ConvNeXt style 7×7 + 3×3 78.52 87.39 95.13 54.4 72.48 86.29 46.33 65.65 82.0

ConvNeXt style 11×11 77.83 86.99 94.91 53.76 72.8 85.96 45.32 65.82 81.82
ConvNeXt style 11×11 + 3×3 77.92 86.92 95.02 48.67 68.11 83.96 38.88 58.13 78.96

5×5 + 3×3 (Ours)
ResNet Style 3×3 78.83 87.56 95.28 56.11 73.97 86.91 49.84 69.26 83.44

ConvNeXt style 7×7 78.11 86.90 95.01 53.17 71.55 86.0 45.98 66.05 82.18
ConvNeXt style 7×7 + 3×3 78.73 87.81 95.24 53.86 73.12 85.86 45.93 66.83 81.51

ConvNeXt style 11×11 77.83 86.57 95.07 52.12 70.29 85.79 44.05 63.11 81.63
ConvNeXt style 11×11 + 3×3 77.07 86.11 94.87 54.31 72.45 86.1 47.33 66.88 82.42

LCTC: 7×7 (Ours)
ResNet Style 3×3 78.92 88.06 95.23 56.02 74.13 86.45 49.24 68.89 82.87

ConvNeXt style 7×7 77.57 87.04 94.92 52.93 72.18 85.51 44.89 65.71 80.74
ConvNeXt style 7×7 + 3×3 77.88 87.0 95.05 51.63 70.74 85.37 43.15 62.74 80.83

ConvNeXt style 11×11 77.9 87.35 94.94 53.47 72.61 85.79 45.49 67.04 81.36
ConvNeXt style 11×11 + 3×3 77.99 87.86 94.96 51.61 73.01 84.85 43.93 66.22 80.73

LCTC: 7×7 + 3×3 (Ours)
ResNet Style 3×3 78.5 87.57 95.13 53.85 72.75 85.87 47.1 67.57 82.04

ConvNeXt style 7×7 78.09 87.14 95.04 52.42 71.88 85.59 43.43 65.39 80.88
ConvNeXt style 7×7 + 3×3 78.37 88.11 95.07 52.15 72.31 84.95 42.77 63.69 79.78

ConvNeXt style 11×11 77.71 87.22 94.97 52.47 73.22 85.55 44.07 65.84 81.31
ConvNeXt style 11×11 + 3×3 78.14 86.94 95.05 52.08 70.63 85.98 43.82 63.65 81.95

LCTC: 9×9 (Ours)
ResNet Style 3×3 78.36 86.88 95.18 55.62 72.62 86.9 49.5 67.03 83.9

ConvNeXt style 7×7 77.17 86.74 94.84 52.76 72.31 85.56 44.23 64.98 81.39
ConvNeXt style 7×7 + 3×3 77.93 86.97 95.04 51.01 70.59 84.87 41.93 61.63 80.18

ConvNeXt style 11×11 77.80 86.80 94.99 52.42 72.22 85.39 44.14 65.56 81.16
ConvNeXt style 11×11 + 3×3 78.25 86.71 95.07 54.59 72.04 86.48 46.88 65.56 82.73

LCTC: 9×9 + 3×3 (Ours)
ResNet Style 3×3 78.77 87.77 95.24 55.94 73.79 86.67 48.82 69.2 82.76

ConvNeXt style 7×7 77.79 86.65 94.92 52.6 70.51 85.75 43.3 62.16 80.89
ConvNeXt style 7×7 + 3×3 77.96 87.24 94.98 51.21 70.01 85.24 41.75 61.16 80.64

ConvNeXt style 11×11 77.92 86.82 95.03 52.71 71.17 86.02 44.33 63.26 82.2
ConvNeXt style 11×11 + 3×3 77.57 86.71 95.02 53.32 71.75 86.29 46.24 65.3 82.92

LCTC: 11×11 (Ours)
ResNet Style 3×3 79.11 87.06 95.36 56.18 72.11 87.27 49.51 66.15 84.12

ConvNeXt style 7×7 77.87 86.98 95.06 54.32 72.59 86.42 47.14 67.05 82.71
ConvNeXt style 7×7 + 3×3 78.34 87.06 95.07 51.93 71.19 85.54 41.77 62.31 80.8

ConvNeXt style 11×11 77.42 86.68 94.94 53.11 71.43 86.03 44.55 63.45 81.75
ConvNeXt style 11×11 + 3×3 77.75 86.83 95.01 52.88 71.47 85.93 43.55 62.75 81.4

LCTC: 11×11 + 3×3 (Ours)
ResNet Style 3×3 79.33 87.81 95.41 58.04 74.93 87.8 51.25 69.31 84.64

ConvNeXt style 7×7 78.32 86.98 95.09 53.31 72.45 86.16 44.89 65.18 82.03
ConvNeXt style 7×7 + 3×3 78.64 86.78 95.17 54.32 71.27 86.63 45.48 63.62 82.32

ConvNeXt style 11×11 77.15 85.93 94.87 51.19 69.72 85.45 42.02 61.09 81.1
ConvNeXt style 11×11 + 3×3 77.42 86.24 94.94 54.48 72.53 86.25 46.67 66.59 82.29

LCTC: 13×13 (Ours)
ResNet Style 3×3 79.41 88.18 95.36 56.89 74.71 87.36 51.06 70.39 84.48

ConvNeXt style 7×7 77.99 87.11 95.06 54.96 73.32 86.69 47.39 67.2 82.73
ConvNeXt style 7×7 + 3×3 78.44 87.22 95.13 54.21 72.18 86.34 47.27 65.72 82.95

ConvNeXt style 11×11 77.57 85.99 95.00 53.51 70.31 86.67 45.63 63.59 83.11
ConvNeXt style 11×11 + 3×3 77.40 86.53 94.89 53.16 71.62 86.12 45.09 64.23 82.39

LCTC: 13×13 + 3×3 (Ours)
ResNet Style 3×3 79.17 87.96 95.38 57.17 75.08 87.44 50.8 70.67 84.06

ConvNeXt style 7×7 78.05 86.73 95.02 53.41 71.62 86.12 45.07 65.04 81.76
ConvNeXt style 7×7 + 3×3 77.76 86.14 95.06 54.09 72.11 86.29 45.69 65.15 82.2

ConvNeXt style 11×11 77.81 87.43 95.01 51.71 71.77 85.25 41.97 62.61 80.66
ConvNeXt style 11×11 + 3×3 77.20 86.55 94.81 53.1 71.88 85.87 45.0 65.01 81.91

