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Abstract. The proposed hybrid hydrological model with vegetation (H2MV) uses dynamic meteorology and static features as

input to a long short-term memory (LSTM) to model uncertain parameters of process formulations that govern water fluxes and

states. In the hydrological model, we explicitly represent vegetation states by the fraction of absorbed photosynthetically active

radiation (fAPAR), and by the maximum soil moisture capacity (SMmax), which are both learned and predicted by the neural

networks. These parameters have an explicit role to model soil moisture (SM) storage and the partitioning of evapotranspiration5

(ET). The model is optimised concurrently against global observations and observation-based data of terrestrial water storage

(TWS) anomalies, fAPAR, snow water equivalent (SWE), ET and gridded runoff in a 10-fold cross-validation setup. To this

end, we infer where the model is under-constrained such that different processes could explain the observational constraints

in the model due to equifinality. The model reproduces the observed patterns of global hydrological components and fAPAR,

while emergent patterns of runoff ratio, evaporative fraction, and T/ET are consistent with our current understanding. Despite10

robustly predicted temporal patterns of TWS anomalies, we found that the mean soil moisture state is not well constrained

causing uncertainty of mean TWS. This emphasizes the importance of SMmax and the necessity for associated enhanced

constraints. The proposed model is open-source, and has a highly flexible and modular structure to facilitate future integration

of carbon and energy cycles, advancing toward a hybrid land surface model.

1 Introduction15

Our research introduces a new model that combines traditional water cycle studies with advanced computer algorithms to

better understand how vegetation affects water resources globally. By integrating satellite data, we’ve improved predictions

on water availability and evaporation processes. This model is unique because it can learn from vast amounts of data to make

more accurate predictions. Our findings help in managing water resources more effectively, especially under changing climate

conditions. The model is shared openly, encouraging collaboration and further development in this vital area of study.20
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Global hydrological models (GHMs) play a foundational role to understand Earth’s water resources on a large scale. They

provide important insights into predicting extreme events, managing water scarcity, and planning sustainable water resources

under changing climate (Zhang et al., 2023).

GHMs simulate key hydrological processes including evapotranspiration, runoff, and soil moisture. They employ process-

based models (PBMs), which are abstracted representations of the processes controlling water movement and distribution25

within a hydrological system. PBMs rely on established physical principles such as the conservation of mass and energy

(Fatichi et al., 2016). By adhering to these fundamental laws of physics, PBMs offer hydrologists a unique approach to studying

the global hydrological system.

Despite their utility, PBMs encounter significant challenges. Some of the process knowledge can be incomplete and the

theories and assumptions underpinning model development can sometimes be subjective, leading to uncertainties in parameter30

estimations within GHMs (Nearing et al., 2021). Additionally, PBMs were typically not designed to fully harness the growing

Earth observation (EO) data, which can limit their capacity to capture unknown or unexpected processes (Shen et al., 2018).

Machine learning (ML), particularly deep learning (DL), effectively addresses the challenge of learning from and utilizing

large amounts of observational data. DL can significantly decrease the requirement for domain expertise, operate with much

fewer assumptions, and possess the capacity to unveil unexpected processes due to their versatile internal architectures (LeCun35

et al., 2015). DL models have been garnering increased attention in hydrology and have repeatedly been shown to outperform

physical models (Nearing et al., 2021; Sit et al., 2020). However, DL models come with noteworthy disadvantages. In contrast

to PBMs, DL models offer no assurance of respecting the laws of physics, even when delivering outstanding predictions.

Therefore, interpreting the learned internal functions of deep learning models becomes highly challenging (Alain and Bengio,

2016; Shwartz-Ziv and Tishby, 2017) with potentially implausible responses learned such that trust in models when applied on40

new data is limited (Geirhos et al., 2020).

Hybrid (or differentiable) modeling aims to address this challenge. This approach facilitates the design of models that

preserve certain process representations of a PBM, while incorporating the ability to learn uncertain components through DL

from observations (Reichstein et al., 2019; Shen et al., 2023).

Studies by Kraft et al. (2020) and Kraft et al. (2022) employed the hybrid method in global hydrological modeling. They45

utilized a dynamic neural networks (NN), specifically a Long Short-Term Memory (LSTM) model (Hochreiter and Schmidhu-

ber, 1997), to estimate coefficients of a simple conceptual hydrological PBM. The hybrid model is trained end-to-end, i.e. the

feedback from the PBM is used to optimize the weights of the NNs, and simulates the dynamics of evapotranspiration, runoff,

and water storages. The study employed observational products of TWS variations, snow, ET, and runoff to constrain the water

cycle processes. However, the model has certain limitations. For instance, soil moisture was represented implicitly by a cumu-50

lative water deficit term, evapotranspiration components, transpiration, soil, and interception evaporation were not resolved,

and the role of vegetation, an important aspect in global hydrological modeling (Trautmann et al., 2022), was not explicitly

accounted for.

We present here the global hybrid hydrological model with vegetation (H2MV) that explicitly represents two pivotal prop-

erties of vegetation: The maximum soil water storage capacity SMmax and fraction of absorbed photosynthetically active55
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radiation (fAPAR), extending previous work by Kraft et al. (2022). The SMmax is a crucial parameter that governs water avail-

ability for plants and thus the interactions between water and carbon cycles. While Kraft et al. (2022) estimated the cumulative

soil water deficit as a proxy for soil moisture and without any physical limit to the maximum deficit, the implementation of

SMmax adds a relevant conceptual constraint and facilitates an explicit representation of plant available soil moisture. This

parameter is currently not observable on a global scale and the spatial patterns of SMmax remain highly uncertain (Stocker60

et al., 2023). Vegetation state is represented by directly estimating the daily patterns of fAPAR, constrained against satellite ob-

servations. The inclusion of fAPAR in the model is relevant for modelling ET components (transpiration, soil and interception

evaporation).

