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Figure S1. A schematic showing the model experiment carried out in this study, from the 
‘Idealised calibrations’ (Methods 2.2.1), to the ‘Harmonised model behaviours’ (Appendix A) 
and ‘Sensitivity analysis’ (Methods 2.2.2), as well as the ‘Evaluation against observations’ 
(Methods 2.3). To ease interpretation, white arrows start from the inputs and end at the 
models/calibration methods, whereas black arrows start from the models/calibration methods 
and end at the output.  
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Figure S2. An example diurnal time course of stomatal conductance ( ; panels a and b) and 
leaf water potential ( ; panels c and d) predicted by 5 stomatal optimisation models, 
depending on implementation form and solver resolution. Plain lines show the actual 
optimisation criteria forms and dotted lines show their commonly used derivative forms. At low 
resolution (panels a and c), 100,000 solutions to the optimisation problem are tested at every 
instant, whereas at high resolution (panels b and d) there are 4,800,000 possibilities for the 
optimal model to choose from in the solving matrices.  



 
 

4 
 

 

Figure S3. Synthetic half-hourly meteorological forcing (panels a – c) and soil moisture profiles 
(panel d) generated for a temperate coniferous forest (36°N, 79°W) during the northern 
hemisphere growing season. Black lines represent the average diurnal cycle of these variables 
over the course of four week and grey shadings show the minimum to maximum diurnal 
ranges. Meteorological drivers shown are: (a) the photosynthetic photon flux density (PPFD); 
(b) the air temperature; (c) the vapour pressure deficit. (d) shows the two different dry-down 
rates used in this study: well-watered conditions (solid line) and moderately stressed 
conditions (dashed line).   
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Figure S4. Reference timeseries of stomatal conductance ( ) simulated using the Medlyn 
model and the atmospheric forcing from Figure S3. (a) shows  under the well-watered 
conditions from Figure S3d and (b) shows  undergoing the soil moisture stress. Black lines 
represent the average diurnal cycle of these variables over the course of four week and grey 
shadings show the minimum to maximum diurnal ranges.  
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Figure S5. Ranked solver skill across models (i.e., 11 calibrated models), calibration datasets 
(i.e., one 4-week dataset plus three 7-day datasets), and soil moisture conditions (i.e., ‘Wet’ and 
‘Stressed’). Each solver for a given model, calibration dataset, and soil moisture type received a 
rank between 1 (most skilled) and 7 (least skilled). Dot size is proportional to the number of 
times a solver received a given rank value and, in total, each solver received 88 different ranks. 
The rank average for a given solver is shown in the black line. The overall most skilled solvers, 
that received the lowest ranks the most often, are highlighted in yellow.  
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Figure S6. (a) – (o) show the observed stomatal conductance ( ) and leaf water potential ( ) 
used to estimate the empirical  down-regulation function ( ) of the Tuzet et al. (2003) model 
(see Text S6). These panels are intended to illustrate the challenge of estimating , so the 
ranges of  – which vary between -0.4 to -3.7 MPa and -1.7 to -5.8 MPa – are not shown, 
keeping the figure readable. The dashed vertical lines correspond to the first inflexion point 
between  and  and to the inflexion point associated with the smallest  to   association. 
The black lines show the fitted  functions. In each case,  was normalised by the maximum 
observed value. Within each subplot, colours mark the different calendar days at which the 
data were measured. (p) shows all calibrated maximum hydraulic conductance ( ) 
parameters per model and site × species (i.e., using the four overall most skilled solvers 
highlighted in Figure S5). The violin plots show the maximum conductance obtained from all 
the observed transpiration ( ), , and soil water potential ( ), using =   
where  is the parameterised plant vulnerability curve. Light grey boxes within the violin plots 
show the interquartile ranges, with the median marked by a white horizontal line. Site × 
species appear from wet (left hand side) to xeric (right hand side).  
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Figure S7. First-order Sobol’ sensitivity indices of the stomatal conductance ( ), leaf water 
potential ( ), and CO2 concentration in the leaf intercellular air spaces ( ) to variability in 
environmental drivers for the 12 models parameterised under well-watered conditions. 
Environmental drivers are: (i) atmospheric vapour pressure deficit ( ); (ii) soil water potential 
( ); (iii) ambient CO2 concentration ( ); (iv) photosynthetic photon flux density (PPFD); and (v) 
air temperature ( ). The concentric circles mark 0.25 increments on a scale of 0 to 0.5, with 0 
signifying no influence and 0.5 high influence.  
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Figure S8. Studentised (each value minus the observed average, normalised by the observed 
standard deviation) observed to modelled measures of output variables for Eucalyptus 
cladocalyx for the twelve models compared. The variables shown are stomatal conductance 
( ), intercellular CO2 concentration ( ), transpiration ( ), net CO2 assimilation ( ), and 
midday leaf water potential ( , ). The 1:1 line appears in the dashed orange, and the 
solid line is the overall regression for the , , , and  outputs (n=450, p<0.001, with the 
slope and  shown after each model name). For fairness, ,  is not used to estimate the 
regressions and  because the Medlyn model does not predict leaf water potential.  
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Figure S10. Leaf-level estimates of the net rates of carbon assimilation ( ) and transpiration ( ) 
for the 12 models at the site × species not shown in Figure 6, from wet (panel a) to xeric (panel d), 
compared to observations (light grey crosses). Dashed black lines represent the observed overall 
average behaviours fitted via a generalised additive model. For the model estimates, point size is 
proportional to the number of observations per site × species and transparency is proportional to 
density. Outliers were excluded by capping the modelled values to 2.5 times the maximum 
observation at each site.  
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Figure S11. Relationship between stomatal conductance ( ) and the CO2 concentration in the 
leaf intercellular air spaces ( ) predicted by the 12 models for wet (panel a) to xeric (panel k) site 
× species. The encircles show the interquartile ranges of simulated to observed  ratios against 
simulated to observed  ratios, such that a perfect model would be concentrated at the 
intersection of the 1:1 lines.  
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Figure S12. Relationship between stomatal conductance ( ) and leaf water potential ( ) 
predicted by 11 models for wet (panel a) to xeric (panel p) site × species. The decline in  with 
decreasing  is fitted via a generalised additive model and compared to observations (light grey 
crosses). The functional forms were made comparable by normalising  by its model-specific 
maximum for each site × species, and  by the critical leaf water potential indicative of total 
xylem failure (  in this study). Curves were not fitted if they did not monotonically decrease, or 
where the models operate at, or beyond, the . Note, there are no observations available for (n), 
so we plotted the measured minimum average seasonal  and the minimum observed  
instead.  
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Table S1. Default parameters of the biochemical photosynthesis model 

