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1 Introduction

Conformal supergravities are extensions of Poincaré supergravities that are invariant under
local Weyl transformations and are constructed by gauging the superconformal algebras [1-3].
The associated gauge fields, which include the vielbein and gravitini, are packaged together
with auxiliary fields into the so-called Weyl multiplet. The set of local superconformal trans-
formations closes off-shell on the fields of the Weyl multiplet, that is without the need to
impose equations of motion. In other words closure of supersymmetry is ensured indepen-
dently of the dynamics considered, and as a result conformal supergravities provide a powerful
framework for constructing higher-derivative supersymmetric invariants.

This off-shell formalism can be leveraged to study the higher-derivative structure of
Poincaré supergravities efficiently. This is achieved by considering conformal supergravi-
ties coupled to specific systems of matter multiplets. The latter supply fields that act as
compensators for the additional local Weyl transformations, and in this way ensure the
gauge-equivalence with the Poincaré theories [3, 4]. The standard Poincaré formulations
are recovered by imposing gauge-fixing conditions on the compensators, and subsequently
integrating out the auxiliary fields. This off-shell approach to the construction of higher-
derivative Poincaré invariants played an important role in the study of subleading corrections



to the entropy of various BPS black holes. It was for instance applied in the context of
asymptotically AdS black holes in N = 2 (gauged) supergravities in D = 4 and 5 spacetime
dimensions (see for instance [5-9]). In order to apply such techniques to broader classes of
examples, it is desirable to gather an exhaustive understanding of the multiplet structures of
conformal supergravities in various dimensions.

In this paper, we focus on N = 4 conformal supergravity in four dimensions [10-14] and
N = (2,0) conformal supergravity in six dimensions [15, 16]. They are maximally supersym-
metric theories, whose Weyl multiplets both carry 1284128 off-shell degrees of freedom.! The
D =4, N = 4 multiplet however stands apart from all other maximal Weyl multiplets due
to the fact that it contains scalar fields which parametrize an SU(1,1)/U(1) coset space, and
which are inert under local Weyl transformations. This naturally suggests a relation between
the dimensional reduction of N = (2,0) conformal supergravity on 72 and N = 4 confor-
mal supergravity in four dimensions. We will make this relation explicit at the kinematical
level, and as a by product, construct the so-called dilaton Weyl multiplet of D =4, N =4
conformal supergravity.

Dimensional reductions of conformal supergravities were previously considered in the
context of half-maximal? theories [17]. There, the N = 1 conformal supergravity in five
dimensions was shown to reduce on the circle to N = 2 conformal supergravity in four
dimensions. In this case, the number of off-shell degrees of freedom in the five-dimensional
N = 1 Weyl multiplet is 32 4+ 32, and exceeds that of the four-dimensional N = 2 Weyl
multiplet which only contains 24 + 24. Upon reduction, the five dimensional multiplet was
shown to decompose into the N = 2 Weyl multiplet as well as an off-shell N = 2 vector
multiplet in four dimensions that provides the remaining 848 degrees of freedom. In particular
the four-dimensional vector field and dilaton, which follow from the standard Kaluza—Klein
decomposition of the fliinfbein, sit inside the vector multiplet.

A subtle difference arises when considering the reduction of maximally supersymmetric
theories. In our case, the degrees of freedom in the N = (2,0) Weyl multiplet in six dimensions
already match those of the N = 4 Weyl multiplet in four dimensions. At first sight, one
might then expect these two mutiplets to be directly related by a reduction on 72, just as
for maximally supersymmetric Poincaré theories. However this cannot be the case as the
four-dimensional N = 4 Weyl multiplet does not contain vector fields, nor does it contain
a scalar field that could serve as the dilaton. In other words, there is no scalar which is a
R-symmetry singlet with a non-vanishing Weyl weight. In fact, it is also unclear at this point
how the SU(4) R-symmetry group of the four-dimensional theory emerges from the reduction
of the six-dimensional theory whose R-symmetry group is USp(4).

It turns out that as in the half-maximal case, the dimensional reduction of the N = (2,0)
Weyl multiplet can also be seen to lead to an N = 4 Weyl multiplet and a vector multiplet in

!The off-shell counting corresponds to the number of field components minus the number of gauge trans-
formations.

2We are talking here about conformal supergravities, which possess standard Q-supercharges, as well as
special S-supercharges. By half-maximal theories, we mean those with eight (Q-supercharges.



four dimensions. The crucial difference with the half-maximal case is that the N = 4 vector
multiplet is on-shell, meaning that its fields satisfy certain two-derivative equations of motion
involving the Weyl fields as background fields [18]. As a result, it is no longer possible to
reason based on an off-shell counting of degrees of freedom carried by the sum of the two
multiplets. We will show however that by interpreting the vector multiplet field equations as
constraints for some of the auxiliary Weyl multiplet fields, the remaining set of independent
fields recombine into a single new N = 4 off-shell multiplet which indeed carries 1284128
degrees of freedom. In particular, the vector field and its dual are promoted to off-shell fields
in the process. An important point is that, in order to carry out this procedure, it is first
necessary to impose the following gauge-fixing condition on the N = 4 vector multiplet scalar
#% that transforms in the 6 of SU(4),

i _ Ly
R (L.1)

where QI = Q% denotes the Sp(4, C) invariant tensor. The condition (1.1) breaks the SU(4)
R-symmetry group to USp(4) and the scalar p, which carries a non-vanishing Weyl weight,
is identified with the dilaton. Together with the vectors fields, it becomes part of the new
N = 4 off-shell multiplet which is therefore referred to as the N = 4 dilaton Weyl multiplet.
The latter makes direct contact with the 72 reduction of the six-dimensional N = (2,0)
Weyl multiplet. One of the main results of this paper is to establish the complete non-linear
dictionary between the D = 6 (2,0) Weyl and the D = 4, N = 4 dilaton Weyl multiplet,
based on the comparison of their superconformal transformations rules.

This work presents the first example of a maximally supersymmetric dilaton Weyl multi-
plet. Its construction essentially follows the same logic as the one used to build dilaton Weyl
multiplets in the context of half-maximally supersymmetric theories. The main difference
here is the need to partially break the SU(4) R-symmetry group, by imposing the condition
(1.1) which has no analogue in the half-maximal constructions. The latter were carried out in
D=6,N=(1,0) [19], D=5, N =1 [20], and D = 4, N = 2 [21] conformal supergravities.
Other examples known as hyperdilaton Weyl multiplets, which were engineered using on-shell
hypermultiplets instead of vectors, have also been derived in D = 4 [22], and D = 5,6 [23]
conformal supergravities.

In principle, dilaton Weyl multiplets can allow for new off-shell descriptions of (higher-
derivative) supersymmetric invariants. In D = 4 N = 4 conformal supergravity, the most
general class of off-shell invariants that can be constructed out of the standard Weyl multiplet
fields was derived in [13, 14]. These four-derivative invariants are characterized by an arbitrary
holomorphic function of the coset scalar fields, which in particular appears in front of the
leading Weyl tensor squared term. It would be interesting to understand if there exists other
N = 4 off-shell invariants, which could be constructed using the dilaton Weyl multiplet.

The plan of the paper is as follows. In section 2, we first review the field content of
the N = 4 Weyl and vector multiplet in four dimensions. We then discuss the R-symmetry
gauge-fixing and subsequently construct the dilaton Weyl multiplet. Section 3 presents the



reduction of the six dimensional N = (2,0) Weyl mutiplet on T2, We then derive the non-
linear dictionary that relates its fields to those of the four-dimensional dilaton Weyl multiplet.
We conclude with a short discussion of potential future applications.

2 N = 4 conformal supergravity multiplets in four dimensions

N = 4 conformal supergravity in four spacetime dimensions is built upon the gauging of
the su(2,2[|4) superconformal algebra. Its bosonic subalgebra contains the generators of the
conformal group SU(2,2) and of a chiral SU(4) R-symmetry. The fermionic generators
consist of sixteen ordinary )-supercharges and sixteen special S-supercharges that appear
as the components of two sets of Majorana spinors whose chiral projections transform in the
(anti)fundamental representation of SU(4), labelled here with ¢ = 1,...,4. The chirality
gamma matrix in D = 4 is denoted by .

2.1 N = 4 Weyl multiplet

The gauge fields associated to the local N = 4 superconformal symmetries form, together
with various auxiliary fields, the so-called N = 4 Weyl multiplet. It is an off-shell multiplet,
whose construction was described in detail in [10]. Here, we only summarize the properties
of its various fields in Table 1, and refer to [12] for their supersymmetry transformations.

