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Summary

� Knowledge of how water stress impacts the carbon and water cycles is a key uncertainty in

terrestrial biosphere models.
� We tested a new profit maximization model, where photosynthetic uptake of CO2 is opti-

mally traded against plant hydraulic function, as an alternative to the empirical functions com-

monly used in models to regulate gas exchange during periods of water stress. We conducted

a multi-site evaluation of this model at the ecosystem scale, before and during major droughts

in Europe. Additionally, we asked whether the maximum hydraulic conductance in the soil–
plant continuum kmax (a key model parameter which is not commonly measured) could be

predicted from long-term site climate.
� Compared with a control model with an empirical soil moisture function, the profit maximi-

zation model improved the simulation of evapotranspiration during the growing season,

reducing the normalized mean square error by c. 63%, across mesic and xeric sites. We also

showed that kmax could be estimated from long-term climate, with improvements in the simu-

lation of evapotranspiration at eight out of the 10 forest sites during drought.
� Although the generalization of this approach is contingent upon determining kmax, it pre-

sents a mechanistic trait-based alternative to regulate canopy gas exchange in global models.

Introduction

Water availability is one of the primary controls of vegetation
function, largely responsible for the pronounced seasonal and
interannual variability in global CO2 uptake by terrestrial ecosys-
tems (Ahlstr€om et al., 2015; Jung et al., 2017; Humphrey et al.,
2018; Green et al., 2019). As a result, contemporary droughts
affecting the Amazon, Australia, Europe, and North America
have had considerable impact on ecosystems (e.g. affecting water
use efficiency; see Peters et al., 2018), human populations, and
economic systems (Ciais et al., 2005; Marengo et al., 2013; van
Dijk et al., 2013; Boyer et al., 2013). Critically, the impact of
drought is often long-lasting (Kannenberg et al., 2019). For
example, the legacy of the 2003 European drought was apparent
beyond the conclusion of the drought, as forests experienced
diebacks and pest infestations (Br�eda et al., 2006; Stahl et al.,
2016). Increases in drought intensity and/or duration, as pro-
jected in response to climate change, would therefore have major
implications for the terrestrial biosphere (Stocker et al., 2014;
Ault et al., 2014; Cook et al., 2015; Zhao & Dai, 2017).

In coupled climate models, land surface models (LSMs) simu-
late the exchange of carbon (C), water, and energy fluxes between

the land surface and the atmosphere (Pitman, 2003). Land
schemes typically use empirical relationships, hereafter referred to
as b functions, to reduce canopy gas exchange in response to a
decline in soil water availability (Best et al., 2011; Egea et al.,
2011). These b functions rely on soil-dependent parameters (e.g.
soil moisture content at field capacity and the wilting point),
instead of reflecting vegetation adaptations to water availability. b
has also been defined based on soil water potential thresholds
(Oleson et al., 2013), causing abrupt declines in vegetation func-
tion due to declining water availability in the top soil layers (De
Kauwe et al., 2015b; Medlyn et al., 2016). Overall, b functions
lack both empirical support (Verhoef & Egea, 2014; Medlyn
et al., 2016) and theoretical foundation, leading to important
intermodel disagreement in the shapes of the functional forms
used to limit gas exchange (Desborough, 1997; Medlyn et al.,
2016; De Kauwe et al., 2017).

Importantly, the use of b functions contradicts widespread evi-
dence that plants differ in their sensitivity to reduced water avail-
ability (Brodribb & Cochard, 2009; Urli et al., 2013; Li et al.,
2017). Explicit representations of plant hydraulics (e.g. seg-
mented into root, stem, and leaf hydraulic elements) offer a
mechanistic alternative to empirical soil-dependent b functions
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and can be parameterized from measured plant traits (e.g. Sperry
et al., 1998; Williams et al., 2001; Sperry & Love, 2015; Xu
et al., 2016; Tuzet et al., 2017; Martin-StPaul et al., 2017). By
depicting water transport through the soil–plant–atmosphere
continuum, plant hydraulic schemes open pathways to capture
key vegetation responses to drought: as water availability declines,
xylem water potential drops and critical cavitation might occur
(Wolfe et al., 2016; Martin-StPaul et al., 2017), a process that
could lead to representing mortality via hydraulic failure.

Another approach extends the long-standing water use efficiency
hypothesis (WUEH; Cowan & Farquhar, 1977; Medlyn et al.,
2011) in relation to plant hydraulics (Wolf et al., 2016; Sperry
et al., 2017). The WUEH postulates that stomata adjust to keep
the relationship between the sensitivities of the stomatal conduc-
tance gs to transpiration E and to the net rate of leaf photosynthesis
An constant for a fixed amount of water loss k. Even though the
WUEH is supported by empirical data (Lin et al., 2015), there is
no clear way to estimate changes in k on the timescale over which
soil water changes (Wong et al., 1985; Manzoni et al., 2011).
Consequently, the WUEH fails to relate the sensitivities of E and
An with a hydraulic cost of water loss and still relies on a b func-
tion to limit gas exchange (De Kauwe et al., 2015a).

By contrast, Wolf et al. (2016) and Sperry et al. (2017) hypoth-
esized that plants optimally control water loss on an instantaneous
basis, to avoid excessive reduction in xylem hydraulic conductivity
from a drying soil. In their approach, vulnerability curves are mod-
elled from several set points, which correspond to specific plant
hydraulic parameters; that is, two Px parameters representing the
water potential drop at x% xylem conductivity loss (e.g. P50 at
50% xylem conductivity loss). It is worth highlighting that the set
points used to model the vulnerability curves arise directly from
measurements. The latter allows for realistic simulations of the
progressive impairment of water flow through the xylem, as water
potential drops from the point of maximum hydraulic conduc-
tance. Unlike the WUEH, these approaches offer a mechanism to
parameterise a spectrum of water use strategies, accounting for
plant vulnerability to water stress.

In practice, Wolf et al. (2016) reformulated the WUEH by
expressing the cost of transpiration as a marginal C cost due to
lost hydraulic conductivity, but direct measurements and/or a
specific formulation of this marginal C cost are lacking. Sperry
et al. (2017) overcame this limitation by normalizing the water
and C components of the WUEH, which avoids an explicit
marginal cost. Their solution has since been shown to perform
well at the plant scale in garden experiments (Venturas et al.,
2018; Wang et al., 2019), but it is yet to be tested at the ecosys-
tem scale and across ecosystems.

Applying the Wolf et al. (2016) and Sperry et al. (2017)
schemes in models requires three specific hydraulic parameters.
Whereas values of the two required Px parameters are readily
available from hydraulic trait databases (e.g. Choat et al., 2012),
estimating the maximum hydraulic conductance in the soil–plant
continuum kmax is more complicated. Wolf et al. (2016) pro-
posed combining the conductivity from soil to the fine-root
xylem, the hydraulic conductivity in the root zone, and the ratio
of root to leaf area to calculate kmax. Venturas et al. (2018) and

Wang et al. (2019) set the rhizosphere maximum hydraulic con-
ductance and inferred the whole plant (roots to leaves) compo-
nent of kmax from measured ratios of transpiration to leaf water
potential in well-watered conditions. Either formulation is chal-
lenging to parameterise globally and requires additional input
parameters that are not readily available.

This study has two objectives:
(1) To take the Sperry et al. (2017) model from the plant to the
ecosystem scale, testing the capacity of this new model to simu-
late observed (eddy covariance) water and C fluxes across Euro-
pean forests during two major droughts (2003 and 2006).
(2) To test whether the unknown key model parameter, kmax in
the soil–plant continuum, can be estimated at the stand (or
ecosystem) scale, assuming coordination between the hydraulic
and photosynthetic traits, as well as hydraulic long-term
behavioural plasticity and adjustments to climate.