Abbreviation Parameter description Value Unit 

 atmospheric O2 concentration 20.73 kPa 

 CO2 compensation point at 25°C 4.22 Pa 

 Michaelis-Menten constant for carboxylation 39.96 Pa 

 Michaelis-Menten constant for oxygenation 27.48 kPa 

 energy of activation of the carboxylation 79430 J mol-1 

 energy of activation of the oxygenation 36380 J mol-1 

 energy of activation of  60000 J mol-1 

 energy of activation of  30000 J mol-1 

 energy of activation of the CO2 compensation point 37830 J mol-1 

  entropy factor 650 J mol-1 K-1 

  entropy factor 650 J mol-1 K-1 

 
 rate of decrease above the optimum 

temperature 
200000 J mol-1 

 
 rate of decrease above the optimum 

temperature 
200000 J mol-1 

 short wave (visible) leaf transmittivity 0.05 - 

 short wave (visible) leaf reflectivity 0.062 - 

 quantum yield of electron transport 0.30 
mol photon 

mol-1 electron 

 curvature of the light response 0.7 - 

 transition curvature factor 0.99 - 
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Table S2. Default soil parameters 

Abbreviation Parameter description Value Unit 

 air entry point soil water potential -0.8 kPa 

 volumetric soil water content at saturation 0.41 m3 m-3 

 volumetric soil water content at field capacity 0.21 m3 m-3 

 volumetric soil water content at wilting point 0.10 m3 m-3 

 Clapp-Hornberger pore size distribution index 5.22 - 
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Table S3. Sampled parameter spaces for each stomatal conductance model 

Model name Parameter Unit Initial guess*** 
Sampled 

parameter space 

Medlyn 

 

,  kPa0.5 2.49 [0.01; 12.5] 

 MPa-1 2 [0.01; 10] 

Tuzet * mmol m-2 s-1 MPa-1 1 [0.005; 20] 

 ,  – 3.5 [0.01; 12.5] 

 ** MPa  ( )**** [ ; -0.15] 

Eller  mmol m-2 s-1 MPa-1 1 [0.005; 20] 

