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This article presents a new relation between the basic representation of split real

simply-laced affine Kac-Moody algebras and finite dimensional representations of

its maximal compact subalgebra k. We provide infinitely many k-subrepresentations

of the basic representation and we prove that these are all the finite dimensional

k-subrepresentations of the basic representation such that the quotient of the basic

representation by the subrepresentation is a finite dimensional representation of a

certain parabolic algebra and of the maximal compact subalgebra. By this result we

provide an infinite composition series with a cosocle filtration of the basic represen-

tation. Finally, we present examples of the results and applications to supergravity.
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1 Introduction

Affine Kac-Moody algebras, which play an important role in mathematics and physics,

are by definition complex, but allow for different real slices from real forms [1]. One of

these real forms is the split real form in which the Chevalley-Serre generators are real,

for example the resulting algebra is the real span of the Chevalley-Serre generators and

it is called split real Kac-Moody algebra. The affine (split real) Kac-Moody algebras

possess standard highest and lowest-weight representations which are fairly well studied

[2]. Especially, for the basic representation R(Λ0) with fundamental weight Λ0 associated

to the affine node 0, there exists a realization in terms of vertex operators [2, 3, 4, 5].
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Additionally, every split real Kac-Moody algebra is equipped with a Cartan-Chevalley

involution that defines the maximal compact subalgebra of the Kac-Moody algebra as its

fixed point subalgebra. For finite split real Kac-Moody algebras g̊, the maximal compact

subalgebra is a not necessarily indecomposable Kac-Moody algebra k̊ and the associated

Lie group is compact. These algebras are very well understood. However, the scenario

is completely different for affine split real Kac-Moody algebras g, for which the infinite

dimensional maximal compact subalgebra k is not of Kac-Moody type, but admits in-

finitely many non-trivial ideals and does not have a Borel decomposition, but rather a

filtered structure. Nevertheless, in [6] defining relations of generators for k are developed

and in [7] certain unfaithful finite dimensional representations, motivated by physics, are

constructed, which is quite surprising since infinite dimensional Kac-Moody algebras do

not have non-trivial finite dimensional representations.

This result is generalized to a comprehensive understanding of finite dimensional rep-

resentations of k in terms of a (double) parabolic algebra P and a Lie algebra homomor-

phism ρ mapping k to P in [8] and Appendix A. The (double) parabolic algebra P has

a parabolic grading and therefore it contains infinitely many ideals which allow for an

algorithmic construction of finite dimensional representations. The pull back of ρ then

defines ideals and representations of k, which preserve the parabolic grading. Thus, the

finite dimensional representations of the maximal compact subalgebra k are quite different

from the infinite dimensional representations of the affine split real Kac-Moody algebra

g. Despite it, understanding the action of the maximal compact subalgebra on a repre-

sentation of a split real Kac-Moody algebra reveals fascinating additional structure of the

representations and has important applications.1

For finite split real Kac-Moody algebras g̊, the complete information about the action

of the maximal compact subalgebra k̊ on a g̊-representation is contained in the decom-

position into irreducible k̊-representations, also known as branching. This is a standard

technique of representation theory, because k̊ is a finite Kac-Moody algebra and its rep-

resentations are completely reducible. However, this is not the case for affine split real

Kac-Moody algebras. Actually, due to the intriguing structure of the maximal compact

subalgebra k and its representations, we do not even expect that a g-representation can

be decomposed in a direct sum of simple or semisimple k-representations. Therefore, the

best one may achieve is to find all k-subrepresentations of a g-representation and if pos-

sible to provide a (possibly infinite) k-composition series of the g-representation. But to

our knowledge, very little is known about proper k-subrepresentation of highest-weight

representation of g. Nonetheless, from physics applications (in particular supergravity in

two dimensions), we expect that there exists proper non-trivial k-subrepresentations of the

1Lie algebra structure and fineness. For a Lie algebra l with a representation V , a l-structure of

V is a family of l-representations Vi ⊂ V . For two l-structures A and B, we call A finer than B if B ⊂ A.

If for a l-structure A holds B ⊂ A for all l-structures B, we call A the finest l-structure.
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basic representation. In this context, this work is a first step towards a comprehensive un-

derstanding of the k-subrepresentations of highest weight representations of g and towards

understanding possible infinite k-composition series of the highest weight representations.

Our main results is to reveal the complete/finest k-structure of the basic representation

R(Λ0) (level one representation, central charge one) of a split real untwisted simply-laced

affine Kac-Moody algebra g, which is organized in three parts. First, for each N ∈ N0

we provide an inequivalent k-subrepresentation WN ⊂ R(Λ0) with finite co-dimension as

the kernel of a surjective k-homomorphism GN from the basic representation to the finite

dimensional k-representation VerR(N), such that k commutes with GN . Therefore, GN is

a projection onto VerR(N) ≃ R(Λ0)/WN , where VerR(N) is truncated Verma module of a

certain ‘parabolic Heisenberg algebra’ with generators R. We provide the representations

VerR(N) and the projection GN explicitly.

Second, we show that all k-subrepresentations of the basic representation, for which

the quotient of the basic representation by the subrepresentation is equivalent to a finite

dimensionalP-representation are equivalent toWN or a subrepresentation ofWN for some

N ∈ N0.

Third, we provide the cosocle filtration (definitions are provided in Appendix C) of

the basic representation under k and we show that the cosocle filtration is an infinite

composition series. It implies that as a vector space the basic representation is equivalent

to a sum of infinitely many finite dimensional semisimple k-representations. For the

convenience of the reader, we provide these results in form of a theorem here, but for

which it is necessary to refer to concepts in the main text.

Theorem 1. For g a split real untwisted simply-laced affine Kac-Moody algebra with

maximal compact subalgebra k and basic representation R(Λ0) the statements a, b and c

hold.

a.) For all N ∈ N0, there exists a finite dimensional k-representation VerR(N) given in

Proposition 15 and a surjective k-homomorphism GN : R(Λ0) → VerR(N) in (5.8),

which commutes with k and projects R(Λ0) onto VerR(N). The kernel of GN is a

proper non-trivial k-subrepresentation WN = Ker(GN) ⊂ R(Λ0).

b.) If R(Λ0) projects onto a finite dimensional k-representation which is also a P-

representation by ρ in (3.16), then there exists an N ∈ N0 such that this represen-

tation is equivalent to VerR(N) or to a quotient of VerR(N) by a subrepresentation.

c.) The family (WN)N∈N of k-invariant subspaces in R(Λ0) is the infinite composition

series of R(Λ0) with a cosocle filtration (definitions in Appendix C) .

These results find fascinating applications in physics. (Gauged) supergravity theories

in various dimensions are an important class of theories describing fundamental interac-

tion and their mathematical structure is governed by Kac-Moody algebras [9]. While the
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bosonic fields of the theories take values in representations of the split real Kac-Moody

algebra, the fermionic fields take values in representations of its maximal compact sub-

algebra. Therefore, supersymmetry, a symmetry between fermions and bosons, maps

between representations of the split real Kac-Moody algebra and its compact subalgebra.

This makes it necessary to understand how representations of the Kac-Moody-algebras

project onto representations of the maximal compact subalgebra. Supergravity theories

in D ≥ 3 have finite Kac-Moody symmetries and therefore the representation theory and

the branching rules necessary to understand these theories are known. This makes it

also possible to extend these supergravity theories to gauged supergravity theories. How-

ever, in D = 2 dimensions, the supergravity theory has an (on-shell) affine Kac-Moody

symmetry [10, 11, 9, 12, 13, 14], under which the scalar fields transform in the adjoint

representation and the gauge fields transform in the basic representation [15]. While the

adjoint representation is not a highest weight representation and the k-subrepresentation

are understood, it is necessary to develop the k-subrepresentation of the basic represen-

tation to understand the supersymmetry of the gauge fields. Therefore, the full gauged

supergravity theory in D = 2 dimensions has not been constructed yet. Nevertheless a

specific example is given in [16] and the purely bosonic sector is derived in [15, 17, 18,

19, 20]. The result of this work is the next step to derive the full gauged supergravity

theory in two dimensions. In a related context, the results find applications in teleparallel

gravity in two dimensions [21].

This work is a starting point for further considerations in this direction in mathemat-

ics and physics. First, using the vertex operator construction for non-simply-laced affine

Kac-Moody algebra [22], we expect our construction and results to extend to the basic

representation of non-simply-laced affine Kac-Moody algebras. Second, in a more sophis-

ticated development, our construction may be generalized to all highest-weight represen-

tations of affine Kac-Moody algebras. This may be achieved using the DDF construction

[23] for further highest-weight modules of affine algebras, which is similar to the vertex

operator realization. Third, understanding the k-subrepresentations of highest weight

representations of an affine Kac-Moody algebra paves the way to understand hyperbolic

Kac-Moody algebras under the action of its maximal compact subalgebra. This is because

a hyperbolic Kac-Moody algebra decomposes into sums of highest-weight representations

of the associate affine Kac-Moody algebra [24, 25, 26]. However, this is clearly quite a

challenging undertaking since there remains a lot to discover for hyperbolic Kac-Moody

algebras [27] but the result has important applications in physics. For instance, it is ex-

pected that hyperbolic Kac-Moody algebras are the underlying mathematical structure

of space-time [28, 29, 30, 31] governed by physical theories with hyperbolic symmetry

[32, 33]. However, to fully describe these theories, the action of the maximal compact

subalgebra on the hyperbolic Kac-Moody algebra must be understood. But even before
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this is fully achieved, our results have applications to these models, because (gauged)

supergravity in two dimensions may serve as a toy model to understand the mechanism

of how space time emerges from an indefinite Kac-Moody symmetry.