Among the auxiliary fields of the Weyl multiplet is an SU(1, 1) doublet of complex scalars
®a, With a = 1,2, which plays a distinguished role for the dynamics of the theory (see for
instance [13]). These scalars have a vanishing Weyl weight w = 0, and satisfy the SU(1,1)
invariant constraint

Pad® =1, where ¢* = 0P (p5)*, (2.1)

where 7,3 = diag(1, —1) is the SU(1,1) invariant metric. Importantly, these scalars are also
subject to an additional local chiral U(1) transformation. Their chiral weights are given in
Table 1. This implies that the following SU(1,1) element

42
U= @; (ﬁ ) . (2.2)

transforms under g € SU(1,1) and local U(1) as
U(z) = gU(z) Qz) , (2.3)

with

e_iﬁ(x) 0
Q(a:):( 0 @ ) (2.4)

The scalars ¢, can therefore be seen as coordinates on the coset space SU(1,1)/U(1). We
will therefore refer to them as coset scalars. Note that they are the only fields of the Weyl



Field Gauge symmetry Name/Restrictions SUM4) w ¢
e’ Translations vierbein 1 -1 0
wu"b local Lorentz spin connection 1 0 0
by Dilatations dilatational gauge field 1 0 0
Vi SU(4) SU(4) gauge field; V,,%; =0 15 0 0
Vi = (Vidy)* = =V,
fu®  conformal boosts K-gauge field 1 1 0
1 1 fiel 1
Bosons ay, U(1) U( )agauge 1e d . ) 0 0
90 00" =1,0' =61, ¢*=—¢5 1 0 -1
E” Eij = Eji“ - 10 1 —1
Tap® %EabchCdzJ = —Tuw" 6 1 -1
Tabij = abji
Dijkl Dijkl = igijﬁégklqupqmn 20 2 0
(Dklij)* _ D”kl
D=0
¢ui  S-supersymmetry S-gauge field; . ¢ = ¢p 4 % %
Fermions wﬂi Q-supersymmetry  gravitini; v, 1,° = 1, i —1 % —é
A A=A ; 4 2 T2
Xk Yexk? = xk"s xk? = —xa’ 20 8§ -4
x;7 =0

Table 1. Fields of the N = 4 Weyl multiplet. The last columns denote the Weyl weight w and the
chiral weight c. The former is the eigenvalue under the dilatation operator of the conformal symmetry
while the latter is the eigenvalue under the chiral U(1) appearing in (2.4).

multiplet that transform under SU(1,1). For later purposes, we also define the following
combinations

®=¢'+¢°, p=¢'—¢". (2.5)

As in the pure conformal gravity case (see for instance [24]), not all of the gauge fields
appearing in Table 1 are independent fields. In particular, the gauge fields corresponding
to Lorentz transformations, conformal boosts and S-supersymmetry are expressed in terms
of the others through a set of conventional supercovariant constraints involving the various
curvatures [10, 12, 14]. The gauge field a, associated to the U(1) factor of SU(1,1)/U(1)
is also a dependent field, as is usual in coset space constructions. In the supersymmetry
transformation rules, the scalars ¢, only appear through the SU(1,1) invariant (projection
of the) Maurer—Cartan form P, and its complex conjugate (P,)* = 13“ that describe the
physical sector of the coset space. They read

P, = capd®Dyd® , P, = —e*’$oD,udp, (2.6)

where D), denotes the fully supercovariant derivative which generally includes the connections
for local Lorentz, R-symmetry, dilatation, special conformal transformations, and Q- and S-
supersymmetry as well as the local U(1) symmetry. The SU(1,1) invariant Levi-Civita tensor



12

is defined as €' = 12 = 1. The forms (2.6) satisfy the superconformal generalization of the

Maurer—Cartan equation
1-. iy
D[MPV} = §AZ7[MAi PV] + AZR(Q);W:’ ) (2.7)

and its complex conjugate. The expression of the supercovariant curvature tensor R(Q)u i
associated to @-supersymmetry can be found in [12]. The bar on fermions generally denotes
the Majorana conjugate. It is defined as

Ay = ATe, (2.8)

where ¢ is the (real antisymmetric) charge conjugation matrix. Note also that Table 1 only
displays the fermions of positive chirality. They are related to those of negative chirality
through charge conjugation,

A= (M) =ir%c ()" (2.9)

Throughout the paper we will use a (chiral) notation where in four dimensions complex
conjugation flips the position of the SU(4) indices, turning for instance the 4 of SU(4) into
the conjugate 4.

As mentioned in the introduction, what will be relevant in the relation to six-dimensional
N = (2,0) conformal supergravity is not the standard four-dimensional N = 4 Weyl multiplet
presented here, but a variant that is usually referred to as the dilaton Weyl multiplet. In
order to construct the latter, we will take a cue from the construction of such multiplets
in less supersymmetric cases in six, five and four dimensions [19-21]. There, it is obtained
by coupling a vector multiplet to conformal supergravity, and by subsequently using the
equations of motion of the vector multiplet to trade some of the auxiliary fields of the Weyl
multiplet for fields of the vector multiplet. In particular the dual of the vector field gets
promoted to an independent field in the process, and becomes part of the off-shell dilaton
Weyl multiplet. The procedure for the four-dimensional N = 4 case will be carried out
explicitly in section 2.4.

2.2 N = 4 vector multiplet

The N = 4 vector multiplet in four-dimensional flat space was originally constructed in [25].
When coupled to N = 4 conformal supergravity, its various fields transform under the local
superconformal symmetries described in the beginning of the section. We list the vector
multiplet fields, together with their weights under dilatation and chiral U(1) transformation
in Table 2. Their supersymmetry transformations, which involve the fields of the NV = 4 Weyl
multiplet, are given in [18].

The vector multiplet is an on-shell multiplet, i.e. the superconformal algebra only closes
on its fields modulo their equations of motion. In the following we denote the associated
two-derivative Lagrangian density, which was constructed in [18], by £. This Lagrangian also



Field  Type Properties SUM4) w ¢
A, Boson Vector gauge field 1 0 0
;i Fermion Yty = —; 4 % _%
bij Boson — ¢¥ = (¢;)" = —3 Mgy 6 1 0

Table 2. Fields of the N = 4 vector multiplet.

involves the Weyl mutiplet fields which appear as non-propagating background fields. Here,
we will only recall the field equations of the vector multiplet, as they directly play a role
in the construction of the N = 4 dilaton Weyl multiplet. The equation of motion and the
Bianchi identity for the vector field A, can respectively be written as

Do (G —G=) =0, (2.10)
Dy(FTe — =) =, (2.11)

in terms of the supercovariant field strength F),, and its dual G,,. In tangent space, the
former reads

Fop =2ep ey 0, Ay — [@ @fﬂbﬂ/}i — Pl i + Zzz'[a%}l\jﬁj) + h-C] ; (2.12)
while the dual field strength is defined through the Lagrangian L as
i oL
Gab = Egade(Sch ) (213)

where e denotes the determinant of the vierbein. We use €gpeq = €aped, Where €gpeq 18 the
completely antisymmetric standard Levi—Civita symbol in four dimensions with signature
(—+-++) that satisfies €p123 = 1. The superscripts +(—) appearing in (2.10) and (2.11) denote
the self-dual (anti-selfdual) projection of the field strengths. For an arbitrary antisymmetric
tensor t4,, these projections are defined as

1 1

th == (ta £ =Capeat® ) . (2.14)
2 2

Note that if t,;, is real, complex conjugation implies (t;tb)* = taij. Hence, the field equa-

tion (2.10) and the Bianchi identity (2.11) are purely imaginary. From the expression of the

Lagrangian given in [18], it follows that

2 oL p Y 2
t—li_b = zéf’—"‘ = —ZEFJI; + EA ’Yabrl/}i - gTabij(ﬁj ) (215)
ab

where the scalar combinations ® and ¢ were defined in (2.5). The expression of G, directly
follows from complex conjugation of (2.15). The rigid SU(1,1) transformations that we



discussed earlier leave the combined set of equations (2.10) and (2.11) invariant. Their action
on the field strength and its dual is more conveniently described in terms the SU(1,1) doublet
Fab:a» Whose components read

1 . 1 .
fab;l = 5 (ZGab - Fab) 5 fab;2 = 5 (ZGab + Fab) . (216)

fab'l -Fab'l
N N 1) 2.17
<Jtab;2> g (-Fab;2> ( )

where the action of g € SU(1,1) on the coset scalars is given by (2.3). As a result, the

The transformation reads

following combination of coset scalars and field strengths is manifestly SU(1,1) invariant
Fvab = €a6¢a]:ab;g . (2.18)

The complex conjugate reads (ﬁab)* = ¢“Faba-
Let us now move to the equations of motion for the gaugino v; and the scalar field ¢;;.
For the gaugino we have

1 ~ 1 1 ,
D + 1) F A+ S Byl — Zeiny - Tk
1 . 1 1 _ .
— X" + 6<Z5ijE]kAk + §P¢ijA] — gra¥iAin AT =0, (2.19)
where for any vector v,, we use the notation ¥ = v*v, and for any antisymmetric tensor 4,
we use 7 -t = y®t,. Because A; has positive chirality, the above equation only contains

the projection to the anti-selfdual part F~ of the SU(1,1) invariant (2.18). The scalar field
equation reads

~ 1 ~ 1
O¢ij — (T - F — §5ijlekl - F) + (X — §€ijkz>2mkl¢m)
1 1 - — 1 - _
+ §Dklij¢kl - 6(2¢[iPAﬂ — et PAY) — E(ZAk¢[iEﬂk — eijAmyE™)
1 1 _ 1 = _ 1 _ _
— E(b,-jEklEkl + gqs,-jPaP“ + E@]-(Akmk + AR DAR) + §¢ijAkA’AkAl =0. (2.20)

Note that both (2.19) and (2.20) only depend on the coset scalars via P, and F and are
therefore manifestly SU(1, 1) invariant.