To address objective (1), we implemented a modified version
of the Sperry et al. (2017) model into a simplified LSM. This
allows us to test the behaviour of this new model in a generic
tractable framework, respecting the broad assumptions com-
monly used in LSMs without making the implementation speci-
fic to an existing LSM. Inside the tractable LSM, we compared
the behaviour of the modified Sperry et al. (2017) model with
that of the Medlyn stomatal optimization model (Medlyn et al.,
2011), which is widely used in state-of-the-art LSMs (CABLE-2.0,
De Kauwe et al., 2015a; CLM5.0, Kennedy et al., 2019; JULES
v.5.4, Oliver et al., 2018). To address objective (2), we explored
alternative ways to determine kmax, testing combinations of vari-
ous climatic and behavioural adjustments, but always assuming
hydraulic and photosynthetic trait coordination.

Materials and Methods

This section is organized into six subsections: the first describes
the modified Sperry et al. (2017) model; the second presents the
approaches tested to estimate kmax; the third outlines the core
components of the tractable LSM; the fourth describes the forc-
ing and site data; the fifth details the model experiments per-
formed; and the sixth introduces a methodology to robustly
assess model performance.

A summary of the model experiments and configurations
(Modelling framework and Model spin-up and experiments
subsections) is available in Table 3. A more visual summary of
our experimental setup (from the Model spin-up and experi-
ments subsection to Model performance assessment – Selection
of best-performing configurations within each of the experi-
ments–) is presented in Fig. S1. For the site information and
parameters, see Tables 1 and 2 and Tables S1 and S2; Tables S3–
S5 contain additional model parameters.

Profit maximization approach

The approach developed by Sperry et al. (2017) proposes that
plants regulate leaf water potential on an instantaneous basis, by
trading increasingly marginal C intakes against increasing
hydraulic conductance losses. Thus, plants balance C gain (CG)
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and hydraulic cost (HC) at the optimal leaf water potential
Ψleaf,opt (MPa) where profit is maximized:

Profitmax ¼ maxðCG(Wleaf Þ �HC(Wleaf ÞÞ 2 ½0; 1� Eqn 1

(Ψleaf (MPa), leaf water potential; CG and HC are unitless
and normalized to 1, which makes them comparable).

In our implementation of the model introduced by Eqn 1, wa-
ter potential in the soil–plant continuum Ψ (MPa) varies along a
continuous transpiration stream (i.e. a single hydraulic conduc-
tor): from the root-zone soil water potential Ψs (MPa) to Ψleaf.
Ψleaf cannot drop below the critical leaf water potential indicative
of maximum xylem hydraulic failure Ψcrit (MPa). Using a contin-
uous transpiration stream reduces parameterization by removing
hydraulic segmentation, but likely results in more marked
drought stress because it smooths conductance changes between
the root zone and the leaves. We set Ψcrit to match a near-com-
plete hydraulic conductivity loss of 95%, accounting for possible
high levels of embolism resistance.

Hydraulic cost The normalized hydraulic cost function reflects
the increasing potential damage from cavitation as hydraulic con-
ductance is lost:

HC(WÞ ¼ ki;max � kðWÞ
ki;max � kcrit

2 ½0; 1� Eqn 2

(ki,max (mmol m�2 s�1 MPa�1), instantaneous maximum
hydraulic conductance in the soil–plant continuum after
accounting for water stress – i.e. kmax evaluated at Ψs; kcrit
(mmol m�2 s�1 MPa�1), critically low hydraulic conductance
that provokes xylem failure at Ψcrit; k (mmol m�2 s�1 MPa�1),
hydraulic conductance for any water potential in the soil–plant
continuum – see Eqn 3).

Hydraulic conductance is represented by a cumulative Weibull
distribution (Neufeld et al., 1992):

kðWÞ ¼ kmaxe
�ðW=bÞc Eqn 3

Table 1 Summary of the 10 eddy-covariance sites.

Site name Country Latitude Longitude PFT1 Dominant species Data2 Reference

Hyyti€al€a Finland 61.85°N 24.29°E ENF Pinus sylvestris FN Rinne (2000)
Sorø Denmark 55.49°N 11.64°E DBF Fagus sylvatica FN Pilegaard et al. (2001)
Loobos Netherlands 52.17°N 5.74°E ENF P. sylvestris FN Moors (2012)
Hesse Forest-Sarrebourg France 48.67°N 7.07°E DBF F. sylvatica LT3 Granier et al. (2008)
Parco Ticino Forest Italy 45.20°N 9.06°E DBF Populus9 canadensis FN3 Valentini & Miglietta (2015)
Pu�echabon France 43.74°N 3.60°E EBF Quercus ilex FN Rambal et al. (2004)
Roccarespampani1 Italy 42.41°N 11.93°E DBF Quercus cerris FN Rey et al. (2002)
Roccarespampani2 42.39°N 11.92°E
El Saler1 Spain 39.35°N 0.32°W ENF Pinus halepensis LT3 Kivim€aenp€a€a et al. (2010)
Espirra Portugal 38.64°N 8.60°W EBF Eucalyptus globulus LT3 Rodrigues et al. (2011)

1PFT, plant functional type; ENF, evergreen needleleaf forest; EBF, evergreen broadleaf forest; DBF, deciduous broadleaf forest.
2Data sets: FN, FLUXNET2015; LT, LaThuile.
3Data for the years 2002 and 2003 only are used, either due to a lack of availability in the later years (LT data set) or to missing data (at Parco Ticino Forest).

Table 2 Climate information and average growing-season weighted leaf area index (LAIGS) at the 10 eddy-covariance sites.

Site name K€oppen climate class1 MAP2 (mm yr�1) Tair;avg
2 (°C) Davg

2 (kPa) Tair;xx
2 (°C) Dxx

2 (kPa) LAIGS
3 (m2m�2)

Hyyti€al€a Dfc 570 9.88 0.34 20.20 1.19 1.34
Sorø Cfb 568 12.82 0.31 19.70 0.77 1.58
Loobos Cfb 778 13.40 0.34 22.00 1.14 1.34
Hesse Forest-Sarrebourg Cfb 753 14.29 0.48 23.50 1.36 2.31
Parco Ticino Forest Cfa 1026 18.14 0.69 28.00 1.95 0.76
Pu�echabon Csa 772 17.56 0.77 28.00 2.39 1.13
Roccarespampani1 Csa 675 19.71 0.79 29.40 2.13 1.83
Roccarespampani2 1.64
El Saler1 Csa 383 21.29 0.90 30.00 2.21 0.67
Espirra Csa 736 20.02 0.84 29.00 2.34 0.85

1Dfc, continental without dry season and with cold summer; Cfb, temperate without dry season and with warm summer; Cfa, temperate without dry
season and with hot summer; Csa, temperate with dry and hot summer.
2MAP, mean annual precipitation; average (avg) and extreme (xx) temperature and vapour pressure deficit values are calculated using the CRU TS v.4.03
data sets (Harris et al., 2014) over the 1972–2002 period.
3Average weighted sunlit–shaded LAI values are calculated over the growing season (i.e. April–November) following the procedure detailed in the
Supporting Information Methods S7 subsection b.
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(kmax (mmol m�2 s�1 MPa�1), maximum hydraulic conductance
in the soil–plant continuum; b (MPa) and c (unitless) are sensitiv-
ity and shape parameters of the plant hydraulic vulnerability
curve, respectively, and are reconstructed from two Px parameters
– e.g. P50 and P88; see Eqns S8, S9 in Methods S3).