In this study, we also address the prevalent issue of equifinality, which is one of the main limitations in PBM in general

(Beven and Freer, 2001; Beven, 2006), and hybrid modeling in particular (Kraft et al., 2022). Equifinality is the condition where65

different combinations of model parameters or different model configurations yield similar results, making it challenging to

identify a single ‘correct’ model. This problem is exacerbated in the context of hybrid models that incorporate NNs due to

their inherent flexibility. The structure of these models imposes fewer constraints, potentially complicating the equifinality

issue further. Concurrently, traditional methods for assessing parameter correlations and equifinality fall short when applied

to hybrid models. This inadequacy stems from the unique complexities and characteristics of hybrid models, necessitating the70

exploration of alternative approaches for the effective assessment of the equifinality problem. Therefore, we develop a simple

approach for the quantification of parameter robustness, which allows diagnosing model shortcomings. The equifinality of

estimated processes is assessed using a 10-fold cross-validation (CV) approach. Ten different models are trained with varied

training and validation sets, and a simple metric is used to quantify equifinality in the estimated processes.

For transparency and reproducibility, the model is designed in a modular structure and shared with the community. Compre-75

hensive documentation accompanies the code, which is openly shared on a public repository. This commitment to transparency

encourages open-source collaboration and ensures full reproducibility for specifically developing the model further towards a

global hybrid land-surface model.

Specifically, this work has the following key objectives:

– Extend previous work by 1) explicitly representing vegetation, constrained by satellite observations, 2) partitioning ET80

into transpiration, soil evaporation, and interception evaporation, and 3) improve representations of soil moisture by an

improved parameterization via maximum soil moisture SMmax.

– Identify equifinality by quantifying parameter robustness.

– Ensure transparency and model reproducibility.
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Table 1. Datasets used: meteorological forcing, static inputs and model constraints. The resolution column shows the original resolutions.

Resolution

Name Spatial Temporal Data Reference

Meteorological forcing

Precipitation 1◦ Daily GPCP 1dd v1.2 Huffman et al. (2016)

Net radiation 1◦ Daily CERES SYN1deg Ed4A Wielicki et al. (1996), Doelling (2017)

Air temperature 0.5◦ Daily CRUNCEP v8 Harris et al. (2014), Viovy (2018)

Static data

Soil properties 1/120◦ - Soil grids v2 Hengl et al. (2017)

Land cover fractions 1/360◦ - Globland30 v1 Chen et al. (2015)

Digital elevation model 1/120◦ - GTOPO Center (1997)

Wetlands 1/240◦ - Tootchi Tootchi et al. (2019)

Model constraints

Terrestrial water storage 0.5◦ Monthly GRACE Tellus JPL RL06M v1 Watkins et al. (2015)

fAPAR 500m 8 daily MOD15A2H Myneni et al. (2015)

Snow water equivalent 0.25◦ Daily GlobSnow v2 Takala et al. (2011), Luojus et al. (2014)

Evapotranspiration 0.5◦ Monthly FLUXCOM v1 Tramontana et al. (2016), Jung et al. (2019)

Runoff 0.5◦ Monthly GRUN v1 Ghiggi et al. (2019)

2 Methods and datasets85

2.1 Datasets

Table 1 shows the detailed information about the used datasets. All meteorological forcing and model constraints were aggre-

gated to 1°spatial resolution. The spatial resolutions of static inputs were aggregated to 1/30°. We use compressed representa-

tions of the original static input that was preprocessed in a separate modeling framework (for details Kraft et al. (2022) can be

referred). Meteorological forcing and SWE are kept in the native daily temporal resolutions, while monthly temporal resolution90

is used for the rest of the model constraints.

2.2 H2MV

This section outlines the workflow of our hybrid model, which integrates modeled hydrological processes with NN within an

end-to-end framework, as illustrated in Fig. 2. The model is composed of two main parts: a dynamic sub-module and a static

sub-module.95

In the dynamic sub-module, we use an LSTM model to process both dynamic meteorological data and static features. The

LSTM model is designed to learn temporal parameters (coefficients) that are physically interpretable, aiding in the prediction of
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processes that are typically uncertain due to the lack of direct observations or incomplete process knowledge. These predictions

are then utilized within a conceptual hydrological model to estimate water fluxes and storages, with some estimates being

constrained by available observational data.100

The static sub-module processes static features through a fully connected NN to determine spatially varying parameters.

This approach allows for the estimation of parameters that do not change over time but vary across different spatial locations.

Together, these sub-modules enable H2MV to provide a comprehensive understanding of hydrological processes by lever-

aging both dynamic and static data sources.

2.2.1 Hydrological model105

In this section, we present the conceptual model of the hydrological cycle, offering a high-level overview of the modeled

processes as depicted in Fig. 1. We focus on describing the key hydrological processes and the underlying logic that changed

compared to Kraft et al. (2022). For a comprehensive understanding, the full model is detailed in Appendix A.

In the equations below, parameters denoted with the superscript < s,t > show variables varying both in space (s) and time

(t), while those marked with the superscript < s > refer solely to spatial variation. Globally constant parameters, fixed both in110

time and space, are shown without superscripts. Most of the direct NN predictions are denoted by the Greek letter α, unless

the parameter has a clear name and hence, the designated name (e.g., fAPAR). The Greek letter β is used to represent globally

constant parameters directly learned by the NN.

The quantified evapotranspiration

ET<s,t> = E<s,t>
i + E<s,t>

s + T<s,t>
(
in mm day−1

)
(1)115

refers to the sum of transpiration, soil and interception evaporation.

The interception evaporation

E<s,t>
i = min

(
min

(
rainfall<s,t>, fAPAR<s,t> ·α<s,t>

Ei

)
,R<s,t>

n

) (
in mm day−1

)
(2)

is modeled as the amount of water that is intercepted by the vegetation (represented by a flexible scaling of fAPAR), constrained

by the amount of rainfall and available energy.120

There, fAPAR (−) is the predicted daily vegetation state, 0 < αEi
is a direct NN prediction for scaling fAPAR to interception

storage capacity, and Rn is available energy expressed as (mm day−1) via the latent heat of evaporation.

The modelling of soil evaporation and transpiration

E<s,t>
s =

(
1− fAPAR<s,t>

)
·ET<s,t>

pot ·α<s,t>
Es

(
in mm day−1

)
(3)

T<s,t> = fAPAR<s,t> ·ET<s,t>
pot ·α<s,t>

T

(
in mm day−1

)
, (4)125

respectively, follows traditional, conceptual two-source models where fAPAR partitions the available energy for the soil and

plant canopies. The directly predicted parameters by NN, i.e., αT and αEs , are bounded to the interval [0,1] and represent

effective conductance or ‘stress’.
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Figure 1. Simplified overview of the conceptual hydrological model: beige boxes show water fluxes, blue buckets (cylinders) show water

storages, and blue arrows show how water can move from/to water storages. Green boxes show direct predictions of vegetation-related

parameters vegetation state (used to partition evapotranspiration into its components) and maximum soil moisture capacity (used to model

soil moisture).

