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Modifications to general relativity lead to effects in the spectrum of quasi-normal modes of black
holes. In this paper, we develop a parametrized formalism to describe deviations from general
relativity in the Teukolsky equation, which governs linear perturbations of spinning black holes.
We do this by introducing a correction to the effective potential of the Teukolsky equation in
the form of a 1{r expansion controlled by free parameters. The method assumes that a small
deviation in the effective potential induces a small modification in the spectrum of modes and in
the angular separation constants. We isolate and compute the universal linear contribution to the
quasi-normal mode frequencies and separation constants in a set of coefficients, and test them against
known examples in the literature (massive scalar field, Dudley-Finley equation and higher-derivative
gravity). We make the coefficients publicly available for relevant overtone, angular momentum and
azimuthal numbers of modes and different values of the black hole spin.

I. INTRODUCTION

Gravitational wave astronomy successfully observed
more than one hundred binary black hole (BH) merg-
ers [1]. Such an advancement in the field allows one to
make precision tests of general relativity (GR). In par-
ticular, BH spectroscopy, i.e., the identification of the
infinite tower of quasi-normal modes (QNMs) of which
the signal is composed in the linear post-merger phase
known as the ringdown [2–4], has finally been applied to
tens of events [5–7]. The detection of two modes simul-
taneously, despite being controversial for the first three
observing runs [8–16], is expected to be effective for the
current O4a run and future ones.

Detecting a second mode is a crucial ingredient for
tests of GR. Due to no-hair theorems, the QNM spec-
trum of a Kerr BH depends uniquely on its mass and
spin. If only one mode is detected, this can always be
fitted to a QNM frequency of a Kerr BH with a certain
mass and angular momentum. However, the measure-
ment of any additional modes provides a consistency test
of the Kerr QNM spectrum and hence would allow us
to spot deviations from GR. This clear identification of
possible beyond-GR effects makes BH spectroscopy one
of the most promising ways to test GR.

Currently, ringdown tests employ blind deviations
from GR in the frequencies [7], or agnostic devia-
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tions constructed assuming small-coupling and slow-spin
parametrization [17–19]. On the other hand, theory-
specific tests are limited to a handful of cases [20]. This
is because the computation of QNMs for rotating so-
lutions beyond-GR is incomplete. The main difficul-
ties arise from: absence of analytic background solu-
tion, non-separability of the perturbation equations, ad-
ditional fields coupled to the metric, different boundary
conditions [4]. It turns out that for a vast class of theo-
ries, the first problem can be solved performing a double
simultaneous expansion in the spin and in the coupling
constant of the theory [21–25]. Then, one can choose
whether to study perturbations giving priority to slow-
spin or small coupling. The former has the advantage of
being possible for metric perturbations, for which cou-
plings between different fields are tractable, at the cost
of not being able to predict precisely QNMs at high spins
(which are relevant for astrophysical purposes) [26–32].

On the other hand, by assuming small-coupling for the
perturbations, one can work out a modified Teukolsky
equation, which is, in principle, reliable at any spin [33–
35]. The disadvantage comes from the construction itself
of the Teukolsky equation, which is based on curvature
perturbations, and once one has some perturbations of
perturbations, as in the case outlined here, metric recon-
struction becomes necessary. This feature strongly hin-
ders one from going beyond the first order in the coupling
expansion.

The necessity of having reliable QNMs at high spins
and the fact that observations seem to narrow down the
size of deviations from GR, make the modified Teukol-
sky framework preferable for the study of QNMs beyond
GR. The scope of this paper is to develop a general
formalism for the quick computation of QNMs in the-
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ories which have a perturbative departure from GR. The
framework is based on an assumption similar to one de-
veloped in spherical symmetry [36–39]. The advantage of
this formalism is that it can be used also for the inverse
problem, i.e., if a modification to GR is detected, one
wants to be able to reconstruct the potential, the metric,
or even the action from which the deviation originated
from [38, 40, 41]. In general, this framework opens the
path to the development of a theory-informed description
of QNM agnostic deviations.

The structure of the paper is as follows: we first intro-
duce the modified Teukolsky equation and the formalism
in section II; then we show how to numerically compute
the coefficients with the continued fraction method and
their regime of validity in section III; the formalism has
already a few notable applications, which we use as a
check for our computations in section IV; finally, we out-
line our conclusions in section V. Throughout the pa-
per we work with mostly plus signature for the metric,
and geometric units GN “ c “ 1. We also assume that
the background, unmodified metric is a Kerr BH of mass
M “ 1{2 and spin a. It is worth noting that due to the
choice of units, the spin parameter a ranges between 0
and 1{2.

II. PARAMETRIZED FORMALISM

A. The linear coefficients

Let us start from the radial Teukolsky equation for a
spin s field as [42]

1

∆sRprq

d

dr

“

∆s`1R1prq
‰

` V prq “ 0 , (1)

where the effective potential reads

V prq “ 2is
dK

dr
´ λℓm `

1

∆

ˆ

K2 ´ isK
d∆

dr

˙

, (2)

and we defined

∆ “ r2 ´ r ` a2 , K “ pr2 ` a2qω ´ am , (3)

λℓm “ Bℓm ` a2ω2 ´ 2amω . (4)

It is worth mentioning that the zeros of the function ∆
determine the location of the BH inner and outer hori-
zons, given by

r˘ “
1 ˘

?
1 ´ 4a2

2
. (5)

On the other hand, the angular equation reads [42]

1

Spyq

d

dy

“

p1 ´ y2qS1pyq
‰

` a2ω2y2

´ 2saωy ` Bℓm ` s ´
pm ` syq2

1 ´ y2
“ 0 ,

(6)

where y “ cos θ.
We now assume that for a modified theory of gravity

whose modifications are small with respect to GR the
equation governing radial perturbations is the Teukolsky
radial equation plus a correction to the potential linear
in the coupling constants

1

∆sRprq

d

dr

“

∆s`1R1prq
‰

` V prq ` δV prq “ 0 , (7)

and we assume that the modification is expanded in pow-
ers of r

δV prq “
1

∆

4
ÿ

k“´K

αpkq

ˆ

r

r`

˙k

, (8)

where K is the largest negative coefficient of the power
series and αpkq are dimensionful coefficients we assume
to be small. This assumption is justified by the recent
developments in obtaining modified Teukolsky equations
by assuming small coupling corrections to GR [33–35].

