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Key Points:63

• We investigated the limitations of biogeochemical models in simulating inter–annual64

variability (IAV) of gross primary production (GPP).65

• Capturing year–to–year variability of model parameters and diurnal GPP peaks66

can be key to understanding IAV.67

• Variability in model performance is majorly influenced by model types, param-68

eterization strategies, and site characteristics.69
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Abstract70

A long-standing challenge in studying the global carbon cycle has been understanding71

the factors controlling inter–annual variation (IAV) of carbon fluxes related to vegeta-72

tion photosynthesis and respiration, and improving their representations in existing bio-73

geochemical models. Here, we compared an optimality-based mechanistic model and a74

semi-empirical light use efficiency model to understand how current models can be im-75

proved to simulate IAV of gross primary production (GPP). Both models simulated hourly76

GPP and were parameterized for (1) each site–year, (2) each site with an additional con-77

straint on IAV (CostIAV ), (3) each site, (4) each plant–functional type, and (5) glob-78

ally. This was followed by forward runs using calibrated parameters, and model evalu-79

ations at different temporal scales across 198 eddy covariance sites. Both models per-80

formed better on hourly scale than annual scale for most sites. Specifically, the mech-81

anistic model substantially improved when drought stress was explicitly included. Most82

of the variability in model performances was due to model types and parameterization83

strategies. The semi-empirical model produced statistically better hourly simulations than84

the mechanistic model, and site–year parameterization yielded better annual performance85

for both models. Annual model performance did not improve even when parameterized86

using CostIAV . Furthermore, both models underestimated the peaks of diurnal GPP in87

each site–year, suggesting that improving predictions of peaks could produce a compar-88

atively better annual model performance. GPP of forests were better simulated than grass-89

land or savanna sites by both models. Our findings reveal current model deficiencies in90

representing IAV of carbon fluxes and guide improvements in further model development.91

Plain Language Summary92

Terrestrial vegetation assimilates and releases carbon dioxide through photosyn-93

thesis and respiration, respectively, and their net magnitude determines if vegetation can94

be a sink or source of carbon. We are interested in understanding what controls the inter–95

annual variability (IAV) of gross primary production (GPP) which represents photosyn-96

thesis, in a given location and how their representations can be improved in models sim-97

ulating GPP. Here, we considered a mechanistic model that can be applied equally well98

globally, and a data-driven semi-empirical model. We found both models better simu-99

lated diurnal and seasonal cycles of GPP than IAV. Such differences probably stem from100

model parameters, as critical ecosystem functions they represent may not be well-constrained101

or model structures may lack critical representations via inaccurate simulation of peak102

diurnal GPP and drought stress. The IAV of GPP was comparatively better simulated103

if model parameters were fine-tuned with data from specific years. Another challenge is104

that IAV of GPP can also be observed due to disturbances, such as forest fire, and hu-105

man management besides natural causes, which were also not represented in models. Our106

results suggest that learning the variability of model parameters over the years can be107

key to better simulation of the IAV of GPP.108

1 Introduction109

The global carbon cycle is an important biogeochemical cycle, which affects the cli-110

mate on Earth (Schimel, 2001). Terrestrial vegetation, which covers a large part of the111

land area, assimilates atmospheric carbon dioxide (CO2) through photosynthesis. Simul-112

taneously, CO2 of similar magnitude is released into the atmosphere during terrestrial113

ecosystem respiration (TER). The net balance of these two fluxes determines if terres-114

trial vegetation acts as a sink or source of carbon (Ruehr et al., 2023). Terrestrial gross115

primary production (GPP) can be defined as ‘apparent’ photosynthesis, i.e., the rate at116

which the vegetation assimilates carbon through photosynthesis minus the loss of car-117

bon only through photorespiration (Plummer, 2006; Wohlfahrt & Gu, 2015). GPP can118

be estimated directly using gas exchange measurements at the leaf and canopy scales (Jez119
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et al., 2021), and indirectly through measurements of net ecosystem exchange (NEE) us-120

ing the eddy covariance (EC) method at the ecosystem or landscape scale (D. D. Bal-121

docchi, 2003). Though the GPP estimated using the EC method represents ‘apparent’122

photosynthesis, its magnitude can be closer to ‘true’ photosynthesis which is the actual123

amount of carbon assimilated due to overestimation of daytime mitochondrial respira-124

tion in flux–partitioning algorithm (Reichstein et al., 2005; Wohlfahrt & Gu, 2015). Fur-125

thermore, a large variety of biogeochemical models have been developed to simulate and126

upscale carbon fluxes from local to regional or global scales to better describe the global127

carbon cycle (Xiao et al., 2014; Burton et al., 2023; Dannenberg et al., 2023; Nelson et128

al., 2024).129

Biogeochemical models that simulate GPP can be of different types and complex-130

ities. On the one hand, process-based models, such as the models used in the Trends in131

Net Land-Atmosphere Carbon Exchange (TRENDY) project, mechanistically describe132

the physiological processes involved in photosynthesis or plant respiration (Sitch et al.,133

2015). The ability of these process-based models to capture a certain process largely de-134

pends on the underlying model structure and calibration of model parameters (Anav et135

al., 2015). Similar, but simpler than fully mechanistic approaches are the models con-136

structed on the concept of light use efficiency (LUE), which treat a canopy as one big137

leaf, but where the GPP is calculated as the product of the absorbed photosynthetically138

active radiation (aPAR) and LUE (Monteith, 1972). These models are semi-empirical139

as they combine both the simplicity of empirical models and the theoretical mechanisms140

that underpin process-based models (Running et al., 2000; Yuan et al., 2007; J. Chen,141

2021). On the other hand, empirical models are largely based on learning regression func-142

tions to establish a general relation between input data, such as meteorology and ecosys-143

tem properties, and the desired output, such as GPP. At the site level, the ability of such144

data–driven models (Jung et al., 2011, 2020) to accurately simulate the GPP fluxes gen-145

erally outperforms mechanistic approaches, but they are largely reliant on good qual-146

ity training data and generally lack comprehensive representations of long-term forcing147

functions, such as CO2 fertilization effect, i.e., increased GPP with the increase in at-148

mospheric CO2 concentration (Schimel et al., 2015).149

Considering the methodological diversity and differences in GPP estimates, var-150

ious model benchmarking and model–data integration experiments have been designed151

to compare approaches, but also to unveil drivers of ecosystem functioning for various152

bioclimatic and vegetation types, across spatial and temporal scales. A long-standing153

challenge, and still a key area of interest, lies in understanding the factors controlling154

inter–annual variability (IAV) of the various carbon fluxes (D. Baldocchi et al., 2018).155

The challenge presents itself from the mechanistic to the more data–driven approaches156

and contests the dominant role of meteorology in determining the IAV of ecosystem fluxes157

(Richardson et al., 2007). At the local ecosystem level, Wu et al. (2012) looked at the158

IAV of net ecosystem fluxes by fitting the parameters of a semi-empirical model at shorter159

timescales to capture the seasonality, but also annual variability of model parameters.160

The approach allows testing the role of changes in ecosystem functioning in the IAV of161

carbon fluxes (Richardson et al., 2007). They concluded that climate and parametric vari-162

ability control IAV of ecosystem fluxes at shorter and longer timescales, respectively. Si-163

multaneously, Fatichi and Ivanov (2014) highlighted the role of climate when using 200164

years of hourly synthetic meteorological data to force an ecohydrological model to find165

that the random occurrence of favourable weather conditions at certain hours of the day166

can be a major predictor of IAV of net primary production (NPP). This statistical re-167

lationship was corroborated by Zscheischler et al. (2016) using actual flux data from EC168

sites from forested areas in North America, where the 91st percentile values of hourly169

GPP flux, i.e., peak GPP values, substantially contributed to the IAV of GPP flux. These170

studies highlight the correlation between the distribution tails and the IAV in EC fluxes.171

However, there is no robust pattern across sites nor do they challenge there is no vari-172

ability in ecosystem function.173
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More recently, a model selection study compared an ensemble of 5600 possible semi-174

empirical LUE model structures to find a global best model structure (Bao et al., 2022).175

The best LUE model is calibrated at a daily timescale per site and explains the variabil-176

ity of GPP fluxes across the FLUXNET EC network (Pastorello et al., 2020), consid-177

ering the effect of various environmental conditions on maximum LUE through partial178

sensitivity functions. Though the best global model performed similarly to the best model179

selected for each site at the daily resolution, it failed to represent the variability of an-180

nually aggregated GPP fluxes for 74% of sites, i.e., the Nash-Sutcliffe efficiency (NSE)181

of model performance (Nash & Sutcliffe, 1970) was below or equal to 0.5. This finding182

may be attributed to (1) the use of daily data in the study, as the model had no infor-183

mation on the favourable conditions that occurred in a diurnal cycle and failed to sim-184

ulate the diurnal GPP peaks which had a major influence on IAV (Fatichi & Ivanov, 2014;185

Zscheischler et al., 2016; Bao et al., 2022), (2) the assumption of invariance in ecosys-186

tem function, i.e., values of model parameters remain constant for all site–years in a site,187

and (3) the need to explicitly consider different timescales in the cost function (Desai,188

2010).189

In contrast, Mengoli et al. (2022) proposed an optimality-based framework (Wang190

et al., 2017; Stocker et al., 2020), i.e., process-based P-model which simulates GPP mech-191

anistically and differentiates between instantaneous and acclimated photosynthetic re-192

sponses. This model demonstrated its capability in simulating half-hourly GPP dynam-193

ics at ten EC sites, covering four vegetation classes for limited time periods. Whereas,194

the performance of this modelling framework across sites representing diverse climate–195

vegetation features and various temporal resolutions were not evaluated. Though this196

modelling framework considers the effect of temperature, vapour pressure deficit (VPD),197

atmospheric CO2 concentration, solar radiation, and the fraction of absorbed photosyn-198

thetically active radiation (fAPAR), it does not explicitly consider the effect of drought199

stress on GPP variability at sub-daily scale. Recently, Mengoli et al. (2023) proposed200

an improved version of this model by incorporating climatic aridity and calculating a scal-201

ing factor for GPP. However, in the improved model, the scaling factor could only be ap-202

plied to improve the simulation of daily GPP.203

The challenge to correctly reproduce IAV is also apparent on a global scale. Anav204

et al. (2015) further drew attention to the disagreement in annual GPP, modelled by var-205

ious global GPP modelling frameworks, such as a data–driven model–tree–ensemble (Jung206

et al., 2011), process-based models in the TRENDY project (Sitch et al., 2015), and the207

CARBONES dataset (Kuppel et al., 2013) which was derived using a hybrid approach.208

These discrepancies highlight that site level limitations in simulating IAV propagate to209

larger scales where additional mechanisms play a role in the IAV of ecosystem fluxes, such210

as natural or anthropogenic disturbances and land–use landcover change (McGuire et211

al., 2001; Bultan et al., 2022).212

As such, here we explore ecosystem-level estimations of GPP flux to systematically213

investigate how various factors can be linked to describing the IAV of GPP flux, such214

as peak values of diurnal GPP, climatic conditions, and variables represented by model215

parameters, which are usually hard to measure directly and can be difficult to interpret216

even when various modelling approaches are adopted. We tested the impact of the con-217

stant or time–varying parameterizations and evaluated their performances in capturing218

GPP variability at various temporal aggregation scales, especially at the annual scale.219