Outline. Section 2 follows [2] closely to introduce the affine Kac-Moody algebras

and the vertex operator realization for the basic representation. The maximal compact

subalgebra of the Kac-Moody algebra is then defined in Section 3, which splits in two

subsections. While Subsection 3.1 provides the definition and notation of the maximal

compact subalgebra, in Subsection 3.2 we extend the construction of [8] to a double

parabolic algebra and apply it to prove an identity for ideals and a certain group action

on the double parabolic algebra. Prepared with these identities, we use Section 4 to

analyze the action of the maximal compact subalgebra on the basic representation. This

includes new notations and an important Proposition, which allows us to provide the

finest k-structure of the basic representation and the infinite composition series in Section

5. In Subsection 5.1 we provide the infinite filtered set of k-subrepresentations of the basic

representation and the projection of the basic representation onto finite dimensional k-

representations. In Subsection 5.2 we show that the infinite set of k-subrepresentations is

indeed the infinite k-composition series of the basic representation with cosocle filtration.

In the final section 6, we prove an identity to efficiently evaluate the projection of the

basic representation onto finite dimensional k-representations. This identity allows us to

analyze explicit examples of how to project the basic representation onto k-representations

and about the k-subrepresentations of the basic representation. Finally, we emphasis on

g = e9(9) and its application to supergravity in two dimensions. In Appendix A we provide

a construction of representations of the double parabolic algebra and Appendix B defines

a generalizations of sums over polynomials. In Appendix C we provide frequently used

definitions and notations as for example the definition of cosocle, cosocle filtration and

infinite composition series. In Appendix D we provide concrete expressions for abstract

objects used in this work and, for the convenience of the reader, we give supplementary

details of certain proofs in Appendix E.
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2 Affine algebra and basic representation

This section introduces the infinite dimensional untwisted affine Kac-Moody algebras and

its simplest highest-weight representation, the basic representation. Details of definitions

and proofs are in [2].

Let A = (aij)0≤i,j≤r be an untwisted symmetric affine generalized indecomposable

Cartan matrix of rank r over C and let Å = (aij)1≤i,j≤r be the finite Cartan matrix of the

same type and rank r. Let g be the split real form of the affine Kac-Moody algebra g(A)

and g̊ the split real form of the finite Kac-Moody algebra g(Å). Then g is isomorphic to

the loop algebra L(̊g) of the Lie algebra g̊ with a central extension K and a derivation d.

This allows us to parametrize the affine algebra g in terms of the generators of L(̊g), K
and d. Therefore, we first introduce the finite Lie algebra g̊.

Finite Lie algebra g̊. Let (̊h,Π,Π∨) be are realization of Å. Then, Π = {αi}1≤i≤r is the
set of simple roots of g̊, Π∨ is the set of dual simple roots, which is a basis of the Cartan

subalgebra h̊ and the Z-span of the simple roots is the root lattice Q =
∑

1≤i≤r αiZ. The

root lattice admits a natural bilinear form (αi|αj) = Åij. In terms of the bilinear form,

the set of roots of g̊ is ∆ = {α ∈ Q | (α|α) = 2}. From now on, we usually use the Greek

letters α, β for roots and γ, δ for elements of the root lattice. On the root space exists a

cocycle [2], also called asymmetric function, ϵ : Q×Q→ {±1 }, which satisfies

ϵ(γ + γ′, δ) = ϵ(γ, δ) ϵ(γ′, δ)

ϵ(δ, γ + γ′) = ϵ(δ, γ) ϵ(δ, γ′)

ϵ(γ, γ) = (−1)(γ|γ) . (2.1)

The Lie bracket can be defined in terms of the cocycle. To carry this out, let g̊α ⊂ g̊ be

the root space of α and let Eα ∈ g̊α be an element of this root space, where we define

for convenience Eγ = 0 for γ /∈ ∆. Let Hγ ∈ h̊ be the dual of γ ∈ Q with respect to the

bilinear form (·|·), for example α(Hγ) = (α|γ). Then, in terms of the two roots α, β ∈ ∆,[
Hα, Hβ

]
= 0[

Hα, Eβ
]
= (α|β)Eβ[

Eα, Eβ
]
= − δα,−βH

α + ϵ(α, β)Eα+β (2.2)

defines a Lie bracket on g̊. The Lie algebra g̊ is equipped with the Killing form κ which

is symmetric, bilinear and invariant under the Lie bracket

κ(Hα, Hβ) = (α|β) κ(Hα, Eβ) = 0 κ(Eα, Eβ) = −δα,−β . (2.3)

This sets up the split real finite Lie algebra g̊, from which it is convenient to define the

affine Kac-Moody algebra g.
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Affine algebra g. The split real affine Kac-Moody algebra g can be parametrized in

terms of the centrally extended loop algebra of g̊ with an additional derivation. Hence-

forth, we use this parametrization for the affine Kac-Moody algebra. Therefore, if R[t, t−1]

are the Laurent polynomials in t, K the central element and d the derivation, then the

loop parametrization of g is

g = g̊⊗R
[
t, t−1

]
⊕ RK ⊕ Rd , (2.4)

where the first summand is the loop algebra. For the loop generators we use the notation

xn = x⊗ tn with x ∈ g̊ and n ∈ Z. The index n of the loop generators is called the loop

index. In this parametrization, the Lie bracket of the affine Kac-Moody algebra is

[xm, yn] = [x, y]⊗ tm+n +mδm,−nκ(x, y)K

[d, xm] = −mxm

[K, xm] = [K, d] = 0 . (2.5)

The affine algebra g has two subalgebras which are important for the rest of the paper.

The first subalgebra is spanned by the loop generators of index 0. This subalgebra is

isomorphic to the finite Lie algebra g̊, which motivates to use the same symbol for it.

The second important subalgebra is the Heisenberg subalgebra. The Heisenberg sub-

algebra is the centrally extended loop algebra of the Cartan subalgebra2

h̊⊗R
[
t, t−1

]
⊕ RK =

〈
Hn, K |n ∈ Z, H ∈ h̊

〉
. (2.6)

The affine algebra has no non-trivial finite dimensional representations. However, it

has standard highest and lowest-weight representations. The ‘simplest’ highest-weight

representation is the basic representation, which is the subject of the next paragraph.

Basic representation. The basic representation R(Λ0) of g is the infinite dimensional

highest-weight representation with fundamental weight Λ0, where 0 is the index of the

affine node. A realization of R(Λ0) is given in terms of vertex operators which is es-

sential for the rest of this work. Therefore, this paragraph sets up the vertex operator

representation and notation, following [2].

In the vertex operator realization of the basic representation, the representation space

is

R(Λ0) = R[Q]⊗ S
(⊕

j<0

(̊h⊗ tj)
)
, (2.7)

where S is the symmetric algebra and R[Q] is the group algebra of the root lattice with

the embedding γ 7→ eγ for γ ∈ Q. Thus, the elements of the basic representation are

2The Heisenberg subalgebra is not the Cartan subalgebra of g.
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parametrized in a tensor product of the root lattice Q and polynomials in roots with an

additional negative subscript

R(Λ0) = ⟨eγ ⊗ f | γ ∈ Q , f ∈ R [{α ∈ ∆}−N]⟩ . (2.8)

Here and in the following, using the notation in (C.1), f = f({α ∈ ∆}) is always a

polynomial of the roots with an additional negative index.

To introduce the action of g in the vertex operator realization of the basic representa-

tion we introduce a representation of the indexed roots. For each α ∈ ∆ and n ∈ N, the

negative indexed root α−n acts by multiplication on f and the positive indexed root αn

acts as a derivative on f with

αn · β−m = nδn,−m(α|β) . (2.9)

Using this action, the vertex operator acts on the states in the basic representation by

Γα(z) (eγ ⊗ f) = z(α,γ) ϵ(α, γ) eγ+α ⊗
(
e
∑

k≥1
zk

k
α−k e−

∑
k≥1

z−k

k
αk

)
f . (2.10)

This vertex operator action, allows to define the basic representation g → End(R(Λ0)).