On the other hand, we can also assume that the angu-
lar equation remains unchanged. This is due to the fact
that the spheroidal harmonics are a complete basis of
the 2-sphere angular variables, and it can be shown that
if one forces an angular expansion of the Weyl scalars
in spin-weighted spheroidal harmonics, all the mixing
terms would enter at second order in the coupling con-
stants [35, 43]. Nevertheless, a modification on the QNM
frequencies will induce a modification to the separation
constant Bℓm, hence, we also need to include equation (6)
in our analysis.

If we assume the couplings to be small, we are allowed
to perform a Taylor expansion of QNMs and separation
constants around their GR values [36, 37]. Hence, we can
write

ωnℓm » ω0
nℓm `

ÿ

k

d
pkq

ω,nℓmαpkq ,

Bℓmpaωq » B0
ℓmpaωq `

ÿ

k

d
pkq

B,ℓmαpkq .
(9)

In the following steps, we omit the indices s, n, ℓ,m, a, ω
for clarity. The linear coefficients dω and dB can be iden-
tified as the derivatives of ω and B with respect to the
single coupling α. To compute them, we perform the fol-
lowing steps. In the GR limit, one finds ω and Bℓm as
simultaneous roots of two functions constructed from the
radial and the angular equation

Lr rω,Bℓms “ 0 , Lθ rω,Bℓms “ 0 . (10)

The exact form of these functions depends on the chosen
numerical method. For non-zero modifications, we can
perform a Taylor expansion of the two functions around
α “ 0

Lj |
GR

` α
dLj

dα

ˇ

ˇ

ˇ

ˇ

GR

` Opαq2 “ 0 , (11)
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where j “ rr, θs and we evaluate the derivative around
their GR value ω “ ω0, B “ B0, α “ 0. By requiring
that equations (11) is satisfied at each order in α, and
expanding the derivative by chain rule, we obtain

BLr

Bα
`

BLr

Bω
dω `

BLr

BB
dB

ˇ

ˇ

ˇ

ˇ

GR

“ 0 ,

BLθ

Bω
dω `

BLθ

BB
dB

ˇ

ˇ

ˇ

ˇ

GR

“ 0 ,

(12)

where we identified dω and dB from their definition in
equation (9). By solving the conditions above for dω and
dB , we get

dω “ ´
BLr

Bα

BLθ

BB

ˆ

BLr

Bω

BLθ

BB
´

BLr

BB

BLθ

Bω

˙´1
ˇ

ˇ

ˇ

ˇ

ˇ

GR

,

dB “
BLr

Bα

BLθ

Bω

ˆ

BLr

Bω

BLθ

BB
´

BLr

BB

BLθ

Bω

˙´1
ˇ

ˇ

ˇ

ˇ

ˇ

GR

.

(13)

In section III we show how to numerically define the func-
tions Lj with Leaver’s continued fraction method.

B. Maximum number of independent coefficients

In reference [44], Kimura realised that in the case of
spherically symmetric perturbations, there is always an
ambiguity in defining the modified potential, upon a free
reparametrization of the field. The same reasoning can be
applied to the Teukolsky equation as well. If we perform
the following transformation in equation (7)

Rprq Ñ r1 ` εXprqsRprq ` ε∆Y prqR1prq , (14)

assuming that ε ! 1, then the equation that Rprq solves
is

1

∆sR

d

dr

“

∆s`1R1
‰

` V ` δV ` δV ` δW
R1

R
“ 0 . (15)

By imposing δW “ 0 we uniquely obtain the free function
Xprq as

Xprq “ c `
s

2
∆1Y ´

1

2
∆Y 1 , (16)

which yields the "ambiguous" potential in the form

δV “ ε∆

«

Y 1

˜

`

s2 ´ 1
˘

p∆1q
2

2∆
` 2s ´ 2V ´ 1

¸

` Y

ˆ

sps ` 1q∆1

∆
´ V 1 ´

V∆1

∆

˙

´
1

2
∆Y p3q ´

3∆1Y 2

2

ff

.

(17)

Now, upon suitable choice of the function Y , we can ex-
press δV in the r basis. It turns out that the ansatz

Y “ Yj “ yjpr`{rqj yields

δV “
εyj
∆

5
ÿ

k“´3

rk`A
pkq

j

ˆ

r

r`

˙k´j

, (18)

which implies that j ě 1 since the maximum power of r
in V is r4, and the full expression of A

pkq

j can be found in
appendix A. In general, one can take a linear combination
of the free functions Yj and still get a potential that is
equivalent to the starting one. Each term of this linear
combination contains the free parameter yj , which can
be used to set to 0 one of the terms αpkq in equation (8).
This reasoning allows us to fix the negative limit in the
power expansion to be K “ 3.

It is possible that by choosing a different ansatz for Y
one could further reduce the number of coefficients in the
equation. In fact, for the case of study of higher deriva-
tive gravity that we treat in another publication [45] the
number of independent coefficients reduces to four (be-
ing k “ r´2, 0, 1, 2s) — see also [46]. Although we could
not prove this is a general feature of arbitrary modifica-
tions of the Teukolsky equation, we suspect that it was
possible in that case thanks to the expansion in the spin
assumed for every coefficient. Indeed, we believe that the
ansatz for Y that would reduce the potential to the lowest
number of terms would be, perhaps, a rational function
involving powers of a and r. To date, we could not find
such reduction.