We also tested the hypothesis that observational constraints complement and enhance220

theoretically-grounded process formulations and that improving the model simulations221

at the sub-daily scale improves the prediction of IAV of GPP. Additional analysis on pa-222

rameter inversion approaches and cost functions, as well as on parametric variability are223

treated in a companion paper [companion paper citation, in prep]. In this study, we aim224

to answer225
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1. How well does a mechanistic model perform compared to a semi-empirical model226

across various temporal scales with different model parameterization approaches?227

2. Can the performance of a mechanistic model be improved if drought stress is in-228

cluded?229

3. What factors influence the variability of model performance at different tempo-230

ral scales?231

4. How much are the differences in model performance between a mechanistic and232

a semi-empirical model as well as across plant–functional types (PFT) and climate–233

vegetation types?234

5. Does improved simulations of peak diurnal GPP lead to improved simulations of235

IAV of GPP?236

2 Methods and data237

In this study, we focused on parameterization of both a semi-empirical model, at238

daily and sub-daily scales, and a mechanistic model at a sub-daily scale using various239

parameterization strategies consisting of different subsets of data and cost functions (Fig.240

1). Thereafter, we performed forward runs of models with calibrated parameters at the241

temporal resolution of model parameterization data and evaluated model performances242

at different temporal aggregations (Fig. 1). The following sections describe each method-243

ological step in a detailed manner.244

2.1 Models245

2.1.1 Mechanistic model: P-model of Mengoli246

Stocker et al. (2020) proposed the first version of the P-model based on theories247

formulated by Wang et al. (2017), which unified the classic Farquhar–von Caemmerer–248

Berry (FvCB) model (Farquhar et al., 1980) with the simplified formation of big leaf LUE249

models (Monteith, 1972). The probable reasons behind using the ‘P’ in the P-model are250

(1) ‘P’ stands for photosynthesis, (2) classically, GPP used to be denoted by ‘P’ (Monteith,251

1972), and (3) the initial of the lead author (Prentice et al., 2014) who formulated the252

theories behind the model starts with ‘P’ (B. D. Stocker, personal communication, May253

06, 2024). The underlying equations of the P-model were formulated based on the op-254

timality principle (Prentice et al., 2014) and the coordination principle (J.-L. Chen et255

al., 1993; Maire et al., 2012). According to the optimality principle, plants aim to op-256

timize the cost of transpiring water to assimilate CO2 through the stomata. In the P-257

model, the ratio of leaf internal and ambient CO2 concentration (χ = Ci/Ca) is cal-258

culated for which the above-described cost is minimal, and the sensitivity (ξ) of χ to VPD259

is predicted. The coordination principle describes the achievement of equilibrium between260

the maximum rate of carboxylation (Vcmax) and electron transport (Jmax) by the plants.261

Mengoli et al. (2022) adapted the first version of the P-model to simulate half-hourly262

GPP dynamics. Here, we applied this same model at an hourly scale and called it the263

Phr model. The major improvement in this version was defining an explicit differenti-264

ation between instantaneous (such as RuBisCo and light-limited carbon assimilation),265

and photosynthetic responses (Vcmax , Jmax, and ξ) which acclimate over time in response266

to environmental conditions. One of the important aspects of this Phr model is that the267

parameters associated with cellular biochemistry acclimate to favourable conditions dur-268

ing the day over a period of time or acclimation time (At). In this study, we considered269

the favourable condition as the average of three hourly input data points in the middle270

of the day from 11:00 (hh:mm) LT, 12:00 (hh:mm) LT, and 13:00 (hh:mm) LT. A rolling271

mean of the average condition from mid-day was taken over the At, which was used to272

calculate optimal values of the model parameters, as described in Mengoli et al. (2022).273

The value of At was calibrated as a parameter in our study (Table 1). We chose the mid-274
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Time

Forcing variables

Time

Eddy covariance based 
estimation of gross 

primary production (GPP)

Time

Simulated GPP

PWhr model, Phr model, Baohr 
model, Baodd model,  

Initial values of 
model parameters

Updated/ calibrated
values of

model parameters

At hourly frequency
At daily frequency (for Baodd model)

CMA-ES 
(maximum 50,000 iterations)

Cost function
f (x, y)

parameterization of models per site–year, per site 
using additional constraint on IAV, per site, per PFT, 
and global 

Assessment of 
model performance

Understanding 
parameter 
dynamics

198 sites from the FLUXNET2015 dataset

Figure 1. Graphical representation of the model–data–integration workflow adopted in this

study. The blue box indicates the preparation of forcing and observation data at hourly and daily

scales for each site, as well as defines the initial value of parameters and their range by survey-

ing literature. Then five different model parameterization tasks were performed for the light use

efficiency (LUE) model from Bao et al. (2022) at hourly scale (Baohr model) and at daily scale

(Baodd model), P-model from Mengoli et al. (2022) at hourly scale (Phr model), and Phr model

with an explicit drought stress function (PW
hr model) using the Covariance Matrix Adaptation

Evolution Strategy (CMA-ES) (Hansen & Kern, 2004), which is indicated by the red box. The

cost function (f) is a function of observed (y) and simulated (x) gross primary production. The

green box denotes that the whole workflow was applied for the 198 sites from the FLUXNET2015

dataset (Pastorello et al., 2020). The dotted orange box highlights the focus of this study. The

parameter dynamics is explored in detail in a companion paper [companion paper citation, in

prep]. The figure was created in BioRender. De, R. (2024).

day and rolling mean approach from Mengoli et al. (2022) as it produced the best re-275

sults in their evaluations of the Phr model at the half-hourly scale.276

One of the known limitations of the Phr model is its tendency to overestimate GPP277

fluxes in water–limited ecosystems, as no explicit representation of soil moisture condi-278

tions was included (Mengoli et al., 2022, 2023). In order to relax such drawbacks here279

we used the water availability index (WAI ) as a proxy of soil moisture (Tramontana et280

al., 2016; Boese et al., 2019; Bao et al., 2022). The WAI represents the spatial and tem-281

poral dynamics in plant available water based on a simple hydrological model where stor-282

age is controlled by precipitation and evapotranspiration. We further introduced a drought283

stress function that additionally scaled the GPP estimates of the Phr model, and we de-284

noted this new version as the PW
hr model. We calibrated ten parameters in the PW

hr model285

in which nine parameters were in the hydrological model and the drought stress func-286

tion (Table 1). Further details on the implementation of the PW
hr model, along with the287

drought stress function can be found in Sect. S1.1 and S1.2.288
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Table 1. Description, range, initial values, and units of calibrated model parameters

fX/
model
name

Symbol Definition Initial
value

Lower
bound

Upper
bound

Unit Reference

PW
hr , Phr

models
At Length of acclimation

time
18 1 100 days after Mengoli

et al. (2022)

Baohr,
Baodd
models

εmax Maximum light use
efficiency

0.04 0 0.4 µmolCO2 ·
µmol photons−1

Bao et al.
(2022)

fT
(Baohr,
Baodd
models)

Topt Optimal temperature 10 5 35 ◦C Bao et al.
(2022)

kT Sensitivity to
temperature changes

2 1 20 ◦C−1 Bao et al.
(2022)

αfT Lag parameter for
temperature effect

0.29 0 0.9 - Bao et al.
(2022)

fVPD
(Baohr,
Baodd
models)

κ Sensitivity to VPD
changes

-5 × 10−5 -0.01 -1 × 10−5 Pa−1 Bao et al.
(2022)

Cκ Sensitivity to
atmospheric CO2

concentration changes

0.4 0 10 - Bao et al.
(2022)

Ca0 Minimum optimal
atmospheric CO2

concentration

380 340 390 ppm Bao et al.
(2022)

Cm CO2 fertilization
intensity indicator

2000 100 4000 ppm Bao et al.
(2022)

fL
(Baohr,
Baodd
models)

γ Light saturation
curvature indicator

2 × 10−3 0 0.05 µmol photons−1·
m2 · s

Bao et al.
(2022)

fCI
(Baohr,
Baodd
models)

µ Sensitivity to
cloudiness index
changes

0.5 10−3 1 - Bao et al.
(2022)

fW

(PW
hr ,

Phr,
Baohr,
Baodd
models)

WI Optimal soil moisture 0.26 0.01 0.99 mm ·mm−1 Bao et al.
(2022)

kW Sensitivity to soil
moisture changes

-11 -5 -30 - Bao et al.
(2022)

α Lag parameter for soil
moisture effect

0.98 0 1 - Bao et al.
(2022)

WAI

(PW
hr ,

Phr,
Baohr,
Baodd
models)

AWC Available water
capacity

100 1 1000 mm Bao et al.
(2022)

θ Rate of
evapotranspiration

0.05 10−4 0.1 mm · h−1 Bao et al.
(2022)

PETscalar Multiplicative scalar
for potential
evapotranspiration

1.2 0 5 - Trautmann
et al. (2018)

MRtair Snow melt rate for
temperature

0.125 0 0.5 mm ·◦ C−1 ·
h−1

Trautmann
et al. (2018)

MRnetrad Snow melt rate for net
radiation

0.0375 0 0.125 mm ·MJ−1 ·
h−1

Trautmann
et al. (2018)

sna Sublimation resistance 0.44 0 3 - Bao et al.
(2022)
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2.1.2 Semi-empirical model: Bao model289

Vegetation stores energy from absorbed solar radiation in the form of biochemi-290

cal energy through photosynthesis. The efficiency of the photosynthetic apparatus in per-291

forming this energy conversion is termed as light use efficiency (ε). In a LUE model, GPP292

is calculated as the product of instantaneous ε, photosynthetic photon flux density (PPFD),293

and the fraction of incident photosynthetically active radiation that is absorbed by veg-294

etation (fAPAR). Instantaneous ε reaches its maximum, i.e., εmax, when all environmen-295

tal factors are optimal for photosynthesis. Instantaneous ε is determined as the prod-296

uct between εmax and the partial sensitivity functions (fX) for the different environ-297

mental factors controlling GPP, such as air temperature (T ), VPD , available soil water298

supply (W ), absorbed photosynthetic photon flux (L = PPFD × fAPAR), the cloudi-299

ness index (CI , Table A1), and atmospheric CO2 concentration (Mäkelä et al., 2008; Horn300

& Schulz, 2011; Bao et al., 2022).301

GPPsim = (εmax · fT · fVPD · fL · fCI · fW ) · PPFD · fAPAR (1)302

fT =
2 · exp

(
−Tf−Topt

kT

)
1 +

(
exp
(
−Tf−Topt

kT

))2 (2)303

Tf (t) = (1−αfT ) · T (t) +αfT · Tf (t− 1) (3)304

fVPD = exp

(
κ ·
(
Ca0

CO2

)Cκ

·VPD
)

·
(
1 +

CO2 −Ca0

CO2 −Ca0 +Cm

)
(4)305

fL =
1

γ(PPFD · fAPAR) + 1
(5)306

fCI = CIµ (6)307

fW =
1

1 + exp(kW (Wft −WI))
(7)308

Wft = (1−α) ·Wt +α ·Wft−1 (8)309

In this study, we used the LUE model of Bao et al. (2022, 2023) since it emerged310

as a robust representation from the systematic comparison across the large diversity of311

LUE formulations in the literature. The model selection followed a Bayesian approach312

that leveraged on the evaluation of modelling performance across FLUXNET EC sites313

(Pastorello et al., 2020) when forced and calibrated with daily data for each site. We de-314

noted this model as the Baohr model when we parameterized at hourly scale, and as the315

Baodd model when we parameterized at daily scale. The model is described in Eqs. (1)316

to (8), where fT , fVPD , fW , fL, and fCI are partial sensitivity functions for T , VPD ,317