Incoming water

w<s,t>
in = rainfall<s,t> + s<s,t>

melt −E<s,t>
i

(
in mm day−1

)
, (5)130

is distributed to surface runoff, soil moisture and ground water recharge (Appendix A). The relative partitioning among the

three water pathways is regulated by the soil moisture state and predictions by the neural network. Soil recharge fraction

r<s,t>
soilfraction

= min

(
1,

(
SM<s>

max −SM<s,t>

max
(
w<s,t>

in , ϵ
)
))

·α<s,t>
rsoil

(−) (6)

represents the fraction of incoming water that will recharge the soil and scales with the soil moisture deficit relative to the

incoming water. There, 0 < SMmax (in mm) is the maximum plant available soil water storage capacity and 0 < αrsoil < 1135

represents uncertain processes. Both parameters are directly learned by NN. The additive term ϵ = 10−8 asserts the function is

differentiable under all circumstances, which is important for stable NN training.
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Figure 2. High level overview of H2MV: beige boxes show inputs, pink boxes are NN layers, green boxes are predictions, yellow boxes are

predictions that are directly constrained and cyan boxes are the corresponding data constraints.

The groundwater recharge fraction

r<s,t>
gwfraction

=
(
1− r<s,t>

soilfraction

)
·α<s,t>

rgw
(−) (7)

is modeled as a function of soil recharge fraction and a NN-learned parameter 0 < αrgw < 1. The soil recharge fraction and the140

NN-learned parameter αrgw are used to model the fraction of surface runoff

q<s,t>
surffraction

=
(
1− r<s,t>

soilfraction

)
· (1−α<s,t>

rgw
) (−) . (8)

2.2.2 Dynamic module

Estimations of the processes that are represented in the dynamic module vary both in space and time. Time-series forcings of

meteorology (net radiation, air temperature and precipitation) at time step t, estimated vegetation and water states at time step145

t− 1 and compressed representations of the static input are given to an LSTM model as inputs. LSTM is a type of recurrent

neural networks (RNN) that is designed to process sequential data (e.g. time-series). Apart from the input mentioned, LSTM

also recieves its own internal hidden and cell states at time step t−1, that are responsible for carrying useful information from

the previous steps to the prediction of future steps (e.g. memory effect). The output of LSTM is then fed into a fully-connected

(FC) layer (Goodfellow et al., 2016) where they are transformed into interpretable physical parameters. These direct predictions150

mostly represent the uncertain processes that are directly connected to a process layer (hydrological cycle) where the process

equations occur. The process layer also receives the same time-series forcings of meteorology that are fed into LSTM as inputs.

It outputs hybrid (intermediate) predictions, some of which (SWE, runoff, ET and TWS anomalies) are directly constrained

7
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using observational data products. Note that the vegetation state (fAPAR) is directly learned and constrained (Fig. 2). The

temporal resolution of the dynamic module is one day, and the spatial resolution is 1°.155

2.2.3 Static module

In the static module, static features representing land-surface characteristics are fed into a FC layer that is connected to another

FC layer. The first FC layer represents higher-dimensional patterns of the original input, while the second FC layer reduces

(compresses) the higher-dimensional representation. The compressed data are then given to the LSTM layer (dynamic module)

and connected to a final FC layer. The last FC layer is responsible for transforming the compressed representation of the static160

features into an interpretable and spatially varying hydrological parameter (SMmax), that is connected to the process layer

(hydrological cycle) in the dynamic module. Note that the static module is explicitly connected to the dynamic module in two

ways: connection between the output of FC layer to LSTM and the connection between the spatially varying estimation and

process layer (Fig. 2). There is also implicit connection between the two sub-modules as the full model is trained end-to-end

and during optimization learned spatially-varying parameters are updated in order to minimize the loss.165

Global constants (fixed both in space and time) are trainable parameters that are not directly connected to the input (Fig. 2).

During model optimization these parameters are updated. This means the input and the constraints have an indirect impact on

these learned parameters.

2.3 Model optimization

2.3.1 Cross-validation170

We employ a 10-fold cross-validation (CV) to train and validate H2MV, which entails training 10 separate models, each with

distinct training and validation sets. Additionally, the weights of each model are randomly initialized during training. The

objectives of the CV are twofold: to evaluate the generalization capability of the model and to gain insights into the equifinality

of model estimations.

To mitigate spatial autocorrelation, we implement spatial blocking as suggested by Roberts et al. (2017). During the training175

of each fold, a unique set of validation data is utilized to validate the model. It is important to note that a separate testing

dataset, unseen by any of the models during training, is used to assess the model’s performance, robustness, and equifinality

after all models are trained (Fig. B1).

2.3.2 Loss function

To quantify the performance of the hybrid model for any input data X , NN weights Θ, and global constraints β, we use the180

mean squared error (MSE)

L(X,Θ,β) =
1

Nc

C∑

c=1

Nc∑

i=1

(yc,i− ŷc,i)2 (9)
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as a loss function that aggregates individual losses to obtain a final loss term. Here, C is the number of data constraints, Nc

is the number of examples (data points) in the constraint c, and yc,i and ŷc,i are the observed and predicted values of the data

constraint c, respectively. During training, Θ and β are updated to minimize the total loss L.185

2.3.3 Model Training

We use Z-transformation to standardize both inputs and outputs (targets) of H2MV during training. We use the unscaled forcing

data to compute hydrological equations, ensuring proper constraint of the water balance. For optimization, we opt for the Adam

optimizer (Kingma and Ba, 2014). During optimization, the learnable parameters (e.g., weights) of both the dynamic and static

NN are updated to minimize the total loss. To prevent overfitting, early stopping is implemented, halting the training process190

once the model’s performance on the validation set ceases to improve. Additionally, we run the full model without updating

weights to stabilize water and vegetation states (spin-up), which are then fed as inputs to the LSTM network at each iteration

during training. The model with the smallest total loss on the validation set during training is selected as the final model. This

best-performing model is then utilized to make the final predictions on the testing set.

2.4 Model evaluation195

2.4.1 Equifinality evaluation

In H2MV, we incorporate a relatively high number of processes while being constrained by a limited set of observational data.