2.3 Gauge fixing the R-symmetry group

Before moving on to the derivation of the dilaton Weyl multiplet, we need to address an
important point related to the SU(4) R-symmetry group of N = 4 conformal supergravity.
As announced in the introduction, we will show in section 2 that the N = 4 dilaton Weyl
multiplet directly arises from the dimensional reduction of the six-dimensional N = (2,0)
Weyl multiplet. Since the six-dimensional R-symmetry is USp(4), we anticipate here that



it will be necessary to break the four-dimensional SU(4) R-symmetry group to its USp(4)
subgroup in order to construct the dilaton Weyl multiplet. Note that this is a feature which
is absent in the constructions of half-maximally supersymmetric dilaton Weyl multiplets [19—
23]. In these cases, the same R-symmetry group is indeed realized on both the standard Weyl
and the dilaton Weyl multiplet.

Let us then now discuss the gauge-fixing of the SU(4) R-symmetry to USp(4). We recall
that USp(4) is given as an intersection of Lie groups as USp(4) = Sp(4,C) N SU(4).> Hence
apart from the invariant tensors e;;5; and (5{ of SU(4), it also has another invariant tensor
;; coming from Sp(4,C) which is an anti-symmetric 4 x 4 matrix that we take as,

;= ( 0252 12x2> ‘ (2.21)

—Lax2 O2x2
Its inverse Q% is defined via the following relation
Q;; QM = §F (2.22)
The SU(4) invariant €;;; and the Sp(4, C) invariant €2;; are related inside USp(4) by
Eijkl = — QiU + Qi Q1 — Q1 (2.23)
rJ;he vector multiplet field ¢*, which transforms in the 6 of SU(4), decomposes into a field
¢ in the 5 of USp(4) and a USp(4) singlet p,
¢U=:$U+-29Up. (2.24)

Hence QW is Q-traceless, i.e Qijchij =0, and p = QUQSU . The reality condition on ¢;; (see
Table 2), and the relation between the USp(4) invariants given in (2.23) imply that gbm
satisfies the same reality condition and that p is real. Let us now gauge fix SU(4) to USp(4)
by setting

$ij = 0. (2.25)

This gauge fixing condition is not preserved by @-supersymmetry transformations, which
therefore have to be appropriately redefined by a compensating SU(4) transformation,

5B (€) = do(€) + Ssuy (k(e);) - (2.26)

The field dependent parameter k‘(e)ij is determined by requiring 5226“’(;05“ = 0. It reads

) 1 . 1
k(e)'; = ;Qlk <E[j1,bk} — §€jklm€l¢)m — Q—trace>

= —;ij <e[iwk] — %aiklméwm — Q—trace> ) (2.27)

~

3 At the level of Lie algebras we also note the isomorphism usp(4) 2 so(5), implying for instance that the
5 representation of USp(4) is real.



and sits in the 5 of USp(4) because of the subtraction of the Q-trace. For any object O;;
carrying a pair of antisymmetric indices, the substraction of the (2-trace is given by

1
Oij — Q-trace = Oij — ZQiijlOkl . (2.28)

The subtraction of the d-trace, which will appear later on, is instead defined for any object
0! ;j carrying a pair of up and down indices as

Oij — 0-trace = Oij - i(ﬁ-Okk- (2:29)

In the following, we will consistently work with the redefined transformations (2.26) and drop
the superscript ‘new’.

Now let us decompose the SU(4) adjoint gauge field V,?; into fields transforming in the
10® 5 of USp(4) as

Vol VF = V@) ylul, (2.30)

Va(ij ) will play the role of the USp(4) gauge field. On the other hand, Va[iﬂ which is in
the 5 of USp(4) should become a supercovariant field. However, due to the compensating
SU(4) transformation in (2.26), the new @Q-supersymmetry transformation of Va[ij I involves
terms proportional to J,e. These non-covariant terms can be absorbed into the following
redefinition of Va[ij ],

X, =y - %k(%)“kaﬂk : (2.31)
where the notation k() denotes the compensating parameter defined in (2.27) in which the
supersymmetry parameter ¢ is replaced by the gravitino ¢%. The redefined field X,“ will be
the one appearing in the dilaton Weyl multiplet as a supercovariant auxiliary field. In the
following, we will then simply use Vi to denote the U Sp(4) gauge field Va(ij ) without causing
confusion. Note finally that the supercovariant derivative of a field decomposes into a new
supercovariant derivative D)V, which is covariant with respect to the new Q)-supersymmetry
and U Sp(4), plus some supercovariant terms that depend on X% . For instance for the gaugino
1; appearing in Table 2, and its complex conjugate 1!, we have

Daib; = DEap; + X 7F1b; Qg (2.32a)
Dbt = DRt — X, SR Q. (2.32b)

In the following sections, only D>V will appear and we will again consistently drop the ‘new’
superscript for convenience.

2.4 N = 4 dilaton Weyl multiplet

Once the SU(4) gauge fixing condition (2.25) has been imposed, the equations of motion
for the vector multiplet that were presented in Section 2.2 decompose according to certain

— 10 —



USp(4) representations. This allows us to interpret these equations as constraints for some
of the components of the auxiliary Weyl multiplet fields which then become composite. The
remaining independent fields, including those of the vector multiplet, are ultimately gathered
into a single new off-shell multiplet that is called the dilaton Weyl multiplet. We describe
this procedure in detail below.

Consider first the auxiliary bosonic field D%}, of the Weyl multiplet which transforms in
the 20’ of SU(4). It decomposes into

Dy =Dy + Q9 Dy — QuQ Q" D,y + Q9 QgD — ga,i 5D, (2.33)

where the fields D% kL D” and D transform in the 14, 5 and 1 of USp(4), respectively, and
satisfy the following identities under complex conjugation

o .. * o 1 o o
(D Y kl> = DMij = Jeijmne P10 pg = QPO Qi Q0 D™ (2.34a)
(D) = —5"H Dy =~ Dy, (2.34D)
P =D, (2.34c)

Let us now rewrite the scalar field equation of motion (2.20) by taking into account the
gauge-fixing condition (2.25). This leads to

1 1

194 0 = Dap XM QutQ1 — 5p Da XM Qi1 + p X5 X Qo Q1
1 7m

ik "X

1 o 5 o 1, - _
+ 5,0 <Dij + EQijD> - 6(2¢[iiz’1\]] eiju VP PAY) — (2Ak¢ — eijpt AP E'™)

-1 - _
— (T - F — ikl TH - F) + (drxty; —

1 _ B _ _
- 4—80 EnEM Q5 + ﬁpPaPa Q5 + E’O Qij (AR DAL + Akﬂ)/\k - 2AkalAm Q)

+ 3—2/) QijAkAlAkAl =0. (235)

We recall that all derivatives now include a covariantization with respect to the new Q-
supersymmetry transformations (2.26) and USp(4). We can now use projections of the above
equation onto the 5 and 1 of USp(4) to respectively eliminate Dw and D. Note that the field
DY ., Simply dropped out in the field equation (2.20) as a result of the gauge-fixing (2.25). It
therefore remains as an independent field of the dilaton Weyl multiplet and we now simply
relabel it as DY Kl

Let us now consider the auxiliary fermion y,” of the Weyl multiplet which transforms
in the 20 of SU(4). It decomposes into the Q-trace (yi) and Q-trace-free (yx¥) parts which
respectively transform in the 4 and 16 of USp(4),

. ST R 1 s
e = X+ 0N+ 0 (2.36)
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In the gauge (2.25), the equation of motion (2.19) for the vector multiplet gaugino 1; takes

the form
Dibs + X700+ <y - FAy + 2B — ~evry - T
) N ek 4'7 7 2 iJ 452]kl7
5 . 1 | 1 T
T ggPXi T éQijpE]kAk — glﬁQi]—pAJ - g’yal/Jin’y AN =0. (2.37)

It can be used to eliminate the -trace part yj from the off-shell multiplet in favor of the
gaugino. Once again, the Q-traceless part y;* remains as an independent field of the dilaton
Weyl multiplet and we again simply relabel it as x,%.