W , L, and CI , respectively. In this case, W and fW were calculated similar to the im-318

plementation in PW
hr model, i.e., with a simple hydrological model (Sect. S1.1) and drought319

stress function (Eq. 7 and 8 are same as Eq. S1 and S2), respectively. Bold terms in the320

Eq. (1) to (8) are model parameters, and their initial values, units, and ranges are de-321

scribed in Table 1. The physical ranges for most of the parameters were based on Bao322

et al. (2022, 2023) and Trautmann et al. (2018). The fVPD term, viz. Eq. (4), also ac-323

counts for atmospheric CO2 concentration. The partial sensitivity functions range from324

zero to one (except the 2nd part of Eq. 4 which can be greater than one), where a value325

of zero completely diminishes, and of one completely favours GPP. In this study, we changed326

the denominator of Eq. (2) in comparison to the original exponential function exp
(
−Tf − Topt

kT

)2
327

of Bao et al. (2022, 2023), as the revised version produced a more realistic range of fT328

(Fig. S3). Sensitivity functions fT and fW also consider a lag effect of T and W . The329

lag effect of temperature was considered for Temperate, Boreal, and Polar regions where330

the first letter of the Köppen–Geiger (KG) climate class is ‘C’, ‘D’, ‘E’, and that of soil331
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water supply was considered for arid regions where the first letter of the KG climate class332

is ‘B’ (Rubel et al., 2017; Beck et al., 2018).333

2.2 Data used334

We selected 198 eddy covariance sites, for which the required forcing and obser-335

vation or derived data for model parameterization were available from the FLUXNET2015336

dataset (Pastorello et al., 2020; FLUXNET.org, 2024a). A list of these sites can be found337

in Table S2 (Sect. S3) and their spatial distributions is plotted in Fig. S4. The variables338

which were used to force, and parameterize models as well as data processing steps such339

as gap–filling, and quality control are described in detail in Table A1, Appendix B and340

Appendix C. We prepared these data in both hourly and daily resolutions.341

In our study, a total of 13 different PFTs (as defined in FLUXNET.org, 2024b) were342

represented: croplands (CRO; 19 sites), deciduous broadleaf forests (DBF; 25 sites), de-343

ciduous needle leaf forest (DNF; one site), evergreen broadleaf forests (EBF; 13 sites),344

evergreen needle leaf forests (ENF; 47 sites), grasslands (GRA; 35 sites ), mixed forests345

(MF; nine sites), closed shrublands (CSH; three sites), open shrublands (OSH; 13 sites),346

savannas (SAV; six sites), permanent wetlands (WET; 20 sites), woody savannas (WSA;347

six sites), and land cover under snow for most of the year (SNO; one site). The major348

KG climate classes (Rubel et al., 2017; Beck et al., 2018; FLUXNET.org, 2024c) are rep-349

resented by 12 tropical sites, 18 arid sites, 87 temperate sites, 71 boreal sites, and 10 po-350

lar sites. We also classified sites into 9 climate–vegetation types, similar to Bao et al. (2022),351

in which seven sites are tropical forests (TropicalF), five sites are tropical grassland (Trop-352

icalG), six sites are arid forest (AridF), 12 sites are arid grassland (AridG), 51 sites are353

temperate forest (TemperateF), 36 sites are temperate grassland (TemperateG), 52 sites354

are boreal forest (BorealF), 19 sites are boreal grassland (BorealG), and 10 sites have355

polar vegetation.356

2.3 Model parameterization357

We primarily defined four different parameterization strategies consisting of var-358

ious subsets of data to calibrate the model parameters controlling hourly GPP dynam-359

ics. These parameterization strategies were used to determine a vector of calibrated pa-360

rameter values (1) for each site–year, (2) for each site, (3) for each PFT, and (4) for all361

sites at once (global parameterization). We also performed another parameterization per362

site using a modified cost function which used an additional constraint on the IAV of GPP363

(CostIAV ). We parameterized and forced the Baohr model, and the Baodd model using364

hourly and daily data, respectively to perform a comparative analysis (Table 2). The PW
hr365

model and the Phr model were only parameterized and forced using hourly data (Table366

2).367

We used Python (Python Core Team, 2021) implementation (pycma v3.3.0.1) of368

the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen & Kern, 2004;369

Hansen et al., 2019) as our global search algorithm to find the values of model param-370

eters for which cost function reached its minimum. This is a derivative-free, evolution-371

ary algorithm, which is designed to find global minima in a rugged parameter space.372

CostiP = (1−GPPNNSEi) + (1− ETNNSEi) (9)373

CostiBao = (1−GPPNNSEi) + (1− ETNNSEi) + Costideal + Costnon ideal (10)374

A robust cost function is a necessity for the numerical optimizer to find the global375

minimum. The cost functions for PW
hr , Phr models (CostiP ) and the Baohr, Baodd mod-376

els (CostiBao
) were calculated as Eq. (9) and (10), respectively, in case of per site–year377
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Table 2. Description of models and tasks accomplished with each specific model. The tasks are

described in the footnote of the table.

Models Description Parameterization strategies

per
site–
year

per site
using
CostIAV

per site per
PFT

global

Phr P-model of Mengoli et al.
(2022)

a, d a, d a, d a, d a, d

parameterized using
hourly data

PW
hr P-model of Mengoli et al.

(2022)
a, b, d, e a, b, d, e a, b, d, e a, b, d, e a, b, d, e

with an additional
constraint on

drought stress and

parameterized using
hourly data

Baohr LUE model of Bao et al.
(2022)

a, c, d, e a, c, d, e a, c, d, e a, c, d, e a, c, d, e

parameterized using
hourly data

Baodd LUE model of Bao et al.
(2022)

a, c, d a, c, d a, c, d a, c, d a, c, d

parameterized using daily
data

a: evaluation of model performance across timescale with different model types, parameterization

strategies, and cost functions.

b: evaluation of a mechanistic model with an explicit drought stress function.

c: evaluation of a semi-empirical model with different temporal resolutions of data used for model

parameterization.

d: factors behind variability of model performance across timescales.

e: variability of annual model performance with model performance in simulating diurnal gross

primary productivity (GPP) peaks.

and per–site parameterization. Here, i is either a site or site–year based on parameter-378

ization type. For PFT-specific model parameterization, the cost functions were
∑NPFT

i=1 CostiP379

and
∑NPFT

i=1 CostiBao
for PW

hr , Phr models and Baohr, Baodd models, respectively. i denotes380

a site and NPFT denotes the total number of sites in a specific PFT. In the case of global381

model parameterization, the cost functions were
∑N

i=1 CostiP and
∑N

i=1 CostiBao for the382

PW
hr model and Baohr, Baodd models, respectively. i denotes a site and N denotes the383

total number of sites used in this study.384
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NNSE i =
1

2−NSE i
(11)385

NSE i = 1−
∑Nt,i

t=1

(
σweightt,i · (ECt,i − simt,i)

)2∑Nt,i

t=1

(
σweightt,i · (ECt,i − ECt,i)

)2 (12)386

σweightt,i = 1− σt,i −min(σi)

max(σi)−min(σi)
(13)387

GPPNNSEi
and ETNNSEi

were calculated (Eq. 11) as a weighted normalized NSE,388

viz. NNSE (Hundecha & Merz, 2012) between the time series of good quality data points389

(see Appendix B for the selection criteria) of EC derived and simulated GPP and ET,390

respectively. The GPP and ET derived from EC measurements are denoted as GPPEC391

and ETLE , respectively. The simulated GPP and ET are denoted as GPPsim and ETsim392

(see Fig. S1 for calculation of ETsim), respectively. We considered ET as well in our cost393

function to better constrain the parameters of the simple hydrological model used in this394

study. The NNSE values (Nash & Sutcliffe, 1970) are between zero and one, where one395

is the best, and zero is the worst agreement between observed and simulated data. Here,396

we used these normalized values so that minimizing (1−NNSE ) always results in bet-397

ter model performance in comparison to using (1−NSE ), where NSE can have values398

between −∞ (worst agreement) and one (best agreement). In Eq. (12), Nt,i is the to-399

tal number of good quality data points from each timestep t for a site–year or site i. σ400

in Eq. (13) is random uncertainty (which is the standard deviation of fluxes in a slid-401

ing window of ±5 days and ±1hour of the time-of-day of the current timestamp) of NEE402

or ET (Table A1).403

Costideal = ((1−max(fTr)) + (1−max(fVPDr)) + (1−max(fWr)) (14)404

+ (1−max(fLr))) · 103405

Costnon ideal =
∑
r

((fTr − θfT )(T < 0◦C & fTr > θfT )) (15)406

+
∑
r

((fVPDr − θfVPD)(VPD > 2000Pa & fVPDr > θfV PD))407

+
∑
r

((fWr − θfW )(W < 0.01 & fWr > θfW )408

The Costideal and Costnon ideal were introduced as a regularizers in CostiBao to avoid409

over-fitting of the sensitivity functions (Bao et al., 2022, 2023). These cost function com-410

ponents ensure that values of partial sensitivity functions were not penalized and favoured411

under ideal and non-ideal conditions, respectively. The ideal and non-ideal conditions412

were determined by certain constant thresholds for all sites. Equation (14) ensured that413

the partial sensitivity functions, fT (Eq. 2), only left part of the fVPD (Eq. 4), fW (Eq.414

7) and fL (Eq. 5) approaches one, when certain ideal environmental conditions (PPFD415

∈ [0 to 600 µmol photons ·m−2 · s−1], fAPAR ∈ [0 to 1], T ∈ [-5 to 40 ◦C], VPD ∈ [0416

to 4500 Pa], W ∈ [0 to 1]) occur (these ranges are denoted by subscript r), so that the417

εmax in Eq. (1) reaches its maximum potential. The factor 103 in Eq. (14) was included418

to match the ranges of all other components in the cost function for the Baohr, Baodd419

models (CostiBao ) so that all the components had equal weight. Equation (15) penalized420

the cases when the values of fT (Eq. 2), only left part of fVPD (Eq. 4), and fW (Eq.421

7), were greater than a certain threshold (θfT = 0.2, θfVPD = 0.9, θfW = 0.2) under non-422

ideal conditions (T < 0 ◦C, VPD > 2000 Pa, W < 0.01) for photosynthesis.423
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CostIAV
iP = (1−GPPNNSEi

) + (1−GPP y
NNSEi

) + (1− ETNNSEi
) (16)424

CostIAV
iBao

= (1−GPPNNSEi
) + (1−GPP y

NNSEi
) + (1− ETNNSEi

) + Costideal (17)425

+ Costnon ideal426

GPP y
NNSEi

=
1

2−GPP y
NSEi

(18)427

GPP y
NSEi

= 1−
∑Nt,i

t=1

(
σy
weightt,i

· (ECy
t,i − simy

t,i)
)2

∑Nt,i

t=1

(
σy
weightt,i

· (ECy
t,i − ECy

t,i)
)2 (19)428

σy
weightt,i

= 1−
σy
t,i −min(σy

i )

max(σy
i )−min(σy

i )
(20)429

ECy
t,i =

t∑
t=1

ECt,y,i; simy
t,i =

t∑
t=1

simt,y,i; σy
t,i =

t∑
t=1

σt,y,i (21)430

In the case of per–site–year parameterization using cost functions in Eq. (9) and431