This makes H2MV susceptible to equifinality. To address this, we use a 10-fold CV method, training 10 models with varying

sets of training and validation data, and initializing each model’s weights randomly.

This approach allows us to evaluate the sensitivity of process estimations to three key factors: 1) the validation set, 2) initial200

NN weights, or 3) the combination of both. If we observe considerable variability in the process estimations among the 10

trained models, it suggests that the estimations for a particular process are equifinal. This means that the process is subject to

high uncertainty, as multiple mechanisms within the model can lead to similar outcomes. In essence, our analysis of equifinality

helps determine whether a simulation of a variable in the model, particularly fluxes and states, are under-constrained by the

observational and theoretical constraints we have applied.205

We use a single, normalized metric value for each estimated process across the 10 models, facilitating a clearer understanding

of the level of equifinality in the estimations. This metric represents the average error between different model realizations and

therefore represents the variability of a certain parameter.
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Following Gupta et al. (2009), we use the decomposition of MSE into phase, bias, and variance errors

ephase =
1

Np
·

Np∑

p=1

2 ·σp,1 ·σp,2 · (1− rp)
vp

(10)210

ebias =
1

Np
·

Np∑

p=1

(µp,1−µp,1)
2

vp
(11)

evar =
1

Np
·

Np∑

p=1

(σp,1−σp,1)
2

vp
, (12)

respectively. Here, p represents a pair of estimations for the same parameter obtained from two different models through CV,

Np is the total number of such pairs, and σp,1 and σp,2 denote the standard deviations of the first and second estimations in

the pair p respectively. Further, rp represents the correlation between the first and second estimations, while vp is the mean215

variance between these estimations. Additionally, µp,1 and µp,2 denote the mean of the first and second estimations in the pair

p, respectively. We normalize all of these error terms by the mean variance between the two estimations to account for different

units. The computation is performed exclusively on the predictions from the testing set.

Higher values signify a larger degree of equifinality, or reduced robustness, while lower values indicate smaller equifinality,

and therefore a more robust prediction.220

2.4.2 TWS decomposition

We study contribution of each estimated water storage to the total variability in TWS. To decompose TWS variability we use

a technique introduced by Getirana et al. (2017).

First, we compute the absolute contribution for each water storage

Cabs(S) =
T∑

t=1

∣∣St−S
∣∣ , (13)225

with T being the total number of time steps, St the water storage at the time step 1 < t < T , and S the mean of the water

storage S over time. The relative contribution of each modeled water storage

Crel(Si) =
Cabs(Si)∑NS

Sj=1 Cabs,Sj

∈ [0,1] (14)

is then defined for all modeled water storages NS .

3 Results and discussion230

3.1 Model performance

We first assess model performance based on the CV members. Note that the evaluation is done on the same independent test set

for all the members (Fig. B1); this data has not been seen during model training. Overall, the seasonality has been reproduced
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Figure 3. Predicted fAPAR versus target across different folds: a) monthly, b) mean seasonal cycle and c) interranual variability.

well for all target variables in terms of Pearson correlation (r) with values close to 1, while the correlation varied for the

interranual variability (IAV), ranging from 0.47 to 0.83 (Fig. 5). In terms of the RMSE, IAV generally shows lower RMSEs,235

except for TWS. The SDR (the ratio between predicted and observed standard deviation) indicates that fAPAR seasonality

is well represented by the model in terms of variability, while the IAV magnitude is underestimated. The TWS variability is

underestimated due to an underestimation of seasonal amplitude, while the interannaul variance is matched well. The SWE is

underestimated with an SDR of 0.75 for the mean seasonal cycle (MSC) and 0.5 for the IAV. Both ET and runoff are matched

well in terms of variance, expect for the ET IAV, which is overestimated by a factor of two. The apparent overestimation of240

ET interannual variance by the model is likely due to a substantial underestimation of interannual variance by the FLUXCOM

approach (Jung et al., 2019) used to generate the reference ET product.

On the global scale, the observed patterns of fAPAR is well-reproduced and robust across CV members (Fig. 3a). The MSC

of fAPAR is well-captured, although there is some disagreement between the predictions and observations in December (Fig.

3b), possibly due to artefacts in the satellite based fAPAR product due to snow contamination. The IAV, in contrast, is more245

challenging to predict and the agreement with the observations is lower. While the general dynamics of the IAV are represented

relatively well, the trend is not reproduced by the model (Fig. 3c). The model also captures the observed patterns of fAPAR for

all major regions (Fig. C4).

The TWS is well-reproduced on the global scale (Fig. 4a). The MSC matches the observations in terms of dynamics and

timing (Fig. 4b). There is a slight phase shift and underestimation in the amplitude of the TWS predictions. A similar pattern250

was noticed in previous studies (Kraft et al., 2022; Trautmann et al., 2022) and is likely related to the missing representation

of surface-water variations with snow melt in the northern hemisphere. Figure 4c shows that the patterns of TWS IAV are
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Figure 4. Predicted TWS (anomaly) versus target across different folds: a) monthly, b) mean seasonal cycle and c) interranual variability.

captured well between 2002 and 2014, while there is a shift afterwards. Overall, TWS predictions are robust across the CV

members.

H2MV reproduces patterns of SWE, ET, and runoff well. We show the model performance on these data in the Appendix255

C1. The ET and runoff are reproduced well on all temporal scales (Fig. C2 and C3). These variables have been upscaled

from sparse observations using ML, and hence, they are not directly observed. We do, therefore, expect H2MV to be able to

represent these variables well. The SWE, in contrast, is directly observed. Here, the model represents the IAV relatively well,

but the MSC amplitude is underestimated (Fig. C1). The underestimation of SWE could be linked to the lack of representation

of surface water storage. To reduce the TWS phase shift, the model may need to reduce snow accumulation, as it has no260

mechanism to buffer the melt water. Furthermore, additional mass accumulation via snow in the high latitudes would lead to a

larger error in TWS, which already matches the observations well from January to March. Similarly, larger SWE would lead to

an increased runoff in northern spring, increasing the runoff error. Hence, the low SWE may be caused by various trade-offs,

and inconsistencies among data streams including precipitation, which is very uncertain with respect to snowfall.

Overall, H2MV performance is qualitatively consistent with the findings of Kraft et al. (2022). For a comprehensive assess-265

ment of the model’s global performance and comparison with the results from Kraft et al. (2022), refer to Fig. C5.