WUE-   µmol CO2 mmol-1 H2O 5 [0.01; 10] × 103 

CMax  µmol m-2 s-1 MPa-2 5 [0.5 ; 80] 

  µmol m-2 s-1 MPa-1 -1 [-8 ; -0.1] 

ProfitMax  mmol m-2 s-1 MPa-1 1 [0.005; 20] 

CGain  µmol m-2 s-1 5 [0.01 ; 50] 

SOXopt  mmol m-2 s-1 MPa-1 1 [0.005; 20] 

ProfitMax2  mmol m-2 s-1 MPa-1 1 [0.005; 20] 

LeastCost  mmol m-2 s-1 MPa-1 1 [0.005; 20] 

  µmol CO2 mmol-1 H2O 5 [0.01 ; 50] × 103 

CAP  mmol m-2 s-1 MPa-1 1 [0.005; 20] 

 ,  MPa  ( )**** [ ; -0.15] 

MES  mmol m-2 s-1 MPa-1 1 [0.005; 20] 

 ,  MPa  ( )**** [ ; -0.15] 

* Calibrations performed in the ‘Evaluation against observations’ section only 
** Parameter calibrated in the theoretical ‘Idealised calibrations’ section but see Methods S5 for the 
‘Evaluation against observations’ section 
*** The initial value was multiplied by 1.5 in case of calibration failure (this happened once, for one model at 
one site × species combination in the ‘Evaluation against observations’; see output data) 
****  is replaced by  if the initial <   
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Table S4. Overview of the minimisers used in this study 

 Solver description Suited to… Reference 

Nelder-Mead Simplex search algorithm Unimodal problems Nelder & Mead 

(1965) 

COBYLA Simplex polynomial search 

algorithm 

Constrained 

complex problems 

Powell (1994) 

Powell Conjugate direction algorithm Continuous complex 

problems 

Powell (1964) 

Differential 

Evolution 

Stochastic population algorithm Global problems Storn & Price 

(1997) 

Dual Annealing Simulated annealing algorithm 

with stochastic sampling 

Global problems Xiang & Gong 

(2000) 

AMPGO Adaptive memory programming 

algorithm 

Constrained global 

problems 

Lasdon et al. 

(2010) 

Basin-Hopping Two-phase stochastic algorithm Global problems Wales & Doye 

(1997) 
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Table S5. Species-level parameterisations of the canopy 

Species  Height* 

(m) 

Reference  

(-) 

C. guianensis  33.9  

Wu et al. (2020) 

0.2 

T. versicolor  30.4  0.2 

T. pittieri  26.6 0.2 

C. candidissimum  20.1 0.2 

A. excelsa  20** 

 

0.15 

A. bidwillii  5** 0.15 

B. australis  20** 0.15 

C. gillivraei  20** 0.15 

E. cladocalyx  6.1 

Héroult et al. (2013) 

0.15 

E. dunnii  8.8 0.15 

E. saligna  8.3 0.15 

E. capillosa  13 Mitchell et al. (2009) 0.15 

J. monosperma  3.5 Limousin et al. (2013) 0.05 

P. edulis  3.5 0.05 

Q. ilex Vic la Gardiole 

Puéchabon 

5.5  

6.5  

Martin-StPaul et al. (2012) 0.15 

** Height is only used by the Eller model  
** Heights are not given in Choat et al. (2006), so we use the model’s default value of 20 m for upper canopy 
species and 5 m for understorey species  
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Table S6. Best parameter values from the idealised calibrations. Associated minimisers 

are shown inside the brackets. 

Model name Parameter Unit ‘Wet’ soil moisture profile ‘Stressed’ soil moisture profile 

Tuzet ,  – 3.32 (Powell) 3.05 (Dual Annealing) 

 MPa -2.52 -2.23 

Eller  mmol m-2 s-1 MPa-1 0.32 (Powell) 0.26 (Powell) 

WUE-   µmol CO2 mmol-1 H2O 1.34 (Dual Annealing) 1.82 (Dual Annealing) 

CMax  µmol m-2 s-1 MPa-2 2.26 (Dual Annealing) 2.44 (Dual Annealing) 

 µmol m-2 s-1 MPa-1 -2.69 -1.80 

ProfitMax  mmol m-2 s-1 MPa-1 0.89 (Basin-Hopping) 0.78 (Basin-Hopping) 

CGain  µmol m-2 s-1 7.24 (Dual Annealing) 8.07 (Dual Annealing) 