(10), we fitted the model so that the annual average of GPP can be captured well for432

each site–year. Whereas, in the case of per–site parameterization using cost functions433

in Eq. (9) and (10), the model was parameterized for each site. We performed another434

experiment as a balance between these two experiments using the CostIAV , which is sim-435

ilar to Desai (2010) to put an additional constraint on IAV, and parameterized PW
hr , Phr,436

Baohr, and Baodd models for each of the EC sites. The cost functions, CostIAV
iP

for PW
hr ,437

Phr models (Eq. 16) and CostIAV
iBao

for Baohr, and Baodd models (Eq. 17) now include438

an additional term (1 − GPP y
NNSEi

) to constrain the annual cumulative sum of GPP439

flux from each site i. ECy
t,i, sim

y
t,i, and σy

t,i (Eq. 21) are cumulative sums of GPPEC ,440

GPPsim, and σNEE from start of each year y to timestep t for each site i, respectively.441

2.4 Simulating and evaluating GPP estimates442

2.4.1 Forward runs443

In the case of the site–year parameterization, we performed a forward run for each444

site–year using the respective set of calibrated parameter values and forcing data for that445

year. Afterwards, we concatenated GPPsim from all the years for a given site to assess446

model performance. For per–site parameterization using CostIAV , and per–site param-447

eterization, we used site-specific values of calibrated parameters to perform site-level model448

evaluation. We also applied calibrated model parameters for a certain PFT to simulate449

GPP at all the sites which belong to a certain PFT. Similarly, for the global parame-450

terization, a single set of calibrated parameter values was used to simulate GPP for each451

site.452

2.4.2 Model performance metrics453

We performed forward runs at an hourly scale and averaged the hourly simulations454

to daily, weekly, monthly, and annual temporal frequencies to calculate model perfor-455

mance measures at different temporal aggregations. Model performance was only eval-456

uated for temporal aggregations from daily to annual for the Baodd model. We applied457

a data screening procedure (Appendix C) before calculating model performance mea-458

sures. We evaluated how well a model can simulate the IAV of GPP based on how well459

a model simulated the annual average GPP for a site. In this study, we performed most460

of our analysis using NSE (Nash & Sutcliffe, 1970) and normalized NSE, viz. NNSE (which461

is 1
2−NSE ) as NSE indicates the degree to which scatter between observed and simulated462

data fits to the 1:1 line. In addition, we calculated the square of the Pearson correlation463

–13–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

coefficient (R2) (PCC, 2008) which explains whether the dispersion of observed and sim-464

ulated data matches and in the case of an unbiased model, values of NSE will be closer465

to values of R2. Whereas, if a model is systematically biased, it will result in higher R2
466

values, but bad NSE values (Krause et al., 2005). We also calculated Root Mean Squared467

Error (RMSE) (Chai & Draxler, 2014) to quantify how closely the mean of simulated468

data matches with the mean of the observed data.469

NSE = 2 · αNSE · r − α2
NSE − β2

n (22)

αNSE =
σsim

σEC
(23)

βn =
µsim − µEC

σEC
(24)

Moreover, using Eq. (22) to (24), we decomposed NSE values to linear correlation470

(r), relative variability (αNSE ), and bias (βn) in some cases to investigate which of these471

were improved or diminished between different model parameterization strategies (Gupta472

et al., 2009). In Eq. (23), and (24), σsim and σEC are standard deviations of GPPsim473

and GPPEC , respectively, µsim and µEC are mean GPPsim and GPPEC , respectively.474

We calculated these metrics using the Python (Python Core Team, 2021) package Per-475

metrics v1.5.0 (Van Thieu, 2023; Van Thieu & Mirjalili, 2023), and the definition of each476

of the model performance metrics can be found in the package documentation.477

2.4.3 Factors associated with simulating GPP flux478

We selected potential factors that can affect model performance at different tem-479

poral resolutions. These factors can be of two types. There were factors which we de-480

termined based on our experiment design, which included model types (PW
hr model, Phr481

model, Baohr model, and Baodd model), parameterization strategies (per site–year, per482

site using CostIAV , per site, per PFT, and global parameterization), number of years483

with good quality data (Appendix C) in a site. Whereas, other factors represent site-484

specific characteristics, including PFT, KG climate class, and climate–vegetation types.485

First, we conducted Levene’s test (Levene, 1960) to find out if the assumption of486

homoscedasticity is fulfilled across groups in the controlling factors. Then, we performed487

an N-way Analysis of Variance (ANOVA) (Kaufmann & Schering, 2014) with the po-488

tential controlling factors to determine which of them played a major role in determin-489

ing model performance at hourly and annual temporal scales. For analysis at an hourly490

scale, the Baodd model was not included as this model produced simulations at a daily491

scale. We performed two N-way ANOVA analyses once including the performance of the492

Phr model, and then excluding the performance of the Phr model. The Levene’s test and493

N-way ANOVA analyses were implemented using SciPy v1.11.3 (Virtanen et al., 2020)494

and statsmodels v0.14.0 (Seabold & Perktold, 2010), respectively.495

2.4.4 Evaluating GPP estimates in water–limited ecosystems496

We investigated to determine whether explicit accounting of the drought stress func-497

tion in the PW
hr model had improved its performance at arid sites. For this purpose, we498

chose the aridity index (AI) to determine which sites were arid or semi-arid, as this in-499

dex provided a numerical representation of moisture availability (Zomer et al., 2022) at500

a location. The AI values were calculated by dividing the average precipitation (P ) per501

hour by the average potential evapotranspiration (PET ) per hour for the whole obser-502

vation period at a site.503

We drew examples from a few site-specific results to highlight different aspects of504

the behaviour of PW
hr and Phr models for ecosystems with contrasting soil moisture con-505
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trols on GPP and with a larger availability of good–quality measurements. For this pur-506

pose, we chose a water–limited semi-arid site (annual average precipitation of 318 mm)507

in central Australia (Alice Springs, AU-ASM). This site also features a complex mixture508

of Mulga woodland and savanna (Cleverly et al., 2013; Pastorello et al., 2020). In con-509

trast, we also highlighted the behaviours of PW
hr and Phr models in an irrigated cropland510

(Mead - irrigated continuous maize site, US-Ne1) in the mid-western U.S.A (Amos et511

al., 2005; Pastorello et al., 2020).512

2.4.5 Effect of temporal resolution of data used for model parameter-513

ization on model performance514

We parameterized the LUE model of Bao et al. (2022) with hourly and daily data515

for Baohr model and Baodd model, respectively. We performed a comparison between516

these two versions of the model to highlight whether the resolution of data used for model517

parameterization can substantially affect the prediction of the annual average or IAV of518

GPP fluxes. Here, we also drew a site-specific example from an energy–limited decid-519

uous forest in central Germany (Hainich, DE-Hai) as this site had a very long observa-520

tion period (Knohl et al., 2003).521

2.4.6 Evaluation between modelling experiments of various complexi-522

ties523

We formulated our experiments using models and parameterization strategies con-524

sisting of varying numbers of model parameters to be calibrated. The number of param-525

eters calibrated for a detailed parameterization strategy, such as per site–year param-526

eterization was substantially higher than a generic parameterization strategy, such as global527

parameterization. We used Akaike’s Information Criterion (AIC) to investigate whether528

a complex modelling experiment with a higher number of parameters can better simu-529

late GPP (Burnham & Anderson, 2004).530

AIC = n log

(∑
(ECi − simi)

2

n

)
+ 2K (25)

AICc = n log

(∑
(ECi − simi)

2

n

)
+ 2K +

2K(K + 1)

n−K − 1
(26)

Following recommendations of Burnham and Anderson (2004), we used Eq. (25)531

to calculate AIC when n/K > 40, where n is the total number of observations and K532

is the total number of parameters. Otherwise, we used a corrected version of AIC (AICc,533

Eq. 26). Though the values of AIC or AICc can be in any range, the lowest value of AIC534

or AICc determines the preferred modelling experiments. ECi and simi are ith obser-535

vations of EC-derived GPP and simulated GPP, respectively in Eq. (25) and (26). We536

considered GPPsim from all the four variations of models, i.e., PW
hr model, Phr model,537

Baohr model, and Baodd model for calculation of AIC or AICc. We calculated AIC at538

hourly and daily aggregations by concatenating good quality (Appendix C) hourly or539

daily data, and daily averages GPPEC and GPPsim from all the days from all sites. Sim-540

ilarly, we used monthly and annual aggregations for calculating AICc at monthly and541

annual scales, respectively. AICc was calculated at monthly and annual aggregation, as542

n was usually smaller than K in these cases. The value of K was the total number of543

model parameters calibrated for all the site–years, for all the sites, for all the PFT, and544

for a specific model in case of per site–year parameterization, per site parameterization545

using CostIAV , per site parameterization, per PFT parameterization, and global param-546

eterization, respectively.547
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2.4.7 Simulating GPP peaks548

We assessed model performance in predicting peak GPPEC . We defined peak GPPEC549

and peak GPPsim as the 90th percentiles of hourly GPPEC (P90GPPEC
) and GPPsim550

(P90GPPsim
), respectively, following the concept of good hours by Zscheischler et al. (2016)551

and Fatichi and Ivanov (2014). We calculated P90GPPEC
and P90GPPsim

for each site–552

year considering only good quality hourly data (Appendix B). We compared the ratios553

of peak GPPsim from PW
hr model and Baohr model to GPPEC for each parameterization554

strategy in order to identify possible biases.555

∆NNSEP90 = NNSEj1
P90 −NNSEj2

P90 (27)

∆NNSEy = NNSEj1
y −NNSEj2

y (28)

We furthermore investigated whether improving the simulation of peaks of GPPEC556

improved the simulation of IAV of GPP. We calculated NNSE between P90GPPEC
and557

P90GPPsim (NNSEj
P90) from all the site–years in a site considering only good site–years558

and only for sites with more than 3 years of good quality data (Appendix C) for a pa-559

rameterization strategy j. Similarly, we calculated NNSE between the annual average560

of GPPEC and GPPsim (NNSEj
y) for sites with more than 3 years of good quality data561

(Appendix C) for a parameterization strategy j. Then, differences between NNSEj1
P90562

and NNSEj2
y were calculated for a pair of parameterization strategies where j1 and j2563

are two different parameterization experiments, for both PW
hr model and Baohr model (Eq.564

27 and 28). Correlation between ∆NNSEP90 and ∆NNSEy were then investigated to565

study whether a certain parameterization strategy for a given model better captured the566

GPPEC peaks, and thus contributed to higher annual model performance.567

3 Results568

3.1 Overall model performance569

All four models, i.e., PW
hr , Phr, Baohr, and Baodd models performed significantly bet-570

ter at the hourly scale than the annual scale (Fig. 2). The use of an additional constraint571

on IAV, i.e., CostIAV did not contribute to better model performance across sites at an572

annual scale and performed closer to parameterization per site and poorer than site–year573

parameterization (Fig. 2). The median model performance was highest for the model574

parameterization per site–year among all model parameterization strategies (per site–575

year, per site using CostIAV , per site, per PFT, and global parameterization) for all four576

models (Table D1). Model parameterization per site–year also produced the best model577

performance at all temporal aggregation levels including annual aggregation (Fig. 2 and578

Sect. S2.1). PW
hr model performed substantially better for the majority of the sites com-579

pared to Phr model at all temporal aggregation levels as it explicitly considered site-specific580

water availability (Fig. 2 and Sect. S2.1). Comparison of model performances at differ-581

ent temporal aggregations also revealed that Baohr and Baodd models performed slightly582

better than the PW
hr model across all timescales (hourly, daily, weekly, monthly, and an-583

nual), as the Baohr and Baodd models were more flexible than the PW
hr model and cap-584

tured ecosystem response with a broad range of parameters (Fig. 2, Table D1 and Sect.585

S2.1). For example, the median NNSE(s) at the hourly resolution were 0.827 and 0.853586

for the PW
hr model and the Baohr model, respectively. Conversely, at the annual resolu-587

tion, the median NNSE(s) were 0.543 and 0.661 for the PW
hr model and Baohr model, re-588

spectively.589
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Figure 2. Distributions of model performance measure (normalized Nash-Sutcliffe efficiency,

viz. NNSE) at hourly/daily scale (first row) and at annual timescale (second row) from P-model

of Mengoli et al. (2022) with drought stress, parameterized at hourly scale (PW
hr), P-model of

Mengoli et al. (2022) without drought stress, parameterized at hourly scale (Phr), global best

model of Bao et al. (2022) parameterized at hourly scale (Baohr), and global best model of Bao

et al. (2022) parameterized at daily scale (Baodd). For the Baodd model, subplot (d) shows model

performance at daily scale as this model was parameterized at daily scale. CostIAV denotes the

usage of an additional constraint on annual gross primary production flux during per–site pa-

rameterization. The dotted vertical lines represent the median model performances, which are

summarized in Table D1. The numbers in parentheses beside the model name on top of each of

the sub-figures represent the total number of sites. The model performance at an annual scale

was calculated for fewer sites as some sites have a very low measurement period (Appendix C).