3.2 Emerging global patterns

One of the capabilities of the proposed hybrid model is to retrieve information on intermediate processes and patterns that lack

direct observational constraints. This section presents some of the emerging global patterns after training the model.
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3.2.1 Evaporative Fraction270

The Evaporative Fraction (EF), defined as the ratio of evapotranspiration to the total available energy (net radiation), serves

as a valuable intermediate parameter shedding light on whether the Earth’s surface is dominated by evaporation (in areas

with ample water availability) or sensible heat flux (in water-limited regions). As depicted in Fig. 6a, higher EF values are

anticipated predominantly in the southeast of North America, much of Central and South America, Western Europe, Central

Africa, and Southeast Asia. These regions typically experience moderate to high precipitation levels and boast significant275

vegetation coverage. Conversely, relatively low EF values are projected for most of Canada and the southwestern United

States (US), specific eastern regions of Brazil, the southwestern part of South America, extensive areas of Western Russia, the

southern and western regions of Africa, and most of Australia. It is worth noting that this result is based on the predicted ET

that is constrained using observation-based data, and net radiation which is a meteorological input to the model.

3.2.2 Runoff coefficient280

The runoff coefficient, representing the ratio of total runoff to precipitation, serves as a critical indicator of how much precipi-

tation transforms into runoff rather than being absorbed into the soil, evaporated, or transpired by vegetation. H2MV projects

varying runoff coefficient values across different regions. Moderate to high values are anticipated for the Northeast and North-

west of North America, the Amazon basin, much of the northern part of South America, Northern Europe, extensive areas of
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Russia, Southeast Asia, and New Zealand. Conversely, low runoff coefficient values are forecasted for central and southern re-285

gions of North America, specific eastern areas of Brazil, most of the southwestern part of South America, parts of Central Asia,

and Australia (see Fig. 6b). This outcome strongly aligns with global trends identified in a comprehensive study by Wang et al.

(2022), which analyzed data from 23 advanced models within the Coupled Model Intercomparison Project Phase 6 (CMIP6).

This result is derived from model’s constrained estimation of runoff and precipitation that is one of the key meteorological

inputs of the model.290

3.2.3 Transpiration versus evapotranspiration

The ratio of transpiration to evapotranspiration reflects the amount of water transpired by the vegetation relative to the total

water leaving the surface. Transpiration is very important for both understanding water cycle components and the coupling

between carbon and water cycles. Figure 6c reveals that, globally in most places, transpiration is the more dominant process

compared to the other modeled components (interception and soil evaporation) of ET. Specifically, the highest domination of295

transpiration can be seen in northwest and southeast of Canada, most parts of South America (especially the Amazon basin

area), high latitudes of Europe and Asia, and Congo basin in Central Africa. These regions are known to have moderate to high

amount of vegetation with moderate to high annual precipitation patterns. Most of the low values were predicted to be around

arid regions, that are known to have low amount of vegetation. Overall, our findings (mainly spatial patterns) align qualitatively

with reported estimations by Martens et al. (2017), Wei et al. (2017) and Nelson et al. (2024). However, compared to these300

findings, H2MV indicates a more pronounced dominance of transpiration in the Amazon and Congo basins compared to other

regions within their respective continents. Note that this comparison focuses on spatial patterns rather than on magnitudes.

3.2.4 Maximum soil moisture content

The maximum soil moisture content available for plant transpiration, denoted as SMmax (also known as rooting zone water-

storage capacity), represents a crucial parameter in climate modeling, particularly for studying carbon-water cycle processes.305

However, our current grasp of this parameter, especially its spatial variability, remains highly limited due to the lack of direct

observations. Several studies (Wang-Erlandsson et al., 2016; Tian et al., 2019; Stocker et al., 2023), as well as related research

on plant rooting depth (Yang et al., 2016; Fan et al., 2017), have attempted to estimate this parameter. While there are qualitative

agreements among these studies, significant discrepancies exist, likely stemming from diverse methodologies and underlying

assumptions. A noteworthy aspect of our proposed model is its direct learning of SMmax from static inputs (such as land cover310

and soil properties) using neural networks. Globally, H2MV predicts high spatial variability for SMmax (Fig. 6d). The highest

SMmax values are predominantly estimated in South America, Central Africa, Southeast Asia, and the extreme northern and

southern regions of Australia. This observation aligns with the regions known for substantial and seasonal rainfall, abundant

radiation, and extensive vegetation coverage. Conversely, the lowest SMmax values are identified in the high latitudes of the

Northern Hemisphere. Interestingly, there are substantial qualitative agreements, in terms of spatial patterns, between our315

estimations and those reported by Wang-Erlandsson et al. (2016), Tian et al. (2019), and Stocker et al. (2023). For instance,

these studies, along with our own, predict higher values across much of South America, Central Africa, and Southeast Asia.
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Conversely, they estimate significantly lower values for the high latitudes of the Northern Hemisphere. Our estimations are

more closely aligned, in terms of magnitude, with those reported by Stocker et al. (2023). In contrast, both Wang-Erlandsson

et al. (2016) and Tian et al. (2019) report significantly lower values for this parameter. This discrepancy across different models320

highlights the necessity for additional global-scale studies and validation efforts concerning this parameter.

3.2.5 Water storage decomposition

Another critical yet uncertain aspect in hydrological modeling pertains to the contribution of water storages to observed TWS

variability. Figure 6e illustrates the breakdown of modeled daily TWS variability into its components, highlighting their relative

contributions to TWS variability. In regions of very high latitudes in the Northern Hemisphere, SWE emerges as the dominant325

factor influencing TWS variability, a finding consistent with existing literature, including studies by Kraft et al. (2022) and

Trautmann et al. (2022). Conversely, the contribution of GW predominates only in the northwest of South America, a rela-

tively small area in Central Africa (around the Congo basin), and some parts of Southeast Asia. The remainder of terrestrial

land globally is estimated to be primarily influenced by SM variability. This finding closely aligns with previous research,

particularly that of Kraft et al. (2022), which used similar techniques and datasets.330

3.2.6 Baseflow index

The Baseflow Index (BFI), indicating the ratio of baseflow to total runoff, plays a crucial role in understanding the proportion

of streamflow contributed by baseflow which is discharged from groundwater storage. H2MV’s estimations (Fig. 6f) indicate a

significant predominance of baseflow in the central regions of North America, Europe, Western Asia, and the Amazon Basin.