Here, kmax represents the maximum conductance of a single
hydraulic conductor connecting the root zone to the leaves. In seg-
mented representations of plant hydraulics, this parameterization
would vary between the rhizosphere, roots, stem, and so on. Our
approach combines all the hydraulic elements in the soil–plant
continuum, hence encompassing maximum rhizosphere conduc-
tance as well as maximum whole plant hydraulic conductance.

k drops with soil water depletion, owing to xylem embolism,
and recovers with soil water recharge (i.e. we assume perfect and
instantaneously reversible embolism). Hence, the supply of water
for transpiration from the root zone depends on plant hydraulic
vulnerability and photosynthetic demand (via CG in Eqn 1), for
any steady-state pressure drop between Ψs and Ψleaf (Sperry &
Love, 2015):

E ðWleaf Þ ¼
ZWleaf

Ws

kðWÞ dW Eqn 4

(E is expressed in mmol m�2 s�1).

Carbon gain The normalized C gain function represents a
marginally decreasing C gain as leaf water potential becomes
more negative:

CG(Wleaf Þ ¼ AðWleaf Þ
Amax

2 ½0; 1� Eqn 5

(A (µmol m�2 s�1), photosynthetic uptake at each correspond-
ing Ψleaf; Amax (µmol m�2 s�1), instantaneous maximum over
the range of Ψleaf).

The diffusive supply of CO2 uses Fick’s first law to represent
the CO2 flux from the ambient air Ca (µmol mol�1) into the leaf
intercellular air spaces Ci (µmol mol�1):

AðWleaf Þ ¼ gcðWleaf ÞðCa � CiðWleaf ÞÞ Eqn 6

(gc (mol m�2 s�1), CO2 diffusive leaf conductance; Ci is obtained
at Ψleaf by solving a system comprising Eqn 6 and a biochemical
photosynthesis model (Farquhar et al., 1980) of net photosynthe-
sis An (µmol m�2 s�1); see Methods S1).

In Eqn 6, gc varies with Ψleaf. To solve for gc, leaf-to-air vapour
pressure deficit Dleaf (kPa), and leaf temperature Tleaf (°C) (at a
given Ψleaf), we build a system of three expressions of E(Ψleaf): (1)
E given by the supply function (Eqn 4); (2) E meeting the atmo-
spheric demand for water (i.e. equating 1.57gcDleaf, where 1.57
converts from conductance to CO2 to total leaf conductance to
water vapour); and (3) E given by the Penman–Monteith equa-
tion following radiative and thermodynamic constraints imposed
on Tleaf (see Eqn S7), and thus on Dleaf.

Whilst the second equation of this system (atmospheric demand
for E) implies a perfect coupling between the leaves and the atmo-
sphere, stomatal feedbacks are theoretically accounted for via the
plant hydraulic vulnerability in the supply equation (see Eqn 4).

Calculating the maximum hydraulic conductance kmax

As discussed in the Introduction section, the key model parame-
ter kmax is not readily available. Katul et al. (2003) and Sperry
et al. (2017) suggested a non-instantaneous (but not clearly
defined) timescale of optimality, on which hydraulic plant traits
would coordinate with photosynthetic traits. This hypothesis
would reduce parameterization and be supported by leaf-level
(e.g. Brodribb & Feild, 2000) and stand-level (e.g. Lai et al.,
2002) experimental evidence.

kmax behavioural plasticity Sperry et al. (2017) suggested that,
to maintain an optimal Ci : Ca ratio of 0.7, kmax should be coordi-
nated with respect to both Eqn 1 and the maximum carboxyla-
tion rate at 25°C (Vcmax,25) (see Fig. 3b in Sperry et al., 2017).
With that assumption, plants always follow the profit maximiza-
tion approach, even at longer timescales; the possibility of long-
term strategies oriented toward greater C accumulation, or
greater water conservation, is ignored.

Here, we extend the Sperry et al. (2017) coordination hypoth-
esis to add two alternative solutions for kmax, because we have no
a priori knowledge of how, and whether, hydraulic and photosyn-
thetic trait coordination varies across plant species. We test the
idea that a degree of plasticity in kmax would feed back on Ψleaf,

opt, and by extension on the water and C fluxes, so as to allow for
behavioural plasticity in kmax at longer timescales.

All our solutions for kmax are calculated assuming well-watered
conditions. For the first solution, kmax,opt, we calculate the value of
kmax that yields Ci :Ca = 0.7 at Ψleaf,opt, following Eqn 1, as Sperry
et al. (2017) did. Ψleaf,opt corresponds to levels of embolism that
vary depending on the vulnerability curve, Vcmax,25, and soil water
potential. For the second solution, kmax,high, we calculate the value
of kmax that yields Ci : Ca = 0.7 immediately before Ψleaf equals
P12. P12 is the water potential at a 12% loss in xylem conductivity,
which coincides with the onset of xylem embolism (Choat et al.,
2018). kmax,high is independent of Eqn 1 but makes use of Eqns 3,
4 and 6, and kmax,high is again coordinated with Vcmax,25 so as to
achieve Ci :Ca = 0.7. For the third solution, kmax,low, we calculate
the value of kmax that yields Ci :Ca = 0.7 immediately before
hydraulic cost offsets net profit. Mathematically, hydraulic cost
exceeds profit when CG(Ψ) = 2HC(Ψ). This third solution is the
one for which the percentage loss in conductivity at Ψleaf ought to
be the greatest (except in cases where the parameterized vulnerabil-
ity curves indicate very negative hydraulic safety margins). Eqns 2–
6 are used to determine kmax,low.

kmax,high and kmax,low are intended as indicators of possible
alternative longer term optimization strategies, since coordina-
tion between them and Ci : Ca = 0.7 may not always be physio-
logically meaningful. Ci : Ca = 0.7 might never be observed near
the onset of xylem embolism for drought-avoiding species, but it
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is unclear what a more appropriate value would be. Note, assum-
ing these alternative set points is analogous to assuming different
soil water availabilities upon the calculation of kmax,opt.

In all three cases, once kmax has been calculated, it is used as an
input parameter for the profit maximization algorithm (see Profit
maximization approach subsection), which simulates actual model
outputs on an instantaneous basis. Fig. 1 illustrates how using val-
ues of kmax,high and kmax,low might alter the instantaneous profit
maximization compared with kmax,opt. In Fig. 1, kmax,high max-
imizes profit at smaller HC and CG compared with the two other
solutions, displaying a more conservative water use strategy. On
the contrary, kmax,low achieves maximum profit at higher HC and
CG compared with the two other solutions, displaying a more
profligate water use.

Fig. 1 demonstrates an example of the relative behaviours of
kmax,opt, kmax,high, and kmax,low. These relative behaviours are
determined by the plant’s vulnerability curve and, as such, vary
from species to species.

kmax adjustments to climate Another uncertainty pertains to
the coordination of kmax with photosynthetic traits and climate.
Fig. 2 displays the theoretical response of kmax,opt (from our first
kmax solution) to changes in atmospheric conditions. Fig. 2a
shows the relationship between increasing Vcmax,25 and increasing
kmax,opt. As vapour pressure deficit D increases, kmax,opt further
increases for a given Vcmax,25, albeit logarithmically. In Fig. 2b,

Vcmax,25 is fixed and kmax,opt is constrained by Tair; it declines
above 25°C.

Fig. 2 shows that assuming Tair = 25°C and D = 1 kPa, as
Sperry et al. (2017) did, might not be appropriate for the calcula-
tion of kmax. As such, we test two scenarios to estimate whether
the previously introduced kmax behavioural plasticity displays fur-
ther adjustment to average climatic conditions or hotter and drier
conditions (see the Model spin-up and experiments – kmax
adjustments to climate subsection). The first scenario represents
the background conditions under which plants grow. The second
scenario will help us gauge the degree to which they might make
hydraulic adjustments to cope with extreme growing conditions.