3.2 Factors behind variability in model performance590

We summarized the percentage contributions of factors which influenced model per-591

formance at hourly and annual scales and found that most of the variability in model592

performance came from how we designed our modelling experiments (Fig. 3). Model types593

was a crucial factor when the Phr model was included in N-way ANOVA analysis, as this594

model had comparatively poor performance at both hourly and annual scales and resulted595

in greater variability in the NNSE values (69% and 60% contribution to the sum of squares596

of the regression, viz. SSR in hourly and annual scale, respectively). We then excluded597

the Phr model from further analysis to uncover the other factors behind the model per-598

formance and found that for the hourly scale, the model performance varied the most599

across the groups of KG classes (31.4% contribution to the SSR), followed by parame-600

terization type (31.0% to the SSR) and climate–vegetation type (23.2% contribution to601

the SSR) (Fig. 3). However, at an annual scale, the parameterization strategy strongly602

affected (71.7% contribution to the SSR) the model performance, as per–site–year pa-603

rameterization usually better simulated the annual GPPobs compared to other param-604

eterization strategies. The number of good years (Appendix C) used for calculating an-605
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nual NNSE also exerted a small influence (3.8% contribution to the SSR) on the annual606

model performance. In general, there were only slight performance differences between607

models when the Phr model was not considered, and model parameterization played a608

bigger role in the variability of model performance.609
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Figure 3. Percentage contributions of factors influencing variability in model performance

(normalized Nash-Sutcliffe efficiency, viz. NNSE) in the sum of squares in N-way Analysis of

Variance (ANOVA). The percentage contributions show the influence of various factors on hourly

and annual model performance when the P-model (Mengoli et al., 2022) without any explicit

drought stress function, parameterized at hourly scale (Phr model) was considered in the analysis,

as well as on hourly and annual model performance excluding the Phr model. The sum of squares

of residual was removed before plotting the percentage contributions of the factors and only the

explained variance is shown.

3.3 Effect of drought stress on model performance610

The performance of the PW
hr model to predict the annual average of GPPEC from611

each of the site–years substantially improved in comparison to Phr model (from an NSE612

of -0.94 to 0.93) after explicit consideration of soil water supply in the model (Fig. 4).613

Most of this improvement came from the better prediction of the annual average of GPPEC614

at the arid and semi-arid sites (with AI values lower than 0.5). For the semi-arid site (AU-615

ASM) the predicting performance of the PW
hr model for all the parameterization strate-616

gies largely benefited from the explicit inclusion of soil water supply constraints (Fig.617

5). The systematic bias in model simulations was also improved after the inclusion of618

a drought stress constraint, as well as the modelling bias also improved from a gener-619

alized to a detailed parameterization strategy. Although the coupling of a simple hydro-620

logical model which calculated water–availability based on precipitation and evapotran-621

spiration and inclusion of drought stress function generally improved the PW
hr model for622

most of the site–years at an arid site, the model failed to capture the GPPEC (Sect. S2.2,623

Fig. S6) at an irrigated cropland site (US-Ne1), as the simple hydrological model which624

we used to calculate water–availability lacked representation of human management.625
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Figure 4. Scatter plot of the annual average (from good quality site–years, see Appendix C)

of eddy covariance measurements derived gross primary production (GPPEC) versus simulated

gross primary production (GPPsim) from P-model of Mengoli et al. (2022) parameterized at

hourly scale (a) without drought stress (Phr model) and (b) with drought stress (PW
hr model).

The results in this plot are from parameterization for each site–year. We only used good–quality

site–years in this figure (Appendix C). The dots in the scatter represent a site–year and are

coloured by the aridity index (AI) of the site. The model performance metrics (Nash-Sutcliffe

efficiency, viz. NSE) are shown at the top of each subplot. The equations of fitted regression lines

are shown in respective subplots.

3.4 Effect of temporal resolution of the data used for model parame-626

terization on model performance627

The use of hourly data to constrain Baohr model parameters and aggregating hourly628

values of GPPsim to annual scale did not have a significant effect on the Baohr model629

performance in comparison to parameterization of the same model with daily data, i.e.,630

Baodd model, in simulating the annual average of GPPEC (Fig. 6) for each site–year.631

The value of NSE slightly decreased from 0.964 to 0.956 for the Baohr model compared632

to the Baodd model, and both models performed almost equally well. Here, for the Baohr633

model, we also focus on a site-specific example at a site (DE-Hai) in central Germany634

with a deciduous broadleaf forest where the Baohr model proved to be capable of sim-635

ulating annual average of GPPEC flux relatively well when the model was parameter-636

ized for each site–year and each site (Fig. 7). However, GPPEC was underestimated in637

cases of PFT-specific and global parameterization. For this specific site, the Baohr model638

performed relatively better in comparison to Baodd model (Fig. 7 and S7).639

3.5 Role of parameterization strategies on model performance640

Model performances at an annual scale generally increased with a more detailed641

parameterization strategy (Fig. 8). For the PW
hr model, the median differences in annual642

model performance between the most detailed parameterization strategy, i.e., site–year643
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Figure 5. Comparison of annual average of gross primary production (GPP) derived by eddy

covariance measurements (GPPEC), and GPP simulated (GPPsim) by the P-model of Mengoli

et al. (2022) parameterized at hourly scale without drought stress (Phr model) and with drought

stress (PW
hr model). The five subplots show simulated GPP from (a) site–year specific param-

eterization, (b) site-specific parameterization using an additional constraint on inter–annual

variability in the cost function (CostIAV ), (c) site-specific parameterization, (d) plant–functional

types (PFT) specific parameterization, and (e) global parameterization. The values of model

performance measures (Nash-Sutcliffe efficiency, viz. NSE, correlation coefficient, viz. r, relative

variability, viz. αNSE , and bias, viz. βn) are shown on top of respective subplots. This site is

dominated by Mulga (Acacia aneura), and had an annual average temperature of ≈22 ◦C, and

an annual average precipitation of ≈318 mm during the observation period (Cleverly et al., 2013;

Pastorello et al., 2020). The site ID, PFT, and Köppen–Geiger climate class (KG) of the site are

provided on top of the figure in bold.

parameterization, and other detailed parameterization strategies, i.e., per site param-644

eterization using CostIAV and per site parameterization were small, which were 0.12,645

and 0.11, respectively. In contrast, the median differences in annual model performance646

between the most detailed parameterization strategy, i.e., site–year parameterization, and647

other generalized parameterization strategies, i.e., PFT-specific parameterization, and648

global parameterization were quite large, which were 0.28, and 0.37, respectively. Sim-649

ilarly, for the Baohr model, the median differences in annual model performance between650

the most detailed parameterization strategy, i.e., site–year parameterization, and other651

detailed parameterization strategies, i.e., per site parameterization using CostIAV and652

per site parameterization were 0.20, and 0.21, respectively. In contrast, the median dif-653

ferences in annual model performance between the most detailed parameterization strat-654

egy, i.e., site–year parameterization, and other generalized parameterization strategies,655

i.e., PFT-specific parameterization, and global parameterization were 0.36, and 0.50, re-656

spectively. The positive values of median annual model performance confirm the high-657
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Figure 6. Scatter plot of annual average (from good quality site–years, see Appendix C) eddy

covariance derived gross primary production (GPPEC) versus simulated gross primary production

(GPPsim) by the light use efficiency model of Bao et al. (2022) parameterized at hourly (Baohr

model) and daily scale (Baodd model) for each site–year. The plots show the performance of the

(a) Baohr model, and (b) Baodd model. The dots in the scatter represent a site–year. The model

performance metrics (Nash-Sutcliffe efficiency, viz. NSE) are shown on the top of each subplot.

The equations of fitted regression lines are shown in respective subplots.

est median performance of site–year parameterization compared to the other four pa-658

rameterization strategies.659

At an hourly scale, differences in model performance between a pair of similar pa-660

rameterization strategies, such as a pair of detailed parameterization (i.e., between site–661

year-specific and site-specific) or a pair of generalized parameterization (i.e., between per662

PFT and global) approaches for both models were small (Fig. S8). However, this dif-663

ference can be higher between a detailed and a generalized model parameterization strat-664

egy. The median differences in hourly NNSE between site–year-specific and site-specific665

model parameterization were 0.02 and 0.01 for the PW
hr model and Baohr model, respec-666

tively. In contrast, the median differences in hourly NNSE between site–year-specific and667

global model parameterization were 0.11 and 0.16 for the PW
hr model and Baohr model,668

respectively.669

The median annual model performance between per–site parameterization using670

CostIAV and per–site parameterization were relatively small, which were 0.01 and 0.02671

for PW
hr model and Baohr model, respectively, and it shows the additional constraint on672

IAV of GPP flux in the cost function did not substantially improve annual model per-673

formance. At hourly scale, the median differences in model performance between per–674

site parameterization using CostIAV and per–site parameterization were also negligible,675

which were 0.00 and -0.01 for PW
hr model and Baohr model, respectively. Though the per–676

site parameterization using CostIAV did not improve the annual model performance, it677

also did not degrade the hourly model performance.678
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Figure 7. Comparison of annual average of gross primary production (GPP) derived by eddy

covariance measurements (GPPEC), and GPP simulated (GPPsim) by the light use efficiency

model of Bao et al. (2022), which was parameterized with hourly data (Baohr model). The five

subplots show simulated GPP from (a) site–year specific parameterization, (b) site-specific pa-

rameterization using an additional constraint on inter–annual variability in the cost function

(CostIAV ), (c) site-specific parameterization, (d) plant–functional types (PFT) specific parame-

terization, and (e) global parameterization. The years 2010 to 2012 could not be parameterized

in the case of site–year parameterization, as there were no good quality evapotranspiration es-

timates from latent heat flux measurements for those years. The values of model performance

measures (Nash-Sutcliffe efficiency, viz. NSE, correlation coefficient, viz. r, relative variability,

viz. αNSE , and bias, viz. βn) are shown on top of respective subplots. This site represents an

average 140-year-old deciduous forest (Tamrakar et al., 2018) with a distinct seasonal cycle and

an annual average temperature of ≈8.3 ◦C, and an annual average precipitation of 750–800 mm

during the observation period (Knohl et al., 2003; Pastorello et al., 2020). The site ID, PFT, and

Köppen-Geiger climate class (KG) of the site are provided on top of the figure in bold.