For all α ∈ ∆, γ ∈ Q and n ∈ N the basic representations is given by

Eα
n 7→ Γα(z)

∣∣∣
z−n−1

,

Hα
n (eγ ⊗ f) 7→

{
(α, γ) (eγ ⊗ f) for n = 0

eγ ⊗ αn f for n ̸= 0
,

K 7→ 1

d 7→
r∑

i,j=1

(
1
2
Hαi

0 Å
−1
ij H

αj

0 +
∑
n≥1

Hαi

−nÅ
−1
ij H

αj

n

)
(2.11)

where |zn is the projection of a polynomial in z, z−1 on the coefficient of zn in the monomial

basis (zk)k∈Z. The central element multiplies with the central charge one, also known as

level one, and the eigenvalue of the derivation d on a state is the loop level of this state.

This fixes our notation of the basic representation. However, at the end of the section, we

add some useful comments and frequently used notation on the vertex operator action.

The vertex operator action takes a particular simple form in terms of Schur polynomials

on the states eγ ⊗ 1 ∈ R(Λ0). Therefore, let us introduce the notion of these states and

the conventions of Schur polynomials in this work.
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Schur polynomials and maximal states. For each N ∈ Z and the set notation

{α} := {α−k | k ∈ N}, the Schur polynomial SN({α}) is defined by the expansion 3∑
N≥0

zNSN({α}) = e
∑

n≥1
zn

n
α−n ,

Sn≤−1({α}) = 0 , S0({α}) = 1, S1({α}) = α−1, . . . (2.12)

The first few Schur polynomials are provided in (D.3). Two important identities for Schur

polynomials derive from (2.12) by differentiation. Differentiating (2.12) w.r.t. α−n and

w.r.t. z gives for all n ∈ N, N ∈ N0

∂SN({α})
∂α−n

=
1

n
SN−n({α}) , NSN({α}) =

∑
n≥1

α−nSN−n({α}) . (2.13)

The Schur polynomials substantially simplify the action of the vertex operators on maxi-

mal states. Therefore, let us define these states.

A state of the basic representation is called maximal state if it vanishes under the

action of the positive indexed Heisenberg generators. This set of maximal states is

⟨eγ ⊗ 1 ∈ R(Λ0) | γ ∈ Q⟩ . (2.14)

By the definition of maximal states, the right exponential in the vertex operator acts

trivial and therefore, for m ∈ Z, the action of Eα
m on a maximal state eγ⊗1 takes a closed

simple form in terms of Schur polynomials

Eα
m e

γ ⊗ 1 = ϵ(α, γ) eγ+α ⊗ S−m−(γ,α)−1({α}) . (2.15)

On these states it is convenient to evaluate the action of the Heisenberg algebra. For each

n ∈ N, two often used relations for the action of the Heisenberg algebra are

Hα
n ( eγ ⊗ SN({α})) = 2 eγ ⊗ SN−n({α}) ,

eγ ⊗ SN({α}) =
1

N

N∑
n=1

Hα
−n e

γ ⊗ SN−n({α}) , (2.16)

which derive straightforward from (2.11) and (2.13).

In this section we introduced the affine algebra and the basic representation in terms

of the vertex operator realization. We present the maximal compact subalgebra of the

affine algebra in the next section.

3In most literature, the Schur polynomials Sλ(y1, y2, . . .) are symmetric polynomials in the variables

yi and are defined in terms of a partition λ of N . This is related to our definition of Schur polynomi-

als. Setting λ = (N) and rewriting the Schur polynomial Sλ(y1, y2, . . .) in terms of symmetric power

polynomials α−j =
∑

i y
j
i gives the Schur polynomials SN ({α}) .
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3 Maximal compact subalgebra and representations

Here, we introduce the maximal compact subalgebra of an affine Kac-Moody algebra and

the parabolic algebra [8]. The maximal compact subalgebra of an affine algebra is not of

Kac-Moody type, for example it admits infinitely many ideals. These ideals allow for finite

dimensional representations of the maximal compact subalgebra, which where developed

in [7, 8, 34]. This section provides the necessary identities and notation to analyze the

action of the maximal compact subalgebra on the basic representations.

In Subsection 3.1 we define the maximal compact subalgebra as the fixed point set

of the Cartan-Chevalley involution. In Subsection 3.2 we extend the results of [8] to a

double parabolic algebra and a Lie algebra homomorphism from the maximal compact

subalgebra to the double parabolic algebra. This Lie algebra homomorphism allows us

to prove a generating identity for these ideals and derive the action of a certain group

element on the parabolic algebra.

3.1 Maximal compact subalgebra

In this section we introduce the maximal compact subalgebra of an affine Kac-Moody

algebra and the notation of the maximal compact subalgebra for this paper.

The maximal compact subalgebra of a split real Kac-Moody algebra is the fix point

subalgebra of the Cartan-Chevalley Lie algebra involution. For the finite split real Lie

algebra g̊ and α ∈ ∆, the Cartan-Chevalley involution τ̊ acts by

τ̊(Hα) = H−α = −Hα , τ̊(Eα) = E−α . (3.1)

The maximal compact subalgebra k̊ ⊂ g̊ is the +1 eigenspace of τ̊ and has strictly neg-

ative signature of the killing form. The −1 eigenspace is the non-compact orthogonal

complement p̊ ⊂ g̊ with strictly positive signature of the killing form.

Let us turn to the maximal compact subalgebra of the affine Kac-Moody algebra g.

The Cartan-Chevalley involution τ of the affine algebra acts on the loop generators with

the Cartan-Chevalley involution of the finite algebra and on the loop index it acts by

inversion. On g, the involution is given by

τ(Hα
n ) = −Hα

−n , τ(Eα
n ) = E−α−n , τ(K) = −K , τ(d) = −d . (3.2)

The maximal compact subalgebra k ∈ g is the +1 eigenspace subalgebra of τ and the −1

eigenspace is called the non-compact orthogonal complement p ⊂ g. In particular, the

central element K and the derivation d are not in the maximal compact subalgebra, but

for every α ∈ ∆ and n ∈ Z, the generators

Eα
n = Eα

n + E−α−n , Hα
n = 1

2

(
Hα

n −Hα
−n
)
∈ k . (3.3)
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are in the maximal compact subalgebra. Not all of these elements are linearly independent,

because Hα
n = −Hα

−n and Eα
n = E−α−n and for a fixed n there are r independent Hα

n.

However, it is useful to have introduced the notation of Hα
n and Eα

n for all combinations

of roots and integers, which also span the maximal compact subalgebra

k = ⟨Eα
n , Hα

n |α ∈ ∆, n ∈ Z⟩ (3.4)

The Lie bracket is induced from the Lie bracket of g and for α, β ∈ ∆, n,m ∈ Z it is[
Hα

m,Hβ
n

]
= 0[

Hα
m, Eβ

n

]
= 1

2
(α|β)

(
Eβ
n+m − Eβ

n−m

)
[
Eα
m, Eβ

n

]
= − 2 (δα,−β + δα,β)Hα

m+n + ϵ(α, β)
(
Eα+β
m+n + Eα−β

m−n

)
. (3.5)

Two comments on the structure of the Lie bracket are appropriate. First, the projection

of the Heisenberg algebra to the maximal compact subalgebra is an abelian subalgebra,

called the compact Heisenberg algebra

⟨H⟩ ≡ ⟨Hα
n |α ∈ ∆, n ∈ N⟩ . (3.6)

By the Lie bracket relation (3.5) a product of compact Heisenberg generators on the right

of Eα
m is in the universal enveloping algebra equivalent to a finite sum of products of

elements of the compact Heisenberg algebra Uj ∈ U(⟨H⟩) to the left of different elements

Eα
nj

Eα
mU =

∑
j

UjEα
nj

∈ U(k) . (3.7)

The explicit form of Uj is not important for the purpose of the paper. However, we sketch

the evaluation of Uj in Appendix E.

Second, the Lie bracket of the maximal compact subalgebra is not additive in the loop

index of the generators and does not provide a Borel subalgebra, but admits a filtered

structure. For example, the maximal compact subalgebra k is not of Kac-Moody type

but admits infinite many ideals. These ideals are essential to construct finite dimensional

representations of the maximal compact subalgebra in terms of the parabolic algebra [8].

3.2 Parabolic algebra

In this section we extend the (single) parabolic algebra in [8] to a double parabolic algebra

and a Lie algebra homomorphism from the maximal compact subalgebra to this double

parabolic algebra. We prove a proposition on the form of the ideals of the maximal

compact subalgebra and elaborate on a certain group action on the parabolic algebra.
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To construct representations of the maximal compact subalgebra of an affine algebra,

[8] constructs a (single) parabolic algebra together with two Lie algebra homomorphisms

from the maximal compact subalgebra to this parabolic algebra. The parabolic algebra

allows for an algorithmic construction of representations. By the pull back of the Lie

algebra homomorphism these are also representations of the maximal compact subalgebra.