Conversely, the contribution of baseflow is relatively low in other areas. This estimation is qualitatively consistent with the335

findings reported in the studies by Beck et al. (2013) and Beck et al. (2015). These studies’ and our results show higher BFI

values for the mid and high latitudes of North America, the majority of Europe and Western Asia, and regions within South

America, particularly the Amazon basin. However, in contrast to these studies, our estimated BFI values for Central Africa are

significantly lower.

3.3 Equifinality of the intermediate predictions340

Here, we assess the equifinality of H2MV’s predictions regarding water states, as illustrated in Figure 7. Figure 7a displays the

predicted anomalies of each modeled water state across different models (represented by the thickness of the lines that shows

the range of the estimations). Predicted anomaly refers to the predicted state minus the mean of the predicted state. Notably, the

dynamic patterns of all modeled water storages exhibit high robustness, indicating that temporal patterns are neither sensitive

to the random weight initialization of the neural network during training, nor to the different training/validation set splits (Fig.345

7a).

However, upon assessing the means of the trained models, it becomes evident that there is uncertainty regarding the mean

values of the water storages (Fig. 7b), particularly for SM and TWS. It is worth noting that SWE is well constrained, which
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Figure 6. Emerging intermediate global patterns averaged across 10 folds: a) the ratio of evapotranspiration to total net radiation (evaporative

fraction), b) the ratio of runoff to precipitation (runoff coefficient), c) the ratio of transpiration to evapotranspiration, d) predicted maximum

soil moisture capacity (rooting zone water-storage capacity), e) decomposition of terrestrial water storage into snow water equivalent (SWE),

soil moisture (SM) and groundwater storage (GW), f) the ratio of baseflow (Qbase) to the total runoff (Qtotal) (baseflow index).

is expected as it is directly constrained by the observational data in high latitudes. Figure 7c illustrates a positive correlation

between the predicted mean of SM and TWS. The source of this variability of the means of SM and TWS may be caused by the350

uncertainty in estimating the magnitude of SMmax (note that the estimated spatial patterns of SMmax are very robust), which

provides the upper bound of the soil moisture water storage. Therefore, by constraining the estimations of SMmax, we could

potentially improve SM predictions. Given that TWS is the sum of SM, GW, and SWE, and since SWE is already robustly

estimated, constraining SMmax would consequently provide a more robust estimate of GW and TWS. Interestingly, the small

uncertainty observed in the mean value of GW (Fig. 7b) does not appear to be related to either the uncertainty in SM or TWS355

(Fig. 7c). Enhancing H2MV’s representations of the processes that control GW dynamics could improve our representation of

SM and, consequently, TWS. This suggests that by choosing to refine our constraints on either GW or SM—whether through

incorporating more process details or applying data constraints—we could indirectly improve our estimates of the other water

state as well, thus presenting another promising avenue for future work.

The analysis of the equifinality reveals that, overall, the most dominant error component of MSE in H2MV is phase shift360

(covariance error) (Fig. 8). This could be attributed to the fact that most of H2MV constraints operate at a monthly temporal

resolution, whereas H2MV operates at a daily temporal resolution at which the metric was calculated. At the same time, a

phase shift may occur due to missing representation of surface water storage and river routing.

Equifinality metric values for SMmax, SM, and TWS (Fig. 8a), as well as soil and interception evaporation (Fig. 8b),

groundwater recharge, predicted fractions (Fig. 8d), and snow melt (Fig. 8e), are relatively large. In contrast, the remaining365

parameters exhibit relatively small equifinality values, all being smaller than 0.1.
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Figure 7. Predicted water states averaged over testing set across 10 different folds: the thickness of the line show the range of the estimations.

a) Predicted anomalies (state - mean(state)), b) Range of means across folds: the lines show the average mean and the cross-bars show the

maximum and minimum mean values across the folds, c) Predicted means of SM versus TWS: the points are different folds and the line is

the regression line. Colors of the points indicate the values of GW.

GW demonstrates a smaller equifinality value relative to TWS and SM (Fig. 8a), which supports the information depicted

in Fig. 7. Notably, transpiration is predicted more robustly compared to interception and soil evaporation (Fig. 8b), indicating

that equifinality of ET partitioning is primarly between soil and interception evaporation.

Snow accumulation is highly robust, primarily governed by represented processes with limited impact from the NN (due to370

globally constant snow correction) (Fig. 8e).

3.4 Challenges and future perspective

H2MV heavily relies on the quality of both input and observed target data, as they directly influence the results. The satellite-

based observational data used for model optimization can contain measurement errors. For instance, TWS anomaly (GRACE)

(Landerer and Swenson, 2012; Soltani et al., 2021), fAPAR (MODIS) (Xu et al., 2018), and SWE (GLOBSNOW) (Luojus375

et al., 2021) are known to exhibit significant uncertainties. Furthermore, both runoff and ET products are not directly observed

on a global scale, thus are expected to have significant uncertainties (Ghiggi et al., 2019; Jung et al., 2019). The total uncer-

tainty, which includes the uncertainty in the input data, may substantially impact the estimations of the represented processes.

However, it is important to note that hybrid modeling may be less sensitive to the uncertainty in the target data compared to a

purely data-driven approach, such as pure ML, due to the incorporation of process knowledge that governs the predictions to380
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spectively.

some extent. For instance, we calibrate our estimates of ET using the FLUXCOM ET product as a benchmark. Upon comparing

the IAV of our ET estimates with FLUXCOM data, it becomes evident that H2MV tends to overestimate IAV. This discrepancy

is actually plausible, considering that FLUXCOM is known to substantially underestimate ET’s IAV (Jung et al., 2019).

Another challenge arises in balancing the estimation of more uncertain processes with their interpretability. Currently, we

have a limited number of constraints for the modeled hydrological components. Adding more processes to the model without385

incorporating additional data constraints is likely to introduce more equifinality, unless the implementation of the process

requires no or few parameters to calibrate. Despite its apparent simplicity, H2MV represents a relatively high number of

water cycle processes from a hybrid modeling perspective. However, the directly learned uncertain process estimations by

the NN should be interpreted with caution. As a concrete example, we partition ET into transpiration, soil, and interception

evaporation using relatively well-understood processes (e.g., as a function of vegetation and available radiation), along with390

uncertain processes directly learned by the NN. We directly predict three parameters (one for each component of ET), and

theoretically, there could be infinite combinations of these parameters that can lead to the same ET value (equifinality). While

our method to assess equifinality provides valuable insights into the robustness of our estimations, it does not guarantee that
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parameters with very high robustness across 10 different models with different weight initializations (in a 10-fold CV setup)

are not equifinal. This is because we do not explore the weight space to its full extent, and there are many hyperparameters of395

the NN that can impact the robustness of our predictions.