3.6 Differences between modelling experiments involving a mechanis-679

tic and a semi-empirical model structure680

The lowest AIC values were obtained for per site–year parameterization for all the681

models at hourly and daily scales or aggregations, suggesting the sum of squares errors682

(SSE) was substantially reduced even when a comparatively complex parameterization683

strategy with a large number of model parameters was chosen (Table 3). The AIC val-684

ues gradually increased from per site–year, per site, per PFT to global parameterization685

at hourly and daily scales or aggregations for all three models which are PW
hr model, Baohr686

model, and Baodd model (Table 3). Semi-empirical models, i.e., Baohr model and Baodd687

model also had mostly lower values of AIC compared to mechanistic PW
hr model even though688

more parameters were parameterized for these models (Table 3). At the daily scale, the689

Baodd model had the lowest AIC for all the parameterization experiments due to the pa-690
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Figure 8. Distributions of the differences between model performance measures (normalized

Nash-Sutcliffe efficiency, viz. NNSE) calculated at annual scale, from various pairs of model pa-

rameterization experiments conducted for the P-model of Mengoli et al. (2022) with drought

stress, parameterized with hourly data (PW
hr model) and the light use efficiency model of Bao et

al. (2022), parameterized with hourly data (Baohr model). CostIAV in parentheses denotes the

usage of an additional constraint on annual gross primary production flux during per–site param-

eterization. The boxes are spanned between the first and third quartiles of the differences, and

the line in the middle represents the median. The whiskers show the farthest data point from the

box within 1.5× of the interquartile range. The circles represent the outliers that go beyond the

limits of the whiskers. The vertical dotted grey line separates each pair of model parameteriza-

tion strategies.

rameterization at daily scale. Whereas, for the other two models, parameterization and691

forward runs were performed at an hourly scale and then simulations were aggregated692

to daily resolution. The Phr model was not included in AIC or AICc analysis as previ-693

ous results proved this model significantly underperformed compared to the other mod-694

els, and this will always result in higher AIC or AICc values.695

At monthly and annual scales, we show the differences in AICc values between PW
hr ,696

Baohr, and Baodd models for the same parameterization strategy, and not between pa-697

rameterization strategies in a same model. The reason behind this is AICc values largely698

depend on the relationship between sample size, i.e., n, and the total number of param-699

eters which were parameterized, i.e., K. The values of AICc became very large even when700

a significantly smaller SSE was obtained, and they became unreliable when the value701

of n was closer to K. For example, at monthly aggregation, per site–year parameteri-702

zation of the PW
hr model had a very high AICc value of 1.30×106 even when it had the703

lowest SSE among all the five parameterization strategies (Table S3, S4, and S5). The704
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Baodd model proved to be better able to capture the seasonal cycle, i.e., monthly GPP705

estimates compared to the other two models for most of the parameterization experiments706

considering the number of parameters parameterized (Table 3). However, the PW
hr model707

had the lowest AICc value in the case of per site parameterization using CostIAV and708

per site parameterization at monthly aggregation. In contrast, at an annual scale, the709

PW
hr model had mostly the lowest AICc values, and some of the experiments also suffered710

from the above-described unreliable AICc estimates, where n and K had similar values711

(Table 3, S3, S4, and S5).712

Table 3. Akaike’s Information Criterion (AIC) or corrected AIC (AICc) values for modelling

experiments of various complexities

Temporal
scale/

Models parameterization strategies

aggregation per
site–year

per site
using
CostIAV

per site per PFT global

Hourly PW
hr 1.72×107 1.84×107 1.86×107 2.16×107 2.25×107

scale (AIC) Baohr 1.57×107 1.71×107 1.78×107 2.11×107 2.41×107

Daily PW
hr 4.58× 105 5.05× 105 5.11× 105 6.88× 105 7.42× 105

scale/ Baohr 3.86× 105 4.35× 105 4.50× 105 6.74× 105 8.00× 105

aggregation
(AIC)

Baodd 2.78× 105 3.25× 105 3.44× 105 5.10× 105 5.65× 105

Monthly PW
hr 1.30× 106 1.63× 104 1.63× 104 2.04× 104 2.25× 104

aggregation Baohr −4.71× 104 1.81× 104 1.77× 104 2.01× 104 2.42× 104

(AICc) Baodd −3.39× 104 1.70× 104 1.73× 104 1.55× 104 1.79× 104

Annual PW
hr −3.56× 103 −5.22× 103 −5.56× 103 9.09× 102 9.28× 102

aggregation Baohr −3.93× 103 −3.87× 103 −4.07× 103 1.45× 103 1.21× 103

(AICc) Baodd −3.70× 103 −3.51× 103 −3.53× 103 1.10× 103 8.31× 102

3.7 Model performances across different plant–functional types713

Generally better model performances were achieved with both the PW
hr model and714

the Baohr model when parameterized detailed model parameterization strategies were715

used (Fig. 9). In this analysis, we removed the per–site parameterization experiment us-716

ing CostIAV as it performed very similar to per–site parameterization, and also we did717

not consider the Phr model as it produced poor performance across all the PFTs. The718

highest median NNSEs were obtained with per–site–year parameterization for all the PFTs.719

For the PW
hr model parameterization experiments, the highest median value of NNSE was720

found for CSH for per–site–year parameterization (median NNSE: 0.88), DBF for per–721

site parameterization (median NNSE: 0.85), CSH and DBF for per-PFT parameteriza-722

tion (median NNSE: 0.81), and CSH for global parameterization (median NNSE: 0.80).723

However, CSH had only three sites and highest median model performance for CSH should724

be interpreted with caution. For the Baohr model parameterization experiments, the high-725

est median value of NNSE was found for DBF for per–site–year parameterization (me-726

dian NNSE: 0.89), DBF for per–site parameterization (median NNSE: 0.88), MF for per-727

PFT parameterization (median NNSE: 0.84), and DBF and MF for global parameter-728

ization (median NNSE: 0.77). We found similar results also for climate–vegetation types729
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(Sect. 2.2), where a more detailed parameterization strategy achieved higher model per-730

formance than a generalized parameterization strategy (Sect. 2.6 and Fig. S9).731
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Figure 9. Box-plots showing the range of the hourly model performance metric (normalized

Nash-Sutcliffe efficiency, viz. NNSE), for the sites in different plant–functional types (PFT), and

different parameterization experiments. The subplots show the model performance for (a) P-

model of Mengoli et al. (2022) with drought stress function, parameterized with hourly data (PW
hr

model), and (b) the light use efficiency model of Bao et al. (2022) parameterized with hourly

data (Baohr model). The numbers in parentheses beside the name of each PFT on the x-axis are

the number of sites present in a specific PFT. The boxes are spanned between the first and third

quartiles of NNSE values, and the line in the middle represents the median. The whiskers show

the farthest data point from the box within 1.5× of the interquartile range. The circles represent

the outliers that go beyond the limits of the whiskers. For, deciduous needle-leaf forests (DNF),

and areas covered by snow (SNO) only the median value could be shown as these PFTs have only

one site. The vertical dotted grey line separates each PFT.

3.8 Correlation between annual model performance and model perfor-732

mance in simulating diurnal GPP peaks733

One of the crucial reasons behind poor annual model performance (Fig. 2 and Ta-734

ble D1) can be the inability of both the PW
hr model and the Baohr model to capture the735

peaks of GPPEC (Fig. S10). Specifically, P90GPPEC
was highly underestimated in the736

case of global parameterization. The median of the ratio of P90GPPsim
to P90GPPEC

737

were 0.77 and 0.53 for the PW
hr model and the Baohr model, respectively, during global738

parameterization. The underestimation generally decreased with more detailed param-739

eterization strategies with little differences between both the models. The median val-740

ues of the ratio of P90GPPsim to P90GPPEC
were 0.95 and 0.93 for the site–year param-741

eterization of the PW
hr model and the Baohr model, respectively. Moreover, the lower val-742

ues of the interquartile range (IQR) of these ratios signify the importance of site–year743
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parameterization compared to per PFT or global parameterization to reliably capture744

the peak GPPEC in diurnal cycles for most of the sites and to attain better model per-745

formance at the sub-daily scale. The values of IQR were 0.1 for both the PW
hr model and746

the Baohr model in the case of site–year parameterization, 0.44 and 0.38 for the PW
hr model747

and the Baohr model, respectively in the case of PFT-specific parameterization, and 0.44748

and 0.42 for the PW
hr model and the Baohr model, respectively in the case of global pa-749

rameterization.750

We further found that if a certain parameterization strategy better simulated the751

P90GPPEC
for each site–year, it corresponded to a comparatively better annual model752

performance for a site which is demonstrated by the positive values of Pearson correla-753

tion coefficients (Fig. 10). Here also, a detailed parameterization strategy, such as site–754

year parameterization resulted in a better simulation of P90GPPEC
, and thus better an-755

nual model performance for most of the sites compared to a generalized parameteriza-756

tion strategy, such as global parameterization. In this case when j1 was site–year pa-757

rameterization and j2 was global parameterization, 91% and 93% sites had higher NNSEj1
P90758

than NNSEj2
P90 and corresponding NNSEj1

y than NNSEj2
y for the PW

hr model and the759

Baohr model, respectively. When j1 was parameterization per site using CostIAV and760

j2 was parameterization per site, respectively, only 34.43% and 41.8% had positive val-761

ues of ∆NNSEP90 (i.e., NNSEj1
P90 > NNSEj2

P90) and corresponding ∆NNSEy (i.e.,762

NNSEj1
y > NNSEj2

y ) for the PW
hr model and the Baohr model, respectively. This sig-763

nified that using an additional constraint related to the IAV of GPP in the cost func-764

tion during model parameterization did not improve the prediction of peak GPP values765

for most of the sites.766

4 Discussion767

4.1 Uncertainties in modelling experiments768

Any model–data–integration study is prone to uncertainties related to both data769

and the model. The EC dataset used in our study has a couple of well-known uncertain-770

ties. For example, the NEE measurements from eddy covariance can have uncertainties771

due to the accumulation of atmospheric CO2 under the canopy at night (storage) and772

a sudden turbulent mixing during the morning when the stable nighttime boundary layer773

breaks up, or because of advection of atmospheric CO2 out of the control volume sam-774

pled by the eddy covariance system (D. Baldocchi et al., 2000; Aubinet, 2008; Jocher et775

al., 2018). The GPP fluxes that we used were derived from NEE measurements by ex-776

trapolating the nighttime respiration of ecosystem (Reichstein et al., 2005) to daytime.777

Moreover, GPP can be estimated based on another well-known algorithm, the daytime778

partitioning method (Lasslop et al., 2010). We preferred nighttime partitioning as only779

respiration is modelled in this method. In daytime partitioning, both GPP and respi-780

ration are modelled, resulting in higher prediction errors. We believe the uncertainties781

in our modelling results due to the choice of partitioning algorithm should be small as782

quantified in a previous study by Desai et al. (2008). We also used ET in the cost func-783

tion which is equivalent to latent heat flux. The mismatch between the summation of784

latent, sensible, and ground heat fluxes with net radiation calculated using incoming and785

outgoing radiation, the so-called lack of energy–balance closure, remains a long-standing786

challenge with EC measurements (Foken, 2008; Mauder et al., 2020; Zhang et al., 2024).787