LCTC: 15×15 (Ours)
ResNet Style 3×3 79.17 87.68 95.28 58.08 73.56 87.58 51.11 67.94 84.36

ConvNeXt style 7×7 78.34 87.14 95.03 53.86 72.77 86.11 45.12 65.22 81.65
ConvNeXt style 7×7 + 3×3 77.39 86.40 94.95 51.2 69.42 85.27 42.65 60.88 81.24

ConvNeXt style 11×11 77.14 86.36 94.82 50.14 69.32 84.49 40.97 60.11 79.81
ConvNeXt style 11×11 + 3×3 77.67 86.78 94.90 54.44 72.74 86.54 46.37 66.24 82.29

LCTC: 15×15 + 3×3 (Ours)
ResNet Style 3×3 78.72 87.50 95.25 56.28 73.97 87.15 49.5 68.69 83.53

ConvNeXt style 7×7 77.56 87.01 94.93 53.28 72.15 85.78 45.51 64.84 81.57
ConvNeXt style 7×7 + 3×3 77.09 86.27 94.76 52.25 70.01 85.41 44.01 62.49 81.16

ConvNeXt style 11×11 77.40 86.39 94.92 53.59 71.49 86.21 45.48 64.37 82.28
ConvNeXt style 11×11 + 3×3 78.64 87.46 95.20 54.77 73.2 86.65 46.53 65.4 82.78

LCTC: 17×17 (Ours)
ResNet Style 3×3 79.22 87.77 95.37 56.5 73.3 87.27 50.1 68.23 84.11

ConvNeXt style 7×7 77.36 87.64 94.89 54.06 73.88 85.84 47.25 68.3 82.19
ConvNeXt style 7×7 + 3×3 78.03 87.56 95.01 52.75 72.0 85.65 44.32 64.16 81.54

ConvNeXt style 11×11 77.82 87.40 94.92 51.43 70.57 85.22 42.53 62.68 80.79
ConvNeXt style 11×11 + 3×3 77.74 86.69 94.99 51.31 69.71 85.53 41.58 60.43 80.83

LCTC: 17×17 + 3×3 (Ours)
ResNet Style 3×3 78.41 86.84 95.26 56.03 73.28 87.16 49.65 67.95 83.74

ConvNeXt style 7×7 78.14 86.99 94.98 53.44 72.34 86.01 45.02 65.35 81.85
ConvNeXt style 7×7 + 3×3 78.62 87.64 95.14 55.54 73.87 86.85 47.86 67.22 83.18

ConvNeXt style 11×11 77.59 87.73 94.84 52.84 74.14 84.63 44.1 67.34 79.57
ConvNeXt style 11×11 + 3×3 77.33 88.15 94.75 49.29 71.71 84.04 39.85 63.7 78.81

LCTC: 19×19 (Ours)
ResNet Style 3×3 78.54 87.64 95.12 56.63 74.09 87.25 50.02 68.73 83.99

ConvNeXt style 7×7 78.74 87.66 95.15 56.28 73.79 87.11 49.44 68.74 83.84
ConvNeXt style 7×7 + 3×3 77.05 86.33 94.89 54.47 72.38 86.78 45.63 64.94 82.81

ConvNeXt style 11×11 77.66 86.61 95.00 51.58 71.51 84.83 42.48 63.44 79.58
ConvNeXt style 11×11 + 3×3 77.61 86.59 94.93 50.34 69.39 84.54 41.82 61.29 79.75

LCTC: 19×19 + 3×3 (Ours)
ResNet Style 3×3 78.78 87.34 95.28 56.53 74.59 86.97 50.6 69.95 83.98

ConvNeXt style 7×7 77.44 86.70 94.91 54.05 72.52 86.09 45.52 65.29 81.52
ConvNeXt style 7×7 + 3×3 78.14 87.14 95.02 55.82 74.54 86.96 48.97 69.98 83.3

ConvNeXt style 11×11 78.03 86.64 95.08 53.5 71.21 86.26 45.79 64.16 82.42
ConvNeXt style 11×11 + 3×3 77.42 86.61 94.91 53.83 72.54 86.17 46.29 66.94 82.22

LCTC: 31×31 (Ours)
ResNet Style 3×3 78.69 86.98 95.30 56.61 73.22 87.08 49.49 66.69 83.68

ConvNeXt style 7×7 77.54 87.30 94.84 52.36 72.27 85.14 43.56 65.14 8 .
ConvNeXt style 7×7 + 3×3 76.96 86.38 94.77 53.59 72.14 86.05 45.22 65.22 81.84

ConvNeXt style 11×11 76.84 86.72 94.71 50.74 70.53 84.61 41.62 61.96 79.96
ConvNeXt style 11×11 + 3×3 76.77 85.60 94.71 51.42 69.17 85.2 42.12 60.32 80.77

LCTC: 31×31 + 3×3 (Ours)
ResNet Style 3×3 78.47 87.26 95.16 56.27 73.39 87.22 49.66 68.81 83.92

ConvNeXt style 7×7 77.43 86.56 94.93 53.45 72.74 86.17 45.84 66.41 82.16
ConvNeXt style 7×7 + 3×3 78.43 87.07 95.17 56.72 73.65 87.6 49.56 68.15 84.22

ConvNeXt style 11×11 78.00 87.04 94.94 50.66 70.23 84.83 40.71 61.31 79.94
ConvNeXt style 11×11 + 3×3 77.73 86.54 94.93 53.94 71.65 86.39 44.04 62.19 81.8

Improving Feature Stability during Upsampling 33

Table 8: Comparison of performances against SegPGD attack, of UNet with ConvNeXt encoder
and decoder with architectures along with different sized kernels in transposed convolution and
different convolution blocks in the decoder for upscaling the feature maps.