Modelling framework

We hereafter refer to the default model, embedding the Medlyn
et al. (2011) stomatal model, as the ‘Control model’ and to the
profit maximization approach as the ‘Profitmax model’. Both mod-
els were implemented within the same tractable LSM and forced
by half-hourly meteorological inputs (i.e. photosynthetically active
radiation, air temperature, precipitation, vapour pressure deficit,
atmospheric pressure, and wind speed), which makes results
directly comparable. Our LSM represents many of the core pro-
cesses used across LSMs, albeit simplified. Notes S1 and Figs S2–
S5 show a broad agreement between the Control model and the
CABLE LSM (CABLE-2.0, revision 5320; Kowalczyk et al., 2006;
Wang et al., 2011). We now summarise the key features of the
tractable LSM, but see Methods S1–S6 for more information.

We used a two-big-leaf approximation (Wang & Leuning,
1998), differentiating the radiation absorbed by sunlit and
shaded leaves to simulate canopy fluxes. Soil hydrology was repre-
sented using a water balance ‘tipping bucket’ model.

In the Control model, water stress impacts canopy fluxes by
down-regulating the slope of the sensitivity of An to gs, depending
on the empirical soil-moisture stress factor b:

b ¼ h� hwp
hfc � hwp

Eqn 7

(h (m3 m�3), volumetric soil moisture; hwp (m3 m�3) and hfc
(m3 m�3), volumetric soil moisture contents at wilting point and
field capacity, respectively).

The Profitmax model transforms h to Ws via the Clapp and
Hornberger water retention equation (Clapp & Hornberger,
1978; see Eqn S11), for use in the calculations related to the tran-
spiration stream.

Forcing and site data

We tested the modelling framework at 10 European eddy-covari-
ance sites on a latitudinal gradient (Table 1) over the years pre-
ceding and during two severe droughts: the 2003 continental and
2006 regional heat wave and drought events in Europe. Attention
was given to diversity in climate (Table 2) and forest type
(Table 1), to encompass a broad range of tree functional traits

Fig. 1 An example of the instantaneous profit maximization algorithm.
The carbon gain (green), hydraulic cost (purple), and net profit (blue) are
shown as functions of the transpiration stream, which ranges between the
soil water potential at saturationWsat and the critical water potentialWcrit.
Maximum hydraulic conductance kmax was calculated for each of the three
behavioural solutions (i.e. kmax;high, kmax;opt, and kmax;low; see the
Calculating the maximum hydraulic conductance kmax subsection of the
Materials and Methods), before being used as an input the model. The
dashed and dotted lines illustrate the impacts of alternative strategies for
kmax on the maximum profit; the optimal leaf water potentials at which
profit it maximizedWleaf;opt span a range of 0.4MPa between the
instantaneous model run using kmax ;high and the one using kmax ;low. The
species used in this example is Juniperus virginiana (P50 =�6.6MPa and
P88 =�10.5MPa; Choat et al., 2012), with Vcmax,25 = 100 µmol m-2 s�1,
Tair = 25°C and D = 1 kPa,Ws ¼ �0:8 kPa, and LAI = 2m2m�2.
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(Table S2). Half-hourly meteorological forcing data, as well as
latent heat – converted to evapotranspiration (ET) – and gross
primary productivity (GPP) data used to evaluate the framework,
originate from the marginal distribution sampling gap-filled
FLUXNET2015 and LaThuile data sets (http://fluxnet.fluxdata.
org) and were preprocessed using the FLUXNETLSM v.1.0 R pack-
age (Ukkola et al., 2017). The GPP data in the FLUXNET2015
and LaThuile data sets are not actually measured, but rather esti-
mated from measured net ecosystem exchange data using a night-
time partitioning approach (Reichstein et al., 2005).

The model was run using site-specific prescribed phenologies
(see Methods S7 subsection a) derived from the 8-d MODIS
MOD15A2H v.6 leaf area index (LAI) product (Myneni et al.,
2015). The total effective root-zone depth of the ‘tipping bucket’
model was set between 0.3 and 1.20 m across sites (see Table S1
for the site-specific values and Methods S8 subsection a for how
they were obtained). Species-specific trait data, as well as broader
plant functional type (PFT) parameters used to run the LSM are
provided in Tables S2-S5.

Model spin-up and experiments

Drought events were modelled by running the Control and
Profitmax models for the calendar years of drought occurrence
(2003 and 2006). The years before drought (2002 and 2005)
were also modelled to act as reference conditions. The Control
model was spun up to initialise the root-zone soil moisture state
available to both the Control and the Profitmax at the beginning
of each year. This spin-up was either forced with the flux tower’s
meteorological record for the previous year, when available, or
with the average site climatology.

kmax calibration Objective (1) (see Introduction section) was
addressed by calibrating kmax to assess whether the Profitmax

model can better explain the observed ET and GPP than the
Control model (see Notes S2 and Fig. S6 for a calibration of the
Control). To calibrate kmax, we first calculated kmax;opt at
Tair ¼ 25�C and D = 1 kPa. This reference kmax;opt was then used
to generate a sequence of possible values for kmax. Twelve values
were evenly selected between 25% and 95% of kmax;opt and a fur-
ther 12 values were evenly distributed between 105 and 250% of
kmax;opt. The reference kmax;opt itself was added to the sequence,
which led to a total of 25 values being used as parameter inputs
to run each of the drought and nondrought years. The best cali-
brated kmax value was selected following the procedure detailed in
the Model performance assessment – Selection of best-perform-
ing configurations within each of the experiments subsection.

kmax adjustments to climate Objective (2) (see Introduction
section) was addressed by calculating the site-level kmax following
the strategies in Table 3: the kmax;opt, kmax;high, and kmax;low (intro-
duced in the Calculating the maximum hydraulic conductance
kmax – kmax behavioural plasticity subsection) were each adjusted
depending on long-term climate. We used coarser resolution
meteorological data, from the 4.03 release of the Climate
Research Unit TS data set (CRU TS v.4.03; Harris et al., 2014)
for the 1972–2002 period, to define two contrasting climate sce-
narios based on Tair and D:
(1) An ‘Average’ scenario, where CRU monthly daily mean air
temperature was averaged over the growing season (Tair;avg, °C);
that is, April–November between 1972 and 2002. Average
monthly vapour pressure deficit Davg (kPa) was calculated via
Tetens’s equation for saturation vapor pressure (Monteith &

Fig. 2 The sensitivity of the modelled optimal coordination between the maximum hydraulic conductance kmax;opt and (a) the maximum carboxylation rate
at 25°C Vcmax;25 and (b) air temperature Tair, both depending on vapour pressure deficit D. (a) kmax ;opt increases near proportionally with Vcmax;25 and in a
logarithmic fashion with D; Tair is fixed to 25°C. (b) kmax;opt increases with Tair, before decreasing (sharply at the two highest D) starting between 20 and 25
°C; Vcmax;25 is set to 100 µmol m�2 s�1. The valid range for kmax ;opt is constrained by physically plausible co-occurring values of Tair and D under a relative
humidity spanning 5–95%. The species used in this example is Juniperus virginiana (P50 =�6.6MPa and P88 =�10.5MPa; Choat et al., 2012), with
Ws ¼ �0:8 kPa and LAI =2m2m�2.
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Unsworth, 1990), using air temperature and monthly average
actual vapour pressure over the growing season.
(2) An ‘Extreme’ scenario, where the 90th percentile of CRU
monthly average daily maximum temperature was used to calcu-
late Tair;xx (°C). The associated vapour pressure deficit Dxx (kPa)
was calculated as just noted.