The only equation of motion that is left to be considered is the vector field equation (2.10),
which can be written as

Diy Gy = 0. (2.38)

Following the logic of previous dilaton Weyl multiplet constructions [19-21], we now treat it
as a Bianchi identity for the supercovariant field strength G,,. In other words, we promote
Ggp to an independent field strength that derives from a new gauge field B,. This means
that we now have

Gap = 2¢,/ey)” 0, By, + gravitino terms . (2.39)

The next step is to interpret the equation (2.15) as a constraint that can be used to eliminate
the Q-trace part of the auxiliary field Typ;; (and T,) in favor G;’b (and G;). To proceed, let
us first decompose these auxiliary fields into the 5 (Q-traceless) and 1 (Q-trace) of USp(4)

as follows
. 1 el
Tabij = Tavij + ZQijTab, (2.40a)
Tap? = Tup” + Q9T (2.40b)

The constraint (2.15) and its complex conjugate then lead to

: 2. 1, 4 1.

Th = P [“I’ Gy — oF gy + §A”Yab¢i] =5 |:‘F¢;,Z;a¢a + §AZ7abl/}i:| , (2.41a)
o 2 . * _ * _ 1 — Z 4 C!ﬁ _ 1 e Z

Tab = ; —iP Gab — Fab + §Ai7ab¢ = ; 3 ]:ab;aqbﬁ + §Ai7ab7p ’ (241b)

where the SU(1, 1) doublet Fup.o was defined in (2.16). This allows us to trade-off the off-shell
field Tci for the field strength Gfb. As aresult, the two vector fields A, and B,, are promoted
to off-shell fields, and they both become part of the dilaton Weyl multiplet. In the following,
we will once again relabel the remaining components fabij and j’abij as T,p¥ and Topij-

Let us now introduce the SU(1,1) covariant gauge field A, that is associated with the
field strength Fop... Its components are given by

1 *
A1 = -3 (Ap —iBy) , Az =—(Au1)", (2.42)
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and therefore satisfy (A,.0)* = €apn”7A,n. Under g € SU(1,1), they must transform as

T = I 2.43

in order to be consistent with the transformation (2.17) of Fyp.q. Since SU(1,1) commutes
with supersymmetry, the property (2.43) and the knowledge of the supersymmetry variation
of A, (which can be found in [18]), allows us to directly compute the supersymmetry variation
of B,. The result is presented below in (2.44e). Note that the supersymmetry variation of
B,, can also be extracted from the variation of G, which can itself be computed from the
constraints (2.41). The supercovariance of the Ansatz (2.39) for G, indeed implies that in
its variation, all the terms that contain a spacetime derivative acting on the fields (including
the curvatures) originate from the variation of B,,.

We have now treated all the equations of motion of the vector multiplet as constraints
for some of the components of the auxiliary Weyl mulitplet fields. The remaining set of
independent fields is summarized in Table 3, and defines the off-shell N = 4 dilaton Weyl
multiplet. Its supersymmetry transformations can be directly computed from the supersym-
metry transformations of the standard Weyl and vector multiplets, by taking into account
the SU(4) compensating transformation (2.26) due to the R-symmetry gauge-fixing. The
supersymmetry transformations of the dilaton Weyl multiplet fields then read,

dey, = 'y + huc. (2.44a)
Sy, = 2D, — 2X, FQy e — %’y“b (Tab"j + iﬂiji;) V€ + TR e A
+ k() 0, — k()€ (2.44b)
by, = %Eiqbw- + h.c., (2.44c)
SV =g b @y U QDb %aklmEl(in)k?wZ - %EW@WAIQM
+ %E(i’yuPAij)k — iQk(isj)Sl"T“I’lk €sYabYulln
+ %Qk(isj)SlpskmpEtyazbusf\waA" +h.c., (2.44d)

0 Aua = €aad” (€0hi—208 Y] Qi+ ey, A, QY)

— Pa (Efnﬂ/]i—2p€iwuj9ij+p€i’}’uAjQij) s (2446)
§p = %Q"ﬂ'@-w]— +h.c., (2.44f)
5¢* =N e g, (2.44g)
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Field Gauge symmetry Name/Restrictions USp(4) w ¢
e’ Translations vierbein 1 -1 0
w,ﬁb local Lorentz spin connection 1 0 0
by Dilatations dilatational gauge field 1 0 0
v, USp(4) USp(4) gauge field; Vv, =V, 10 0 0
Vm]' = (VJ])* = Vuleiijl
fu®  conformal boosts K-gauge field 1 1 0
ay, U(1) U(1) gauge field 1 0 0
Bosons
Aa U(1) U(1) gauge fields, SU(1,1) doublet v = 1,2 1 0 0
X, 4 XU = —X,, QX9 =0 5 1 0
Xaij = (Xd')* = = XMy
p p=p 1 1 0
ba ba0* =1, ¢' = ¢7,¢* = —¢% 1 0 -1
El']' Eij = Eji 10 1 -1
Tabij %5adeTcdij = - abij 5 1 -1
Tabij = - abji7 QijTabij =
Dijkl Dijkl = %Eijmngklqup.qmn = QimanQkPququmn 14 2 0
Dy = (DMj)* = Dy
DUy =0, QDY = QMDY =0
¢ui  S-supersymmetry S-gauge field; v, ¢ = dui 4 % %
i . . N [ 11
Fermions Uy Q-supersymmetry gravitini; v, ¢,' = 1, 4 2 3
A Yli = A 4 7 3
Xk Yxx? = xx; i = =yt 16 5 -1
X7 =0, Qjxip? =
¥ Vi = — i 4 5 -3
Table 3. Fields of the N = 4 dilaton Weyl multiplet.
1 pab+ j agi hep 4+ LRde — Ao
0 = — FYavei T — 2Qi(Pp)e + 4pXaijy*€ + pEijQYer + e — Al
L Al — i, 2.44h
+ 5P aAine i(€)x (2.44h)
” ;o1 R, Yoy e\ Lab g k -
0Ai = = 2Pei + Eije’ + e ( T + 7Ty ) 7€ = k()" A, (2.441)
i _ s i gk _ L gl ik L ilk
0X Y =Evax' 4 — EE ExYa NV + 56 YaPA;
L gimfi- Loy i) aed ik L 2 0slis ik -
—af e Team + ZQlchd Y Ya A ¥ + ;Q Exs X, (2.44j)
1 .0 Wy 1 0 1 .
— §€Z]klekDa (; + gs”klemyavbcm Toemi + ZkaTl’t — Q-trace — h.c.,

—2k(e)¥; By (2.44k)
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’ , T 1 1.
0T, =28 R(Q) " + 5 vaxi + i MER Yap Delhy + 1<’ A Yab Am X" Qi

2
L pkligily Ay + Seling, PAT 4+ 2 k() T, — 0 2.441
- 6 € Yab k+§€ Yab + (6) k+Lap — {)-trace, ( . )
y 1
Xk = — 37 V(DT ey, — Y X T, —’y“kalR(V)ab el — 200y Dy X, iy b el)
+ 2X, l[lelk’yabej] 2 ”lm(lﬁEkl)em — & 2L Y (lEk) anem + Dijklel
o 16 Rl ab(T Jln_m T mnj] _Qj}nj’ﬂ— anT J}) 1E Elli ]
lemn ¥ €+ Ty e+4 + ab€ ‘|‘2kl €
R 1 . 1 »
- §€Zﬂmf’%b <Tabkl + —kaT“b+> em + 77 “en (267X — € ) Va A

+ie[l (2AJ]IDAk+AleAJ]) L€ <2AJ xX"ma, A — Akxﬂmgmml)

- }y“be[’(zz‘xﬂwwk — Awya Do) — iv“be”<2fx%xblmﬂmkm + Ay X! Q')