III. COMPUTATION OF THE COEFFICIENTS:
THE CONTINUED FRACTION METHOD

A. Continued fractions for the Teukolsky equation

We start here by recalling the Leaver method to com-
pute the frequencies and the separation constant for a
Kerr spacetime. The first step to find a continued frac-
tion expansion is to assume an ansatz for the wavefunc-
tions. Let us start from the radial equation, where we
assume the following ansatz [47]

Rprq “ f´iσ´spr ´ r´qp´1´2seqr
N
ÿ

n“0

Rnf
n , (19)

where r˘ are the zeros of ∆,

f “
r ´ r`

r ´ r´

, (20)

and we defined p “ q “ iω and

σ “ σGR ”
r`pω ´ ωcq

r` ´ r´

, ωc “
am

r`

, (21)

r˘ “
1

2
p1 ˘ βq , β “

a

1 ´ 4a2 . (22)
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With these definitions, the equation (1) takes the form

N
ÿ

n“0

Rn

ˆ

αr
n´1

f
` βr

n ` γr
n`1f

˙

fn “ 0 , (23)

where the coefficients are

αr
n “ pn ` 1q pn ` 1 ´ s ´ 2iσq (24)

βr
n “ 2np2iσ ` p ` qβ ´ 1q ´ 2n2 ´ 1 ´ s ´ Bℓm

` q
`

a2q ` β ` s
˘

´ 2iσpp ` βq ` iω ´ 1q

´ ppβq ` q ` s ´ 1q (25)
γr
n “ pn ´ p ´ iωq pn ` s ´ p ´ 2iσ ` iωq . (26)

The equation is satisfied when each term proportional to
a power of f vanishes

βr
0R0 ` αr

0R1 “ 0 , (27)
γr
nRn´1 ` βr

nRn ` αr
nRn`1 “ 0 for n ě 1 . (28)

The path for the angular equation is similar. We define
an ansatz to be finite at the regular singular points y “

˘1 [47]

Spyq “ p1 ` yqk1p1 ´ yqk2eaωy
N
ÿ

n“0

Snp1 ` yqn , (29)

where k1 “ |m´ s|{2 and k2 “ |m` s|{2. We can obtain
a similar recurrence relation by inserting this ansatz into
equation (6), which, with an analogous reshuffling, reads

βθ
0S0 ` αθ

0S1 “ 0 , (30)

γθ
nSn´1 ` βθ

nSn ` αθ
nSn`1 “ 0 for n ě 1 , (31)

where the coefficients are

αθ
n “ ´ 2pn ` 1q pn ` 1 ` 2k1q , (32)

βθ
n “npn ´ 1q ` 2npk1 ` k2 ` 1 ´ 2aωq

´ 2aωp2k1 ` s ` 1q ` pk1 ` k2qpk1 ` k2 ` 1q

´ a2ω2 ´ sps ` 1q ´ Bℓm , (33)

γθ
n “ 2aωpn ` k1 ` k2 ` sq . (34)

To invert the relation we can define the ladder opera-
tors which have the following property Rn`1 “ ´Λr

nRn

and Sn`1 “ ´Λθ
nSn as (the superscript r{θ is omitted for

clarity)

Λn “
γn`1

βn`1 ´ αn`1Λn`1
. (35)

By initializing ΛN according to the Nollert expansion (ex-
plained in detail in appendix B), the equations one needs
to solve simultaneously to obtain the eigenfrequency ω
and the separation constant Bℓm are

Lr “ Λr
1α

r
0 ´ βr

0 “ 0 , (36)

Lθ “ Λθ
1α

θ
0 ´ βθ

0 “ 0 , (37)

which are nothing but (27) and (30).

B. Continued fraction beyond Teukolsky

We now turn our attention to the modified Teukolsky
equation. It is always possible to bring equation (8) into
the following form1

δV prq “
Ap0q

∆
`

Ap1q

r`pr ´ r´q
`

1

r2`

2
ÿ

k“0

rαpkq

ˆ

r

r`

˙k

`
1

∆

K
ÿ

k“1

αp´kq
´r`

r

¯k

,

(38)

where Ap0q, Ap1q and rαpkq are constants that can be ob-
tained from the constants αpkq appearing in equation (8),
as explained in appendix C. First of all, we notice that
the terms multiplied by 1{∆ modify the behaviour of the
equation at the horizon. In order to take into account of
these additional terms, we need to modify the definition
of the exponent σ appearing in the ansatz (19). By re-
questing that the solution is regular at the horizon, we
must replace the value of σ into

σ “
is

2
`

g

f

f

e

ˆ

σGR ´
is

2

˙2

`
1

β2

4
ÿ

k“´K

αpkq , (39)

where we took the positive sign of the square root in order
to obtain the correct GR limit. On the other hand, the
terms rαp1q and rαp2q modify the behaviour at infinity of
the equation. This leads to a modification of the values
of p and q into

q “ ˘

d

´
rαp2q

r4`
´ ω2 , (40)

p “ ´
r` rαp1q ` rαp2q ´ 2r4`

`

qs ´ isω ´ ω2
˘

2qr4`
, (41)

where the sign of q is chosen such that Repqq ą 0. This
asymptotic behaviour is the reason why we truncate the
series in equation (8) at k “ 4. By repeating the steps
done for the GR case, we obtain a modified version of
equation (23)

N
ÿ

n“0

Rn

«

αbg
n´1

f
` βbg

n ` γbg
n`1f

`
1

β2

p1 ´ fq2

f

K
ÿ

k“1

αp´kq

ˆ

1 ´ f

1 ´ ηf

˙k
ff

fn “ 0 ,

(42)

1 In section II B we showed that K “ 3, but the following anal-
ysis works, in principle, for any value of K, hence we keep it
unspecified.
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where η “ r´{r` and

αbg
n “αr

n ´
1

β2

K
ÿ

k“1

αp´kq , (43)

βbg
n “βr

n ´ 2 pσGR ´ σq pσGR ` σ ´ ωq ,

´ 2
Ap0q

β2
`

Ap1q

r`β
`

rαp0q

r2`
(44)

γbg
n “ γr

n ` 2i pσGR ´ σq ps ` iωq

´
1

β2

K
ÿ

k“1

αp´kq ´
Ap1q

r`β
, (45)

and we used the fact that

∆ “ β2 f

p1 ´ fq2
, r ´ r´ “

β

1 ´ f
. (46)

If we fix a single modification k, we can get rid of the
rational behaviour in f by multiplying the equation by
p1 ´ ηfqk, obtaining the following expression

N
ÿ

n“0

Rn

«

ˆ

αbg
n´1

f
` βbg

n ` γbg
n`1f

˙

p1 ´ ηfq
k

`
αp´kq

β2

p1 ´ fqk`2

f

ff

fn “ 0 .