All the kmax;opt, kmax;high and kmax;low were calculated for the soil
water potential at saturation, given that the plants’ vulnerability
curves already account for sensitivity to water stress. The site
average growing-season weighted sunlit–shaded LAI (see
Table 2), but not the rooting depth, was used to scale the esti-
mates from the leaf up to the ecosystem, assuming that a compos-
ite shaded–sunlit leaf proxy is representative of the stand’s most
productive state (see Methods S7 subsection b).

Table 2 summarises the sites’ climate scenario information and
the composite LAIs, whereas Table 3 provides an overview of the
model experiments and configurations.

Model performance assessment

We applied the benchmarking methodology from the Protocol for
the Analysis of Land Surface Models (PALS) Land Surface Model
Benchmarking Evaluation Project (PLUMBER; Best et al., 2015)
to assess model performance. This methodology combines several
statistical metrics to produce a comprehensive assessment of model
skill, overcoming the shortcomings of individual metrics.

Five common statistical measures were used: normalized mean
square error (NMSE), mean absolute error (MAE), standard
deviation (SD), and the 5th and 95th percentile values (p5 and
p95) indicative of agreement between the simulated and observed
distributions. Following PLUMBER (Best et al., 2015), we calcu-
lated the absolute difference between 1 and the ratio of modelled
to observed SD, and the absolute distances between the modelled
and observed p5 and p95.

For each statistical metric, we assigned quantile ranks between
0 (best performance) and 1 (worst performance) to the model
configurations within an experiment (see the Model spin-up and
experiments – kmax calibration and kmax adjustments to climate
subsections); that is, we ranked the configurations relative to what
the best performance could be following a quantile distribution.
We then averaged each configuration’s quantile ranks across the
metrics. We therefore obtained an average quantile rank for each
configuration, within each experiment. Notably, unlike averaging
absolute ranks, averaging quantile ranks considers the configura-
tions’ relative performance across the statistical metrics.

Selection of best-performing configurations within each of the
experiments To select the best calibrated configuration (objective
(1)) and the best climate configuration (Average or Extreme sce-
nario used to derive kmax; objective (2)), we constrained the half-
hourly data between April and July in 2002 and 2003. In doing so,
we limited the effects of the dry-downs in selecting the configura-
tions; that is, we did not calibrate kmax on the drought months in
2003 (July–October). We opted to select the best-performing con-
figurations against the observed ET only, given that GPP is not
directly observed but, rather, estimated at eddy-covariance sites.

Although we did not train the Profitmax model’s algorithm to
match the observed data, selecting the best-performing configura-
tions based on a subset of data (ET restricted between April and
July in 2002 and 2003) has consequences. We expect the ET pre-
dictions to be reasonably close to the observations between April
and July in 2002 and 2003, because they will be made in sample.
At any other time (i.e. between July and November in 2002 and
2003, and 2005 and 2006), the Profitmax model’s ET predictions
will be out-of-sample. The model’s ability to match the observa-
tions will then depend, first, on its skill (e.g. in terms of partition-
ing ET into transpiration and soil evaporation) and, second, on
changes in the vegetation properties, including potential legacy
effects (in 2005 and 2006) of the 2003 drought on kmax. In con-
trast to the ET predictions, the GPP predictions are always made
out of sample.

Evaluating the experiments’ best-performing configurations
and the Control model In the Model evaluation section, we
gauge the effects of selecting each experiment’s best-performing
configuration (i.e. best calibration and best climate configuration)
against ET only. To conduct this analysis, we first evaluated the
Profitmax model’s ability to simulate both (partially out-of-sam-
ple) ET and (effectively out-of-sample) GPP over the full April–
November periods. Then, again, we combined the statistical met-
rics into quantile ranks for each of the best configurations and
the Control model, relative to the observations.

Code

All model and analysis code are freely available from https://
github.com/ManonSabot/Profit_Maximisation_European_Fore
sts (Sabot, 2019).

Results

Model evaluation

Fig. 3 shows each site’s average quantile ranks attained by the best
model configurations and by the Control model, for GPP
(Fig. 3a,c) and ET (Fig. 3b,d). Fig. 3(a,b) shows drought years
and Fig. 3(c,d) shows nondrought years. Lower ranks equate to
better overall performance, and box plots on the left of the figure
summarise results across the entire period. Overall for ET, the
calibration (light green, average quantile rank l = 0.44) and the
best kmax;opt among the Average and Extreme scenarios (best

Table 3 Summary of the two experiments conducted to estimate the
maximum hydraulic conductance kmax and of the model configurations
evaluated within each experiment.

Experiments

Calibration Adjustments to climate

Profitmax

configurations
25 values around
the kmax;opt

at Tair = 25°C
and D = 1 kPa

6 kmax values: 3 solutions9 2
climate scenarios

kmax ;high kmax;opt kmax;low

Average scenario Extreme scenario
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climate configuration summarized in dark green, l = 0.55) out-
performed the Control model (purple, l = 0.74). For GPP, the
performances of the best calibration (l = 0.56), of the best cli-
mate configuration (l = 0.59), and of the Control model
(l = 0.61) were similar. Selecting for one model output – as we
did by selecting the best configurations by evaluating their skill in
reproducing ET observations alone – is likely to degrade perfor-
mance of other outputs (Abramowitz et al., 2019; Herger et al.,
2019), but in the case of the Profitmax model it did not lead to
significant losses in overall GPP performance.

The best Profitmax configurations from the two experiments
improved on the simulated ET for each individual statistical met-
ric of performance across all sites and years, relative to the Control
model (not shown in Fig. 3). ET deviations (i.e. NMSE) were
reduced by c. 63% in the best calibration and by c. 54% in the best
climate configuration, which reflects an increase in temporal coin-
cidence with the observations. Accuracy increased (i.e. the MAE
decreased) by c. 29% for the best calibration and by c. 23 % for
the best climate configuration. The error in variability (i.e. SD
metric) decreased by c. 41% for the best calibration and by c. 24%
for the best climate configuration. Finally, the Profitmax displayed
increased ability in better capturing the tails of the distribution, by
14% and 13% for the p5 metric for the best calibration and the
best climate configuration, respectively (see theModel perfor-
mance assessment – Evaluating the experiments’ best-performing
configurations and the Control model subsection of the Materials
and Methods), and by 54% and 26% for the p95 metric for the
best calibration and the best climate configuration, respectively.

We expected a closer fit between the observed and calibrated
Profitmax model’s ET flux in the nondrought years (2002 and
2005), because kmax was not calibrated on the drought periods.
Yet, at three sites (Parco Ticino, Pu�echabon, and Roccarespam-
pani1) the calibrated Profitmax model better simulated ET in the
drought years than in 2002 and 2005. Relative to the Control
model, improvements in the simulation of ET were larger in the
drought years than in 2002 and 2005, for both the Profitmax

model’s best calibration and its best climate configuration. In the
drought years, the Profitmax model outperformed the Control
model for ET at eight out of 10 sites. In the nondrought years, it
did so at seven sites for the best calibration and at six sites for the
best climate configuration (see Fig. 3). Figs 4 and 5 show time
series comparisons of the Control model with the Profitmax

model’s best calibration between April and November during the
drought years (the best climate configurations are shown in Figs
6 and 7). Large improvements in the simulated ET are evident at
Hyyti€al€a, Parco Ticino, Roccarespampani1, and El Saler. At
Hesse, the Profitmax significantly reduced ET biases (Figs 4n, 6n,
S7n before June), but was still outranked by the Control (see
Fig. 3).