— %EijlmAmgl(EknAn — QPAk) + EEijlmAmgk(ElnAn — QPAl)
1a i c Aj 1a j.c. A 12'7' mA
— 37 'r, My ey — 37 °T Y e Alvely + 56[ AN R Ay
— k() ¢ — 2k(e), xi71 — Q-trace — d-trace, (2.44m)

5Dijkl = — 4€[i¢)(j]k + 4€[in]nQnmekl - 8€[i7axj]m[ananl]n
+ Ehtmn €’ <_ 2fyab'YcAJ b Toy™ = §'YabX]]qupApTabmn =y MIT X1y,

: 1 9 - 1 .
—2 Py 4 gE]]mE"pAp - gEﬂ’U}bAm + 5yabA,,AﬂAPTab m">

+ Eijmnngabkl (2Tab npAm + Tap mnAp) - 2A[i7aAm€j]’Yakal
] _ ) 2 . 1 -
+ b <2P’YabT“bkl A4 gA[kEl]mA]]Am + E’YabPA]]Ak’YabAl>
= 2k(e)l'y Dy + 2(e)!p DY), + hc. — Q-trace — d-trace, (2.44n)

Note that in the above transformation rules, T;Z and y; are still appearing in several places.
These are now composite fields whose expressions in terms of the fundamental fields of the
dilaton Weyl multiplet can be straightforwardly extracted from (2.41) and (2.37). We chose
not to substitute them here for the sake of brevity. Note also that the other composite fields
lo?ij and lo), whose expressions follow from (2.35), simply drop out from the supersymmetry
transformations. The subtraction of the - and d-traces that appear in some the above
transformations were defined in (2.28) and (2.29), while the expression of the compensating
SU(4) transformation parameter k is given by (2.27). Let us also define the the Hermitian
conjugation that appears above. For a generic term with n upper and m lower U Sp(4) indices,
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denoted here schematically by (252;22 ’]" , we have,
11021 01021 itk1 | Oinkn(). . kika---kn\t
I e A QO Qjaty - Lt (D13,72,") (2.45)

where we recall that with our chiral notation (QSZl/;?:l'Z”)T = QSgll,izl}Zn

The SU(1,1) invariant F,;, appearing in the variation (2.44h) was defined in (2.18). It
combines the coset scalars ¢ together with the supercovariant field strength Fu.. The
complete expression of the latter can be determined from the supersymmetry transformation
(2.44e) of the associated gauge field A, and is given by

Fabia = 2€he 0, A0 + €agd” @fﬂbﬂ/}i — pULL i + pPia A Q7 )
+ o <7Ei[a%}¢i — paithp; 27 + PTZ_)fQVb}AjQij) : (2.46)

This is in line with the Ansatz (2.39) for the field strength G, and with the SU(1,1) transfor-
mations (2.17), (2.43) and (2.3). The supersymmetry transformations (2.44) also involve the
supercovariant curvatures R(Q)flb and R(V)q%, which are associated to Q-supersymmetry
and USp(4) R-symmetry. Their expressions can again be deduced from the supersymmetry
transformations of the corresponding gauge fields, and read

R(V)a" = 2eliey 0y, Vi — 2vik vy

(1Y v b]
mo j 7.5 { j 1 03k, s,n 1 il j
+ —w[(aéb}kﬂ”’“ - w[amx( 2 4 ZEklsnEl( QRS 4 6E< "ty M

1

1 { j isln 7 c j
- gw[(a’n,} PAQIF - ZE( Tk Ys[aY d’Yb]AnQ])k

1, _ _ .
+ge(“lpekmpwfﬂ%b}sAmA"QJ 4+ h-C-] : (2.47)
. o 1 N
R(Q),, = 2eliey ;ﬂf) VaPb) — QX[T%}QM - 576d <Tcd” + ZQUTcd> Via¥b);
1 .. - o
+ §Eljkl1/1aj¢bkAl - k(iﬂ[a)ljl/}g} . (2.48)

Note that the dependent S-supersymmetry gauge field ¢, ;, which in particular appears in the
transformations (2.44c) and (2.44d), is determined via the curvature constraint v*R(Q)?, = 0.

To conclude this section, we present the (non-vanishing) S-supersymmetry transforma-
tion, with parameter 1’, of the dilaton Weyl multiplet fields,

5y, = — ' (2.492)
Lo

ob, = — §¢um +h.c., (2.49b)

5Vlfj = — &ﬁnij)k +h.c., (2.49c¢)

by = — 2,o Qimj, (2.494)

60X, = ot — ”’“nk’mwz Q-trace | 249
a 2,0
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g 1 ..

0T,," = — 7™M Mrapy — Q-trace, (2.49g)
1 1 .. 1- o

Ixi = 3 ab”7ab77k - 5{—:”lmEkmm - ZAIWGA[Z%U]] — Q-trace — J-trace . (2.49h)

Note that the SU(4) gauge-fixing condition (2.25) is inert under S-supersymmetry, so that
there is no compensating transformation needed. The equations above follow directly from
the Weyl and vector multiplet expressions with the exception of §X,% for which one has to
use the definition (2.31).

Let us finally point out that the existence of the N = 4 dilaton Weyl multiplet, which only
realizes an USp(4) R-symmetry, might appear in contradiction with Nahm’s classification of
rigid superconformal algebras [26]. The latter indeed always involve an SU(4) R-symmetry
group. Upon closer inspection however, one can show that the rigid limits of the soft super-
conformal algebras® which are realized on dilaton Weyl multiplets lead to Poincaré (rather
than superconformal) superalgebras, and therefore do not conflict with Nahm’s classification.
This was discussed for the case of five-dimensional N = 2 conformal supergravity in [27].

3 Dimensional reduction from six dimensions

In this section, we relate the fields of the four-dimensional dilaton Weyl multiplet to those of
the six-dimensional Weyl multiplet after a KaluzaKlein truncation on 72. Such a truncation
means that all the fields are taken to be independent of the 72 coordinates. The dictionary
between the fields is first established at the linear level by considering the transformations
of the fields under the various bosonic symmetries. In a second subsection, we provide the
complete non-linear relations between the four and six-dimensional fields by matching their
off-shell suspersymmetry transformations.

3.1 Reduction of six-dimensional Weyl multiplet

The six-dimensional N = (2,0) Weyl multiplet is based on the gauging of the superconformal
algebra OSp(8*|4). It is an off-shell multiplet whose detailed construction can be found in
[15]. Similar to the four-dimensional N = 4 Weyl multiplet, it contains the gauge fields
that are associated with the gauge symmetries as well as various auxiliary fields. As usual,
some of the gauge fields are dependent, and can be expressed in terms of the other fields
through supercovariant curvature constraints. The independent fields of the N = (2,0) Weyl
multiplet and their properties are summarized in Table 4. In six dimensions, the R-symmetry
group is USp(4) such that the 7,7 indices still run from 1 to 4. All the bosonic fields are
real, while all the spinors are USp(4) symplectic Majorana spinors that moreover satisfy
definite properties with respect to the six-dimensional chirality matrix I',. We use M, N, ...
and A, B, ... for the six-dimensional spacetime and tangent space indices, respectively. The

4We recall that soft algebras are the ones appearing in (conformal) supergravities theories and for which
the structure constants are field-dependent.
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infinitesimal transformations of the various fields under Q-supersymmetry (with a parameter
¢') and S-supersymmetry (with a parameter '), are given by®

sent = — L& T4y, (3.1a)
Sby = — € buri+ %TZIZTAPMZ ; (3.1b)
5y =Dyé — LT 5 TABCT e — Tyt (3.1¢)
OV = — 420 + EaruR D aq gl (3.14)
6%230 = %é[iFDEFAB(; ﬁ(Q)gE — %ékFABC )A(kij — Q-trace, (3.1e)
0x = _%EMT'ZBC 480 e, — BTMNR(V) py il &) — ﬁﬁijkl é
+ %TZBCFABCﬁk — Q-trace — é-trace, (3.1f)
513ij’kl = 2E[ilAﬁ§Zﬂ’kl + 47’_5[i§\(ﬂ’kl + (ij <> kl) — Q-traces, (3.1g)

where the bar on the supersymmetry parameters denotes the Majorana conjugate (see sub-
section 3.1.3 for the definition). The field qAbz\/[ that appears in (3.1b) is the gauge field
associated with the six-dimensional S-supersymmetry. It is a dependent field which is deter-
mined through the supercovariant curvature constraint I'™ ﬁ(Q)’M ~ = 0, and whose explicit
expression can be found in [15]. The fully supercovariant derivative D M generally includes
the connections for local Lorentz, USp(4) R-symmetry, dilatation, special conformal trans-
formations, and Q- and S-supersymmetry

As mentioned before, the goal of this section is to study the dimensional reduction of the
six-dimensional N = (2,0) Weyl multiplet on the two-dimensional torus.