(47)

We can figure out the coefficient relation (equivalent to
that of equation (28)), which at a given n takes the form

k`1
ÿ

j“´1

´

rγn,j´1 ` rβn,j ` rαn,j`1

¯

Rn´j “ 0 . (48)

The coefficients appearing in the relation are given by

rαn,j “ p´ηq
j

ˆ

k

j

˙

αbg
n´j ` p´1qj

ˆ

k ` 2

j

˙

αp´kq

β2
, (49)

rβn,j “ p´ηqj
ˆ

k

j

˙

βbg
n´j , (50)

rγn,j “ p´ηq
j

ˆ

k

j

˙

γbg
n´j . (51)

We notice that, from the definition of the binomial, rαn,j

is non-vanishing for 0 ď j ď k ` 2, while rβn,j and rγn,j
are non-zero for 0 ď j ď k. Now that we have a k ` 3
terms relation, we can perform a Gaussian elimination to
reduce it to a three-terms relation (details can be found
in the appendix of [38]). Once the three-terms relation
is found, one can re-initialize the ladder operator Λr

n and
obtain the modified frequency and separation constant
from equations (36)–(37).

C. Numerical computation of the coefficients

In the previous two sections we explained how to ob-
tain the functions Lr pω,B, αq and Lθ pω,Bq. To com-
pute the coefficients dω and dB as given in equation (13),

we evaluate the derivatives numerically with a 4-points
centered stencil. For each pair of coefficients, we initial-
ize the ladder operators ΛN to some arbitrary low integer
N , and then increase it by one until the simultaneous rel-
ative change in dω and dB is smaller than a given toler-
ance (which we chose to be 10´7). We computed numer-
ically all the coefficients for the following values s “ ´2,
n “ r0, 2s, ℓ “ r2, 4s, m “ r´ℓ, ℓs, k “ r´3, 4s in a uni-
form grid in a “ r0, 0.495s with spacing δa “ 0.005. The
full list of coefficients is available in a public git folder [?
].

In figure 1 we show the results from this computation
for the real and imaginary parts of the d

pkq
ω coefficients

for s “ ´2, n “ 0, ℓ “ 2, m “ r´2, 2s for values of
k “ r´3, 4s and of the spin a comprised between 0 and
0.45, as well as the real and the imaginary part of dpkq

B
for the same n, ℓ,m and k “ r´1, 2s.

To directly apply our formalism to further studies, e.g.,
ringdown analysis of non-linear computations or data
analysis, we also provide a python code and a jupyter
notebook with some examples [48]. It allows one to com-
pute the QNMs and the separation constants as function
of n, ℓ,m, a and αpkq and can thus, in principle, be effi-
ciently integrated in commonly used code infrastructure.
The code also allows one to access some of the earlier
results for the parametrized QNM framework for modi-
fications to the Regge-Wheeler and Zerilli potentials, for
which coefficients beyond the fundamental mode have
been computed in reference [38]. The GR values for the
QNMs have been taken from reference [3, 49]. For more
details about how the code is structured and how it can
be used, we refer to the provided tutorial.

In principle, one should be able to compare the co-
efficients for a “ 0 with those computed in [36, 38].
However, we stress that for a “ 0, equation (7) re-
duces to the non-spinning limit of the Bardeen-Press
equation [50], whereas the formalism of [36, 38] was de-
veloped for the Regge-Wheeler and the Zerilli equation.
The transformation between the Bardeen-Press potential
and the Regge-Wheeler/Zerilli potentials was obtained
by Chandrasekhar [51], but generalizing this to the case
of the modified potential with generic αpkq couplings is
non-trivial.

D. Linearized regime of validity

The framework we developed is motivated by the as-
sumption that any modification of gravity produces only
slight deviations from GR in astrophysical observables.
In this section, we expand on the regime of validity of
the formalism, by providing a quantitative assessment of
the accuracy of such approach. It is worth noting that
we can only asses the error made by restricting to linear
corrections to the frequencies, as defined in equation (9)
and not taking into account higher-order corrections to
the potential, which are beyond the scope of this paper.
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FIG. 1. In the top panel we show the real and the imaginary part of dω for n “ 0, ℓ “ 2, m “ r´2, 2s, k “ r´3, 4s and values
of the spin from a “ 0 to a “ 0.45, and each point is on a step of δa “ 0.005. The inset focuses around the coefficients with
k “ r´3, 0s. In the bottom panel we show the real and the imaginary part of dB for n “ 0, ℓ “ 2, m “ r´2, 2s, k “ r´1, 2s

and same values of the spin. The inset focuses around the coefficients with m ď 0 and k “ r´1, 0s. In both plots the black dot
signals the coefficient value for a “ 0.

First of all, we give a heuristic motivation on the max-
imum size of the coefficients, by requesting that the per-
turbation equation is not strongly modified at the bound-
aries of our dominion and that ω » Op1q. At r Ñ 8, we
have seen from equations (40) and (41) that the only co-
efficients modifying the asymptotic structure of the po-
tential are αp3q and αp4q. With some simple algebra, we

can infer

αp3q À 1 , αp4q À 1 . (52)

On the other hand, the modifications in the potential af-
fect the near-horizon expansion as in equation (39). The
condition is such that the sum of coefficients must behave
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FIG. 2. We plot the threshold values α
pkq
˚ against the spin for different values of k. With α

pkq
˚ , we identify the limit value of a

coupling at which an error of 1% the a linear and a non-linear approximation is obtained. The plot uses as non-linear estimates
the full continued fraction results. The error is evaluated for the n “ 0, ℓ “ m “ 2 mode and different values of k and of the
spin a. The black dashed lines correspond to the estimate (53)

as

ÿ

k

αpkq À

ˇ

ˇ

ˇ

ˇ

2β2σGR

ˆ

σGR ´
is

2

˙
ˇ

ˇ

ˇ

ˇ

. (53)

It is worth noting that when the superradiant condition
ω “ ωc is activated, one has σGR “ 0, and we expect
that the formalism is valid only if the sum of the αpkq is
approximately 0.