Recent studies have been exploring the integration of process knowledge into machine learning models to better constrain

uncertain processes with slightly different hybrid approaches. For instance, Zhao et al. (2019) developed a hybrid model

that merges a NN with an evapotranspiration model to estimate latent heat flux, ensuring it adheres to the conservation of

energy principle. This model performed better in extrapolating beyond the data range of the training set, compared to a more400

data-driven model. Similarly, ElGhawi et al. (2023) combined NN with a mechanistic latent heat flux model to estimate the

surface and aerodynamic resistances of vegetation. While their model successfully estimated latent heat flux, it faced the

challenge of equifinality. To address this, they applied both theoretical and data constraints. In a comparable effort, Koppa et al.

(2022) utilized a process-based model of terrestrial evaporation alongside NN to estimate transpiration stress, highlighting the

effectiveness of hybrid models in this research domain.405

One of our next objectives is to delve deeper into understanding the uncertainty surrounding the mean estimation of SM,

which appears to correlate with the mean of TWS. Investigating whether refining and constraining SMmax estimation leads to

a more accurate representation of SM, GW and TWS would be particularly intriguing.

Furthermore, our approach enables coupling the hydrological model with the carbon cycle. This coupling could substantially

enhance our understanding of both the water and carbon cycles, as well as their interactions. By incorporating additional410

observational satellite data products related to the carbon cycle, we can further elucidate these complex interactions. Given

that H2MV already represents important carbon cycle-related parameters such as vegetation state, SMmax, and transpiration,

it provides a unique avenue for studying key water-carbon cycle interactions that remain largely uncertain in current research

(Humphrey et al., 2018; Jung et al., 2017; Gentine et al., 2019).

4 Conclusions415

This study delves into the concept of combining machine learning with process knowledge to model the global terrestrial

hydrological cycle. The proposed hybrid model learns physically interpretable parameters, coefficient and variables from input

meteorology and static land features. These learned parameters are then seamlessly integrated into a process layer where

computations of the hydrological cycle occur.

A key innovation of the proposed model lies in its explicit learning of vegetation-related state parameters, which have been420

shown to directly influence the water cycle but are not commonly utilized in hydrological modeling. These parameters include

fAPAR, constrained against satellite observations, and maximum soil moisture capacity, directly learned from the static land

features.

During model evaluation against observations, we find a high overall agreement between the predictions and the observed

data. Additionally, we assess the learned global patterns of several intermediate hydrological parameters and find that these425

patterns align well with current knowledge.
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Given the inherent flexibility of combining a machine learning model with a process-based model, equifinality is a pivotal

challenge. With the quantification of equifinality via CV ensemble uncertainty, we illustrated a pathway to improve hybrid

models and to assess their physical consistency. Given the significant flexibility of neural networks, it is important to assess

the equifinality of hybrid models (Acuña Espinoza et al., 2023). However, the quantification of equifinality in hybrid models430

is often less emphasized in the current literature. We observe that the temporal patterns of the modeled mean global water

storages demonstrate high robustness. However, we note that the predicted means of soil moisture and terrestrial water storage

lack robustness, indicating equifinality issues within the hybrid model. The covariation observed between the predicted means

of soil moisture and terrestrial water storage suggests that refining or constraining SMmax in the model could enhance the

representation of soil moisture, groundwater and terrestrial water storage.435

Code and data availability. The model simulations, aggregated to a monthly resolution, are accessible via DOI: doi.org/10.5281/zenodo.12583615

(Baghirov et al., 2024). The initial release of the complete model code can be accessed at DOI: doi.org/10.5281/zenodo.12608916 (Baghirov,

2024). For the most current version of the code, please visit the public repository at https://github.com/zavud/h2mv. We are open to sharing

the original daily simulations and additional variables (that are not shared) upon request.

Appendix A: Hydrological model440

A1 Snow

Snow accumulation (snowfall) (mm day−1) is a function of air temperature (Tair) in ◦C), and precipitation (prec in mm day−1):

s<s, t>
acc =





prec<s, t> · βsnow, if T<s, t>
air ≤ 0◦C

0,otherwise
(A1)

Here (Eq.

eqrefeq:sacc-a), βsnow is a NN learned parameter (globally constant and 0 < βsnow < 1) that is used to account for the reported445

overcorrection of snow (Decharme and Douville, 2006).

We use a degree-day method to model melting of the snow (mm day−1):

s<s, t>
melt = min

(
max

(
T<s, t>

air , 0
)
· α<s, t>

smelt
, SWE<s, t−1>

)
(A2)

where αsmelt (> 0) is directly learned by NN. The snow storage snow water equivalent (SWE in mm) is updated as follows:

SWE<s, t> = max
(
SWE<s, t−1> + s<s, t>

acc − s<s, t>
melt , 0

)
(A3)450

20

https://doi.org/10.5194/egusphere-2024-2044
Preprint. Discussion started: 18 September 2024
c© Author(s) 2024. CC BY 4.0 License.



A2 Evapotranspiration

Rainfall (mm day−1) is simply the total precipitation depending on the temperature:

rainfall<s, t> =





prec<s, t>, if T<s, t>
air > 0◦C

0,otherwise
(A4)

Interception evaporation (Ei in mm day−1) is modeled as the amount of water that is intercepted by the vegetation and that

will eventually evaporate back to the atmosphere:455

E<s, t>
i = min

(
min

(
rainfall<s, t>, fPAR<s, t> ·α<s, t>

Ei

)
, R<s, t>

n

)
(A5)

where, fAPAR (-) is the predicted daily vegetation state, αEi (> 0) is a direct NN prediction that accounts for uncertain

processes, and Rn is net radiation (mm day−1). To conserve the energy balance, the net radiation is updated as follows:

R<s, t>
n = R<s, t>

n − E<s, t>
i (A6)

Potential evapotranspiration (ETpot in mm day−1) is simply the minimum of the available energy (Rn) and the current soil460

moisture state (SM in mm):