Model behaviour

In the Control model, under well-watered conditions, photosyn-
thetic water use efficiency (WUE) is set based on the empirical g1
parameter and stomatal sensitivity to D (see Methods S4). In the
Profitmax model, the instantaneous WUE varies optimally

depending on the potential to increase C gain versus the incurred
risk of hydraulic function loss, even under well-watered condi-
tions. Fig. 8a shows the effective g1 parameter implied by the
behaviour of the Profitmax model across the 10 sites. At Roc-
caresmpampani 1 and 2, the Profitmax model suggests a more
conservative water use strategy than the Control model (lower g1)
to better match the observations. Conversely, the Profitmax model
implies a more profligate water use strategy (higher g1) at
Hyyti€ala. In either case, the resulting changes in E do not linearly
translate to marked changes in GPP because of the nonlinear rela-
tionship between gs and An (e.g. Figs 4a,b, 5e,f). Indeed, when
stomata are fully open, An is primarily limited by the rate of ribu-
lose-1,5-bisphosphate regeneration (see Methods S1) and thus
relatively insensitive to variations in stomatal conductance.

Behavioural differences between the models are also explained
by their contrasting sensitivities to D. The Profitmax approach
does not a priori set the sensitivity to D, whereas the Control
model assumes gs to be proportional to 1/D0.5 in the absence of
water stress (Medlyn et al., 2011). Both panels of Fig. 8 show a
wide variation in the sensitivity of gs to D across the 10 sites,
varying between 0.48 and 0.84, and averaging 0.62 (cf. findings
of Oren et al. (1999)).

To understand how the Profitmax’s instantaneous regulation of
WUE affects plant water use during the growing season, we anal-
ysed the best calibration’s partitioning of ET into transpiration
and soil evaporation, compared with that of the Control model.
At all sites besides Roccarespampani 1 and 2, the ratio of transpi-
ration to ET was increased and the ratio of soil evaporation to
ET was decreased. These changes in partitioning led to delays in

(a) (c)

(b) (d)

Fig. 3 Quantile ranks (q-rank) of the best configurations of the Profitmax

model compared with the Control model: (a, b) across drought and (c, d)
nondrought years; (a, c) for gross primary productivity (GPP); (b, d)
evapotranspiration (ET). The vertical lines – blue (Average scenario) or red
(Extreme scenario) – correspond to the best climate configuration’s range
of ranks across the three behavioural solutions for the maximum hydraulic
conductance. The box-and-whisker plots to the left of the figure
summarise the ranks across sites but do not account for the behavioural
range shown by the vertical lines. In the box-and-whisker plots, the
horizontal yellow line shows the average overall quantile rank and the box
shows the interquartile range; the whiskers extend to the 10th and 90th

percentile values of the ranks, with dots outside of the whiskers showing
outliers.

� 2020 The Authors

New Phytologist� 2020 New Phytologist Trust
New Phytologist (2020) 226: 1638–1655

www.newphytologist.com

New
Phytologist Research 1645

 14698137, 2020, 6, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.16376 by M

PI 322 C
hem

ical E
cology, W

iley O
nline L

ibrary on [17/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



the overestimations of the rate and magnitude of dry-down simu-
lated by the Control model (seen in many LSMs; Ukkola et al.,
2016) by up to 2 months (e.g. Fig. 5f,p in the Profitmax), on par
with the observations. Fig. 9 illustrates how the Profitmax mecha-
nistically shifted the plants’ ability to transpire as a function of
soil water availability, from where canopy gas exchanges are max-
imized to where plants begin to wilt. This led to greater transpira-
tion under drier conditions (e.g. Fig. 5j) whereby, at seven out of
the 10 sites (not shown), the stomata were still not fully closed
past the threshold for the wilting point of �1.5MPa commonly
used in LSMs (see Fig. 9 for an example at two sites). By contrast,
the soil water potential never dropped below �0.9MPa in the
Control model.

Crucially, the Profitmax model’s ability to simulate more realis-
tic WUEs (e.g. Figs 4b,p, 5b,p) and to transpire for longer could
lead to more realistic annual ET and GPP modelled fluxes.
Pu�echabon excepted, the best calibration’s total ET estimates
between April and November were always closer (> 75% closer at

five out of 10 sites) to the observations than the Control model’s.
For example, at Hyyti€al€a, the calibrated Profitmax model simu-
lated a total ET of 562 mm between April and November, com-
pared with 537 mm and 253 mm in the observed data and
Control model, respectively; over that period, its total simulated
GPP was 1620 g C, compared with 2055 g C and 1423 g C in
the observed data and Control model, respectively.

Predicted stand kmax

In this study, we explored whether each site’s stand kmax could be
derived from the multi-decadal (30 yr) climate, assuming hydraulic
adjustments on that timescale. Fig. 10 shows the wide range of kmax

values (0.08–2.53mmol m�2 s�1MPa�1) obtained from the two
climate scenarios (Average and Extreme). We found those values to
be in good agreement with the literature (cf. Notes S3 and
Table S6 for a qualitative comparison). Even though the calcula-
tions of kmax were performed without knowledge of site

Fig. 4 A 14-d running average of the carbon (C) and water fluxes predicted by the best selected calibration configuration from the Profitmax model (green
line) at the five northernmost eddy-covariance sites during (a, b, e, f, i, j, m, n, o, p) the 2003 and (c, d, g, h, k, l) the 2006 European drought events,
compared with the Control model (purple line) and with the observations (black line). Grey lines show the prescribed phenologies (leaf area index (LAI),
m2m�2) and blue bars the precipitation (PPT, mm d�1). The gross primary productivity (GPP) units are g Cm�2 d�1 and the evapotranspiration (ET) units
are mmd�1.
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precipitation, the linear regressions (dotted lines) show increases in
kmax with increasing mean annual precipitation (MAP; see
Table 2), suggesting predictable variation in the hydraulic traits
across sites. The regression slope was the steepest for the Extreme
scenario, with kmax values ranging c. 2.8 times those of the Average
scenario. Note that the relationship between kmax and MAP can
partially be explained by the relationship between P50 and MAP (Li
et al., 2018), but that latter relationship alone only explains c. one-
third of the degree of predictability in kmax for a given MAP
because species-level values of P50 weaken any direct link between
P50 data and site MAP. The expected relationship between LAI and
MAP (Yang et al., 2018) is not a good candidate to explain more of
the predictably, as the relationship between kmax and MAP holds
irrespective of changes in LAI.

Where the best climate predicted kmax broadly agreed with the
calibrated kmax, the Profitmax model’s climate configuration also
had the ability to outperform the Control model (see Fig. 3).

The calibrated kmax exceeded that of the Extreme scenario at
Hyyti€al€a and Loobos, but otherwise lay between the values of the
Average and Extreme scenarios. The kmax;high and kmax;low were
often smaller than the kmax;opt (e.g. Hesse in Fig. 10), as we would
expect from species trying to avoid the onset of xylem embolism
(K€ocher et al., 2012), but this was not always the case (e.g.
Pu�echabon, where the kmax;opt was enveloped by the kmax;high and
kmax;low, indicating higher drought tolerance). Overall, no unique
climate-driven (i.e. Average or Extreme) or behaviour-driven (i.e.
kmax;high, kmax;opt or kmax;low) pattern explained the improved
model performance.