SOXopt  mmol m-2 s-1 MPa-1 0.87 (Powell) 0.76 (Dual Annealing) 

ProfitMax2  mmol m-2 s-1 MPa-1 1.99 (Nelder-Mead) 1.53 (Nelder-Mead) 

LeastCost  mmol m-2 s-1 MPa-1 0.44 (Differential 

Evolution) 

0.37 (Dual Annealing) 

 µmol CO2 mmol-1 H2O 3.50 4.79 

CAP  mmol m-2 s-1 MPa-1 1.98 (Basin-Hopping) 6.23 (Dual Annealing) 

,  MPa -3.15 -0.89 

MES  mmol m-2 s-1 MPa-1 1.19 (Dual Annealing) 3.94 (Differential 

Evolution)  ,  MPa -3.27  -0.90 
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Text S1. Biochemical photosynthesis model 

The net rate of carbon assimilation,  (µmol m-2 s-1), is obtained from the Farquhar et al. 

(1980) biochemical photosynthesis model, including the Rubisco limited photosynthetic 

rate ( ; µmol m-2 s-1) and the rubilose-1,5-bisphosphate (RuBP) regeneration limited 

rate ( ; µmol m-2 s-1), with a smoothed hyperbolic transition between these two 

limitations (Kirschbaum & Farquhar, 1984).

=
    

 
          (1.1) 

where  is a unitless transition curvature factor and  (µmol m-2 s-1) is the day 

respiration, taken as 1.5% of the photosynthetic Rubisco capacity,  (µmol m-2 s-1), as 

per Collatz et al. (1991). 

The expressions of the Rubisco limited rate,  (µmol m-2 s-1), and of the electron 

transport limited rate were obtained from De Pury & Farquhar (1997): 

=
( )

 
          (1.2) 

where  (Pa) is the intercellular CO2 partial pressure,  (Pa) is the CO2 compensation 

point of photosynthesis.  (Pa) is the effective Michaelis-Menten constant: 

= 1 +            (1.3) 

where  (Pa) is the Michaelis-Menten constant of Rubisco for CO2,  (Pa) the 

Michaelis-Menten constant of Rubisco for O2, and  (Pa) is the atmospheric oxygen 

partial pressure.  
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The second limitation,  (µmol m-2 s-1), is expressed as: 

=
 ( )

 ( )
          (1.4) 

where  (µmol m-2 s-1) is the irradiance dependence of electron transport, such that: 

=
( )           (1.5) 

where  (mol photon mol-1 electron) is the effective quantum yield of electron transport 

depending on leaf emissivity,  (µmol m-2 s-1) is the photosynthetic photon flux 

density,  (µmol m-2 s-1) is the maximum rate of electron transport, and  defines the 

unitless curvature of the leaf response of electron transport to irradiance. 

The temperature dependency of , , and  is modelled using an Arrhenius function 

relative to 25 °C, as in De Pury & Farquhar (1997). 

The temperature dependency of  and  is modelled using a peaked Arrhenius 

function relative to 25 °C, to account for limitations at high temperature, as in Medlyn et 

al. (2002). To account for low temperatures effects (i.e., below 10°C), we simply apply a 

linear ramp. 

Text S2. Shape of the vulnerability curves 

The sensitivity ( , MPa) and shape ( , unitless) parameters used to model the 

cumulative Weibull distribution (Neufeld et al., 1992) were derived from two values of 

water potential drop in xylem hydraulic conductivity, such that: 

=
 

 

 
          (2.1) 
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=
 

          (2.2) 

where  and  are two percentage values of hydraulic conductivity loss (%), and  

and  are their associated water potentials (MPa), e.g.,  and . 

Text S3. Soil hydraulic processes 

Soil water potential is given by the Clapp-Hornberger equation (Clapp & Hornberger, 

1978): 

=           (3.1) 

where  (MPa) is the root zone soil water potential,  (MPa) is the air entry point 

water potential,  (m3 m-3) is volumetric soil moisture content,  (m3 m-3) is the 

volumetric soil moisture content at saturation, and  (unitless) is the Clapp-Hornberger 

pore size distribution index which approximates the slope of the soil-water retention 

curve. 