Transposed Convolution
Kernels Backbone Style

SegPGD attack iterations
3 5 10 20 40 100

mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc

2×2
ResNet Style 3×3 23.06 46.51 60.04 14.43 35.50 45.30 08.12 24.67 29.88 05.54 18.79 23.72 04.39 14.98 23.70 03.50 11.61 27.93

ConvNeXt style 7×7 17.94 0.4481 47.96 10.64 33.63 30.64 05.47 21.74 15.8 03.2 14.73 09.81 02.04 0.1047 0.0641 01.35 07.57 04.3
ConvNeXt style 7×7 + 3×3 17.59 42.55 0.5168 09.88 30.41 0.3233 04.75 16.83 0.1431 02.65 09.46 0.0668 01.68 05.64 0.034 01.0 0.0316 01.94

ConvNeXt style 11×11 16.39 0.4013 0.485 09.37 28.66 29.63 03.97 14.16 11.41 01.56 06.11 03.56 00.59 02.61 01.31 00.23 00.99 00.51
ConvNeXt style 11×11 + 3×3 13.97 35.82 45.68 07.61 25.07 28.33 03.4 14.38 12.04 02.21 10.75 05.29 01.57 08.02 03.01 01.07 05.75 01.85

3×3
ResNet Style 3×3 23.37 46.33 60.78 15.26 38.0 46.51 09.26 29.64 31.9 06.78 24.18 26.95 05.71 20.39 28.69 05.02 16.11 33.12

ConvNeXt style 7×7 18.48 43.81 54.97 09.51 29.92 34.86 03.63 15.1 13.03 01.64 08.23 04.51 01.0 05.12 02.13 00.59 02.84 00.89
ConvNeXt style 7×7 + 3×3 19.08 46.97 47.74 11.15 34.6 29.9 05.96 22.62 15.67 03.61 15.04 09.33 02.17 09.18 05.86 01.29 06.02 03.55

ConvNeXt style 11×11 16.2 39.11 50.93 09.52 29.32 32.61 04.93 20.31 14.82 02.86 13.94 06.46 02.05 10.94 03.58 01.4 08.23 02.21
ConvNeXt style 11×11 + 3×3 18.54 41.34 55.56 10.25 30.11 36.0 04.8 19.25 13.94 02.41 11.87 04.56 01.59 07.78 02.11 01.11 04.21 01.09

5×5 (Ours)
ResNet Style 3×3 24.23 51.8 57.82 16.16 42.98 43.29 10.11 32.79 30.3 07.32 25.16 27.42 06.02 19.04 31.25 05.16 14.03 37.36

ConvNeXt style 7×7 17.59 43.57 51.41 09.9 30.84 33.14 04.74 18.3 14.55 02.23 09.47 05.21 01.47 06.03 02.32 00.97 03.64 01.28
ConvNeXt style 7×7 + 3×3 18.7 43.18 52.74 10.56 31.41 33.32 04.87 18.5 14.78 02.49 10.84 05.59 01.39 05.61 02.69 00.91 03.38 01.46

ConvNeXt style 11×11 18.96 44.79 53.09 09.85 29.77 32.88 03.89 14.94 12.6 01.94 08.29 04.58 01.03 04.72 01.86 00.48 02.63 00.75
ConvNeXt style 11×11 + 3×3 13.38 33.61 45.0 06.84 20.94 25.99 02.51 08.85 08.5 01.18 04.39 02.62 00.71 02.48 01.07 00.48 01.52 00.53

5×5 + 3×3 (Ours)
ResNet Style 3×3 25.03 53.96 58.89 16.61 45.8 42.18 10.79 37.16 27.34 08.0 29.62 21.71 06.16 21.69 22.25 04.83 13.87 28.97

ConvNeXt style 7×7 17.65 44.79 48.41 09.79 31.78 28.51 04.62 18.37 11.12 02.58 10.89 04.61 01.52 06.59 02.3 01.0 04.04 01.33
ConvNeXt style 7×7 + 3×3 18.31 42.75 49.26 09.89 28.58 30.02 03.78 12.49 11.08 01.34 04.76 03.54 00.48 02.13 01.45 00.19 00.88 00.76

ConvNeXt style 11×11 17.87 40.62 52.77 09.74 27.94 34.21 04.65 14.98 14.34 02.0 05.95 04.77 01.07 02.81 01.71 00.32 00.98 00.63
ConvNeXt style 11×11 + 3×3 20.84 46.95 53.91 11.86 33.96 34.86 05.65 19.8 16.66 02.83 10.73 08.2 01.59 06.21 04.68 01.11 04.2 02.62

LCTC: 7×7 (Ours)
ResNet Style 3×3 26.53 53.05 61.16 17.75 43.31 46.99 10.26 30.92 32.62 07.17 23.05 27.52 05.69 17.24 29.48 04.37 11.29 35.16

ConvNeXt style 7×7 17.64 43.32 47.8 09.95 30.43 28.02 04.21 15.08 10.07 01.86 07.18 03.55 00.99 03.52 01.42 00.68 01.89 00.74
ConvNeXt style 7×7 + 3×3 16.64 40.11 50.56 09.75 29.72 32.23 04.95 19.4 14.47 02.87 13.23 06.4 02.06 09.55 03.45 01.59 07.24 02.04

ConvNeXt style 11×11 17.37 45.07 47.32 08.86 30.03 26.48 03.47 14.22 07.94 01.53 06.55 02.45 00.93 03.9 01.2 00.61 02.3 00.64
ConvNeXt style 11×11 + 3×3 17.07 42.3 48.78 09.31 28.04 28.88 03.82 13.79 09.54 01.8 07.11 03.04 01.03 04.3 01.45 00.53 02.61 00.77

LCTC: 7×7 + 3×3 (Ours)
ResNet Style 3×3 24.03 52.08 57.43 16.21 43.38 43.01 09.99 32.77 30.22 07.38 26.16 26.11 06.31 22.42 28.32 05.35 17.41 33.09

ConvNeXt style 7×7 16.19 43.4 48.59 09.02 32.38 29.17 04.23 19.63 10.47 02.46 12.18 03.99 01.53 06.85 01.97 00.91 03.94 01.1
ConvNeXt style 7×7 + 3×3 16.04 39.67 48.16 08.94 27.45 30.33 03.81 14.69 12.79 01.91 09.17 04.63 01.2 06.16 01.95 00.84 03.96 00.95

ConvNeXt style 11×11 18.08 46.24 50.64 10.18 33.17 31.35 04.49 18.33 12.04 02.01 07.98 04.55 01.04 03.91 02.17 00.45 01.7 01.2
ConvNeXt style 11×11 + 3×3 15.31 37.02 52.08 07.62 24.44 32.35 03.3 15.04 12.35 01.92 10.24 05.12 01.32 07.37 02.63 00.91 05.07 01.39

LCTC: 9×9 (Ours)
ResNet Style 3×3 25.26 50.75 60.85 16.88 41.02 47.16 09.44 28.03 33.87 06.23 20.76 28.91 04.71 16.45 29.14 03.69 12.63 31.93

ConvNeXt style 7×7 18.11 44.53 50.69 10.46 31.69 32.26 04.92 18.52 14.48 02.86 12.13 06.36 02.1 09.3 03.51 01.5 06.59 01.9
ConvNeXt style 7×7 + 3×3 16.2 39.55 50.82 09.0 28.53 33.31 04.07 17.03 15.6 02.14 10.13 07.12 01.38 05.91 03.74 00.71 02.56 01.82