In general, however, each power of k affects in a differ-
ent way the effective potential. In order to have a more
quantitative estimate of the allowed regime of validity,
we perform two separate analysis. First, we compare the
QNM frequencies computed with the linear approxima-
tion against those obtained with a full continued-fraction
method discussed above. We estimated the error on the
frequencies as

∆ω ”

d

ˆ

∆ωR

ωR

˙2

`

ˆ

∆ωI

ωI

˙2

, (54)

where ωR,I are respectively the real and imaginary parts
of the QNM. We computed the error for several real
positive and negative values of the couplings αpkq and
extracted the threshold values α

pkq
˚ at which the error

reaches 1%. The results are represented in figure 2 for
the mode n “ 0, ℓ “ m “ 2, for selected values of the
spins between a “ 0 and a “ 0.45 and for k “ r´2, 4s.

It can be seen that there is a complicated dependence
of the thresholds on the type of modification we introduce
in the potential. However, a main qualitative feature can
be read off, i.e. that, for any modification, the thresh-
old tends to get smaller for higher spins. The physical
interpretation of that, is that, for a given beyond-GR ef-
fect in the modified Teukolsky equation, rotation tends
to exacerbate the deviation of the linear approximation

with respect to the true values of the QNMs. Bearing
this caveat in mind, we will still show in the next section
that the linear approximation provides very good results
in a couple of known models of perturbation of rotating
BHs with deviations from Kerr, also for high spin.

Since the computation of QNMs with the continued
fraction method is not immediate nor straightforward to
implement, we want to provide a quick estimate for the
errors of the single-k contributions. In this respect, we
compute the diagonal quadratic corrections, as explained
in appendix D. We checked the estimate α

pkq
˚ by comput-

ing the error ∆ω assuming that the non-linear frequen-
cies are obtained including quadratic coefficients. By
a qualitative comparison, the quadratic estimate works
well to capture the error except for k “ 3, and partially
for k “ 4. Even though it is not as precise as the full
non-linear comparison, the quadratic coefficients can be
used as a quick way to understand what threshold value
to take for the couplings.

Lastly, we want to stress that the thresholds that we
provided in this section, are referred to the contribution
of a single modification. Hence, it could be that, depend-
ing on the values of the coefficients, the combination of
multiple k would need larger or smaller threshold values.
This means that for a theory-specific case, the bounds on
αpkq might differ from what we inferred in this section,
and need to be addressed case-by-case.

IV. APPLICATIONS

A. Massive scalar perturbations

The first example that we provide to test our formalism
is for the computation of the QNMs of a massive scalar
field, a case extensively studied in the literature [52–54].
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FIG. 3. Relative difference for the real part (solid line) and
imaginary part (dashed line) of the fundamental ℓ “ m “ 2
mode for a massive scalar perturbation computed with the
linear approximation against the non-linear results of [54].

The radial and angular perturbation equations for a mas-
sive scalar field (s “ 0) with mass µ are

d

dr

“

∆R1prq
‰

`

ˆ

K2

∆
´ λℓm ´ µ2r2

˙

Rprq “ 0 , (55)

d

dy

“`

1 ´ y2
˘

S1pyq
‰

`

„

a2
`

ω2 ´ µ2
˘

y2 ` Bℓm ´
m2

1 ´ y2

ȷ

Spyq “ 0 .

(56)

First of all, we bring the angular equation into the form
of equation (6) by transforming ω Ñ ω `

µ2

2ω . Then,
by assuming µ ! 1, the radial equation is automatically
brought in the form of (7), with the only non-zero αpkq

being

αp1q “ µ2ar`

ˆ

a ´
m

ω0

˙

, αp3q “ µ2r3` , (57)

where ω0 is the unperturbed Kerr frequency. The effect
of the mass on the frequency at linear order in µ2 is given
by

ωL “ ω0 `
µ2

2ω0
` dp1qα

p1q ` dp3qα
p3q . (58)

In figure 3 we show the difference δω “ |ωL´ωNL| between
the linear results in (58) and the nonlinear QNMs ωNL

computed in [54] for ℓ “ m “ 2 modes.

B. The Dudley-Finley equation

As a second example, we would like to test our formal-
ism against gravitational perturbation of a Kerr-Newman
(KN) BH in the limit of small charge, since the QNMs for
a generic electric charge Q have been computed numeri-
cally in [55] and fits are available in [20]. Unfortunately,
the KN perturbation equation is not explicitly separa-
ble, not even in the limit of small charge [56] in which

at least electromagnetic and gravitational perturbations
decouple. One could apply the algorithm of [33–35] to
obtain a modified Teukolsky operator for the KN solu-
tion, but it goes beyond the scopes of this paper. For the
sake of testing the method, we can restrict ourselves to
the Dudley-Finley (DF) equation, a proxy equation for
the perturbations of the Kerr-Newman metric [57–59].
The DF equation is obtained by taking equation (1) and
performing the following substitution

∆ Ñ ∆ ` Q2 . (59)

We can then rescale the equation into the form (7) by
assuming that Q ! 1{2 and by defining a new spin pa-
rameter

sa “ a `
Q2

2a
, (60)

such that sa2 » a2 ` Q2. Retaining only the terms
quadratic in Q, we can see that the only non-zero αpkq

terms that contribute to the equation (8) are

αp0q “ Q2

„

is

2sa
pm ´ 2sasω0q ´ pm ´ sasω0q2

ȷ

, (61)

αp1q “ Q2r`

„

sω0
m ´ saω0

sa
´

is

sa
pm ´ 2sasω0q

ȷ

, (62)

αp2q “ ´Q2r2`sω2
0 , (63)

where sω0 is the Kerr frequency evaluated at spin sa. The
DF linear frequencies at spin a are obtained by

ωL “ sω0 `

2
ÿ

k“0

αpkqdpkq . (64)

In Figure 4 we show the real and imaginary part of the
absolute difference δω “ |ωL ´ωNL| between the linear re-
sults in (64) and the nonlinear QNMs ωNL computed via
the Leaver method in [59], for various spins and different
values of the electric charge. We make the comparison
with ℓ “ 2 modes, with all values of m “ r´2, 2s, for the
fundamental and first two overtones. The plot clearly
shows that the discrepancy between the linearized QNMs
and the full non-linear results scales with the charge, and
the approximation remains valid for all the different val-
ues of pn, ℓ,mq surveyed.