Text S4. Simplification of the CGain hypothesis 

The optimisation hypothesis presented by Lu et al. (2020) maximises plant net carbon 

gain (CGain) whilst accounting for a ‘carbon cost per recovered unit of xylem 

conductance’ ( ; µmol m-2 s-1): 

max
  

          (4.1) 

where  sets the ratio of impaired to recovered xylem conductance after embolism and 

 (mmol m-2 s-1 MPa-1) corresponds to minimum embolism when soil water potential 

is at saturation (i.e. ). 
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Assuming instantaneously reversible embolism (i.e. = 1) is necessary to allow 

comparison of the CGain hypothesis with other hypotheses that do not mechanistically 

account for lagged costs, therefore the maximisation criterion becomes: 

max 
 

          (4.2) 

Finally, we assume no a priori embolism (i.e. impaired xylem perfectly and fully recovers), 

such that  ~  and Equation S4.2 becomes: 

max 
 

          (4.3) 

Text S5. Processing of the observations and additional data 

Essential hydraulic and photosynthetic parameters 

For every dataset considered in this study, we discarded species for which hydraulic traits 

were not readily available from the literature (two Australian species) or, in the case of 

the Panamean species, we discarded four species for which we could not reliably 

reconstruct hydraulic vulnerability curves using observed  and the Weibull parameters 

published in Wu et al. (2020) (i.e.  within less than 1 MPa of the ), nor had access to 

alternative published hydraulic trait parameterisations. 

Where -  curves were available, we fitted ,  and ,  parameters on a site × 

species basis, using the Levenberg–Marquardt least-squares approach for which the 

source code is freely available from GitHub 

(https://github.com/mdekauwe/FitFarquharModel; De Kauwe et al., 2015). The fitting 

method makes no assumption about the  value at which the leaf transitions between 

 and , but it uses a hyperbolic minimum function to smooth the transition (cf. 

Equation S1.1). 

For robust estimation, we screened the data and excluded ‘bad’ measurement curves, 

with ‘bad’ defined according to the following criteria: (i) if the ratio of measurements in 
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the  vs.  part of the curve was under 3:10 or vice versa, (ii) if the curve comprised less 

than six measurements; (iii) if the fitted function < 0.9, and (iv) if there were 

anomalously large residuals, or if residuals in one part of the curve were significantly 

greater than those of the other part of the curve. For one Panamean species (Carapa 

guianensis), we had to relax criteria (i), as there were too few -  curves, but we 

nonetheless excluded one curve that did not include any data in the  portion. 

Gas exchange datasets 

Measurements obtained under a PPFD threshold of 50 µmol m-2 s-1 and a  threshold of 

0.05 kPa were filtered out. Any negative , , and  observations, or null  associated 

to positive  and , as well as measurements of >  were removed. Only species 

with at least 30 observations remaining after these filtering steps were considered in the 

study (i.e. discarding seven species from Panama and one location from France). 

Where the  set by the LI-COR was not available (the Many Peaks Range, Sevilleta, 

Puéchabon, and Vic la Gardiole), we assumed it to be 5 mol m-2 s-1 for the gymnosperm 

species (based on the LI-COR fixed value for conifers; 

https://www.licor.com/documents/vtlsnaiycs2izvrcsnu1) and 2.84 mol m-2 s-1 for the 

angiosperm species (following the majority of angiosperm datasets where  was 

available). 

Where atmospheric measurements of , , or  were missing, we proceeded in two 

different ways. Firstly, if either  or  or  was missing whilst the two other variables 

were reported, we gap-filled the missing variable using Teten’s equation (Monteith & 

Unsworth, 1990) and depending on site elevation. Secondly, where two or more of the 

above atmospheric data were not available (i.e. at the Many Peaks Range, QLD, Australia 

and Sevilleta, NM, USA), we added the closest corresponding observations (matched to 

the nearest half hour) from the nearest weather station. 

For the Many Peaks Range, the weather data were obtained from the Australian 

Government’s Bureau of Meteorology archive for the Townsville Aero station, 
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approximately 105 km away from where the leaf-gas exchange measurements were 

made. The temperature data diverged from the measured leaf temperatures by up to 

>10°C, so we bias corrected them using the midway points between air and leaf 

temperatures. For Sevilleta, the weather data were obtained from a micrometeorological 

station located in an open inter-canopy area at the study site (see 

https://sevlter.unm.edu/data/sev-273). 

In all cases, whenever added atmospheric forcing violated Tetens’ equation (i.e., , , 

and  corresponding to >95% relative humidity but not immediately preceded or 

succeeded by relative humidity >90%), we removed that data. 