Quality control of millions of data points at an hourly scale was also challenging, espe-788

cially when we merged data from various sources, such as in-situ measurements, mod-789

elled re-analysis data, and remote sensing-based estimates. Another major uncertainty790

arises from the mismatch between the footprint of EC towers and the grid of remote sens-791

ing data which were used to calculate vegetation indices (Chu et al., 2021). The PFT792

classification of sites based on a simple PFT classification method may not accurately793

represent the vegetation of some of the sites. For example, a site at Alice Springs (AU-794

ASM) in central Australia was classified as a savanna in FLUXNET2015 (Pastorello et795
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Figure 10. Scatter between differences in model performance in simulating peak gross pri-

mary production, viz. GPP (∆NNSEP90) and annual average of GPP (∆NNSEy). j1 and j2

are a pair of parameterization strategies for which differences are calculated in each subplot from

(a) to (j). Each dot in the scatter represents a site. The PW
hr model and Baohr model are P-model

of Mengoli et al. (2022) with drought stress function and the light use efficiency model of Bao et

al. (2022), both were parameterized with hourly data. The values on top of each subplot indicate

the Pearson correlation coefficient (PCC, 2008) for respective models.

al., 2020). In fact, this site is dominated by a discontinuous canopy of Mulga (Acacia796

aneura) that has needle leaves and a seasonal understory grassy layer (Cleverly et al.,797

2013). This site can be classified as a woody savanna as well. An arctic site in Bayelva798

(SJ-Blv) has a combination of snow, wet grounds, and specific tundra vegetation (Boike799

et al., 2018) which were not well represented by the snow classification of FLUXNET2015800
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(Pastorello et al., 2020). Another limitation of the dataset is that sites are mostly clus-801

tered in European and North American countries and, hence do not necessarily repre-802

sent global ecosystem functioning particularly well due to sampling bias (Papale et al.,803

2015). Similarly, some PFTs are represented by very few sites, which makes PFT-specific804

parameterization challenging.805

4.2 General performance of models in simulating GPP806

In this study, we evaluated the performance of the optimality-based PW
hr and Phr807

models across a wide range of sites, representing various vegetation and climate types.808

We uncovered poor model performance of the Phr model at many sites, especially at arid809

sites. Calculating WAI using a simple hydrological model and inducing a moisture stress810

function, i.e., the introduction of the PW
hr model substantially improved model perfor-811

mance to simulate the annual average of GPP fluxes across many sites, including both812

water–limited and energy–limited sites. The inclusion of the moisture stress function to813

the Phr model not only improved the annual model performance but also improved the814

model performance across all the temporal scales or aggregation levels. This highlights815

the importance of the representation of soil moisture conditions for modelling approaches,816

which are aimed at accurately representing ecosystem functioning and vegetation response.817

However, the coupling of the hydrological model raised the need to calibrate nine more818

parameters, which counters the vision of developing a parameter–sparse approach us-819

ing theories that demand a lower site or site–year specific fine–tuning of model param-820

eters (Prentice et al., 2015). Further experimentation is needed to find a fine balance be-821

tween the number of key model parameters, which require calibration, and an accurate822

representation of ecosystem functioning.823

Coming to the differences in model structure, we found that semi-empirical mod-824

els (Baohr and Baodd models) performed statistically better, i.e, had a lower value of AIC825

compared to mechanistic model (PW
hr model) at hourly and daily scale or aggregations826

for most of the parameterization experiments even though the semi-empirical modelling827

experiments needed more parameters to be parameterized. At the monthly aggregation828

level, the seasonal cycles were also significantly better captured by the parameter–heavy829

semi-empirical model parameterized with daily data (Baodd model) for most of the pa-830

rameterization experiments. However, at the annual aggregation level, the mechanistic831

model, i.e., the PW
hr model was comparatively better in most cases and a more flexible832

semi-empirical model with a higher number of parameters did not have a substantial im-833

provement in annual model performance.834

Though the partial sensitivity functions of environmental variables used in the Baohr835

model and the Baodd model were found to be applicable for most of the sites, they can836

be of many different types and may vary across site conditions (Bao et al., 2022). The837

EC sites were also affected by human management, such as irrigation, harvesting, and838

mowing as well as natural disturbances, such as fire, and pest attacks. These factors can839

affect the IAV of GPP flux which was estimated from EC measurements. Models used840

in this study may not be able to account for all of these factors due to structural lim-841

itations. For example, in the hydrological model, we only used precipitation and ET to842

calculate the mass balance of water. However, human management (such as irrigation843

and drainage) can play an important role, and the WAI estimates in managed sites, such844

as at an irrigated maize site (US-Ne1) may not be accurate.845

4.3 The importance of the parameterization approach to estimate IAV846

of GPP847

We also emphasize the importance of determining the parameterization approach848

by the inter–comparison of parameterization strategies. parameterization of model pa-849

rameters largely determines model performance and parameterized parameters capture850

–28–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

the individual characteristics of sites or climatic events of site–years (Wu et al., 2012).851

Detailed model parameterization strategies, such as parameterization specific to site–years852

also comparatively better predicted the annual average of GPP fluxes and year-specific853

parameters explained some parts of the IAV of GPP flux. As the fast rate of change in854

climatic characteristics has become more frequent in recent years, developing a gener-855

alized model structure to simulate carbon fluxes between years and/or between sites of856

similar vegetation types has become even more challenging (Knauer et al., 2023). More-857

over, the generalized model parameterization strategy, i.e., global parameterization was858

also dominated by PFTs, such as ENF and GRA which were represented by many sites,859

and certain PFT, such as DNF was represented by only one site in the FLUXNET2015860

dataset (Pastorello et al., 2020). This may imply that global parameterization or param-861

eter up-scaling experiments using the FLUXNET2015 dataset (Pastorello et al., 2020)862

may result in biased parameter sets that cannot be generalized to the global scale or a863

weighted site representation may be necessary in this case. Besides model parameter-864

ization, a recent study by (Zou et al., 2024) also found that the importance of each in-865

dependent driver, and their relative contributions varies over time and ecosystem type.866

The relative importance of forcing variables may also be another factor besides model867

parameterization.868

Though we have demonstrated the capability of the PW
hr model that included drought869

stress and the Baohr model to simulate the hourly fluxes of GPP, accurate estimation870

of IAV of GPP fluxes at the site level with these models requires further developments.871

Particularly, both models failed to capture the peak GPP in diurnal cycles at many sites872

even after model parameterization at a sub-daily scale and using an additional constraint873

on the IAV of GPP in the cost function. These underestimations at an hourly scale may874

have accumulated to a larger error when the fluxes were aggregated at an annual scale875

to study the IAV. We also showed that comparatively better model performances were876

achieved when the GPP peaks per site–year were better simulated. These results are sim-877

ilar to another study by Lin et al. (2023), directed at evaluating terrestrial ecosystem878

models’ capability in explaining the IAV of GPP which also found an underestimation879

of GPP. However, it is also true that some peak values of diurnal GPP can also be an880

outlier produced by data processing algorithms, such as the gap-filling algorithm, and881

it is hard to distinguish these outliers from true GPP values. Moreover, it was found both882

the PW
hr model and the Baohr model showed the highest model performance at the sub-883

daily scale mostly for forest sites compared to savannas or grasslands, this in turn led884

to the poor simulation of IAV at many sites which are not forests.885

The poor representation of IAV of GPP can be attributed to either limitations of886

models or model parameterization strategies. It is important to discover which seasonal887

phases of the GPP dynamics for particular vegetation types or climatic zones are not888

well represented in models simulating the IAV of GPP. It is particularly important to889

focus on the meteorological sensitivity of GPP during periods of high productivity where890

improvements in the prediction of high fluxes would tend to improve the description of891

IAV. Another aspect could also be to decompose the metric (Gupta et al., 2009) used892

in the cost function or develop a more detailed model evaluation to understand which893

other parts of the time series were not well constrained during model parameterization.894

5 Conclusions895

We have demonstrated the capability of an improved version of an optimality-based896

mechanistic model (PW
hr model) and a semi-empirical LUE model (Baohr and Baodd model)897

to simulate sub-daily GPP fluxes across 198 EC sites, representing 13 different vegeta-898

tion types including forests, grasslands, savannas, croplands, and tundra. We conclude899

that explicit accounting of drought stress in the optimality-based ecosystem model is a900

necessity as it proved to be an important factor in controlling GPP fluxes at all tempo-901

ral scales including at annual aggregation. We found that the semi-empirical model mostly902
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produced better results at hourly, daily, and monthly scales compared to the mechanis-903

tic model. However, at an annual scale, the improvement in the performance of the semi-904

empirical model was not significant even though more parameters were parameterized905

to flexibly capture the ecosystem dynamics. While these models generally performed well906

in simulating hourly GPP dynamics, the small errors at the sub-daily scale, particularly907

related to the estimation of GPP peaks, accumulated to bigger errors at the annual scale908

and led to poor performance of models in explaining the IAV of GPP. We found that com-909

paratively better annual model performance could be achieved when the peaks of GPP910

were better simulated. Moreover, both models performed better mostly at forest sites911

compared to grasslands or savannas which may also lead to poor estimation of IAV of912

GPP at many sites globally. Our results further suggest the need to focus on sub-daily913

GPP dynamics during the various seasonal phases, especially highly productive ones, to-914

wards an improved constraint on GPP sensitivities. Hence, better annual model perfor-915

mance with a detailed parameterization strategy, such as site–year parameterization, sig-916

nifies that temporally varying model parameters are necessary to better capture the vari-917

ations of annual average GPP and indicate that ecosystem functioning is not stable be-918

tween years. We believe these new understandings can guide us towards developing mod-919

els and parameterization strategies for simulating the inter–annual variations in ecosys-920

tem GPP more successfully, and improve our understanding of the global carbon cycle921

response to changing climatic conditions.922

Appendix A Data description923

Table A1: Description of forcing and model parameterization
data

Abbreviation Definition Unit Variable name in
dataset/ remarks

Reference

GPPEC
a GPP derived from EC

based net ecosystem
exchange (NEE) using
night-time
partitioning∗ method

µmolCO2 ·
m−2 · s−1

GPP NT VUT USTAR50 Pastorello et
al. (2020);
Reichstein et
al. (2005)

σNEE Random uncertainty
for NEE

µmolCO2 ·
m−2 · s−1

NEE VUT USTAR50

RANDUNC

Pastorello et
al. (2020)

LE Latent heat flux W ·m−2 LE F MDS Pastorello et
al. (2020)

σLE Random uncertainty
for latent heat flux

W ·m−2 LE RANDUNC Pastorello et
al. (2020)

SW IN b Incoming shortwave
radiation

W ·m−2 SW IN F Pastorello et
al. (2020)

NETRADb, c Net radiation W ·m−2 NETRAD Pastorello et
al. (2020)

SW IN POT Potential incoming
shortwave radiation

W ·m−2 SW IN POT Pastorello et
al. (2020)

PPFD IN a Incoming
photosynthetic photon
flux density

µmol photons·
m−2 · s−1

PPFD IN gap-filled
with 2.04 × SW IN

Pastorello et
al. (2020); see
Sect. 3.4.2 of
Stocker et al.
(2020) for the
gap-filling
equation

Continued on next page
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Table A1 – Continued from previous page

Abbreviation Definition Unit Variable name in
dataset/ remarks

Reference

T b Air temperature ◦C TA F MDS Pastorello et
al. (2020)

VPDb Vapor pressure deficit Pa VPD F MDS Pastorello et
al. (2020)

P b,d Precipitation mm · h−1 or
mm · d−1

P Pastorello et
al. (2020)

CO2 Atmospheric CO2

concentration dry air
mole fractions from
quasi-continuous
measurements at
Mauna Loa

ppm co2 mlo surface-

insitu 1 ccgg

DailyData

(interpolated linearly
to hourly scale). The
measurements from
Mauna Loa were used
for all sites as the CO2

concentration
measurements at EC
sites are often noisy
and discontinuous.