Finally, we comment on the fact that the errors grow
for small values of the spin. This is due to the fact that
in order to bring the equation in the form of (7), we
performed the transformation (60), which brings a term
1{a to the denominator when m ‰ 0. In other words, this
transformation is valid as long as |Q| ! |a|. Nevertheless,
the smallness of the universal coefficients dpkq is such that
the combination in frequency (64) is finite and faithful to
the non-linear value.

C. Higher derivative gravity

Now we want to check the prediction of QNMs in
higher derivative gravity using the parametrized method
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FIG. 4. Difference between the real (solid lines) and imaginary (dashed lines) part of the Dudley-Finley QNMs computed
either with the linear perturbative approach or the full continued fraction method. We show results for n “ 0 (left panels),
n “ 1 (central panels) and n “ 2 (right panels), ℓ “ 2, m “ r´2, 2s (bottom to top panels) for different values of the spin
and of the electric charge. Note that the three curves have different endpoints, as for a given Q the maximum value of a is
amax “ 1

2

a

1 ´ 4Q2

against the results presented in [46]. In a companion
paper [45], focused on the analysis of QNMs in higher-
derivative gravity, we show how to reduce the radial
perturbation equation to the form of equation (7), with
the only non-vanishing values of αpkq being k “ kHD “

r´2, 0, 1, 2s

δV ˘ “ λ
ÿ

kPkHD

α
pkq

˘

ˆ

r

r`

˙k

, (65)

where the ˘ refers to the polarization of the perturbation
and we collected out λ, the normalized coupling constant

of the theory.2 From this, we can compute the frequencies
deviations, normalized by the coupling constant λ

δω˘ “
ω˘ ´ ωKerr

λ
“

ÿ

kPkHD

α
pkq

˘ dpkq , (66)

for each parity, and each realization of the theory. In fig-
ure 5, we compare our results against the fits δωfit given

2 cfr. equation (30) of [45], for which αpkq “ Apkqrk`, and the
coupling constant has been previously factorized out. Here we
use λ to refer to the coupling constant, to avoid misunderstanding
with the αq used in [45].
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FIG. 5. Real and imaginary part of the absolute difference
between the fits of [46] and the frequencies computed with the
parametrized formalism for the ˘ polarizations of even cubic
modes and the ` polarization of the odd cubic mode

in [46]. We truncate the analysis at spin a “ 0.35, since
the fits are valid only up to this value. The plot shows
remarkable agreement between the corrections computed
with two different methods, strengthening the validity of
the parametrized formalism. In figure 5 we limited to
show polar and axial, ℓ “ m “ 2 values for the even-
parity cubic theory, labelled as δω˘

even, as well as polar,
ℓ “ m “ 2 values for the odd-parity cubic theory, la-
belled as δω`

odd. Details on the definition of these modes
can be found in [46] and in the companion paper where
we perform an extensive study of QNMs of rotating BHs
in higher derivative gravity [45].

V. CONCLUSIONS

In this paper we have shown how to connect small de-
viations parametrized by powers of the radial coordinate
r in the Teukolsky equation to small deviations in the
eigenfrequencies and in the separation constants of mod-
ified Kerr BHs. We proved that for each value of n, ℓ,m
there are up to nine independent coefficients in the ra-
dial parametrization, but for specific cases they could be
less. We presented a robust method to compute the co-
efficients that control the linear corrections to the QNM
frequencies and separation constants through a general-
ization of Leaver’s continued fractions, and used it to
compute them for n “ r0, 2s, ℓ “ r2, 4s, m “ r´ℓ, ℓs and

k “ r´3, 4s in a range of spins between 0 and 0.495.3
These results are available online in a public git reposi-
tory [48], together with a python code and a jupyter
notebook to compute the QNMs and separation con-
stants. There we also provide a tutorial demonstrating
how to use the code, which can in principle be applied
to compute QNMs with arbitrary n, l, m, k and angular
momentum besides those we computed explicitly here.

We checked the quality of the predictions against three
cases known in the literature: perturbations of a massive
scalar field around Kerr, the Dudley-Finley equation and
the QNMs of BHs in higher-derivative gravity. For all the
three cases the frequencies predicted by the formalism
show great agreement with respect to the results in the
literature.

These coefficients will be particularly useful for the
computation of QNMs of rotating BHs in alternative the-
ories of gravity for which a modified Teukolsky equa-
tion is obtained, in the spirit of the method developed
in [33–35]. So far, this method has been successfully ap-
plied to higher-derivative gravity [46], but other theories
like scalar-Gauss-Bonnet gravity and dynamical-Chern-
Simons gravity [60] are good candidates for this compu-
tation. In order to study those cases, it would be inter-
esting to generalize our parametrized formalism by in-
cluding couplings between the Teukolsky equation and a
scalar field, analogous to the analysis of [37] in the case
of static BHs.

The modified Teukolsky approach of [33–35] is cur-
rently limited by the fact that metric reconstruction is
only available for GR, meaning that it is not yet possi-
ble to extend the method beyond first order in the cou-
pling. For this reason, we did not explore further the
quadratic coefficients as it was done in the non-rotating
case [37, 38], and we limited the computation of the di-
agonal ones just to have a quick estimate of the error of
the method itself.

Let us also remark that a different approach to study
beyond-GR QNMs based on spectral methods has re-
cently been introduced and successfully demonstrated for
a wide range of spins in Refs. [61–65]. These meth-
ods have the advantage of being more flexible, but on
the other hand, they have a much higher computational
complexity and cost than the standard perturbative ap-
proaches. In this regard, the results of our method ap-
plied to specific theories may be useful to validate the
spectral approaches.