Discussion

Climate models are particularly challenged when it comes to
projecting how drought will change in the future (Orlowsky &
Seneviratne, 2013). A number of offline LSMs have been

Fig. 5 A 14-d running average of the carbon (C) and water fluxes predicted by the best selected calibration configuration from the Profitmax model (green
line) at the five southernmost eddy-covariance sites during (a, b, e, f, i, j, m, n, o, p) the 2003 and (c, d, g, h, k, l) the 2006 European drought events,
compared with the Control model (purple line) and with the observations (black line). Grey lines show the prescribed phenologies (leaf area index (LAI),
m2m�2) and blue bars the precipitation (PPT, mm d�1). The gross primary productivity (GPP) units are g Cm�2 d�1 and the evapotranspiration (ET) units
are mmd�1.
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shown to dry out too quickly (Ukkola et al., 2016; Mart�ınez-
de la Torre et al., 2019), and coupled-climate models markedly
diverge from observations (Ukkola et al., 2018) due to differ-
ences in their representation of soil hydraulic processes and
vegetation water stress during drought. As root-zone soil mois-
ture availability decreases, the partitioning of net radiation at
the vegetated land surface increases sensible heat relative to
latent heat. Therefore, if climate models incorrectly represent
vegetation responses to drought, it is likely that they also erro-
neously represent feedbacks to the boundary layer (Donat
et al., 2018). This hinders the capacity to capture any land
surface amplification of climate extremes (Yunusa et al., 2015;
Miralles et al., 2018).

As an alternative to approaches widely used in LSMs, we
investigated an optimization approach that considers an evolv-
ing trade-off between hydraulic cost and C gain to limit vege-
tation function during periods of water stress. When

calibrated (via kmax), the Profitmax model was able to outper-
form our Control model, largely improving the simulated ET
at eight out of 10 sites (see Fig. 3). Importantly, the Profitmax

model, with its parameterized behaviour emerging from mea-
sured hydraulic traits, showed enhanced skill both outside and
during drought. During drought, the kmax model parameter
estimated from long-term site climate also led to improve-
ments in simulated ET at eight out of 10 sites. The positive
nature of this evaluation at the ecosystem scale opens the door
to the incorporation of hydraulic optimization approaches in
models.

Can kmax be derived from the climate?

The Profitmax model relies on key hydraulic traits: values of water
potential relating to a specific percentage loss of conductivity (e.g.
P50) and kmax. Px traits are widely measured; it is less clear how one

Fig. 6 A 14-d running average of the carbon (C) and water fluxes predicted by the best selected climate configuration from the Profitmax model (green) at
the five northernmost eddy-covariance sites during (a, b, e, f, i, j, m, n, o, p) the 2003 and (c, d, g, h, k, l) the 2006 European drought events, compared
with the Control model (purple line) and with the observations (black line). The green line is the kmax;opt strategy, and the green shadings encompass the
instantaneous range of fluxes predicted by the three behavioural solutions for kmax. Grey lines show the prescribed phenologies (leaf area index (LAI),
m2m�2) and blue bars the precipitation (PPT, mm d�1). The gross primary productivity (GPP) units are g Cm�2 d�1 and the evapotranspiration (ET) units
are mmd�1.
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might reliably estimate kmax at the ecosystem scale. kmax is a concep-
tual representation of the maximum conductance that plants could
achieve given their ability to access water under the most favourable
conditions, but it has not been commonly reported/derived in exist-
ing plant hydraulic literature. Here, we sought to explore whether
kmax varied predictively with a measure of climate, first because
there is evidence of plant trait adjustments with climate (Atkin &
Tjoelker, 2003; Mencuccini, 2003; Carins Murphy et al. 2012;
Marchin et al., 2016), and second because it led to a more parsimo-
nious model with fewer parameters.

Although MAP is a broad measure of water availability that
ignores groundwater effects, we found that kmax increased with
increasing MAP (see Fig. 10). This finding makes physical sense,
because a stand of plants with low water availability would be
limited in its ability to draw water from the soil and to conduct it
through to the canopy, compared with a similar stand at a loca-
tion with higher water availability. We also expected kmax to

increase with vapour pressure deficit (see Fig. 2a) yet be inhibited
at high temperatures (see Fig. 2b). Across our 10 sites, we found
that the Extreme climate scenario consistently predicted the high-
est values ofkmax, meaning that D was the primary predictor of
kmax in the model.

Assuming covariation between kmax and Vcmax;25, we estimated
kmax for a single value of Vcmax;25. In reality, it is likely that kmax

varies with Vcmax;25 across seasons for instance (Wilson et al.,
2000), depending on factors such as climate and soil properties
(which likely influence rhizosphere conductance). kmax is also
likely to be coupled to plant allocation in individual trees (e.g.
root area : leaf area ratio) and to LAI and/or tree density changes
at the community scale. Further difficulty arises from the range
of hydraulic behaviours observed across phenotypes and within
species (Aranda et al., 2005), with plants adjusting their function
to different climatic thresholds and/or at different timescales. At
intermediate levels of precipitation (between 700 and

Fig. 7 A 14-d running average of the carbon (C) and water fluxes predicted by the best selected climate configuration from the Profitmax model (green) at
the five southernmost eddy-covariance sites during (a, b, e, f, i, j, m, n, o, p) the 2003 and (c, d, g, h, k, l) the 2006 European drought events, compared
with the Control model (purple line) and with the observations (black line). The green line is the kmax;opt strategy, and the green shadings encompass the
instantaneous range of fluxes predicted by the three behavioural solutions for kmax. Grey lines show the prescribed phenologies (leaf area index (LAI),
m2m�2) and blue bars the precipitation (PPT, mm d�1). The gross primary productivity (GPP) units are g Cm�2 d�1 and the evapotranspiration (ET) units
are mmd�1.
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800 mm yr�1), diverse hydraulic strategies existed for similar
MAPs (see Fig. 10).

Our attempt to estimate kmax based on climate is a promis-
ing proof of concept. We could further explore alternative cli-
mate descriptors, or scenarios, and alternative definitions of

(a) (b)

Fig. 8 A comparison of the sensitivity of the Control and calibrated Profitmax models’ stomatal conductance gs to vapour pressure deficit D across the 10
eddy-covariance sites. (a) The relationship between the implied water use efficiency g1 (kPa

0.5) of the calibrated Profitmax model and its sensitivity to D (r,
unitless). The values of g1 obtained for the Profitmax model were converted from unit kPar to unit kPa0.5 for comparison with the values of g1 used in the
Control model. g1 and r were obtained by least-square fitting of the gs simulated by the calibrated Profitmax model to the Medlyn et al. (2011) stomatal
conductance model. The estimates were produced using the site hydraulic and photosynthetic parameters, for temperatures ranging 10–40°C and D

ranging 0.05–3 kPa. The values of g1 used in the Control model are plotted against the respective sites’ r for visual comparison with those of the Profitmax

model only, as they correspond to r ¼ 0:5. (b) The effect of the various r on the gs given by the Control model at 25°C. The input parameter g1 was set to
2 kPa0.5 for all the curves, but was converted to kPar upon running the Control model with the site-specific values of r shown in (a). The reference gs of the
Control model (r ¼ 0:5) is plotted for comparison. For both (a) and (b), the models were run assuming well-watered conditions.

Fig. 9 A comparison of the decline in stomatal conductance gs with
predawn soil water potentialWs, for the Control (plain lines) and the
calibrated Profitmax (dotted lines) models at a sub-selection of sites. The
functional forms emerge from the soil parameters and the b functions
in the Control, and from the plant hydraulic traits and the profit
maximization algorithm in the best selected calibration. The inset zooms
on the functional forms of the gs–Ψs curves from the Control model for
Ψs >�0.3MPa. The functional forms are made comparable by normalizing
gs by its maximum at a given site. Note that seemingly slow decreases in gs
with Ψs can be attributed to the nonlinear relationship between Ψs and
volumetric soil moisture, whereby small variations in the latter can lead to
large variations in the former. To avoid rainfall effects, the data up to 48 h
after rain were excluded. To avoid low solar radiation and low temperature
effects, the gs data were restricted between 09:00 h and 15:00 h from
April to November across all years. The curves were fitted with a linear
generalized additive model, and the shadings show the 95% confidence
interval of the fit.