However, these representations do not exhaust the set of all representations of the maximal

compact subalgebra. In particular, the basic representation cannot be projected to these

representations. To construct a larger set of representations of the maximal compact

subalgebra, we generalize the (single) parabolic algebra of [8] to a double parabolic algebra

P together with a Lie algebra homomorphism from the maximal compact subalgebra to

the double parabolic algebra. The general construction of representations of the double

parabolic algebra is in Appendix A, these representations are pulled back with the Lie

algebra homomorphism to representations of the maximal compact subalgebra. For the

double parabolic algebra we prove two important propositions.

Let us define the double parabolic algebra. For the finite Lie algebra g̊ with compact

subalgebra k̊ and non-compact orthogonal complement p̊, for RJu2K the formal power

series in u2 and for C2 = {1, r} the group of order 2, the double parabolic algebra P is

P =
(̊
k⊗RJu2K ⊗ C2

)
⊕
(̊
p⊗ uRJu2K ⊗ C2

)
. (3.8)

The Lie bracket is multiplicative in the second and third factor of the tensor product and

induced from g̊ on the first factor[
x⊗ uk ⊗ rm, y ⊗ ul ⊗ rn

]
= [x, y]⊗ uk+l ⊗ rm+n. (3.9)

For k ∈ N0, n ∈ Z and α ∈ ∆, a parametrization of the double parabolic algebra is in

terms of the generators4

Pα
k,n =

(
Eα + (−1)kE−α

)
⊗ uk ⊗ rn ,

Rα
2k+1,n = Hα ⊗ u2k+1 ⊗ rn (3.10)

with the Lie bracket in (3.9). The abelian subalgebra of the generators

⟨R⟩ ≡
〈
Rα

2k+1,n |α ∈ ∆, k ∈ N0, 0 ≤ n ≤ 1
〉

(3.11)

is called the parabolic Heisenberg algebra, but analogous to the compact Heisenberg algebra

it is not a Heisenberg algebra.

We give some comments on the single factors of the double parabolic algebra. The

C2 factor induces a natural Z2 grading on the double parabolic algebra. The level 0

4The generators which differ only by an even number in n are equal, however, this definition allows

to drop many mod 2 symbols.
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subalgebra with respect to this grading has elements x ⊗ um ⊗ 1, which is the single

parabolic algebra in [8]. It allows to extend most results for the single parabolic algebra

in [8] to the double parabolic algebra.

The second factor RJu2K, uRJu2K has a graded structure in the power of u. This

graded structure extends to the parabolic algebra and its universal enveloping algebra

P =
∞⊕
l=0

Pl , U(P) =
∞⊕
l=0

U(P)l . (3.12)

The graded structure allows to identify ideals of the double parabolic algebra. For all

N ∈ N, the double parabolic algebra and its universal enveloping algebra have the ideals

IN =
∞⊕

l=N+1

Pl , IUN =
∞⊕

l=N+1

U(P)l . (3.13)

The cosets of the double parabolic algebra and its universal enveloping algebra by these

ideals are the quotient parabolic algebras

PN =
P

IN

, U(P)N =
U(P)

IUN
. (3.14)

Now, let us produce the Lie algebra homomorphism from the double parabolic algebra

to the maximal compact subalgebra. In [8] a Lie algebra homomorphism from the (single)

parabolic algebra to the maximal compact subalgebra is constructed. We extend this

construction to a Lie algebra homomorphism from the maximal compact subalgebra to

the double parabolic algebra. Therefore, we use that the generators of the maximal

compact subalgebra (3.4) are a subset of the loop generators of g̊ with variable t on which

we define a Möbius transformation

t(u) =
1− u

1 + u
∈ RJuK. (3.15)

This Möbius transformation extends to a Lie algebra homomorphism ρ from the maximal

compact subalgebra to the parabolic algebra [8].5

Proposition 2 (Extension of Proposition 5 in [8]). For each n ∈ Z and α ∈ ∆, the map

ρ : k → P

ρ (Eα
n ) = 1

2

∞∑
k=0

a
(n)
k Pα

k,n , ρ (Hα
n) = 1

2

∞∑
k=0

a
(n)
2k+1R

α
2k+1,n . (3.16)

5 In [8] Lie algebra homomorphisms ρ± from the maximal compact subalgebra to the single parabolic

algebra are constructed from the Möbius transformation t±(u) =
1∓u
1±u . Both homomorphisms map the

maximal compact subalgebra differently to the single parabolic algebra. A tensor product of two represen-

tation of the single parabolic algebra which are pulled back by the different Lie algebra homomorphisms

ρ+ and ρ− to k-representations, is not a k-representation. The double parabolic algebra together with

one Lie algebra homomorphism ρ solves this.
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is an injective Lie algebra homomorphism. The coefficients a
(n)
k are the coefficients of the

power series expansion in (3.15) and are evaluated in [8]

a
(n)
2k = 2

n∑
ℓ=0

(
2n

2l

)(
k − ℓ+ n− 1

k − ℓ

)
, a

(n)
2k+1 = −2 sign(n)

n−1∑
ℓ=0

(
2n

2l + 1

)(
k − ℓ+ n− 1

k − ℓ

)
.

(3.17)

The homomorphism ρ respects the even/odd grading of the loop level of k.

Remark 3. The coefficients a
(n)
k satisfy two identities. For fixed n ∈ N, the coefficients

a
(n)
k are polynomials in k of degree n − 1. For fixed k ∈ N0, the coefficients a

(n)
k are

polynomials in n of degree k. The expansions of the first few elements in Eα
n is in (D.1)

Remark 4. For each N ∈ N0, the codomain of ρ can be quotiented by the ideal IN . This

defines the surjective Lie algebra homomorphisms

ρN : R(Λ0) → PN (3.18)

by (3.16) but the summation from k = 0 to k = N resp. k =
⌊
N
2

⌋
[8].

Proof. The homomorphism ρ respects the even-odd grading of the loop index of the

maximal compact subalgebra because r ̸= 1, but r2 = 1.

Setting r = ±1 reduces the homomorphism ρ to the injective Lie algebra homomor-

phisms ρ± from the maximal compact subalgebra to the single parabolic algebra (see

footnote 5). Because ρ± are injective Lie algebra homomorphisms, also ρ is an injective

Lie algebra homomorphisms.

For each N ∈ N0, the Lie algebra homomorphism ρ allows to identify ideals in the

maximal compact subalgebra k as the inverse image of ideals IN in the parabolic algebra.

For these ideals, we use the same symbol IN . While the ideals of the parabolic subalgebra

derive immediately from the parabolic grading, the form of the ideals in the maximal

compact subalgebra is more subtle. A generating identity for the ideals is subject of

Proposition 5. In the proof of the proposition and also later in this work, we use an

identity for sums of polynomials with binomial factors. Therefore, let us first give this

identity globally and then use it to prove the proposition.

For p ∈ R[m]N−1 a polynomial in m of degree less then N , the binomial sum

N∑
m=0

(−1)m
(
N

m

)
p(m) = 0 (3.19)

vanishes. This follows by differentiating k times for 1 ≤ k ≤ N−1 the binomial expansion

of (1 + x)N w.r.t. x and then setting x to −1. With this identity, we prove the next

proposition about ideals of the maximal compact subalgebra. A different formula for the

same ideals is proposed in [35].
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Proposition 5 (Ideals). For all N ∈ N0, α ∈ ∆, a ∈ N, b, n ∈ Z the elements

N+a∑
m=0

(−1)m
(
N + a

m

)
Eα
n+2bm ∈ IN ,

N+a∑
m=0

(−1)m
(
N + a

m

)
Hα

n+2bm ∈ IN (3.20)

of the filtered algebra are in the ideal IN .

Proof. For every N ∈ N0, a ∈ N, b, n ∈ Z by identity (3.19) and Remark 3, the elements

(3.20) are in the kernel of ρN

ρN

(
N+a∑
m=0

(−1)m
(
N + a

m

)
Eα
n+2bm

)
= 1

2

N∑
k=0

Pα
k,n

N+a∑
m=0

(−1)m
(
N + a

m

)
a
(n+2bm)
k = 0 (3.21)

The same holds for the second element in (3.20).

This identity of ideals in the maximal compact subalgebra is important to investigate

finite dimensional P-representations. But before we can do so, let us prove a proposition

about the action of certain group elements on the parabolic algebra at the end of this

section.

Proposition 6. For all N ∈ N and α, β ∈ ∆, the group elements

ωα,N = exp(
∑
k≥0

2
2k+1

Rα
2k+1,0) ∈ U(P)N (3.22)

act on the parabolic algebra PN by conjugation and satisfy

ωα,Nρ
N
(
Eβ
n

)
ω−1α,N = ρN

(
Eβ
n−(α|β)

)
, ωα,Nρ

N
(
Hβ

n

)
ω−1α,N = ρN

(
Hβ

n

)
. (3.23)

Remark 7. First, the exponential series in (3.22) truncates at parabolic level N . Second,

the conjugation group action is the exponentialized adjoint Lie algebra action ad, which

is used in the proof. Third, the Lie algebra homomorphism ρ resp. ρN acts group like on

the universal enveloping and thus on the group exponentiation of the maximal compact

subalgebra. Then, the group element ωα,∞ (defined properly later) may be interpreted as

the Lie algebra homomorphism acting on the group element wα of g which acts by

wαEβ
nw
−1
α = Eβ

n−(α|β) , wαHβ
nw
−1
α = Hβ

n . (3.24)

The relation of ωα,N to these group elements provides further inside in our construction

but will not be used in this work.