ConvNeXt style 11×11 17.02 43.01 48.45 08.92 28.35 28.13 03.64 14.36 10.06 01.17 06.28 03.11 00.55 04.04 01.35 00.32 02.76 00.77
ConvNeXt style 11×11 + 3×3 19.34 43.6 54.41 10.71 31.22 33.98 04.6 15.76 12.75 01.98 07.78 04.04 00.95 03.95 01.69 00.51 01.96 00.78

LCTC: 9×9 + 3×3 (Ours)
ResNet Style 3×3 24.87 55.04 57.35 17.0 46.34 42.08 10.88 36.04 28.55 07.91 28.17 22.86 06.02 21.13 22.87 04.63 14.45 27.39

ConvNeXt style 7×7 16.56 36.5 53.58 08.74 23.95 35.67 04.01 13.92 16.64 02.13 08.87 06.34 01.38 06.37 02.27 01.01 04.8 01.11
ConvNeXt style 7×7 + 3×3 16.03 36.92 51.5 08.8 25.53 33.15 03.64 13.95 12.25 01.61 06.02 04.08 00.83 02.72 01.83 00.37 01.13 00.87

ConvNeXt style 11×11 16.42 39.19 51.71 08.32 26.64 31.11 03.66 15.7 11.61 01.94 10.11 04.4 01.19 06.75 02.23 00.83 04.83 01.36
ConvNeXt style 11×11 + 3×3 18.72 41.83 55.48 10.38 29.7 36.72 04.74 18.16 17.44 02.49 11.2 07.18 01.69 08.21 03.56 01.24 06.07 01.93

LCTC: 11×11 (Ours)
ResNet Style 3×3 26.02 48.81 63.76 16.8 39.62 49.72 09.62 29.4 34.22 06.85 24.07 27.66 05.63 20.38 26.45 04.56 15.64 28.86

ConvNeXt style 7×7 19.04 45.39 52.63 10.17 32.3 32.46 04.58 20.16 13.36 02.44 13.63 05.33 01.74 10.13 03.04 01.21 07.07 01.7
ConvNeXt style 7×7 + 3×3 16.08 39.09 53.1 08.86 28.27 35.06 03.94 16.77 15.75 02.25 11.87 06.31 01.32 07.98 02.72 00.82 05.14 01.28

ConvNeXt style 11×11 18.09 40.72 53.7 09.93 29.6 34.68 04.55 18.22 14.17 02.21 10.51 05.2 01.38 06.35 02.34 00.96 03.84 01.28
ConvNeXt style 11×11 + 3×3 15.29 37.2 50.71 07.6 25.19 30.65 03.17 15.06 09.58 01.78 10.21 03.07 01.3 07.74 01.39 01.0 05.6 00.88

LCTC: 11×11 + 3×3 (Ours)
ResNet Style 3×3 27.49 53.08 64.13 18.15 43.51 49.36 10.29 31.12 33.17 07.08 23.3 26.82 05.14 16.14 27.32 03.77 09.6 31.61

ConvNeXt style 7×7 16.14 40.65 50.39 08.08 27.2 31.4 03.34 15.36 12.29 01.93 09.35 03.9 01.36 05.77 01.76 00.92 03.51 00.83
ConvNeXt style 7×7 + 3×3 17.7 39.71 54.64 09.71 26.92 35.8 04.32 13.93 15.8 02.37 08.49 06.7 01.59 05.85 03.43 01.09 03.87 01.83

ConvNeXt style 11×11 14.62 34.73 49.37 07.26 22.21 29.37 02.76 12.24 10.69 01.23 07.06 04.16 00.71 04.71 01.96 00.63 03.65 00.96
ConvNeXt style 11×11 + 3×3 18.76 44.6 51.49 10.07 31.15 30.26 04.4 17.02 10.56 02.31 08.7 03.5 01.34 04.85 01.66 00.73 02.56 00.81

LCTC: 13×13 (Ours)
ResNet Style 3×3 28.51 57.18 63.94 19.71 48.99 50.08 11.99 37.69 33.26 08.31 28.29 26.23 06.17 21.38 25.65 04.83 15.34 29.52

ConvNeXt style 7×7 20.9 46.62 55.13 12.32 34.21 35.91 06.14 21.39 16.39 03.15 13.44 07.51 02.16 10.21 04.3 01.41 06.61 02.54
ConvNeXt style 7×7 + 3×3 20.13 42.92 57.7 11.38 29.96 39.57 04.85 15.81 19.37 02.54 09.48 09.47 01.65 06.45 05.61 00.86 03.83 03.0

ConvNeXt style 11×11 18.65 39.48 56.4 10.02 27.46 38.02 04.69 17.27 19.03 02.47 11.35 08.76 01.39 07.95 04.12 00.9 06.02 02.11
ConvNeXt style 11×11 + 3×3 18.95 42.88 55.82 10.68 31.21 35.69 04.92 18.29 12.63 02.35 09.29 03.78 01.26 05.02 01.6 00.79 02.56 00.72

LCTC: 13×13 + 3×3 (Ours)
ResNet Style 3×3 28.08 58.22 63.4 19.4 50.01 48.89 12.04 39.2 32.11 08.77 31.09 24.9 06.46 22.51 23.98 04.34 13.59 28.41

ConvNeXt style 7×7 18.42 43.52 51.26 10.23 30.56 30.5 04.37 16.41 11.29 02.08 09.09 04.39 01.35 06.65 02.49 00.86 04.28 01.37
ConvNeXt style 7×7 + 3×3 16.7 41.09 50.56 08.54 26.94 30.39 03.31 13.44 11.22 01.53 06.72 04.13 01.02 04.01 02.01 00.56 02.07 01.03

ConvNeXt style 11×11 14.1 36.4 47.79 07.01 23.32 27.54 02.87 12.05 10.26 01.51 06.85 04.56 01.13 05.21 03.2 01.13 05.21 03.2
ConvNeXt style 11×11 + 3×3 18.14 43.14 52.31 09.55 28.16 32.41 03.54 12.57 11.22 01.52 06.19 03.35 00.97 03.66 01.52 00.65 02.11 00.84

LCTC: 15×15 (Ours)
ResNet Style 3×3 29.41 51.54 66.7 19.96 41.26 55.14 11.51 29.26 41.04 07.17 20.8 31.7 05.13 15.79 28.53 03.9 11.59 29.37