Note on notation: We use bold hatted symbols for the fields of the six-dimensional
Weyl multiplet and bold symbols for the four-dimensional fields arising after reduction. The
latter will ultimately be related to the fields of the four-dimensional dilaton Weyl multiplet
constructed in Section 2, for which we will use a standard font. Furthermore, in six dimen-
sions, the USp(4) indices are raised and lowered using the invariant tensor €2;;. We have for
instance,

'Z/\’Z]W = Qij{/\’Mj and ;/\’Mi = 17’?\499z (3.2)

Note that in six dimensions we are not using a chiral notation for the fields (unlike in four
dimensions), so that the raising and lowering of indices in this way should not cause confusion.
The reader should therefore keep in mind that the relations (3.2) are not applicable in four
dimensions (i.e. for fields and parameters without a hat).

3.1.1 Reduction of sechsbein

Let us first consider the sechsbein ;4 which plays a central role in the dimensional reduction
on T?. It carries 15 off-shell degrees of freedom, and gives rise, after reduction to four

50ur convention differs from that of [15] by et — —eu?.
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Field Description Restrictions USp(4) w
ey sechsbein 1 -1
'ZLZM gravitini F*'l%\/[ = ’I/L;\/[ 4 —%
‘73\]4 USp(4) gauge field ‘73\]/[ = ‘73\2 10 0
i”ZBC bosonic matter field i”ZBC = _TZB& QUTZBC =0 5 1
anti-self-dual (3.18)
X | fermionic matter field Xe7 = =X QuiXp? =0 16 %
Xp'* =0, Tux, 7 = x,"
D™ | bosonic matter field DM — _p't — _pUtt _ pMt 14 2
;D" = 0DV = 001D =0
BM dilatation gauge field 1 0

Table 4. Fields of the (2,0) Weyl multiplet in siz dimensions. w denotes the Weyl weight while T,
denotes the chirality gamma matriz in siz dimensions. We have suppressed the dependent gauge fields
that are expressed in terms of the fields above through conventional curvature constraints.

dimensions, to three scalar fields, two Kaluza—Klein abelian vector fields, and a vierbein
which respectively carry 3, (3+3), and 5 off-shell degrees of freedom. Among those scalar
fields, the one parametrizing the overall size of internal torus will naturally be related to the
dilaton field of the dilaton Weyl multiplet, while the other two will be related to the coset
scalars.

As is usual in Kaluza—Klein reduction, we first partially use the six-dimensional local
Lorentz invariance to fix the sechsbein into an upper-triangular form. This means that we
have

e =e, en"=0, &’=en"A], &,°=e;’, (3.3)
where A/T denotes the two Kaluza—Klein gauge fields. Here, A = {a =0,1,2,3,a = 4,5} are
tangent space indices, while = {0,1,2,3} and m = {4,5} denote the curved indices for the
four-dimensional spacetime and the internal torus, respectively.

The six-dimensional diffeomorphisms compatible with the isometries of the torus give
rise to four-dimensional diffeomorphisms, U(1)? gauge transformations associated with the
Kaluza—Klein gauge fields, and a rigid GL(2,R) symmetry acting on the internal curved
index of e,,* and AJ'. Note that the third equation in (3.3) disentangles four-dimensional
diffeomorphisms from U(1)? gauge transformations.

We now wish to establish the relations between the fields in (3.3) and those of the four-
dimensional dilaton Weyl multiplet. The first natural identification is e,* = ¢,*. To identify
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the other components of (3.3) with the dilaton Weyl fields, we introduce

1 64é 65é A4
— det(e,?), L= —— A, =) 4
S et(en’) NG <e45 es® B Ai (3.4)

which transform as

s — %s, L— LA™, A, —A2AA, (3.5)
under the rigid GL(2,R) transformations. Here, A € RT parametrizes the rigid scale trans-
formation, while Ae SL(2,R) is a two by two matrix. Upon inspecting the supersymmetry
transformations of the four-dimensional Weyl multiplet (2.44), one can check that they remain
invariant under a rigid rescaling of the fields p, A, and v; with the same weight. Based on
this observation, we identify

p=s"2, (3.6)

which will be consistent with our identification (3.10) of A,., with the Kaluza-Klein gauge
fields A}

The dilaton Weyl multiplet contains the scalars ¢, that parametrize SU(1,1)/U(1) while
those appearing in the torus reduction, i.e. e,,?, naturally parametrize SL(2,R)/SO(2). The
groups SL(2,R) and SU(1, 1) are isomorphic. For any A € SL(2,R), one can find g € SU(1,1)
as g = CAC™!, where C is the Cayley matrix that we choose as

1 1 4
-5 (1) o

Using this Cayley transformation, we can construct an SU(1,1) matrix from the SL(2,R)
matrix L1,
U=cL ¢!, (3.8)

which we identify with the SU(1,1) matrix U parametrized by the coset scalars ¢, of the
dilaton Weyl multiplet (2.2). With this identification, the action of SL(2,R) on L in (3.5)
correctly reproduces the action of SU(1,1) on U in (2.3).° As a result, the scalars ¢, are
identified with the following internal components of the sechsbein

e5§ + 64é + 1'65é - ie4§) s ¢2

¢1

1 1
= WE ( = m (—65é + 64é - 2‘65é — ie4§) . (39)
Consider now the four-dimensional SU(1,1) covariant complex gauge fields A, of the
four-dimensional dilaton Weyl multiplet, which transform under SU(1,1) as in (2.43). Since
we know from (3.5) how the rigid SL(2,R) transformation A acts on A}, and how the rigid

5We have to use L™! since the global symmetry in (2.3) acts from the left on U and from the right on L
in (3.5).
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SU(1,1) transformation g is related to A, we can relate the gauge fields A, of the dilaton
Weyl multiplet with the Kaluza-Klein gauge fields A}}" as

A A}
T = 1
( Aw) C < Ai) : (3.10)

Let us now finally comment on the four-dimensional local symmetries inherited from the

where C is given by (3.7).

six-dimensional Lorentz symmmetry. The transformation parameter BAB decomposes into
(,Bab, B®, B4 = 3). Imposing the gauge fixing condition é,,* = 0 breaks the six-dimensional
Lorentz symmetry to the four-dimensional Lorentz symmetry (with parameter ,Bab) and a
local SO(2) symmetry (with parameter 3). However, the condition é,,” = 0 is not preserved
by Q-supersymmetry and as a result we have to redefine supersymmetry by a compensating
six-dimensional Lorentz transformation. The new supersymmetry transformation then takes
the form

0 (&) = 63 (&) + 0.(8(8)) , (3.11)

where the non-vanishing component of the compensating parameter reads

lzi o .
B'a = e T Wmiea" (3.12)

The local SO(2) transformation acts on the SL(2,R) scalar matrix L™! defined in (3.4) as
L' L 'R with R= < cos 3 Smﬁ) . (3.13)
—sin3 cos 3

Under a Cayley transformation, this translates into the local U(1) transformation that acts
on the SU(1,1) scalar matrix U (2.2) from the right, i.e. as

—iB
U—UQ where Q=CRC = (€ 0 . (3.14)
0 P

Together with (3.8), this illustrates how the Cayley transformation relates the SL(2,R)/SO(2)
coset structure underlying the scalar sector of the sechsbein reduction and the SU(1,1)/U(1)
coset space encountered in (2.3), where we identify 8 = (. It can also be shown that
the dependent U(1) gauge field a, in four dimensions directly descends from the internal
component quﬁ of the six-dimensional spin connection.

3.1.2 Reduction of other bosonic fields

Let us now consider the dimensional reduction of the USp(4) gauge field ‘73{4 of the six-
dimensional Weyl multiplet. We use the standard Kaluza—Klein decomposition,

Vipde" = Vi dah + ViJ (dy™ + ATdat) . (3.15)
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The fields fo and V% respectively transform as vectors and scalars under four-dimensional
diffeomorphisms, and the inclusion of the Kaluza-Klein gauge fields A} in the decomposition
ensures that fo is invariant under the U(1)? gauge symmetry. We may also use the internal
component of the sechsbein (3.3) to define the following scalars

Vi=emVY, (3.16)

They are invariant under the rigid GL(2, R) symmetry, but transform under the local SO(2) =
U(1) originating from the internal part of the Lorentz transformations in six dimensions
discussed at the end of Section 3.1.1. (i.e. those with parameter 3% = 3). Let us then define
the following linear combination of scalar fields,

EV =V} +iV],  Ej=(EY)'=V]-iVy, (3.17)

which respectively carry a weight ¢ = +1 and ¢ = —1 under the local U(1). These weights
motivate the identification of the complex scalar E;; at the linear level with the scalar F;;
of the four-dimensional dilaton Weyl multiplet. On the other hand, the field fo is naturally
related at the linear level to the USp(4) gauge field V,," of the dilaton Weyl multiplet.