Proof. We use that conjugation is the group action associated to the adjoint representation

of the Lie algebra. The parabolic Heisenberg algebra is abelian which proves the action
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of ωα,N on ρN(Hβ
n). If (α|β) = 0, Rα

2k+1,0 commutes with P β
l,a which proves the action of

ωα,N on ρN(Eβ
n ) for (α|β) = 0.

For (α|β) ̸= 0 the adjoint map of the double parabolic algebra acts by

ad(Rα
2k+1,0)

mP β
l,a = (α|β)mP β

l+(2k+1)m,a . (3.25)

For n = 0 this gives

exp

(∑
k≥0

2
2k+1

ad(Rα
2k+1,0)

)
P β
0,0 =

∞∑
k=0

cα,βk P j
k,0 (3.26)

where

cα,βk =
1

k!

(
d

dx

)k

e
∑

l≥0
2(α|β)
2l+1

x2l+1
∣∣∣
x=0

. (3.27)

The coefficients cα,βk can be solved for (α|β) = ±1,±2. For (α|β) = ±2 the coefficients

are

cα,β0 = 1 cα,βk = (±1)k4k . (3.28)

For (α, β) = ±1 the coefficients cα,βk are

c0 = 1 ck = (±1)k2 . (3.29)

By (D.1), this proves the Proposition for n = 0. For n = −1 and (D.1), the left hand side

evaluates to

exp

(∑
k≥0

2
2k+1

ad(Rα
2k+1,0)

)(
P β
0,1 + 2

N∑
k=0

(−1)kP β
k,1

)
=

∞∑
k=0

cα,βk P β
k,1 (3.30)

with

cα,βk =
1

k!

(
d

dx

)k
(
1 + 2

N∑
l=1

xl

)
e
∑

l≥0
2(α,β)
2l+1

x2l+1
∣∣∣
x=0

. (3.31)

For (α, β) = ±2,±1 the coefficients are

(α, β) = +2 → cα,β0 = 1, cα,βk = 2(1 + 2k2),

(α, β) = +1 → cα,β0 = 1, cα,βk = 4k,

(α, β) = −1 → cα,β0 = 1, ck = 0,

(α, β) = −2 → cα,β0 = 1, cα,βk = (−1)k2 . (3.32)
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With (D.1), this proves the Proposition for n = 0 and n = −1. Assuming the Proposition

holds for n ≤ N ∈ N0, then by induction

exp

(∑
k≥0

2
2k+1

ad(Rα
2k+1,0)

)
Eβ
N+1 =

[
Hβ

1 , exp

(∑
k≥0

2
2k+1

ad(Rα
2k+1,0)

)
Eβ
N

]

+ exp

(∑
k≥0

2
2k+1

ad(Rα
2k+1,0)

)
Eβ
N−1

= Eβ
N+1−(α|β) (3.33)

the proposition holds for all N ∈ N0. The same induction argument applies to −N ∈
N0.

In this section we introduced the maximal compact subalgebra, the double parabolic

algebra and a Lie algebra homomorphism form the maximal compact subalgebra to the

double parabolic algebra. Using the double parabolic algebra, we proved Proposition 5 on

the generating structure of the ideals IN and for the double parabolic algebra we provided

the action of a certain group element.

4 Compact subalgebra on basic representation

The previous two sections put us in a good place to discuss the action of the maximal com-

pact subalgebra on the basic representation. Therefore, we prove a number of propositions

in this section, which are important to analyze the k-structure of the basic representation

in the next section.

The maximal compact subalgebra acts on the basic representation by the induced

action from the affine algebra. On maximal weights, the action of Eα
n is given by

Eα
n e

γ ⊗ 1 = ϵ(α, γ) eγ+α ⊗ S−n−(γ,α)−1({α}) + ϵ(α, γ) eγ−α ⊗ Sn+(γ,α)−1({−α}) . (4.1)

Proposition 8 states two important properties for the action of the compact subalgebra

on the basic representation.

Proposition 8. The action of the compact subalgebra k on a maximal state generates the

entire basic representation. The action of the compact Heisenberg algebra on a maximal

state generates all states with the same g̊ weight:

a.) ∀X ∈ R(Λ0), γ ∈ Q ∃U ∈ U(k) : X = U (eγ ⊗ 1)

b.) ∀ γ ∈ Q, f ∈ R[{α ∈ ∆}] ∃FHf ∈ U(⟨H⟩) : eγ ⊗ f = FHf (eγ ⊗ 1).
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Proof. First, we show that every maximal state can be mapped to the highest state by

repeated action of k

∀ γ ∈ Q ∃U ′ ∈ U(k) : e0 ⊗ 1 = U ′ (eγ ⊗ 1) . (4.2)

W.l.o.g. assume γ =
∑r

i=1 kiα
i with ki ≥ 0. Choose 1 ≤ j ≤ r s.t. kj ̸= 0 and

n = −(γ|αj) + 1 < 0. Such j exists because (·|·) is positive definite. Then, by equation

(4.1)

Eαj

n eγ ⊗ 1 = ϵ(γ, αj)eγ−α
j ⊗ 1. (4.3)

The procedure repeats for γ − αj and iteratively maps eγ ⊗ 1 ∈ R(Λ0) onto the highest-

weight e0 ⊗ 1. It works analogous for ki ∈ Z. This shows (4.2).
By induction in the loop level of a state X ∈ R(Λ0), we show that the basic represen-

tation is generated by the action of k on the highest-weight R(Λ0) = U(k) e0 ⊗ 1. Assume

that for all X ∈ R(Λ0) with dX = N ′X for N ′ ≤ N ∈ N holds X ∈ U(k) e0 ⊗ 1.

Let Y ∈ R(Λ0) s.t. dY = (N + 1)Y . Because R(Λ0) is generated by the action of

{Tn ∈ g |n ≤ −1} on the highest state it exists an Y ′ ∈ R(Λ0), n ∈ N with dY ′ =

(N − n+ 1)Y ′ s.t. Y = T−nY
′. Then, by assumption

Y = (T−n + τ(T−n))Y
′ − τ̊(T )nY

′ ∈ U(k) e0 ⊗ 1 (4.4)

This proves a. To prove b, we use that {Hα
n | n ≤ −1, α ∈ ∆ } on a maximal state spans

all states with the same g0. Then, the same induction proves b.

By Proposition 8, for a state eγ⊗f({α ∈ ∆}) exists generating elements FHf ∈ U(⟨H⟩),
which generates this state from the action on the maximal state eγ ⊗ 1. By the very

definition of the generating elements, they satisfy for each n ∈ N and α ∈ ∆

Hα
nFHf = FHHα

nf
. (4.5)

Let us also introduce a short notation for the generating element FHSn
of Schur poly-

nomials, because the Schur polynomials are essential in the vertex operator algebra. The

generating elements of the Schur polynomials are called H-Schur polynomials and are

defined by

SHn ({Hα}) = FHSn({α}) ∈ U(⟨H⟩). (4.6)

The action of a H-Schur polynomial on a maximal state generates the state with the

same g̊ weight and the respective Schur polynomial. The H-Schur polynomials satisfy a

recursion identity

SH
α

N ({Hα}) =
2

N

N∑
n=1

(
SHN−2n({Hα})−HnSN−n({Hα})

)
(4.7)
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which derives from adding and subtracting Hα
n to (2.16) and which is used for proofs

by induction. We prove the next lemma by induction on this identity. The lemma

provides a closed expression for the H-Schur polynomials and will be used to prove the

last proposition in this section.

Lemma 9. For every α ∈ ∆, the H-Schur polynomials are given in the expansion

SHn ({Hα}) =

⌊n
2 ⌋∑

m=0

exp

(∑
l≥1

−2
l
Hα

l x
l

)∣∣∣
xn−2m

. (4.8)

Remark 10. Evaluating the generating series in Lemma 9 gives the explicit form in terms

of the sets Kn = { (k1, . . . kn) ∈ Nn
0 |

∑n
l=1 lkl = n }

SHn ({Hα}) =

⌊n
2 ⌋∑

m=0

∑
k∈Kn−2m

n−2m∏
l=1

1

kl!