ConvNeXt style 7×7 18.62 44.42 51.51 10.55 32.47 32.54 04.69 18.66 12.4 02.64 11.81 04.44 01.67 07.93 02.02 01.29 05.26 01.21
ConvNeXt style 7×7 + 3×3 17.63 37.55 55.52 09.13 23.28 37.06 03.46 09.05 15.8 01.41 03.5 06.96 00.77 01.62 04.02 00.51 01.04 02.48

ConvNeXt style 11×11 15.24 36.62 49.45 08.05 24.89 31.93 03.68 14.62 13.68 02.03 07.68 05.66 01.26 04.48 03.25 00.61 02.51 01.87
ConvNeXt style 11×11 + 3×3 19.01 44.78 52.74 10.35 31.98 32.35 04.38 19.15 12.42 02.31 12.1 04.84 01.53 07.72 02.24 01.06 04.86 01.17

LCTC: 15×15 + 3×3 (Ours)
ResNet Style 3×3 26.38 53.79 61.59 17.9 45.03 47.36 10.79 33.9 31.75 07.14 25.02 25.01 05.43 18.97 25.39 04.18 13.25 30.47

ConvNeXt style 7×7 19.81 42.18 53.73 11.14 28.25 37.03 04.72 13.45 17.41 01.92 05.27 07.64 01.06 03.07 04.37 00.7 01.97 02.61
ConvNeXt style 7×7 + 3×3 17.53 39.4 54.39 09.51 26.67 35.52 03.73 12.39 13.27 00.93 04.2 03.22 00.44 02.14 01.01 00.16 00.94 00.36

ConvNeXt style 11×11 16.69 39.29 52.18 08.78 27.55 32.8 03.72 17.08 12.37 02.06 11.89 03.94 01.38 08.59 02.0 00.99 06.41 01.24
ConvNeXt style 11×11 + 3×3 19.15 41.08 55.96 10.71 29.12 37.58 05.28 19.35 18.54 02.88 13.69 08.43 02.0 11.2 04.47 01.41 09.0 02.39

LCTC: 17×17 (Ours)
ResNet Style 3×3 27.74 53.24 64.48 18.51 43.47 51.02 10.72 32.21 36.08 07.43 25.5 28.78 05.85 20.69 28.85 04.93 16.94 32.03

ConvNeXt style 7×7 19.82 46.01 54.48 11.09 32.71 36.79 05.35 19.1 17.49 02.67 10.25 07.1 01.87 07.1 02.98 01.25 04.64 01.33
ConvNeXt style 7×7 + 3×3 16.96 38.94 54.19 09.23 26.92 36.22 04.47 16.8 16.9 02.45 11.16 07.09 01.61 08.12 03.53 01.03 05.47 01.95

ConvNeXt style 11×11 13.72 34.03 48.09 06.57 20.94 26.93 02.32 09.22 07.84 01.08 04.61 02.28 00.63 02.55 01.0 00.35 01.33 00.47
ConvNeXt style 11×11 + 3×3 14.47 33.55 52.16 07.33 20.91 32.91 02.82 09.75 13.11 01.28 04.95 04.96 00.79 03.01 02.52 00.47 01.55 01.32

LCTC: 17×17 + 3×3 (Ours)
ResNet Style 3×3 26.97 54.13 62.04 18.41 45.5 47.66 11.05 34.55 32.01 07.43 25.65 24.78 05.07 17.38 24.12 03.51 10.48 27.4

ConvNeXt style 7×7 17.96 41.81 54.93 09.08 27.73 35.7 03.85 15.38 15.51 01.95 09.2 05.76 01.17 05.74 02.35 00.86 03.99 01.25
ConvNeXt style 7×7 + 3×3 19.86 42.55 56.89 10.29 28.26 37.83 04.43 15.77 16.52 01.93 08.45 06.36 01.0 05.27 02.61 00.68 03.7 01.31

ConvNeXt style 11×11 16.84 44.91 45.35 09.41 31.25 26.04 03.8 14.79 09.08 01.4 05.56 02.83 00.47 02.05 01.03 00.17 01.1 00.54
ConvNeXt style 11×11 + 3×3 14.06 38.28 46.37 06.95 24.78 27.4 02.92 14.65 10.36 01.55 09.22 03.9 00.96 06.21 02.04 00.68 04.61 01.29

LCTC: 19×19 (Ours)
ResNet Style 3×3 27.64 52.62 64.53 18.46 42.79 51.19 10.49 30.27 36.37 06.92 22.02 28.21 05.17 17.07 26.09 03.99 12.16 27.92

ConvNeXt style 7×7 20.28 46.96 56.75 10.06 30.29 36.2 03.5 13.07 14.56 01.51 06.13 05.64 00.72 03.24 02.4 00.64 02.2 01.4
ConvNeXt style 7×7 + 3×3 18.14 39.86 56.98 09.34 26.13 37.16 03.5 13.58 14.24 01.52 07.79 04.4 00.83 05.76 01.83 00.54 03.82 00.93

ConvNeXt style 11×11 15.85 40.55 46.13 08.33 28.21 25.47 03.27 15.94 07.52 01.8 10.44 02.95 01.3 07.65 01.81 00.97 05.34 01.22
ConvNeXt style 11×11 + 3×3 16.17 37.68 50.29 08.47 25.22 31.86 03.84 14.74 13.88 01.93 08.84 06.27 01.2 05.41 03.28 00.79 03.68 02.02

LCTC: 19×19 + 3×3 (Ours)
ResNet Style 3×3 28.62 56.15 63.93 19.19 47.17 48.9 10.96 34.41 31.54 07.15 25.67 23.6 05.25 19.32 21.84 04.24 15.12 24.17

ConvNeXt style 7×7 17.45 40.44 51.24 09.13 27.29 31.41 03.56 13.76 10.77 01.61 06.83 03.35 00.94 04.0 01.37 00.56 02.22 00.54
ConvNeXt style 7×7 + 3×3 20.9 48.61 54.54 11.59 35.05 33.3 04.6 18.94 11.57 02.05 10.9 03.51 01.42 07.83 01.63 00.9 05.28 00.88

ConvNeXt style 11×11 19.01 41.41 55.17 10.56 28.9 37.54 05.23 19.35 17.13 02.92 12.99 07.27 02.05 09.7 03.82 01.42 07.14 02.18
ConvNeXt style 11×11 + 3×3 17.98 44.39 52.86 09.44 30.77 32.15 03.36 14.64 09.76 01.14 05.22 02.06 00.48 02.49 00.6 00.17 01.16 00.26