The antisymmetric tensor ’Tz e generally decomposes into the following four-dimensional
fields: T , T T

aaby Tepas T c.7 Recall however that the six-dimensional field is anti self-dual,

R ~DEFij
ABC — —EEABCDEF .

(3.18)
Thus, the resulting four-dimensional fields are not going to be independent. Once we dimen-
sionally reduce this duality relation, the algebraically independent components are Tffab and
T

oba> Where the latter satisfies

. 1. .
T = —geabcdabTCdb” : (3.19)

= Toy+iT g5 = +5i€aeass (T“lé“ - z'Tcdéw) ,

By identifying €,pcq45 = €abed, We see that (TZ) éiz’TZ) 5) is (anti) self-dual in four dimensions.
Hence we define the following reduced fields

T =T3, —iToy,  Taiy=(Ta") =T, +iT7,, (3.20)

which will be related at the linear level to the fields T ;{) and Tpy 5 of the dilaton Weyl multiplet.
The field

TY =T, (3.21)

on the other hand will be related at the linear level to X,%. N

Finally, the dimensional reduction of the six-dimensional scalars ﬁw’kl simply leads to
four-dimensional scalars which will be denoted by D%*. These fields will be related at the
linear level to the dilaton Weyl fields D% ,.

"There is no need for Kaluza-Klein redefinitions of the type (3.15) since the field carries tangent space
indices.
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3.1.3 Reduction of spinors

For the dimensional reduction of spinors we first relate the Clifford algebras in six and four
space-time dimensions. We can write a representation of the six-dimensional Clifford algebra
(T') in terms of the four-dimensional Clifford algebra () as follows

re= ("7 0 , = 0 7 , = ,0 U , I, = % 0 , (3.22)
0 ~* Y« 0 v 0 0 —4

where we recall that all underlined indices are flat and define 7, = iv9y1y2~3 so that 72 =
+1 as well as T, = TOLT208T4TS with I'2 = +1. In both four and six dimensions, the
gamma matrices are hermitian except for the anti-hermitian time-like ones 42 and I'2. We
use (— 4+ ...+) signature and a representation such that -, is real.

The spinors in six dimensions transform in the fundamental representation of the R-
symmetry group USp(4) within the superconfomal group OSp(8*[4). Writing an elementary
spinor as 'l,Abi, its (Majorana) conjugate spinor is defined as usual by @Ab’ = ('gAbi)TC' where C is
the six-dimensional charge conjugation matrix satisfying (CT4)T = —CT* in six dimensions.

C = (2 _Oc) (3.23)

in terms of the real, antisymmetric four-dimensional charge conjugation matrix ¢ that satisfies

Our choice is

(ey*)T = +cy*. The six-dimensional charge conjugation matrix satisfies C7 = C. The
charge conjugate of a six-dimensional spinor is given by ('l,Ab’)C = —iQUTC _1('1,Abj )* and this
intertwines the symplectic structure with the Clifford structure. Because of this intertwining,
one can consistently impose the symplectic Majorana condition @Ab’ = (1,Ab’)c In addition to
the USp(4) symplectic Majorana condition one can impose a chirality condition I‘*@Abi = :I:'l,Abi
in six dimensions and we call the corresponding spinors left- (for +) or right-handed (for —).
The total number of real components of a chiral symplectic Majorana spinor is then 16. In
Table 4 we have indicated the chiralities of the spinor fields. Note also that the parameter €' of
six-dimensional Q-supersymmetry is left-handed while the parameter 7j° of S-supersymmetry
is right-handed.

In four dimensions, we have the usual notion of Majorana spinors with four real compo-
nents for which the two chiral components with respect to the chirality matrix v, are related
by complex conjugation. The reduction of a left-handed symplectic Majorana spinor A'L in
six dimensions to four dimensions is then achieved by the formula

P = ( Q:i/fj) : (3.24)

Here, 9 and 1); denote the left-handed and right-handed parts of a four-dimensional Majo-
rana spinor. By slight abuse of notation we use the upper and lower indices to keep track
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of the two chiral projections in four dimensions, i.e. there is a four-dimensional Majorana
spinor " with ¢" = (1 + ~.)n" and 9; = $(1 — 7,)n’. We note that a similar procedure
can be performed for right-handed spinors in six dimensions where the handedness of the
components in the reduction (3.24) are interchanged.

For spinors with multiple USp(4) indices, the construction generalizes. The case of
relevance is the left-handed spinor X7¥ that reduces as

ik
X = X 3.25
X <QliQ]kanxlmn) . ( . )

A vector-spinor, such as the gravitini 7:[\)3\4, can be reduced by simply following the pre-
scription for vector and spinor reductions independently. This extends to other mixed objects
as well. For instance,

With these definitions the compensating transformation 3%, in (3.12) takes the form

1, 1. ,
8% = §€Z7a¢mieam + Eemawjneam . (3.27)
in terms of the reduced spinors.
The four-dimensional components of the reduced gravitini wi will be related to the

gravitini of the dilaton Weyl multiplet T,Z)L. We arrange the internal components according to
ol =l ik, =y iy, (3.28)

Here, as in (3.16), we have taken the tangent space components since they transform in the
same way as the dilaton Weyl fields under U(1) = SO(2) and are invariant under SU(1,1) =
SL(2,R). These fields will be related with the dilaton Weyl fields 1/* and A®.

3.1.4 Summary of the reduction of the six-dimensional Weyl multiplet

The various four-dimensional fields that result from the Kaluza—Klein reduction of the six-
dimensional Weyl multiplet are summarized in Table 5. Note that the dilatational gauge field
BM generally decomposes into the four-dimensional dilatational gauge field b, and two scalars
b,,. In the following, we set the latter to zero using a special conformal transformation along
the internal torus. This implies that the supersymmetry transformations must be redefined
by a field-dependent special conformal transformation in order to maintain this gauge choice.
However, since such a transformations only acts on the field b, itself, it will not play any
role.
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D=6 D=4 defined in

e’ (3.3)
Sechsbein, &y — A} (3.3)
en’ (3.3)
. P! 3.26
Gravitini, 9%, — : ( )
g;, T; (328)
i v (3.15)
USp(4) gauge field, V', — B
E¥ (3.17)
Dilatational gauge field, /I;M — b, see current section
. T (3.20)
Tabc — i
T (3.21)
X1 — XEY (3.25)
DM —s DYk see Section 3.1.2

Table 5. Dimensional reduction of the siz-dimensional (2,0) Weyl multiplet fields. As in Table 4, we
have suppressed the dependent gauge fields. The component b, is not displayed since it is gauge fixed
to zero.

3.2 Supersymmetry and non-linear field redefinitions

The dimensionally reduced fields of the six-dimensional Weyl multiplet and the fields of the
dilaton Weyl multiplet constructed in Section 2 transform in the same representations under
the bosonic symmetries, but they do not yet transform identically under supersymmetry. This
is because the relations between these fields have so far only been established at the linear
order, and that additional non-linear modifications of some of these relations are necessary
to match the supersymmetry transformations.

In addition to these non-linear field redefinitons, we also have to allow for modifications of
the non-linear supersymmetry transformations. We therefore start from the following Ansatz
for the modification of the reduced supersymmetry transformations,

3 (€) — 0q(€) + dusp(ay (A7 (€)) + dyry (A(€)) + s (17" (€)) . (3.29)

where A% (€), A(e) and 7n'(€) are field-dependent gauge parameters that remain to be deter-
mined. We will fix the above Q-supersymmetry modifications and the non-linear field redef-
initions at the same time, by comparing the supersymmetry variations of the dilaton Weyl
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multiplet fields and of the reduced six-dimensional fields that are in the same representations
of the bosonic symmetries.

We start from the assumption that all the fields coming from the sechsbein have the exact
identifications already deduced in Section 3.1.1. That is,

A A
e,*=e,, U=CL'c", p=s'2, ) =¢c| n 3.30

are assumed not to receive non-linear modifications. Moreover, we choose €' = %ei which leads
to the exact gravitini identification 1/12 = 7,[)2 from the supersymmetry transformations (3.1)
and (2.44). This hinges on the fact that the variation of e, is insensitive to the modifications
in (3.29). Because s is also insensitive to the supersymmetry modifications in (3.29), we can
use its variation to derive the relation p~!¢’ = o’. The additional factor of p is consistent
with the Weyl weights 1/2 for o’ and 3/2 for 1.