Fig. 10 The estimated site maximum hydraulic conductance kmax, for each
climate configuration of the Profitmax model and for the best selected
calibration, shown as a function of mean annual precipitation (MAP; as
listed in Table 2). Note, the MAP was not used in the estimation of kmax;
however, kmax was multiplied by each site’s weighted composite LAI,
which normalises it to ground area and makes it comparable across sites.
Linear regressions are used to show the positive relationship between kmax

and MAP, with an r2 of 0.53 and a P-value of 0.02 for the best selected
calibration, an r2 of 0.21 and a P-value of 0.01 for the Average scenario,
and an r2 of 0.30 and a P-value of 0.002 for the Extreme scenario.
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the stand composite LAI (which we assumed to be a fixed
value), to derive kmax. Future work may otherwise include
exploring the relation between kmax, the (optimal ecosystem)
climate and vegetation height, not unlike Liu et al. (2019),
who showed some coordination between hydraulic traits and
maximum plant height across biomes. Approaches relying on
measurements of the mean diameter of xylem, which corre-
lates with hydraulic conductivity (e.g. Hagen–Poiseuille law;
Limousin et al., 2010), could also be explored as they have
previously been tested with some success (Cruiziat et al.,
2002). Finally, the use of data-driven approaches, like
Bayesian model emulation (Fer et al., 2018), might be an
avenue for the calibration of hydraulic traits, allowing optimi-
zation schemes to be more widely used in global LSMs.

Improving the simulation of gross primary productivity

Marked improvements in simulated ET, using the Profitmax

model, were not consistently followed by marked improvements
to the simulation of GPP. Selecting the best configurations (see
Table 3 for a reminder on what a configuration consists of) based
on ET alone was likely to impair the GPP simulations because
changes in ET do not linearly translate into changes in GPP.
Here, remarkably, the GPP simulations were not degraded. Nev-
ertheless, the recovery of the vegetation following an episode of
drought was largely instantaneous (e.g. Fig. 5n). Indeed, the
Profitmax model only considers instantaneous fluxes and does not
directly incorporate mechanistic links between loss of hydraulic
function and key turnover of plant tissues (e.g. leaves; see Wolfe
et al. (2016) and Xu et al. (2016)). Since we prescribed LAI based
on multi-year climatologies, the model could not capture large
observed drops in GPP for a given year. For example, at Pu�ech-
abon, where previous years’ water stress and drought legacy
effects have been shown to affect leaf production in the subse-
quent years (Rambal et al., 2014), the model failed to capture the
GPP drops observed after 2003 (see the Control and Profitmax

models in Figs 5c, S8c) because it overestimated LAI in scaling
from the fluxes from the leaf-level up.

Implementation into state-of-the-art land surface models

Given the good performance of the Profitmax model, implementing
it into state-of-the-art LSMs to improve the representation of
drought–vegetation feedbacks is an attractive option. However, it
should be noted that our implementation of the profit maximization
approach assumes that the cavitation can be fully recovered upon
soil water recharge (as in other hydraulic schemes; e.g. Xu et al.,
2016). This assumption is consistent with LSMs that do broadly
not account for legacy effects, albeitin consistent with the plant
hydraulic literature showing that hydraulic repair is not routine in
trees (Cochard & Delzon, 2013; Delzon & Cochard, 2014). Incor-
porating legacy effects is a research gap for the LSM community.

Optimization models can be perceived as computationally
expensive for a climate model. Recently, Eller et al. (2018) pro-
posed a simpler implementation of the Sperry et al. (2017) model
with the stomatal optimization model based on xylem hydraulics

(SOX), by removing the continuous transpiration stream. SOX
changed the fundamental optimization question asked by
Profitmax from ‘What is the cavitation risk plants are willing to
take to maximise C intake?’ to ‘What is the maximum C intake
plants can achieve given a set hydraulic cost?’ We do not know
how the practical simplification made by SOX might affect
model behaviour across ecosystems, so it is important for future
work to compare both assumptions and explore their relative
merits. Until such a comparison is made, we argue in favour of
maintaining a full optimization on the transpiration stream.
Besides, Venturas et al. (2018) showed how the Profitmax could
be used to infer plant mortality, with the advantage of moving
past prescribing mortality thresholds (Mencuccini et al., 2019).

In our implementation, we used computationally optimized
matrices to solve the optimization (see code), keeping the compu-
tation expense small. We also provide a framework to vary (i) the
frequency of instantaneous profit maximization (i.e. Eqn 1 every
30 min or longer), (ii) the solving window on the transpiration
stream (i.e. instead of Ws to Wcrit, Ws to Wleaf ;optðt � 1Þ � x%
with t � 1 being the previous time step and the assumption that
Wleaf ;optðt Þ would not depart by more than x% from the previous
one), and (iii) the resolution of the transpiration stream itself (i.e.
the increment between two adjacent W values). Preliminary test-
ing (not shown) did not indicate any significant benefit from
increasing the resolution of the transpiration stream (i.e. (iii)).
Issues arose when the solving window on the transpiration stream
was too narrow (i.e. (ii)). Lastly, whilst optimizing up to every
third hour did not significantly impact the simulations (i.e. (i)),
daily optimizations flattened the model’s response to environ-
mental conditions, because they underestimated variations in leaf
water potential throughout the day.

Finally, we could apply the Profitmax across sites globally, to
generate functions to reduce stomatal conductance with decreas-
ing soil water (e.g. Fig. S9). These functions could then be
embedded in LSMs in place of the b functions. Although such an
approach would be empirical, it would maintain a traceable link
to measurable hydraulic traits at no added computation cost to
LSMs. This approach will be the subject of future work, because
globally connecting hydraulic traits and water limitations on ET
in LSMs used in climate models would reduce existing weak-
nesses during periods of water stress.
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Additional Supporting Information may be found online in the
Supporting Information section at the end of the article.

Fig. S1 A schematic showing the modelling experiments.

Fig. S2 A 14-d running average of the carbon and water fluxes
predicted by the Control model at the five northernmost eddy-
covariance sites during the 2003 and 2006 European drought
events, compared with the CABLE LSM and with the observa-
tions.

Fig. S3 A 14-d running average of the carbon and water fluxes
predicted by the Control model at the five southernmost eddy-
covariance sites during the 2003 and 2006 European drought
events, compared with the CABLE LSM and with the observa-
tions.

Fig. S4 The predawn volumetric soil water available to the vege-
tation, as simulated by the Control model and by CABLE, at the
five northernmost eddy-covariance sites during the 2003 Euro-
pean drought event.
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Fig. S5 The predawn volumetric soil water available to the vege-
tation, as simulated by the Control model and by CABLE, at the
five southernmost eddy-covariance sites during the 2003 Euro-
pean drought event.

Fig. S6 A 14-d running average of the carbon and water fluxes
predicted by two different calibrations of the Control model at a
sub-selection of sites in 2002, 2003, 2005 and 2006, compared
with the calibrated Profitmax model, with the reference Control
model, and with the observations.

Fig. S7 A 14-d running average of the carbon and water fluxes
predicted by the best selected Calibration at the five northern-
most eddy-covariance sites in 2002 and 2005, compared with the
Control model and with the observations.

Fig. S8 A 14-d running average of the carbon and water fluxes
predicted by the best selected Calibration at the five southern-
most eddy-covariance sites in 2002 and 2005, compared with the
Control model and with the observations.

Fig. S9 The stomatal conductance as a function of the predawn
total volumetric soil water available to the vegetation.
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