LCTC: 31×31 (Ours)
ResNet Style 3×3 26.44 50.1 63.1 17.8 39.96 50.81 10.44 29.22 36.6 06.67 21.09 28.13 04.91 16.07 23.92 03.65 10.93 23.02

ConvNeXt style 7×7 17.75 41.69 51.94 09.26 27.63 32.32 03.52 12.48 11.73 01.37 04.95 04.18 00.62 02.57 01.93 00.37 01.68 01.02
ConvNeXt style 7×7 + 3×3 16.53 40.82 50.9 08.0 25.9 30.59 02.79 11.15 10.24 01.24 05.19 03.11 00.56 02.42 01.12 00.34 01.4 00.53

ConvNeXt style 11×11 13.08 31.95 45.87 05.85 17.71 25.83 02.06 07.35 08.65 00.88 03.15 02.74 00.39 01.55 01.05 00.26 01.15 00.55
ConvNeXt style 11×11 + 3×3 15.42 35.92 51.53 07.44 21.84 31.72 02.43 09.33 10.18 00.85 03.85 02.59 00.41 01.79 01.04 00.22 00.99 00.56

LCTC: 31×31 + 3×3 (Ours)
ResNet Style 3×3 27.41 54.28 64.15 18.27 44.66 49.97 11.02 33.64 34.65 07.24 25.06 26.54 05.39 18.81 22.82 04.3 14.03 22.46

ConvNeXt style 7×7 18.76 40.98 55.63 10.33 28.32 38.72 04.95 18.11 19.82 02.74 12.53 08.41 01.69 08.6 03.73 01.03 05.94 01.75
ConvNeXt style 7×7 + 3×3 20.55 44.15 58.99 10.65 30.05 40.0 04.69 17.49 18.07 02.65 11.74 07.33 01.6 08.05 03.37 01.09 05.88 01.79

ConvNeXt style 11×11 14.47 36.3 49.11 07.12 22.87 29.65 02.57 11.14 10.67 01.24 06.52 03.69 00.9 05.06 01.68 00.63 03.65 00.96
ConvNeXt style 11×11 + 3×3 13.59 32.71 49.91 06.09 18.39 29.59 01.96 06.7 08.76 00.79 02.53 02.11 00.4 01.47 00.89 00.12 00.65 00.45

34 S. Agnihotri et al.

Table 9: Comparison of performance of Large Context Transposed Convolutions (LCTC) with
very large: 31×31 kernels in transposed convolution to large (7×7 to 17×17) kernels. All have
a parallel 3×3 kernel, as shown in Figure 4 (bottom left). Here we observe the saturation of
performance for very large kernels for upsampling. This comparison is for the same encoder
(ConvNeXt) and same ResNet-like building blocks in the decoder (our baseline). The complete
table is provided in Appendix B.1.

Transposed
Convolution Kernels

Test Accuracy FGSM attack epsilon SegPGD attack iterations

mIoU mAcc allAcc
1

255
8

255
20

mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc

7×7 78.50 87.57 95.13 53.85 72.75 85.87 47.10 67.57 82.04 7.38 26.16 26.11
11×11 79.33 87.81 95.41 58.04 74.93 87.80 51.25 69.31 84.64 7.08 23.30 26.82
15×15 78.72 87.50 95.25 56.28 73.97 87.15 49.50 68.69 83.53 7.14 25.02 25.01
17×17 78.41 86.84 95.26 56.03 73.28 87.16 49.65 67.95 83.74 7.43 25.65 24.78
19×19 78.78 87.34 95.28 56.53 74.59 86.97 50.60 69.95 83.98 7.15 25.67 23.60
31×31 78.47 87.26 95.16 56.27 73.39 87.22 49.66 68.81 83.92 7.24 25.06 26.54

Table 10: Adversarially trained models using FGSM and PGD from Table 2 tested against ad-
versarial attacks on UNet with ConvNeXt encoder and decoder with different sized kernels in the
transposed convolution for upscaling, while keeping rest of the architecture identical.

Transposed
Convolution Kernels

Clean Test Accuracy FGSM attack epsilon SegPGD attack iterations
1

255
8

255
3 20

mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc

FGSM training

2×2 (baseline) 78.57 86.68 95.23 54.28 70.80 86.91 52.45 68.38 86.26 26.59 48.99 67.71 7.6 24.06 31.37
LCTC: 7×7 (Ours) 78.41 86.22 95.20 56.87 72.92 87.70 51.31 68.4 85.17 28.11 53.39 66.30 8.36 28.54 28.13
LCTC: 11×11 + 3×3
(Ours)

79.57 88.1 95.3 57.90 74.64 87.61 52.15 70.23 84.96 30.37 55.54 68.3 9.4 29.79 32.37

PGD training with 3 attack iterations

2×2 (baseline) 75.33 84.66 94.39 53.87 72.17 86.58 58.57 73.93 89.01 29.38 57.82 66.67 9.39 33.15 28.11
LCTC: 7×7 (Ours) 75.79 84.89 94.38 54.82 72.31 86.80 61.29 74.33 89.96 31.12 58.36 68.58 10.24 33.99 31.14
LCTC: 11×11 + 3×3
(Ours)

75.90 86.60 94.30 56.27 75.66 86.68 63.02 76.17 90.42 33.50 58.34 71.50 10.77 32.23 37.36

Table 11: Comparison of performances of different encoders in the UNet-like architecture. All
architectures here have the baseline 2×2 transposed convolution kernel for upsampling followed
by 3×3 convolution kernels in the decoder blocks. For more results please refer to Table 12.

Encoder
Test Accuracy FGSM attack epsilon SegPGD attack iterations

1
255

8
255

20
mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc

ResNet50 67.69 79.04 92.80 36.78 58.41 78.16 32.60 52.63 74.56 4.98 19.28 21.07
ConvNeXt tiny 78.45 86.66 95.20 53.76 70.62 86.32 47.33 64.58 83.16 5.54 18.79 23.72
SLaK tiny 78.82 87.01 95.17 55.22 71.72 86.97 48.69 66.45 83.57 8.45 25.42 32.37

Table 12: Comparison of performances of different encoders in the UNet-like architecture. All
architectures here have the baseline 2×2 transposed convolution kernel followed by 3×3 convo-
lution kernels in the decoder block.