Text S6. Fitting the Tuzet model’s  function 

For each site × species, we smoothed the normalised observations of  (normalised by 

the maximum observed value) using a gaussian filter. We then determined the first 

inflexion point ( ) in the smoothed ,  to observed  relationship, and a  

inflexion point ( ) corresponding to inflexion point for the smallest observation of . 

The average of  and  was subsequently used as the initial guess for the  

parameter upon fitting Equation 7 (i.e.,  of the main text). The initial guess for  was 

always 2. 

 and  were calibrated to the upper envelope of non-smoothed normalised 

observations of  to , using the ‘optimize.curve_fit’ function of the SciPy python 

package (SciPy 1.0 Contributors et al., 2020). For Eucalyptus capillosa, observations of  

were not available, so  was simply set to  and  to 2.  
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Text S7. Performance assessment metrics 

The Nash-Sutcliffe Efficiency index (NSE; Nash & Sutcliffe, 1970) is defined as: 

= 1
( )

( )
          (7.1) 

with positive values characterising models more skilled than the observed mean (NSE = 

0) and 1 perfect forecasts. 

The Mean Absolute Scaled Error (MASE; Hyndman & Koehler, 2006) is: 

=
| |

          (7.2) 

where  is the forecast error, which we modify to account for the minimum forecast 

error: 

=  min
[ ]

(| |)          (7.3)  

A MASE of 0 denotes the minimum possible simulation error and values < 1 identify 

models more skilled than a one-step forecast of the previous observation. 

Finally, the ranked Bayesian Information Criterion (rBIC) is calculated as the quantile rank 

of each model’s  within each site × species. Each model’s  is estimated following 

Venables & Ripley (2010): 

= ln
( )

+ ln           (7.4) 

where  is the number of model parameters. 

For rBIC, 0 (1) indicates the best (worst) model at trading-off accuracy and complexity 

(i.e., number of model parameters) within each site × species. 
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Text S8. Optimisation criteria forms vs. derivative forms 

In our implementation of the optimal schemes, we used the optimisation criteria forms (i.e. 

direct maximisation or minimisation) rather than their commonly used derivative forms. 

An example derivative form of Equation 11 (i.e., the WUE-  model) would be the 

following: 

= 0          (8.1) 

More examples of derivative forms can be found in e.g., Anderegg et al. (2018), Prentice 

et al. (2014), or Wang et al. (2020). 

We opted to use the optimisation criteria forms because derivative forms can be unstable 

when optimal schemes are coupled with an energy balance routine (particularly when  

and PPFD are low) and might therefore require using a high precision solver, which is not 

desirable considering computing costs. 

To illustrate the differences caused by implementation (i.e. optimisation criteria forms vs. 

derivative forms), Figure S2 shows a diurnal time course of  and  for five example 

models, for a ‘low’ vs. ‘high’ solving resolution (100,000 vs. 4,800,000 possibilities in the 

solving matrices at every instant). It is apparent from Figure S2a, c that the optimisation 

criteria forms (plain lines) are more stable than the derivative forms (dotted lines) when 

the solving resolution is low, avoiding spurious large ‘peaks’ in the morning and evening 

(those even occur in the afternoon for WUE- ). 

For most of the models (but not WUE- ), spurious peaks given by the derivative forms 

disappear when a high solving resolution is used (Figure S2b, d) and both the actual 

optimisation criteria and derivative forms agree. However, changing the solver resolution 

changes the magnitude of  and  predicted by the LeastCost model’s derivative form, 

which suggests it is prone to artefacts and confirms that the actual criterion form should 

be preferred.  



 
 

28 
 

References 

Anderegg, W. R. L., Wolf, A., Arango-Velez, A., Choat, B., Chmura, D. J., Jansen, S., et al. 

(2018). Woody plants optimise stomatal behaviour relative to hydraulic risk. 

Ecology Letters, 21(7), 968–977. https://doi.org/10.1111/ele.12962 

Choat, B., Ball, M. C., Luly, J. G., Donnelly, C. F., & Holtum, J. A. M. (2006). Seasonal 

patterns of leaf gas exchange and water relations in dry rain forest trees of 

contrasting leaf phenology. Tree Physiology, 26(5), 657–664. 

https://doi.org/10.1093/treephys/26.5.657 

Collatz, G. J., Ball, J. T., Grivet, C., & Berry, J. A. (1991). Physiological and environmental 

regulation of stomatal conductance, photosynthesis and transpiration: a model 

that includes a laminar boundary layer. Agricultural and Forest Meteorology, 54(2–