(
−2

l
Hα

l

)kl

(4.9)

=
n∑

M=0

n∑
m1=1

n−m1∑
m2=1

. . .

n−m1−···−mM−1∑
mM=1

rn(m1, . . . ,mM)
M∏
i=1

(
− 2

mi

Hα
mi

)
where rn(m1, . . . ,mM) is the factorial factor from the exponential. If kn is the multiplicity

of the integer n appearing in the set {m1, . . . ,mM} then, r is given by

rn(m1, . . . ,mM) =

{∏
i≥1

1
ki!

if n+
∑M

i=1mi is even

0 if n+
∑M

i=1mi is odd .
(4.10)

Proof. We prove the expansion in (4.9) by induction using (4.7). For n = 0, 1 the identity

holds since for γ ∈ Q

SH0 ({Hα})eγ ⊗ 1 = eγ ⊗ 1 SH1 ({Hα})eγ ⊗ 1 = −2Hα
1 e

γ ⊗ 1 = eγ ⊗ S1({α}) . (4.11)

For k ∈ KM set dk =
∏M

l=1
1
kl!
(−2

l
)kl and assume (4.9) is true for N ′ ≤ N ∈ N0. We find

SHN+1({Hα}) =
2

N + 1

N+1∑
n=1

(
SHN−2n+1({Hα})−Hα

nS
H
N−n+1({Hα})

)
=
∑
p≥0

∑
k∈Kp

δ(p+N+1)mod 2,0

N+1∑
n=1

2

N + 1

(
Θ(N − 2n+ 1− p)− nkn

2

)
dk

p∏
l=1

(Hα
l )

kl

=
∑
p≥0

∑
k∈Kp

δ(p+N+1)mod 2,0Θ(N + 1− p)dk

p∏
l=1

(Hα
l )

kl , (4.12)

where Θ is the Heaviside function. This proves the Lemma. A detailed calculation is in

Appendix E.
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Lemma 9 provides an explicit formula for the H-Schur polynomials. The Lie algebra

homomorphism ρN maps the H-Schur polynomials to elements in the universal enveloping

of the parabolic Heisenberg algebra. We call these elements the R-Schur polynomials. For

the R-Schur polynomials we prove an important proposition. However, in order to do so,

we first prove a lemma and then define the R-Schur polynomials properly.

Lemma 11. For each N ∈ N0, the elements pαN,0 and pαN,1 defined by

pαN,0(n) : 2Z → U(⟨R⟩)

n 7→ − 2

n
ρN(Hα

n) ,

pαN,1 : 2Z+ 1 → U(⟨R⟩)

n 7→ − 2

n
ρN(Hα

n) ,

are polynomials in n taking values in the parabolic Heisenberg algebra. At n = 0, the

polynomial pαN,0(0) satisfies

pαN,0(0) =

⌊N
2 ⌋∏

l=0

4

2l + 1
Rα

2l+1,0 . (4.13)

Remark 12. Therefore, for every N ∈ N0, the group element (ωα,N)
2 in (3.22) is

(ωα,N)
2 =

∑
m≥0

1

m!

(
pαN,0(0)

)m
. (4.14)

Proof. By Remark 3, ρN(Hα
m) is a polynomial on the domain m ∈ N taking values in the

parabolic algebra. Because Hα
0 = 0, the polynomial ρN(Hα

2m) has a zero at m = 0. There-

fore (4.13) are polynomials as well. To evaluate pαN,0 at zero, the Möbius transformation

(3.15) is useful

pαN,0(0)
∣∣∣
Rα

2l+1,0

= − 1

m
ρN(H2m)

∣∣∣
Rl

= − 1

m

(
t(u)2m − t(u)−2m

) ∣∣∣∣∣
m=0

∣∣∣∣∣
u2l+1

=
4

2l + 1
. (4.15)

Now, let us define the R-Schur polynomials and the generating elements FN,R
f . For

each N ∈ N0 and f ∈ R[{α ∈ ∆}], the generating elements FHf are mapped by the Lie

algebra homomorphism ρN group like to the quotient universal enveloping of the parabolic

algebra defined analogous to (3.14)

FN,R
f ({R}) = ρN(FHf ({H})) ∈ U(⟨R⟩)N . (4.16)

These elements are important to understand P-subrepresentation of the basic representa-

tion which justifies the additional notation. The image of ρN on the H-Schur polynomials

are called R-Schur polynomial

SN,R
n ({Rα}) = ρN(SHn ({Hα}))) ∈ U(⟨R⟩)N . (4.17)
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By Remark 3, Lemma 9 and Remark 10, the coefficients of U(⟨R⟩)N in SN,R
2n and SN,R

2n+1

are polynomials in n ∈ N0 of degree equal to the parabolic level of the product of Rα
l,a.

In particular, the maps

S̄N,R
α,0 : 2N0 → U(⟨R⟩)N

n 7→ SN,R
n ({Rα}) ,

S̄N,R
α,1 : 2N0 + 1 → U(⟨R⟩)N

n 7→ SN,R
n ({Rα}) (4.18)

are polynomials in n of degree N . These polynomials extend naturally to polynomials

with the domain extended from N0 to Z. While for n ∈ N and a ∈ {0, 1}, the R-Schur
polynomials with negative index SN,R

−n = 0 vanish, the extension S̄N,R
a (−n) can be non

zero.

We use this definition of R-Schur polynomials together with Lemma 9 and Lemma 11

to prove the next proposition about the extended R-Schur polynomials.

Proposition 13. For all n,N ≥ 0 and α ∈ ∆, a ∈ 0, 1, the extended R-Schur polynomials

S̄N,−R
α,a ∈ R[n] satisfy

S̄N,−R
α,a (−n) = S̄N,R

α,a (n− 2)ω2
α . (4.19)

Proof. The statement is independent of α ∈ ∆, a ∈ {0, 1} and N ∈ N0. Therefore, for

the proof, let us drop these indices on the elements of the parabolic Heisenberg algebra,

on the R-Schur polynomials and on the group element ωα,N .

Here, let us prove the statement in detail for n even, the proof works the same for n

odd and is described at the end. For the proof, we evaluate the coefficients of elements

of U(⟨R⟩) in S̄−R(−2n). To specify these elements in U(⟨R⟩) let L,L′ be two finite sets

of odd natural numbers and let

RL =
∏
l∈L

Rl′,0 R̃L′
=
∏
l∈L′

Rl′,1 . (4.20)

In this notation, we evaluate the coefficient of the product RLR̃L′
in S̄(−2n). The element

S̄(−2n) is the polynomial extension from the R-Schur polynomials with n ∈ N to n ∈ Z.
Therefore, by the identity for generalized sums in Appendix B, S̄(−2n) has the form of

S(2n) but in terms of the generalized sums
∑

→
∑

and n→ −n. Therefore, with Lemma

9 and Lemma 11 and s = |L|, t = |L′| where t is even since n is even, the coefficient of
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RLR̃L′
in S̄(−2n)−R is

S̄−R(−2n)
∣∣∣
RLR̃L′

= (−1)s
−n∑

m1=1

−n−m1∑
m2=1

. . .

−n−m1−···−ms+j−1+⌊ j
2⌋∑

ms+j=1

. . .

−n−m1−···−ms+t−1+
t
2∑

ms+t=1

r(2m1, . . . , 2ms, 2ms+1 + 1, . . . , 2ms+t + 1)
s∏

i=1

p(2mi)
s+t∏

i=s+1

p(2mi − 1) .

(4.21)

In the summation
⌊
j
2

⌋
accounts for the j − 1 number of sums with s+ 1 ≤ i ≤ s+ t− 1.

Next, we replace the generalized sum with upper limit higher than the lower limit by

(B.6a). Therefore, first we focus on the sums 1 ≤ i ≤ s. The replacement also inverts

mi → −mi, but because p(−2mi) = p(2mi) it is sufficient to replace the sums by

−n−m1−···−mi−1∑
mi=1

→ −
n−m1−···−mi−1−1∑

mi=1

− δmi,0 . (4.22)

Second, we replace the sums s+ 1 ≤ i ≤ t pairwise with the pairs i = s+ 2j − 1 and

i = s + 2j by (B.6a). Doing this for all sums simultaneously implies also mi → −mi in

the summands and provides

−n−m1−···−ms+2j−2+j−1∑
ms+2j−1=1

−n−m1−···−ms+2j−1+j∑
ms+2j=1

p(2ms+2j−1 − 1)p(2ms+2j − 1)

→
n−m1−···−ms+2j−2−j+1∑

ms+2j−1=0

n−m1−···−ms+2j−1−j∑
ms+2j=0

p(−2ms+2j−1 − 1)p(−2ms+2j − 1) . (4.23)

In the first sum in the last expressions, the summand ms+2j−1 = n−m1−· · ·−m2+2j−1−
j+1 gives for the second sum the limits 0 ≤ ms+2j ≤ −1 which vanishes by (B.6b) and this

term can therefore be removed from the first sum. Shifting all sums with s+1 ≤ i ≤ s+ t

by mi → mi − 1 to start at mi = 1 and using p(−m) = p(m) results in the replacement

of (4.23) by

n−m1−···−ms+2j−1+j−2∑
ms+2j−1=1

n−m1−···−ms+2j+j−1∑
ms+2j=1

p(2ms+2j−1 − 1)p(2ms+2j − 1) . (4.24)