Encoder
Test Accuracy FGSM attack epsilon SegPGD attack iterations

1
255

8
255

3 5 10 20 40 100
mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc

ResNet50 67.69 79.04 92.80 36.78 58.41 78.16 32.60 52.63 74.56 16.18 37.46 50.04 11.32 30.59 38.98 7.21 23.76 27.58 4.98 19.28 21.07 3.95 16.49 18.35 3.09 13.87 15.87

ConvNeXt tiny 78.45 86.66 95.20 53.76 70.62 86.32 47.33 64.58 83.16 23.06 46.51 60.04 14.43 35.50 45.30 8.12 24.67 29.88 5.54 18.79 23.72 4.39 14.98 23.70 3.50 11.61 27.93

SLaK tiny 78.82 87.01 95.17 55.22 71.72 86.97 48.69 66.45 83.57 26.71 50.92 64.04 19.28 43.51 52.88 12.24 33.65 39.78 8.45 25.42 32.37 6.22 19.58 29.06 - - -

Improving Feature Stability during Upsampling 35

Table 13: Comparison of performances of different upsampling methods in the UNet-like archi-
tecture. All architectures here have the baseline i.e. ConvNeXt encoder and a ResNet style 3×3
or ConvNext style 7 ×7+3×3 convolution kernels in the decoder block.

Upsampling Method Convolution Kernel in
Decoder blocks

Test Accuracy FGSM attack epsilon SegPGD attack iterations
1

255
8

255
3 5 10 20 40 100

mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc mIoU mAcc allAcc

Pixel Shuffle
ResNet Style 3×3 78.54 87.32 95.18 53.82 71.58 85.88 46.67 65.03 81.71 23.08 48.18 56.54 15.06 38.85 41.71 9.17 29.43 28.17 6.69 23.43 24.05 5.69 19.61 25.71 4.80 15.53 32.10

ConvNeXt Style 7×7+3×3 77.10 85.90 94.88 51.78 69.68 85.44 43.80 62.24 81.06 17.52 40.16 50.31 9.43 27.37 30.37 3.53 12.25 10.93 1.41 5.42 3.74 0.78 3.04 1.55 0.52 1.96 0.93

Nearest Neighbour
Interpolation

ResNet Style 3×3 78.40 88.16 95.09 52.68 73.51 84.55 46.08 67.96 80.22 22.82 53.16 51.75 15.34 44.53 36.21 10.02 34.83 23.84 7.65 27.89 20.48 6.43 23.23 21.48 5.40 17.34 28.05
ConvNeXt Style 7×7+3×3 77.86 86.92 94.97 50.71 71.21 84.45 41.97 64.92 78.89 15.77 44.36 42.09 8.56 30.25 23.74 2.96 12.56 7.19 1.27 5.70 2.10 0.52 2.08 0.75 0.17 0.85 0.35

Transposed Convolution
2×2

ResNet Style 3×3 78.45 86.66 95.20 53.76 70.62 86.32 47.33 64.58 83.16 23.06 46.51 60.04 14.43 35.50 45.30 8.12 24.67 29.88 5.54 18.79 23.72 4.39 14.98 23.70 3.50 11.61 27.93
ConvNeXt Style 7×7+3×3 77.24 86.03 94.84 51.09 70.53 85.29 43.52 63.74 81.18 17.59 42.55 51.68 9.88 30.41 32.33 4.75 16.83 14.31 2.65 9.46 6.68 1.68 5.64 3.4 1.0 3.16 1.94

LCTC: 11×11+3×3
(Ours)

ResNet Style 3×3 79.33 87.81 95.41 58.04 74.93 87.8 51.25 69.31 84.64 27.49 53.08 64.13 18.15 43.51 49.36 10.29 31.12 33.17 7.08 23.3 26.82 5.14 16.14 27.32 3.77 9.6 31.61
ConvNeXt Style 7×7+3×3 78.64 86.78 95.17 54.32 71.27 86.63 45.48 63.62 82.32 17.7 39.71 54.64 9.71 26.92 35.8 4.32 13.93 15.8 2.37 8.49 6.7 1.59 5.85 3.43 1.09 3.87 1.83

Table 14: Comparing latency and number of parameters for models from Figure 5.

Upsampling Method Latency (ms) No. of Params

Pixel Shuffle 0.26 17.11 M
Trans. Conv. 3×3 0.27 16.43 M

LCTC 11×11+3×3 0.38 16.54 M

Table 15: Comparison of performances of adversarially trained SotA Image Restoration Net-
works. The considered architectures use Pixel Shuffle for Upsampling, we propose replacing the
Pixel Shuffle with Transposed Convolution operations using the large filter. Testing for image
deblurring on GoPro dataset.

Network Upsampling Method
Test Accuracy PGD attack iterations

5 10 20
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

NAFNet + ADV

Pixel Shuffle 29.91 0.9291 15.76 0.5228 13.91 0.4445 12.73 0.3859
Transposed Conv 3×3 31.26 0.9448 15.89 0.5390 13.43 0.4627 11.62 0.4098

LCTC: 7×7 + 3 ×3 (Ours) 31.21 0.9446 16.46 0.5061 14.55 0.4211 13.31 0.3688
LCTC: 11×11 + 3×3 (Ours) 30.70 0.9390 13.68 0.4857 11.91 0.4085 10.92 0.3604

Table 16: Performance of different upsampling methods in NAFNet in real-world ODD setting
by applying 2D common corruption [39] (severity=3) on GoPro dataset. We use all common
corruptions from [39] GitHub repository except weather conditions (ideally these should happen
before the motion blurring) and blurring (since the images are already motion blurred). Here
“Mean” is performance over all the considered corruptions:

Common Corruption
Upsampling Method

Pixel Shuffle Trans. Conv. 3×3 LCTC 11×11+3×3
PSNR SSIM PSNR SSIM PSNR SSIM

Gaussian Noise 4.8501 0.0104 8.7346 0.1014 13.6475 0.1523
Shot Noise 4.8616 0.0127 8.9524 0.0984 13.2464 0.1564

Impulse Noise 5.0154 0.0214 9.2451 0.1065 14.8425 0.187
Brightness 32.3199 0.9576 30.676 0.9394 30.4098 0.9361
Contrast 26.5941 0.7759 25.9743 0.7561 25.8733 0.7525

Elastic Transform 17.944 0.6392 19.7686 0.703 19.7672 0.702
Pixelate 4.4977 0.246 4.4999 0.246 4.4958 0.246

JPEG Compression 25.2767 0.8095 25.1014 0.8032 25.3788 0.8104
Speckle Noise 4.8287 0.0158 9.2336 0.1044 14.6622 0.2473

Saturate 32.1969 0.958 30.5904 0.9399 30.3005 0.9365
Mean 15.8385 0.4447 17.2776 0.4798 19.262 0.5127

36 S. Agnihotri et al.

MODEL NO ATTACK 5 iterations 10 iterations 20 iterations

R
es

to
rm

er
w

ith
Pi

xe
lS

hu
ffl

e

R
es

to
rm

er
w

ith
Tr

an
sp

os
ed

C
on

v

3×
3

R
es

to
rm

er
L

C
T

C
w

ith

7×
7

+
3×

3

R
es

to
rm

er
L

C
T

C
w

ith

11
×

11
+

3×
3

N
A

FN
et

w
ith

Pi
xe

lS
hu

ffl
e

N
A

FN
et

w
ith

Tr
an

sp
os

ed
C

on
v

3×
3

N
A

FN
et

L
C

T
C

w
ith

7×
7

+
3×

3

N
A

FN
et

L
C

T
C

w
ith

11
×

11
+

3×
3

Fig. 10: Comparing images reconstructed by all models after PGD attack on variants of Upsam-
pling.