4), 107–136. https://doi.org/10.1016/0168-1923(91)90002-8 

De Kauwe, M. G., Yan-Shih Lin, & Medlyn, B. E. (2015). Fitfarquharmodel: Vcmax One-

Point Method. Zenodo. https://doi.org/10.5281/ZENODO.30954 

De Pury, D. G. G., & Farquhar, G. D. (1997). Simple scaling of photosynthesis from leaves 

to canopies without the errors of big-leaf models. Plant, Cell and Environment, 

20(5), 537–557. https://doi.org/10.1111/j.1365-3040.1997.00094.x 

Farquhar, G. D., Caemmerer, S. von, & Berry, J. A. (1980). A biochemical model of 

photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1), 78–90. 

https://doi.org/10.1007/BF00386231 

Héroult, A., Lin, Y.-S., Bourne, A., Medlyn, B. E., & Ellsworth, D. S. (2013). Optimal stomatal 

conductance in relation to photosynthesis in climatically contrasting Eucalyptus 



 
 

29 
 

species under drought: Stomatal responses of eucalyptus under drought. Plant, 

Cell & Environment, 36(2), 262–274. https://doi.org/10.1111/j.1365-

3040.2012.02570.x 

Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. 

International Journal of Forecasting, 22(4), 679–688. 

https://doi.org/10.1016/j.ijforecast.2006.03.001 

Kirschbaum, M., & Farquhar, G. (1984). Temperature Dependence of Whole-Leaf 

Photosynthesis in Eucalyptus pauciflora Sieb. Ex Spreng. Functional Plant Biology, 

11(6), 519. https://doi.org/10.1071/PP9840519 

Lasdon, L., Duarte, A., Glover, F., Laguna, M., & Martí, R. (2010). Adaptive memory 

programming for constrained global optimization. Computers & Operations 

Research, 37(8), 1500–1509. https://doi.org/10.1016/j.cor.2009.11.006 

Limousin, J.-M., Bickford, C. P., Dickman, L. T., Pangle, R. E., Hudson, P. J., Boutz, A. L., et al. 

(2013). Regulation and acclimation of leaf gas exchange in a piñon-juniper 

woodland exposed to three different precipitation regimes: Rainfall manipulation 

in piñon-juniper woodland. Plant, Cell & Environment, 36(10), 1812–1825. 

https://doi.org/10.1111/pce.12089 

Lu, Y., Duursma, R. A., Farrior, C. E., Medlyn, B. E., & Feng, X. (2020). Optimal stomatal 

drought response shaped by competition for water and hydraulic risk can explain 

plant trait covariation. New Phytologist, 225(3), 1206–1217. 

https://doi.org/10.1111/nph.16207 



 
 

30 
 

Martin-StPaul, N. K., Limousin, J.-M., Rodríguez-Calcerrada, J., Ruffault, J., Rambal, S., 

Letts, M. G., & Misson, L. (2012). Photosynthetic sensitivity to drought varies 

among populations of Quercus ilex along a rainfall gradient. Functional Plant 

Biology, 39(1), 25. https://doi.org/10.1071/FP11090 

Medlyn, B. E., Dreyer, E., Ellsworth, D., Forstreuter, M., Harley, P. C., Kirschbaum, M. U. F., 

et al. (2002). Temperature response of parameters of a biochemically based 

model of photosynthesis. II. A review of experimental data. Plant, Cell and 

Environment, 25(9), 1167–1179. https://doi.org/10.1046/j.1365-3040.2002.00891.x 

Mitchell, P. J., Veneklaas, E., Lambers, H., & Burgess, S. S. O. (2009). Partitioning of 

evapotranspiration in a semi-arid eucalypt woodland in south-western Australia. 

Agricultural and Forest Meteorology, 149(1), 25–37. 

https://doi.org/10.1016/j.agrformet.2008.07.008 

Monteith, J. L., & Unsworth, M. H. (1990). Principles of environmental physics (2nd ed). 

Chapman and Hall. 

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part 

I — A discussion of principles. Journal of Hydrology, 10(3), 282–290. 

https://doi.org/10.1016/0022-1694(70)90255-6 

Nelder, J. A., & Mead, R. (1965). A Simplex Method for Function Minimization. The 

Computer Journal, 7(4), 308–313. https://doi.org/10.1093/comjnl/7.4.308 

Neufeld, H. S., Grantz, D. A., Meinzer, F. C., Goldstein, G., Crisosto, G. M., & Crisosto, C. 