ET<s, t>
pot = min

(
R<s, t>

n , SM<s, t−1>
)

(A7)

Soil evaporation (Es in mm day−1) is modeled as a function of vegetation, potential evapotranspiration (ET), and a NN

learned parameter αEs (0 < αEs < 1):

E<s, t>
s =

(
1 − fPAR<s, t>

)
· ET<s, t>

pot · α<s, t>
Es

(A8)465

Then, SM (mm) is updated as follows:

SM<s, t> = SM<s, t−1> − E<s, t>
s (A9)

Potential ET is updated again, using Eq. (A7). Transpiration (mm day−1) is represented in a similar way to soil evaporation

(see Eq. (A8)):

T<s, t> = fPAR<s, t> · ET<s, t>
pot · α<s, t>

T (A10)470
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where 0 < αT < 1. SM is updated using transpiration:

SM<s, t> = SM<s, t−1> − T<s, t> (A11)

ET (mm day−1) is the sum of transpiration, soil and interception evaporation:

ET<s, t> = E<s, t>
i + E<s, t>

s + T<s, t> (A12)

Note that, ET is constrained directly.475

A3 Soil and groundwater recharge

Water input (win in mm day−1) is defined as the amount of water that arrives on the land surface:

w<s, t>
in = rainfall<s, t> + s<s, t>

melt − E<s, t>
i (A13)

Soil recharge fraction (-) represents the fraction of incoming water that will be infiltrated to the soil:

r<s, t>
soilfraction

= min

(
1,

(
SM<s>

max − SM<s, t>

max
(
w<s, t>

in , ϵ
)

))
· α<s, t>

rsoil
(A14)480

where, SMmax (mm) (> 0) is the maximum amount of water that can be held by the soil which is directly available to plants

via transpiration and αrsoil (0 < αrsoil
< 1) represents uncertain processes. Both of these parameters are directly learned by

NN. ϵ is a small value (10−8) that is used to make the function differentiable under all circumstances, which is important for

stable NN training. Incoming water and soil recharge fraction is used to model soil recharge (mm day−1):

r<s, t>
soil = r<s, t>

soilfraction
· w<s, t>

in (A15)485

Soil recharge infiltrates into the soil:

SM<s, t> = SM<s, t> + r<s, t>
soil (A16)

Groundwater recharge fraction (-) is modeled as a function of soil recharge fraction and a NN learned parameter αrgw

(0 < αrgw < 1):

r<s, t>
gwfraction

=
(
1 − r<s, t>

soilfraction

)
· α<s, t>

rgw
(A17)490
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which is used to model groundwater recharge (mm day−1) defined as the amount of incoming water that will enter the

groundwater:

r<s, t>
gw = r<s, t>

gwfraction
· w<s, t>

in (A18)

A4 Runoff

Soil recharge fraction and the NN learned parameter αrgw is used to model the fraction of surface runoff (-):495

q<s, t>
surffraction

=
(
1 − r<s, t>

soilfraction

)
· (1− α<s, t>

rgw
) (A19)

Surface runoff (mm day−1) refers to the amount of incoming water that becomes runoff:

q<s, t>
surf = q<s, t>

surffraction
· w<s, t>

in (A20)

Baseflow runoff (mm day−1) is defined as the total amount of water that is discharged from the groundwater:

q<s, t>
base = GW<s, t−1> · βgw (A21)500

where GW (mm) is the current groundwater storage and βgw is a global constant that is directly learned by NN and refers to

the baseflow recession.

Total runoff (mm day−1) is the sum of surface runoff and baseflow (and it is directly constrained):

q<s, t>
total = q<s, t>

surf + q<s, t>
base (A22)

A5 Groundwater storage505

Groundwater storage (GW in mm) is updated as a function of the current GW, grundwater recharge, and baseflow as follows:

GW<s, t> = GW<s, t−1> + r<s, t>
gw − q<s, t>

base (A23)

A6 Terrestrial water storage

Terrestrial water storage (TWS in mm) is the sum of all the modeled water storages:

TWS<s, t> = SWE<s, t> + GW<s, t> + SM<s, t> (A24)510

Note that, the modeled anomalies of TWS (not the raw simulations of TWS) is directly constrained.
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Appendix B: Cross validation

Figure B1. Validation sets for 10 different models and a fixed testing set. Note that, during training, each fold has a separate and unique

validation set and all models were tested on the same testing set.

Appendix C: Model evaluation

C1 Performance on SWE, ET, Runoff and fAPAR for major regions

This section shows the model performance with respect to the observation based SWE (Fig. C1) and fAPAR (for major regions)515

(Fig. C4), and ML based model constraints ET (Fig. C2), and Runoff (Fig. C3).
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Figure C1. Predicted SWE versus target across different folds: a) monthly, b) mean seasonal cycle and c) interranual variability
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Figure C2. Predicted ET versus target across different folds: a) monthly, b) mean seasonal cycle and c) interranual variability

0.50

0.75

1.00

1.25

1.50

R
un

of
f (

m
m

/d
ay

)

a) Monthly

−0.2

−0.1

0.0

0.1

0.2

Ja
n 

20
01

Ja
n 

20
02

Ja
n 

20
03

Ja
n 

20
04

Ja
n 

20
05

Ja
n 

20
06

Ja
n 

20
07

Ja
n 

20
08

Ja
n 

20
09

Ja
n 

20
10

Ja
n 

20
11

Ja
n 

20
12

Ja
n 

20
13

Ja
n 

20
14

Ja
n 

20
15

Ja
n 

20
16

Ja
n 

20
17

Ja
n 

20
18

Ja
n 

20
19

Ja
n 

20
20

R
un

of
f (

m
m

/d
ay

)

c) IAV

0.8

1.0

1.2

1.4

Ja
n
Fe

b
M

arApr
M

ayJu
n

Ju
l
AugSepOct

NovDec

b) MSC

target

prediction range (10−CV)

Figure C3. Predicted Runoff versus target across different folds: a) monthly, b) mean seasonal cycle and c) interranual variability.
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Figure C4. Predicted fAPAR (MSC) versus observations for major regions across different folds.

C2 Global model performance

In this section the model performance on the predicted global patterns is demonstrated (Fig. C5).
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Figure C5. Model performance on the global data. Cross bars show the maximum and minimum error, and the lines show the mean error

across 10 folds. The rows are metrics and the columns are model constraints. The dots show the model performance of H2M.
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