We insert the replacements in (4.22) and (4.24) in (4.21). The sum in (4.22) and the

sum in (4.24) will contribute to S̄R(2N − 2), the Kronecker delta terms in (4.22) sum up

to ω2. To see this, we collect all terms with the same number of Kronecker delta terms
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δ0,mi
. The terms with s′ ≤ s number of Kronecker delta terms δmi,0 for i ≤ s appear with

multiplicity choose s′ out of s. Therefore, this rearrangement of sums provides us with

S̄−R(−2n)
∣∣∣
RLR̃L′

=
s∑

s′=1

(
s

s′

) n−1∑
ms′+1=1

. . .

n−1−···−ms′+j−1+⌊ j
2⌋∑

ms+j=1

. . .

n−1−···−ms′+t−1+
t
2∑

ms+t=1

r(ms′+1, . . . ,ms+t)
s∏

i=s′+1

p(2mi)
s+t∏

i=p+1

p(2mi − 1)
1

s′!

s′∏
i=1

p(0)

∣∣∣∣∣
RLR̃L′

(4.25)

where a second factor of (−1)s appears from (4.22). The factorial 1
s!

comes from the s′

number of arguments with same m = 0 in the argument of r. The overall projection to

RLR̃L′
is the sum of all possible projections of the different factors. Because p(2m) is a

series in Rl,0 and p(2m+1) is a series in Rl,1, the sum over all different projections is the

sum over all subset decompositions of L = L(s′) ∪ L(s − s′), where L(s′) has s′ number

of elements fixed

s∏
i=s′+1

p(2mi)
s+t∏

i=s+1

p(2mi − 1)
1

s′!

s′∏
i=1

p(0)

∣∣∣∣∣
RLR̃L′

=
∑

L(s−s′)∪L(s′)

(
s∏

i=s′+1

p(2mi)

)∣∣∣
RL(s−s′)

(
s+t∏

i=s+1

p(2mi − 1)

)∣∣∣
R̃L′

1

s′!
(p(0))s

′
∣∣∣
RL(s′)

. (4.26)

By Lemma 11 and Remark 12, the last product with factors p(0) projected on R̃L′
is ω2

projected on R̃L′
. For the other factors of p(m) with m ̸= 0 we use Lemma 11 and pull ρ

in front of the entire expression. Then, by (4.9) equation (4.21) becomes

S̄−R(−2n)
∣∣∣
RLR̃L′

=

p∑
s′=1

(
s

s′

) ∑
L(s−s′), L(s′)

ρN

[
n−1∑

ms′+1=1

· · ·
n−1−ms+j−1−⌊ j

2⌋∑
ms+j=1

. . .

n−1−m1−···−ms+t−1+
t
2∑

ms+t=1

r(ms′+1, . . . ,ms+t)

(
p∏

i=s′+1

2

2mi

H2mi

s+t∏
i=s+1

2

2mi − 1
H2mi−1

)∣∣∣
RL(s′)R̃L′

]
ω2
∣∣∣
RL(s′)

=

p∑
s′=1

(
s

s′

) ∑
L(s−s′), L(s′)

S̄(2(n− 1))
∣∣∣
RL(s−s′)R̃L′

ω2
∣∣∣
RL(s′)

= S̄(2(n− 1))ω2
∣∣∣
RLR̃L′

.

(4.27)

The proof works analogously for S̄−R(−2n − 1). Then t is odd, and one uses the pair

wise replacement of all sums in (4.24) for s + 2 ≤ i ≤ s + t. The sum s + 1 is replaced
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individually by (4.24) where the upper limit of the sum reduces by 1 because of (B.6b).

Then the same steps as for the even case provides S̄−R(−2n− 1) = S̄−R(2n− 1)ω2.

Corollary 14. The extended R-Schur polynomials S̄N,R
α (n) vanish at n = −1

S̄N,R
α (−1) = 0 . (4.28)

Proof. This follows from (4.21) for odd n and (B.6b). It is consistent with Proposition

13.

With the results of this section we are well equipped to analyze the k-structure of the

basic representation, which is the subject of the next section.

5 k-structure of basic representation

In this section we prove Theorem 1. For instance we give all k-subrepresentations in the

basic representation such that the quotient of the basic representation by the subrepresen-

tation is a finite dimensional P-representation. This is the finest k-structure of the basic

representations and it allows us to provide the cosocle filtration as an infinite composition

series of infinite dimensional k-subrepresentations of the basic representation.

First, we provide an infinite set of finite dimensional k-representations VerR(N)6 and

surjective projections GN : R(Λ0) → VerR(N) ≃ R(Λ0)/WN , which commute with the

action of k and project the basic representation on the finite dimensional k-representations

VerR(N). This provides an infinite set of k-subrepresentation WN = Ker(GN) of the basic

representation as the kernel of the projections.7

Second, we prove that if the basic representation projects k-covariant on a finite di-

mensional P-representation, there exists an N ∈ N0 such that the P-representations is

equivalent to VerR(N) or to a quotient of VerR(N) by a subrepresentation of VerR(N).

This is equivalent to the statement that every k-subrepresentation W ⊂ R(Λ0), for which

the quotient R(Λ0)/W is a finite dimensional P-representation by ρ, is WN for some

N ∈ N0 or a subrepresentation of WN . Therefore, we may call this set of subrepresenta-

tions the finest P-structure (and probably the finest k-structure).

Third, we show that the infinite family of k-subrepresentations (WN)N∈N0 is an infi-

nite composition series with cosocle filtration (see Appendix C). In particular, the finite

6We chose the name VerR since the modules are truncated Verma module of the parabolic Heisenberg

algebra with generators R.
7Embedding and projection. For two vector spaces V,W and a homomorphism G′ : V → W we

say that V is embedded in W if G′ is injective and if G′ is surjective we say that W ≃ V/(Ker(G′) is a

projection of V . If the vector spaces are representations of a Lie algebra l and G′ respects the action of

l we call the embedding (resp. projection) also a l-embedding (resp. l-projection). If it is clear from the

context we also avoid the symbol l and simply write embedding (resp. projection).
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dimensional quotients WN/WN+1 are maximal semisimple resp. WN+1 is the radical of

WN and the inverse limit of the chain of k-subrepresentations is trivial.

In Subsection 5.1 we derive the infinite chain of k-subrepresentations with finite co-

dimension which is the cosocle filtration of R(Λ0) and we derive the k-projection of the

basic representation onto infinitely many finite dimensional k-representations. In Subsec-

tion 5.2 we show that the inverse limit of the k-subrepresentations is trivial and therefore

the cosocle filtration is an infinite composition series of R(Λ0) under k.

5.1 k-subrepresentations in basic representation

In this section we provide all infinitely many projections of the basic representation

onto finite dimensional P-representations (See Footnote 7 or Appendix C). Equivalently,

we provide all infinitely many k-subrepresentations of R(Λ0), for which the quotient of

R(Λ0) by the subrepresentation is a finite dimensional P-representation. This set of

k-subrepresentations also contains the cosocle filtration of the basic representation.

First, for all N ∈ N0 we construct a finite dimensional P-representation VerR(N),

which is also a representations of k by pulling back with the Lie algebra homomorphism

ρN . Second, we prove that the basic representation can be projected k-covariant onto

VerR(N) for each N ∈ N0 and we give the explicit k-projection map GN . Third, we

show that this infinite set of k-representations and the quotient of these representations

by subrepresentations are all finite dimensional P-representations on which the basic

representation projects with the pull back of ρ. Fourth, in a corollary we give the infinite

descending chain of k-subrepresentations in the basic representation with cosocle filtration.

For each N ∈ N0, we define a representation ṼerR(N) as the tensor product of the

universal enveloping algebra of the parabolic Heisenberg algebra U(⟨R⟩) quotiented by

the ideal IUN in (3.13) and the group algebra of the root lattice with the inclusion α 7→ eα

ṼerR(N) =
U(⟨R⟩)
IUN

⊗R[Q] . (5.1)

This definition is reminiscent to the definition of the basic representation but in parabolic

generators. In particular, for a fixed eα ∈ R[Q], the representation ṼerR(N) restricts to

a finite dimensional quotient of a Verma module of the parabolic Heisenberg algebra.

The exponential series ωα,N in Proposition 6 acts by multiplication on ṼerR(N). This

is well-defined, because first, only finitely many terms in the exponential series in (3.22)

act non-trivially and second, they are given in terms of the parabolic Heisenberg algebra.

Next, we consider the group which is generated by ω2
α,N for α ∈ ∆. This induces an

equivalence relation on ṼerR(N) which is generated by

(ωα,N)
2 eβ ∼ eβ+2α (5.2)
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and extends straightforward to all other elements of ṼerR(N), because the parabolic

Heisenberg algebra commutes with ωα,N . For each N ∈ N0, this equivalence relation

defines a quotient space VerR(N) from ṼerR(N) by

VerR(N) = ṼerR(N)
/
∼ . (5.3)

From here on, we always work with the quotient space VerR(N). The construction of

VerR(N) as a quotient space is particularly fruitful to extend VerR(N) to a representation

of the parabolic algebra P. This is subject of the next Proposition.