We then start fixing the field-dependent gauge parameters of the QQ-supersymmetry mod-
ifications in (3.29). The first step is to consider fields that only transform under U (1) and that
are invariant under the other symmetries. The only reduced fields that satisfy these proper-
ties are the scalars e;,?, which have already been identified with the scalars ¢, through the
second relation in (3.30). Their supersymmetry variation therefore allows us to determine
the field-dependent gauge parameters A(€), and also yields the dictionary for the field A;.

The next step is to consider the variation of the expression obtained for the field A;
itself, which is invariant under S-supersymmetry, but transforms under USp(4). Comparing
it with the supersymmetry variation (2.44i) of A;, which is expressed in terms of the dilaton
Weyl fields, allows us to fix the field-dependent USp(4) gauge parameter A% (€) as well as the
dictionary for the fields Té{ and FEj;.

The final parameter to be determined is 7°(€) and at this point we can consider any
field that transforms under S-supersymmetry. We choose the gravitino whose dictionary was
already determined below (3.30). Comparing its supersymmetry variation (2.44b) in dilaton
Weyl variables to the one of 1[)2 obtained from (3.1) then yields 7‘(€), and allows us to extract
the dictionary for the field X,%.

This completes the derivation of all the field-dependent gauge parameters appearing in
(3.29). We give below their expression in terms of the dilaton Weyl fields,

g 1/, . o
AU(E) — _; (E(lw]) + leang(mwn)> , (3.31&)
Ae) = 21[) (L™ " — Q™" Etby) | (3.31b)
i L Sx o9 L1 o XAl iG\ Ok)me. a_s
n (6) = _%w A]Q €s + Z ?ib Ya¥m + Aj’YaA Q2 Q ka’}/ €
1 /1 . 3 s Fie :
+ = (?wmwwm + Am%Am> et — SQis et X, ytek (3.31c)
16 \ p 8 p

where F;, was defined in (2.18).
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Now that the modifications in (3.29) have all been determined, we can derive the rest of
the dictionary between the reduced fields and the dilaton Weyl fields by repeatedly applying
Q-supersymmetry on the previously established dictionary relations. After some lengthy alge-
bra, this procedure unambiguously leads to the following complete list of non-linear relations,
where the reduced fields appear on the right and the dilaton Weyl fields on the left,

¢ =1¢ (3.32a)
n'=n', (3.32Db)
e =e)”, (3.32¢)
=, (3.32d)
p=sz, (3.32¢)
1
01 =5 (€52 + es® +ies* —ies®) (3.32f)
1 . .
o = 575 (—e5é + et —jest — 2645) , (3.32g)
L (3.32h)
p
Az’ _ _QZ]Tj , (3 321)
Eis = —Eis — 6,05 — QimQena ™™ | (3.32))
1 . x
Ag = 7 (A, +iA)), Auo=—(Au1)", (3.32Kk)
1 1
T = §T§£ 4( & Fyper! — Q-trace) (3.321)
w, = —w b, (3.32m)
by =b, (3.32n)
. 1. —mon o L mn - 1. _
a, = —wuﬁ — ZZ Qn G (e ZZ Q Tmyn + gz (Uk’yuak + Tk’y,ﬂ'k) , (3.320)
1 o 1 . . .
Vil = SV, ( Gp)) + Qe p,, ) + (60 + 7)™, (3.32p)
g 3 1 . .
XV =—iTY + 1 (&[”yaam + 7_'[’%7' ) Im — Q-trace, (3.32q)
inj = iXk o ’i’yaUkT iy [ZQ]}SE sk + 1,7ab [z bﬂlQlk _ lT[iEj]sgsk
15 “ 2 8 T, 2
1 o 1 : 1 : 1 o
+ 5630']60[@&'2)}3 ey — &N Ty, T Qe + Eamyaba[lyaij}ka + ZﬁmTkT[ZQﬂm
3 o
+ Zﬁkrmr[lﬁﬂm — Q-trace — d-trace , (3.32r)
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Dl = [_ %Dij,kl _ ikl 4 %Qm[ia_j]xmkl n %Qimana_tX[kanl}t

- 1 . 1 .. 1 o
— Ty e, Q" + ngfb6k7abal — gT;Jb&pv“banP[kQ”q + §Qp[kE” iglg,,

n %Qp[k Bligg o + %Qp[k&ugmﬂq B, + %Qp[k&l]a[igﬂq&paq

T e Qi ii.[i,yaTmQj]mi.[kfyaTnQ”” n %&ig{k&l}Tj _ %&jg[k&ufi

- Qp[le]mQ"[in}q&(an)&paq + %Ei[k&l}rj - %Ej[k&”Ti (3.32s)
— Qp[le]mQ"[iQﬂq&anqu + 2&(mrn)Q"[i7_'j]U[kQ”m + (ij <> kl) — traces] Qrr s .

The right-hand side of the last equation is only antisymmetric in [ij] and [kl]. Note also that
the subtraction of the traces projects it onto the 14 representation of USp(4).

The relations (3.32) provide the complete non-linear dictionary between the fields of the
six-dimensional N = (2,0) Weyl multiplet reduced on 7 and the fields of the four-dimensional
N = 4 dilaton Weyl multiplet. This is one of the main results of the paper. These relations
are easily established at the linear level based on the bosonic transformation properties of
the fields. The non-linear relations are more difficult to derive, and required here a careful
analysis of the supersymmetry transformations.

4 Discussion

In this paper, we have discussed the torus reduction of N = (2,0) conformal supergravity
in six dimensions to N = 4 conformal supergravity in four dimensions. Our analysis of the
reduction was only carried out at the kinematical level. More precisely, we have shown that
the reduction of the six-dimensional N = (2,0) Weyl multiplet leads to a variant of the
N = 4 Weyl multiplet in four dimensions, which is known as the dilaton Weyl multiplet. We
constructed this off-shell multiplet explicitly for the first time, and presented the complete
non-linear dictionary between its component fields and the reduced six-dimensional fields.
The N = 4 dilaton Weyl multiplet can in principle be leveraged to provide new (par-
tially) off-shell descriptions of N = 4 Poincaré supergravity. When using the standard Weyl
multiplet, it was shown in [18] that a system of 6 + n vector multiplets coupled to confor-
mal supergravity is in fact gauge equivalent to Poincaré supergravity coupled to n vector
multiplets. In this case, the scalars and spin-1/2 fields of the extra 6 vector multiplets play
the role of compensators for some of the superconformal local symmetries. The resulting
Poincaré Lagrangian is invariant under rigid SO(6,n) transformations that act linearly on
the 6 + n vector fields (and non-linearly on the scalars). This is part of the larger rigid
SU(1,1) x SO(6,n) duality symmetry of N = 4 Poincaré supergravity, but in this frame the
SU(1,1) factor is only realized at the level of the field equations. It would be interesting
to reconsider the conformal description of N = 4 Poincaré supergravity, by using instead
the dilaton Weyl multiplet as a starting point. Due to the presence of the dilaton which
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can be used to gauge fix the local dilatation symmetry, one expects that fewer compensating
multiplets will be required. Preliminary investigations suggest that five compensating vector
multiplets might be sufficient for obtaining pure Poincaré supergravity. Based on the fact
that SU(1,1) is realized on the doublet of vectors A, in the dilaton Weyl multiplet, one also
expects that the resulting N = 4 Poincaré Lagrangian will be invariant under SU(1,1). In
this way, it therefore seems that one can recover N = 4 Poincaré supergravity in a different
symplectic frame.

The N = 4 dilaton Weyl multiplet could also potentially be used for the construction
of new off-shell invariants of N = 4 conformal supergravity in four dimensions. The most
general class of N = 4 conformal supergravity invariants that only involve the standard
Weyl mulitplet fields was derived in [13, 14]. Their leading term consists of the Weyl tensor
squared multiplied by a holomorphic function of the coset scalars. Since these scalars have
zero Weyl weight, these terms are clearly invariant under local dilatations. For invariants
based on the dilaton Weyl multiplet, powers of the dilaton field could in principle appear in
various terms to ensure that their Weyl weight vanishes. One might then wonder about the
possibility of constructing off-shell invariants that involve more than four derivatives by using
the dilaton Weyl multiplet. In particular, one expects that the dimensional reduction of the
N = (2,0) invariant in six dimensions [16, 28], which starts with a contraction of three Weyl
tensors, should lead upon torus reduction to a six-derivative invariant of N = 4 conformal
supergravity. More generally, it would be interesting to study the construction of conformal
supergravity invariants based on the dilaton Weyl multiplet by using the procedure outlined
n [14]. We leave this for future work.
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