Thoning et al.
(2021)

elev Site elevation m a.s.l. Collected from
literature

Bao et al.
(2022)

ETLE
a Evapotranspiration

derived from LE flux
mm · h−1 or
mm · d−1

Calculated from LE
with a dependency on
T

Henderson-
Sellers (1984)

σET Random uncertainty
for ET LE

mm · h−1 or
mm · d−1

Calculated from
LE RANDUNC with a
dependency on T

Henderson-
Sellers (1984)

PET Potential
evapotranspiration

mm · h−1 or
mm · d−1

Calculated from T ,
NETRAD and elev
using the method of
Priestley and Taylor

Priestley and
Taylor (1972)

CI Cloudiness index - Calculated as
1−

(
SW IN

SW IN POT

) Bao et al.
(2022); Fu
and Rich
(1999);
Turner et al.
(2006)

WAI Water availability
indicator

mm Described in Sect. S1
of the supplement

Bao et al.
(2022);
Tramontana
et al. (2016);
Trautmann et
al. (2018)

W Soil water supply mm ·mm−1 calculated as WAI
AWC

(AWC is defined in
Table 1)

Bao et al.
(2022)

NDVI Normalized difference
vegetation index

- Daily NDVI from
FluxnetEO v2
(MODIS) was linearly
interpolated to hourly

Walther et al.
(2022, 2023)

Continued on next page
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Table A1 – Continued from previous page

Abbreviation Definition Unit Variable name in
dataset/ remarks

Reference

fAPAR Fraction of incident
photosynthetic photon
flux that is absorbed
by vegetation

- Linear relationship
between NDVI and
fAPAR was assumed.{
NDVI , if NDVI > 0

0, if NDVI ≤ 0

Bao et al.
(2022);
Myneni et al.
(1997)

QC a Data quality flags - 1.0 (good quality), 0.5
(medium quality), and
0.0 (bad quality) in the
case of hourly data,
which is the fraction of
good quality measured
or gap-filled data from
two half-hours. In the
case of daily, QC can
have any values
between 0.0 and 1.0,
which is a fraction
representing the
percentage of good
quality measured or
gap-filled data in a
day. The daily data
with QC > 0.8 was
considered good.

Pastorello et
al. (2020);
Nelson et al.
(2024)

a: For GPPEC , the QC flags of NEE , and for ETLE the QC flags of LE were used, as they were derived from the

respective variables. QC flags of SW IN were used to determine bad and medium quality data of PPFD IN , which were

replaced with a gap-filling procedure.

b: Bad, medium quality (value of QC is 0 and 0.5) data and gaps were filled with downscaled (Besnard et al., 2019)

ERA5 (Hersbach et al., 2023) or ERA-Interim v2.0 data (Berrisford et al., 2011).

c: We have collected good quality SW IN and NETRAD values from all the sites and fitted a linear regression model using

the RANdom SAmple Consensus (RANSAC) algorithm (Fischler & Bolles, 1981) to determine the relation between them.

The fitted equation (NETRAD = 0.7066× SW IN − 0.1345) was used to fill gaps in NETRAD using SW IN . The

gap-filling with regression was only applied for a few sites at hourly scale.

d: At hourly scale, the data gaps or bad quality data in P were filled by distributing the daily downscaled P

(Besnard et al., 2019) from ERA-Interim v2.0 (Berrisford et al., 2011) for a certain day to the hourly timesteps, based on

hourly P from gridded ERA5 data (Hersbach et al., 2023).

*We preferred the night-time partitioning (Reichstein et al., 2005) over daytime partitioning (Lasslop et al., 2010) as only

respiration is modelled in this case and GPP is derived as the difference between measured NEE and respiration. Whereas,

in the daytime partitioning method, GPP is modelled as well and can have prediction errors due to uncertain

model parameters.

Appendix B Data screening for model parameterization924

We used only good–quality data to calibrate model parameters. At hourly scale,925

we selected GPPEC and ETLE as good quality data when the values of their respective926

QC flag were 1 (Table A1). At the daily scale, we considered a GPPEC and ETLE data927

point as good when the value of the QC flag was greater than 0.8. We also removed any928
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data gaps from observed and simulated data, σNEE , and σLE (Table A1). There were929

certain negative values in our GPPEC data, as it was calculated using night-time based930

partitioning method (Reichstein et al., 2005). In this case, if a negative GPPEC value931

occurred, when the SW IN (Table A1) is zero i.e., during night hours, we replaced those932

data points with 0 and used them in the cost function. If the negative GPPEC occurred933

during day hours, we excluded them.934

Appendix C Data screening for evaluation of model performance935

The good quality data at an hourly scale were selected using the same criteria de-936

scribed in Appendix B. The data screening at a daily scale was also similar to Appendix937

B, when the LUE model was parameterized using daily data. For all other cases, we as-938

signed a flag (0 = not considered, 1 = considered) to identify which data points were con-939

sidered during model parameterization. We aggregated this flag to daily, weekly, monthly,940

and annual scales by taking averages. Then this flag indicated the fraction of good qual-941

ity data used to calculate a data point in a certain temporal resolution. We only used942

data points at certain temporal resolutions which were calculated using more than 50%943

(flag value > 0.5) good quality data points from hourly/daily resolution. We calculated944

monthly, and annual model performance metrics for a certain site if at least three data945

points were present. We couldn’t calculate annual metrics for 76 and 85 sites due to low946

numbers of good quality site–years when the annual data was aggregated from hourly,947

and daily data, respectively. The monthly metrics were not calculated for the three sites948

due to the same reason when they were aggregated from daily data.949

Appendix D Median values of model performance950

The median values of the model performance metric, i.e., NNSE which are plot-951

ted in Fig. 2 are summarized in Table D1.952

Table D1. Median NNSE obtained at each modelling experiment at hourly/daily scale and

annual aggregations

Temporal
scale/

Models parameterization strategies

aggregation per
site–year

per site
using
CostIAV

per site per PFT global

Hourly/ PW
hr 0.827 0.799 0.805 0.738 0.712

daily scale Phr 0.478 0.470 0.469 0.461 0.490

Baohr 0.853 0.816 0.836 0.757 0.693

Baodd 0.830 0.774 0.790 0.658 0.634

annual PW
hr 0.543 0.405 0.373 0.201 0.143

aggregation Phr 0.018 0.019 0.018 0.018 0.019

Baohr 0.661 0.471 0.440 0.190 0.105

Baodd 0.669 0.489 0.482 0.238 0.143

Open Research Section953

The codes that were used to perform all the necessary analyses and plot all the fig-954

ures in this study are available at De (2024). The data from eddy covariance sites are955
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available from FLUXNET (Pastorello et al., 2020; FLUXNET.org, 2024a). The Fluxne-956

tEO MODIS version 2 dataset is available at Walther et al. (2022, 2023). ERA5 dataset957

and ERA-Interim v2.0 data are available from Hersbach et al. (2023) and Berrisford et958

al. (2011), respectively. Atmospheric CO2 measurements at Mauna Loa observatory are959

available at Thoning et al. (2021).960
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Krause, P., Boyle, D. P., & Bäse, F. (2005). Comparison of different efficiency crite-1198

ria for hydrological model assessment. Advances in Geosciences, 5 , 89–97. Re-1199

trieved from https://adgeo.copernicus.org/articles/5/89/2005/ doi: 101200

.5194/adgeo-5-89-20051201

Kuppel, S., Chevallier, F., & Peylin, P. (2013). Quantifying the model structural1202

error in carbon cycle data assimilation systems. Geoscientific Model Develop-1203

ment , 6 (1), 45–55. Retrieved from https://gmd.copernicus.org/articles/1204

6/45/2013/ doi: 10.5194/gmd-6-45-20131205

Lasslop, G., Reichstein, M., Papale, D., Richardson, A. D., Arneth, A., Barr, A., . . .1206

Wohlfahrt, G. (2010). Separation of net ecosystem exchange into assimilation1207

and respiration using a light response curve approach: critical issues and global1208

evaluation. Global Change Biology , 16 (1), 187-208. Retrieved from https://1209

onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2486.2009.02041.x1210

doi: 10.1111/j.1365-2486.2009.02041.x1211

Levene, H. (1960). Contributions to probability and statistics: essays in honor of1212

harold hotelling. In I. Olkin (Ed.), (pp. 278–292). Stanford University Press,1213

Palo Alto.1214

Lin, S., Hu, Z., Wang, Y., Chen, X., He, B., Song, Z., . . . Yuan, W. (2023). Under-1215

estimated interannual variability of terrestrial vegetation production by terres-1216

trial ecosystem models. Global Biogeochemical Cycles, 37 (4), e2023GB007696.1217

Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/1218

10.1029/2023GB007696 (e2023GB007696 2023GB007696) doi: 10.1029/1219

2023GB0076961220

Maire, V., Martre, P., Kattge, J., Gastal, F., Esser, G., Fontaine, S., & Sous-1221

sana, J.-F. (2012, 06). The coordination of leaf photosynthesis links C1222

and N fluxes in C3 plant species. PLOS ONE , 7 (6), 1-15. Retrieved from1223

10.1371/journal.pone.0038345 doi: 10.1371/journal.pone.00383451224

Mauder, M., Foken, T., & Cuxart, J. (2020). Surface-energy-balance closure over1225

land: A review. Boundary-Layer Meteorology , 177 , 395–426. doi: 10.1007/1226

–38–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

s10546-020-00529-61227

McGuire, A. D., Sitch, S., Clein, J. S., Dargaville, R., Esser, G., Foley, J., . . . Wit-1228

tenberg, U. (2001). Carbon balance of the terrestrial biosphere in the twentieth1229

century: Analyses of CO2, climate and land use effects with four process-based1230

ecosystem models. Global Biogeochemical Cycles, 15 (1), 183-206. Retrieved1231

from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/1232

2000GB001298 doi: 10.1029/2000GB0012981233

Mengoli, G., Agust́ı-Panareda, A., Boussetta, S., Harrison, S. P., Trotta, C., &1234

Prentice, I. C. (2022). Ecosystem photosynthesis in land-surface models: A1235

first-principles approach incorporating acclimation. Journal of Advances in1236

Modeling Earth Systems, 14 (1). doi: 10.1029/2021MS0027671237

Mengoli, G., Harrison, S. P., & Prentice, I. C. (2023). A global function of cli-1238

matic aridity accounts for soil moisture stress on carbon assimilation. EGU-1239

sphere, 2023 , 1–19. Retrieved from https://egusphere.copernicus.org/1240

preprints/2023/egusphere-2023-1261/ doi: 10.5194/egusphere-2023-12611241

Monteith, J. (1972). Solar radiation and productivity in tropical ecosystems. Journal1242

of applied ecology , 9 (3), 747–766.1243

Myneni, R. B., Ramakrishna, R., Nemani, R., & Running, S. W. (1997). Estimation1244

of global leaf area index and absorbed PAR using radiative transfer models.1245

IEEE Transactions on Geoscience and remote sensing , 35 (6), 1380–1393.1246
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