The most intriguing open problem from our analysis is
whether one can find a better way to exploit the poten-
tial ambiguity, as done in section II B. With the choice we
made, we could reduce the number of independent coeffi-
cients αpkq to 8. For the case of higher derivative gravity
we have been able to numerically reduce the number of
free coefficients to just 4 [45]. One may wonder whether

3 We recall that in our conventions extremality corresponds to a “

1{2
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higher derivative gravity has a special structure of the
equations, or if there is a fundamental transformation
of the potential that could diminish the number of free
parameters.

Such discussion is relevant especially if one wants to
use this formalism in a theory-agnostic setup, e.g., to per-
form ringdown tests of GR or the inverse problem. Since
the coefficients dpkq have a spin dependence, it would be
interesting to map them to ParSpec [17]. Another use-
ful mapping would be with the WKB deviation coeffi-
cients, as done in [40]. Finally, in the upcoming analy-
sis, it would be interesting to compare the detectability
of beyond-Teukolsky effects against that of second order
QNMs [66–68].
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Appendix A: Ambiguity of the potential
modifications

Here we list the explicit form of the coefficients of equa-
tion (18) when one transforms the radial Teukolsky func-
tion as (14). These values hold for s “ ´2:

A
p´3q

j “
a6

2
jpj ` 1qpj ` 2q , A

p´2q

j “ ´
3a4

2
jpj ` 1q2 , (A1)

A
p´1q

j “
a4

2
j

“

3jpj ` 1q ´ 4B ` 4m2 ´ 8iω ` 10
‰

` 4ia3jm `
3

2
a2j

`

j2 ` j ´ 1
˘

, (A2)

A
p0q

j “ a3p2j ´ 1q raωpω ´ 4iq ´ 2mpω ` 2iqs

´ a2
“

3j3 ´ j
`

4B ´ 2m2 ` 4iω ´ 1
˘

` B ` 2
‰

´ 4iajm ´
1

2
j

`

j2 ´ 4
˘

, (A3)

A
p1q

j “ 2a4pj ´ 1qω2 `
1

2
a2

”

3j2pj ´ 1q ` 4B ` 2ωpω ´ 16iq ` 8 ` j
`

´8B ` 4m2 ´ 4ωpω ´ 8iq ` 2
˘

ı

` 2am r2jpω ` 3iq ´ ω ´ 2is `
1

2
j r3pj ´ 1qj ´ 4B ´ 11s ` B ` 2 , (A4)

A
p2q

j “ a2ω rω ´ 16ipj ´ 1qs ´ 2ap2j ´ 1qmpω ` 2iq `
1

2
jp´3pj ´ 2qj ` 8B ´ 24iω ` 13q ´ 3pB ´ 4iω ` 2q , (A5)

A
p3q

j “ 2a2p2j ´ 3qω2 `
1

2
pj ´ 1q rpj ´ 2qj ´ 4pB ` 2qs ` 4ip5j ´ 6qω , (A6)

A
p4q

j “ 2ω r2pω ` 3iq ´ jpω ` 4iqs , A
p5q

j “ 2pj ´ 2qω2 . (A7)

Appendix B: Nollert’s improvements of continued
fraction

The procedure to numerically solve Teukolsky equation
through Leaver’s method requires in practice an initial-
ization for the radial ladder operator Λr

n. Such quantity
can be expanded for large initialization number N as

Λr
N “

J
ÿ

j“0

CjN
´j{2 ` O pNq

´pJ`1q{2
. (B1)

One can initialize the ladder operator just retaining the
first term C0 “ ´1. However, this approximation re-
quires in general a very high initial value for N (which
means long computational time) and appears to be insuf-
ficient for frequencies with large imaginary part (namely
higher overtones). In [69], it was shown that adding fur-
ther corrections to the initial Λr

N improves the accuracy
of the method, also allowing to capture higher overtones.
The pk`3q-terms recurrence relation of equation (48) for
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n “ N can be expressed as

k`1
ÿ

j“´1

MN,j RN´j “ 0 , (B2)

where we defined

MN,j ” rγN,j´1 ` rβN,j ` rαN,j`1 . (B3)

Dividing it by RN´k´1 and using the definition of ladder
operator Λr

N “ ´aN`1{aN one obtains the equation

k`1
ÿ

j“´1

p´1qj MN,j

k`2
ź

i“j`1

Λr
N´i “ 0 . (B4)

Plugging the definition (B1) into the above formula, one
can solve for the coefficients order by order. By the def-
inition of rγN,j , rβN,j and rαN,j , they scale with N as

rαN,j “ N2 ` rα1N ` rα0 (B5)
rβN,j “ ´2N2 ` rβ1N ` rβ0 (B6)

rγN,j “ N2 ` rγ1N ` rγ0 (B7)

If we fix C0 “ ´1, then the other coefficients up to J “ 5
can be written as

C1 “ ˘

b

´rα1 ´ rβ1 ´ rγ1 , (B8)

C2 “ rα1 `
rβ1

2
´

1

4
, (B9)

C3 “
C2

2

2C1
´

C2

4C1
´

rα0 ` rβ0 ` rγ0
2C1

´
1 ` 2rα1

4
C1 , (B10)

C4 “ rα0 ´
4rα1 ´ 8rβ0 ` 1

16
´

1 ` 4rα1

4
C2 ´

C3

2C1
, (B11)

C5 “
2rα1 ` 3

4C1
C2

2 ´
8rα0 ` 4rα1 ` 3

16
C1 ´

C2
3

2C1

´
4rα1 ` 3

16C1
C2 ` C3

ˆ

C2

2C2
1

´ rα1 ´ 1

˙

`

ˆ

C2

C1
´

3

4C1

˙

C4 , (B12)

and the sign of C1 is chosen such that Re pC1q ą 0.