(1992). Genotypic Variability in Vulnerability of Leaf Xylem to Cavitation in Water-



 
 

31 
 

Stressed and Well-Irrigated Sugarcane. Plant Physiology, 100(2), 1020–1028. 

https://doi.org/10.1104/pp.100.2.1020 

Powell, M. J. D. (1964). An efficient method for finding the minimum of a function of 

several variables without calculating derivatives. The Computer Journal, 7(2), 155–

162. https://doi.org/10.1093/comjnl/7.2.155 

Powell, M. J. D. (1994). A Direct Search Optimization Method That Models the Objective 

and Constraint Functions by Linear Interpolation. In S. Gomez & J.-P. Hennart 

(Eds.), Advances in Optimization and Numerical Analysis (pp. 51–67). Dordrecht: 

Springer Netherlands. https://doi.org/10.1007/978-94-015-8330-5_4 

Prentice, I. C., Dong, N., Gleason, S. M., Maire, V., & Wright, I. J. (2014). Balancing the 

costs of carbon gain and water transport: testing a new theoretical framework for 

plant functional ecology. Ecology Letters, 17(1), 82–91. 

https://doi.org/10.1111/ele.12211 

SciPy 1.0 Contributors, Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., 

et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. 

Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2 

Storn, R., & Price, K. (1997). Differential Evolution – A Simple and Efficient Heuristic for 

global Optimization over Continuous Spaces. Journal of Global Optimization, 

11(4), 341–359. https://doi.org/10.1023/A:1008202821328 

Venables, W. N., & Ripley, B. D. (2010). Modern Applied Statistics with S (4. ed., [Nachdr.]). 

New York: Springer. 



 
 

32 
 

Wales, D. J., & Doye, J. P. K. (1997). Global Optimization by Basin-Hopping and the 

Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms. 

The Journal of Physical Chemistry A, 101(28), 5111–5116. 

https://doi.org/10.1021/jp970984n 

Wang, Y., Sperry, J. S., Anderegg, W. R. L., Venturas, M. D., & Trugman, A. T. (2020). A 

theoretical and empirical assessment of stomatal optimization modeling. New 

Phytologist. https://doi.org/10.1111/nph.16572 

Wu, J., Serbin, S. P., Ely, K. S., Wolfe, B. T., Dickman, L. T., Grossiord, C., et al. (2020). The 

response of stomatal conductance to seasonal drought in tropical forests. Global 

Change Biology, 26(2), 823–839. https://doi.org/10.1111/gcb.14820 

Xiang, Y., & Gong, X. G. (2000). Efficiency of generalized simulated annealing. Physical 

Review E, 62(3), 4473–4476. https://doi.org/10.1103/PhysRevE.62.4473 

 


	Figure S1. A schematic showing the model experiment carried out in this study
	Figure S2. An example diurnal time course of stomatal conductance and leaf water potential predicted by 5 stomatal optimisation models
	Figure S3. Synthetic half-hourly meteorological forcing and soil moisture profiles
	Figure S4. Reference timeseries of stomatal conductance simulated using the Medlyn model
	Figure S5. Ranked solver skill across models
	Figure S6. Observed stomatal conductance and leaf water potential, plus the maximum hydraulic conductance parameters
	Figure S7. First-order Sobol’ sensitivity indices
	Figure S8. Studentised observed to modelled measures of output variables for E. cladocalyx
	Figure S9. All the performance metrics for: stomatal conductance, transpiration, and net photosynthetic uptake
	Figure S10. Leaf-level estimates of the net rates of carbon assimilation and transpiration
	Figure S11. Relationship between stomatal conductance and the CO2 concentration in the leaf intercellular air spaces
	Figure S12. Relationship between stomatal conductance and leaf water potential
	Table S1. Default parameters of the biochemical photosynthesis model
	Table S2. Default soil parameters
	Table S3. Sampled parameter spaces for each stomatal conductance model
	Table S4. Overview of the minimisers used in this study
	Table S5. Species-level parameterisations of the canopy
	Table S6. Best parameter values from the idealised calibrations
	Text S1. Biochemical photosynthesis model
	Text S2. Shape of the vulnerability curves
	Text S3. Soil hydraulic processes
	Text S4. Simplification of the CGain hypothesis
	Text S5. Processing of the observations and additional data
	Text S6. Fitting the Tuzet model’s 𝜻 function
	Text S7. Performance assessment metrics
	Text S8. Optimisation criteria forms vs. derivative forms
	References