Improving Feature Stability during Upsampling 37

MODEL NO ATTACK 5 iterations 10 iterations 20 iterations
R

es
to

rm
er

w
ith

Pi
xe

lS
hu

ffl
e

R
es

to
rm

er
w

ith
Tr

an
sp

os
ed

C
on

v

3×
3

R
es

to
rm

er
L

C
T

C
w

ith

7×
7

+
3×

3

R
es

to
rm

er
L

C
T

C
w

ith

11
×

11
+

3×
3

N
A

FN
et

w
ith

Pi
xe

lS
hu

ffl
e

N
A

FN
et

w
ith

Tr
an

sp
os

ed
C

on
v

3×
3

N
A

FN
et

L
C

T
C

w
ith

7×
7

+
3×

3

N
A

FN
et

L
C

T
C

w
ith

11
×

11
+

3×
3

Fig. 11: Comparing images reconstructed by the considered variants of the SotA models after
CosPGD attack [3]. We observe that the originally proposed Restormer and NAFNet architec-
tures that use Pixel Shuffle for upsampling perform considerably well under no adversarial attack
but even a small perturbation of ϵ= 8

255
causes ringing and other spectral artifacts to occur in

the deblurred images to the extent that the images are unrecognizable. However, on replacing
the Pixel Shuffle operation in these architectures with a Transposed Convolution operation with
a large kernel (11×11+3×3), we observe a significant reduction in the spectral artifacts in the
images restored under adversarial attack while the image restored under no attack are very com-
parable to those restored by the original architectures.

38 S. Agnihotri et al.

1st Upsampling Step 1st Upsampling Step2nd Upsampling Step

Upsampling StepUpsampling Step

2nd Upsampling Step

3rd

3rd Upsampling Step

0 1 2

4th

4th Upsampling Step

0 2 4 6 8 10

0
2

4
6

8
1

0

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
1

0

1

LCTC 11 x 11NAFNet - kernelsTrans. Conv. 3 x 3

0 1 2

0
1

2
0

1
2

Fig. 12: Normalized kernel weights from a random channel each for the models from Figure 5.

Table 17: Comparison of performance of STTR-light architecture with different sized kernels in
transposed convolution for upscaling the feature maps in the feature extractor.

Transposed Convolution Kernels
Test Accuracy PGD Attack

3 Iterations 5 Iterations 10 Iterations
epe↓ 3px error↓ epe↓ 3px error↓ epe↓ 3px error↓ epe↓ 3px error↓

STTR-light [50] reported 0.5 1.54

3×3 [50] reproduced 0.4927 1.54 4.05 18.46 4.07 18.59 4.08 18.6
LCTC: 7×7 (Ours) 0.487 1.52 4.26 19.09 4.289 19.21 4.294 19.23
LCTC: 7×7 + 3×3 (Ours) 0.4788 1.50 4.02 18.3 4.0474 18.43 4.05 18.45
LCTC: 9×9 (Ours) 0.4983 1.50 4.36 18.02 4.386 18.14 4.39 18.16
LCTC: 11×11 +3×3 (Ours) 0.5124 1.57 4.004 18.29 4.028 18.42 4.032 18.44

Fig. 13: Visual comparison of Disparity Estimation predictions by a vanilla STTR-light as pro-
posed by [50] and our proposed modification of increasing the kernel size of the transposed
convolution operation in the “feature extractor” module of the architecture from 3×3 to LCTC
with 7×7+3×3 and 11×11+3×3 sized kernels. As shown by the region in the red circle, both
vanilla architecture and the architecture with our proposed change perform well compared to the
ground truth on clean images. However, under 10 iteration PGD adversarial attack, we observe
small protrusion’s depth(shown by the red arrow) is incorrectly estimated by the vanilla architec-
ture, however, the architectures with LCTC preserve the prediction of the disparity.

Improving Feature Stability during Upsampling 39

Clean - within domain Attacked 2D Frequency Spectra

B
as

el
in

e
[1

6]

Pi
xe

lS
hu

ffl
e

Tr
an

sp
.c

on
v.

L
ar

ge
C

on
te

xt
Tr

an
sp

.c
on

v.
(O

ur
s)

Example Image 1

B
as

el
in

e
[1

6]

Pi
xe

lS
hu

ffl
e

Tr
an

sp
.c

on
v.

L
ar

ge
C

on
te

xt
Tr

an
sp

.c
on

v.
(O

ur
s)

Example Image 2

B
as

el
in

e
[1

6]

Pi
xe

lS
hu

ffl
e

Tr
an

sp
.c

on
v.

L
ar

ge
C

on
te

xt
Tr

an
sp

.c
on

v.
(O

ur
s)

Example Image 3

B
as

el
in

e
[1

6]

Pi
xe

lS
hu

ffl
e

Tr
an

sp
.c

on
v.

L
ar

ge
C

on
te

xt
Tr

an
sp

.c
on

v.
(O

ur
s)

Example Image 4

Fig. 14: This is extension to Fig. 1, here we observe the same artifacts both in the spatial and fre-
quency domain as that observed in Fig. 1. Here we perform Image restoration using NAFNet [16]
variants on GoPro [63]. Normal Transposed Convolution uses 3×3 sized kernels. Large Context
Transposed Convolution uses kernels of size 7×7+3×3 for upsampling. LCTC significantly in-
creases the model’s stability during upsampling, observable in the restored image under attack
and the frequency spectrum. The procedure for obtaining the 2D Frequency Spectra has been
explained in Appendix A.6.

	Improving Feature Stability during Upsampling – Spectral Artifacts and the Importance of Spatial Context