We can do the same expansion for the angular part, by
expanding

Λθ
N “

J
ÿ

j“0

DjN
´j{2 ` O pNq

´pJ`1q{2
. (B13)

From equations (32)–(34) we can schematically say that

αθ
N “ ´2N2 ` α1N ` α0 (B14)

βθ
N “ N2 ` β1N ` β0 (B15)

γθ
N “ γ1N ` γ0 (B16)

By solving perturbatively in 1{N the relation (35), we
obtain the following expression for the coefficients Dj up
to J “ 4

D0 “ 0 (B17)
D1 “ γ1 (B18)
D2 “ γ0 ´ γ1 p1 ` β1 ` 2γ1q (B19)

D3 “ γ2
1pα1 ´ 2q ´ γ1p1 ` β0 ` β1q

´ D2pβ1 ` 4γ1 ` 2q (B20)

D4 “α0γ
2
1 `

2D2
2 pβ1 ` 3γ1 ` 2q

γ1
` D2 pβ0 ` β1 ` 2γ1 ` 1q

` D3

ˆ

2D2

γ1
´ β1 ´ 4γ1 ´ 2

˙

(B21)

Appendix C: Splitting of the potential

In this section of the appendix we show how to trans-
form the potential (8) into the potential (38). We start
by splitting equation (8) into

δV prq “
1

∆

4
ÿ

k“´K

αpkq

ˆ

r

r`

˙k

“
1

∆

4
ÿ

k“0

αpkq

ˆ

r

r`

˙k

`
1

∆

K
ÿ

k“1

αp´kq
´r`

r

¯k

(C1)

For k ě 1, the first generic term in k of the sum can be
rewritten as

αpkq

∆

ˆ

r

r`

˙k

“
αpkq

∆

ˆ

rk ´ rk`
rk`

` 1

˙

“ αpkq

«

1

∆
`

1

r`pr ´ r´q

k´1
ÿ

j“0

ˆ

r

r`

˙j
ff

(C2)

For k ě 2 we can further simplify this term as
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αpkq

∆

ˆ

r

r`

˙k

“ αpkq

«

1

∆
`

1

r`pr ´ r´q

k´1
ÿ

j“0

rj ´ rj´ ` rj´

rj`

ff

“ αpkq

«

1

∆
`

1

r`pr ´ r´q

k´1
ÿ

j“0

ˆ

r´

r`

˙j

`
1

r´r`

k´1
ÿ

j“1

ˆ

r´

r`

˙j j´1
ÿ

n“0

ˆ

r

r´

˙n
ff

“ αpkq

«

1

∆
`

1

r`pr ´ r´q

k´1
ÿ

j“0

ˆ

r´

r`

˙j

`
1

r2`

k´2
ÿ

j“0

ˆ

r

r´

˙j k´2
ÿ

n“j

ˆ

r´

r`

˙n
ff

(C3)

where we obtained the last line by expanding the series and collecting the terms in r to the same power. Summing
over all the non-negative values of k yields

1

∆

4
ÿ

k“0

αpkq

ˆ

r

r`

˙k

“
1

∆

4
ÿ

k“0

αpkq `
1

r`pr ´ r´q

4
ÿ

k“1

αpkq

k´1
ÿ

j“0

ˆ

r´

r`

˙j

`
1

r2`

2
ÿ

k“0

ˆ

r

r`

˙k 2
ÿ

j“k

αpj`2q

j
ÿ

n“0

ˆ

r´

r`

˙n

(C4)

Now, we can perform a mapping between the coefficients αpkq of equation (8) and the coefficients Ap0q, Ap1q and rαpkq

introduced in equations (38). From a direct comparison we have

Ap0q “

4
ÿ

k“0

αpkq (C5)

Ap1q “

4
ÿ

k“1

αpkq

k´1
ÿ

j“0

ˆ

r´

r`

˙j

(C6)

rαpkq “

2
ÿ

j“k

αpj`2q

j
ÿ

n“0

ˆ

r´

r`

˙n

(C7)

Appendix D: Diagonal quadratic coefficients

We show here how to compute the quadratic diagonal coefficients, defined from the next-to-leading-order expansion

ω » ω0 `
ÿ

k

dpkq
ω αpkq `

1

2
epkq
ω αpkq2 ,

B » B0 `
ÿ

k

d
pkq

B αpkq `
1

2
e

pkq

B αpkq2 .

(D1)

By extending the Taylor expansion (11) to the second order in α, we obtain

Lj |
GR

` α
dLj

dα

ˇ

ˇ

ˇ

ˇ

GR

`
α2

2

d2Lj

dα2

ˇ

ˇ

ˇ

ˇ

GR

` Opαq3 “ 0 . (D2)

By expanding with the chain rule the total derivative d2Lj{dα2|GR, one can read off the quadratic coefficients as

eω “

ˆ

BLr

BB

BLθ

Bω
´

BLr

Bω

BLθ

BB

˙´1
«

B2Lr

Bα2

BLθ

BB
` 2dω

B2Lr

BαBω

BLθ

BB
` 2dB

B2Lr

BαBB

BLθ

BB

´ d2ω

ˆ

B2Lθ

Bω2

BLr

BB
´

B2Lr

Bω2

BLθ

BB

˙

´ d2B

ˆ

B2Lθ

BB2

BLr

BB
´

B2Lr

BB2

BLθ

BB

˙

` 2dω dB

ˆ

B2Lr

BωBB

BLθ

BB
´

B2Lθ

BωBB

BLr

BB

˙

ff

,

eB “ ´

ˆ

BLr

BB

BLθ

Bω
´

BLr

Bω

BLθ

BB

˙´1
«

B2Lr

Bα2

BLθ

Bω
` 2dω

B2Lr

BαBω

BLθ

Bω
` 2dB

B2Lr

BαBB

BLθ

Bω

´ d2ω

ˆ

B2Lr

Bω2

BLθ

Bω
´

B2Lθ

Bω2

BLr

Bω

˙

´ d2B

ˆ

B2Lr

BB2

BLθ

Bω
´

B2Lθ

BB2

BLr

Bω

˙

` 2dω dB

ˆ

B2Lr

BωBB

BLθ

Bω
´

B2Lθ

BωBB

BLr

Bω

˙

ff

,
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