Proposition 15. For all N ∈ N0, the representation VerR(N) extends to a representation

of the parabolic algebra PN . The element Eα
n ∈ k acts on eγ for γ ∈ Q by

ρN(Eα
n ) eγ = ϵ(α, γ)S̄N,R

α (−n− (α|γ)− 1) eα+γ (5.4)

and the action extends to VerR(N) by the commutation relations of P.

Remark 16. By this proposition VerR(N) extends from a representation of ⟨R⟩ to a rep-

resentation of the parabolic algebra PN , for which we use the same name VerR(N). The

pull back of ρN maps this representation to a representation of k, for which we still use

the same symbol VerR(N) and therefore, we simply write Eα
n for ρN(Eα

n ), when Eα
n acts

on a parabolic representation.

Remark 17. The state e0 ∈ VerR(N) is a singlet of the maximal compact subalgebra k̊ of

the Lie algebra g̊ because S̄α(−1) = 0 by Corollary 14.

Proof. The proof contains three parts. The first part shows, that the action (5.4) is well

defined on the coset space. The second part shows that (5.4) defines a representation of

the parabolic algebra. For example, that ρN(Eα
n ) can be written in terms of the parabolic

generators and ρN . The third part shows that (5.4) obeys the Lie bracket relation. Then,

VerR(N) extends to a representation of the parabolic algebra.

We show that (5.4) is well defined on the quotient space. By Proposition 6 and β ∈ ∆

ρN(Eα
n )(ωβ)

2eγ = (ωβ)
2ρN(Eα

n+2(α|γ)) eγ = ϵ(α, γ)S̄N,R
α (−n− (α|2β + γ)− 1)eα+2β+γ

= SN,R
α (−n− (α|2β + γ)) eα+2β+γ = ρN(Eα

n ) eγ+2β . (5.5)

Therefore, the action respects the equivalence relation.

Second, we show that (5.4) defines an action of the parabolic algebra PN consistently.

For all α ∈ ∆ and 0 ≤ n ≤ 2N + 1 the equation (5.4) defines the action of PN uniquely.

Then, the action of all generators Eα
m for m ∈ Z is given in terms of ρN and the action of

PN . Therefore the action of Eα
m is uniquely given by the action of the elements Eα

n with
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0 ≤ n ≤ 2N + 1 and the ideal relations in Proposition 5. Thus, it remains to show that

the ideal relations hold

N+1∑
k=0

(−1)k
(
N + 1

k

)
ρN(Eα

m+2k) eγ

= ϵ(α, γ)
N+1∑
k=0

(−1)k
(
N + 1

k

)
S̄N,R
α (−m− 2k − (α|γ)− 1) eα+γ = 0 . (5.6)

The last equation holds because SN,R
α is a polynomial of degree N up to elements in IUN

which act trivial by definition of VerR(N). This shows that (5.4) defines an action of the

parabolic algebra on the states eβ for β ∈ Q.

Finally, we show that this action of P is indeed a representation and respects the Lie

bracket. For all m,n ∈ Z, α, β ∈ ∆, γ ∈ Q and U(⟨R⟩) the action of the generator Eα
m on

UReβ is uniquely defined by the action of Eα
m on eγ and the commutation relations of Eα

m

with the compact Heisenberg algebra. Therefore, the action of the compact Heisenberg

algebra and Eα
m respect the commutation relations. It remains to show that Eα

m and Eβ
n

respect the commutation relations on eγ. Inserting Proposition 13 in (5.4) we find

ρN(Eα
m)eγ = ϵ(α, γ)SN,R

−n−(α|β)−1({R
α}) eγ+α + ϵ(α, γ)SN,R

n+(α|β)−1({−R
α}) eγ−α

= ϵ(α, γ)SH−n−(α|β)−1({Hα}) eγ+α + ϵ(α, γ)SHn+(α|β)−1({−Hα}) eγ−α . (5.7)

But this action is exactly the action on the maximal states of the basic representation

and because Eα
m and the compact Heisenberg algebra satisfy the commutation relations,

this action necessarily satisfies the commutation relations between Eα
m and Eβ

n . This is

illustrated in detail in Appendix E.

Now, we are equipped with infinitely many k-representations VerR(N) and the quo-

tients of VerR(N) by subrepresentations of VerR(N). In the theorem below we show that

the basic representation can be projected onto these finite dimensional k-representations.

Theorem 18. For all N ∈ N0, there exists a k-homomorphism GN : R(Λ0) → VerR(N)

given by

GN (eγ ⊗ f({α ∈ ∆})) = FN,R
f ({R})eγ (5.8)

which is surjective and commutes with k.

Remark 19. By this theorem, for allN ∈ N0, the mapGN projects the basic representation

onto VerR(N) and on quotients of VerR(N) by subrepresentations of VerR(N). This is

equivalent, to the fact that the kernel of GN is an k-invariant subspace

WN = Ker(GN) ⊂ R(Λ0) . (5.9)
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Remark 20. The map GN together with the action Eα
m on the basic representation, allows

to conveniently evaluate the action of Eα
m on the states of VerR(N) by evaluating Eα

m on

the basic representation and then applying GN . Proposition 28 gives an efficient formula

to evaluate GN on arbitrary states of the basic representation.

Proof. First, we show commutation of GN with the compact Heisenberg algebra. For all

n ∈ N, α ∈ ∆, γ ∈ Q, f ∈ R[{β ∈ ∆}] holds by (4.5)

GN (Hα
n e

γ ⊗ f) = FR
Hα

nf
({R})eγ = Hα

nFR
f ({R})eγ = Hα

n GN

(
eβ ⊗ f

)
. (5.10)

Therefore, the homomorphism GN commutes with the compact Heisenberg algebra.

Next, we show commutation of GN with Eα
n for all n ∈ Z on the maximal states.

Therefore, let us evaluate GN ◦ Eα
n on a maximal state by using (4.1)

GN(Eα
n e

γ ⊗ 1) = GN

(
ϵ(α, γ) eγ+α ⊗ S−n−(α,γ)−1({α}) + ϵ(α, γ) eγ−α ⊗ Sn+(γ,α)−1({−α})

)
(5.11)

By Proposition 8 the Schur polynomials Sn({α}) are generated by the H-Schur polyno-

mials, which allows to replace Sn({α}) by SHn ({Hα}). Because the compact Heisenberg

algebra commutes with GN , the H-Schur polynomials commute with GN . Then, from

(5.11) follows

GN(Eα
me

γ ⊗ 1) = ϵ(α, γ)SH−m−(α,γ)−1({α}) eγ+α + ϵ(α, γ)SHm+(γ,α)−1(−{α}) eγ−α
= ϵ(α, γ)S̄N,R

α (−m− (α, γ)− 1) eγ+α = Eα
m eγ (5.12)

by Proposition 15. This proves commutation of Eα
n with GN on all maximal states.

It remains to show commutation of Eα
m and GN on all states. Therefore, we write a

state eγ⊗f for a polynomial f ∈ R[{β ∈ ∆}] as generated from the maximal state by FHf .

For U = FHf we apply the commutation identity (3.7), which provides the appropriate

sets of Uj and nj to commute Eα
n with FHf . It allows us to derive

Eα
nGN (eγ ⊗ f) = Eα

nGN

(
FHf eγ ⊗ 1

)
= Eα

nFHf GN (eγ ⊗ 1)

=
J∑

j=1

UjEr
nj
GN (eγ ⊗ 1) =

J∑
j=1

UjGN

(
Eα
nj
eβ ⊗ 1

)
=

J∑
j=1

GN

(
UjEr

nj
eγ ⊗ 1

)
= GN

(
Eα
nj
FHf eγ ⊗ 1

)
= GN (Eα

n e
γ ⊗ f) ,

(5.13)

which proves commutation of k and GN . The homomorphism GN is surjective since ρN is

surjective.
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This theorem shows that for every N ∈ N the surjective homomorphism GN projects

the basic representation onto VerR(N) and quotient of VerR(N) by subrepresentation of

VerR(N). The theorem also implies the existence of infinitely many filtered invariant

subspaces as the kernel of GN , which we give in a corollary after the next theorem. In the

next theorem we show that if and only if the basic representation projects onto a finite

dimensional k-representation, which is also a representation of P, then the representation

is equivalent to VerR(N) or to the quotient of VerR(N) by a subrepresentation.

Theorem 21. If for an N ∈ N0 the basic representation projects by ρN onto a finite

dimensional representation Ψ of PN , then Ψ is equivalent to VerR(N) or to the quotient

of VerR(N) by a subrepresentation of VerR(N).

Remark 22. The theorem also implies that a k-invariant subspace in the basic repre-

sentation for which the quotient of the basic representation by the subspace is a finite

dimensional P-representation, the subspace is equivalent toWN or to a subrepresentation

of WN for some N ∈ N0.

Remark 23. All known finite dimensional k-representations are also representations of the

double parabolic algebra P. Yet, it is not proven, but we expect that indeed all finite

dimensional k-representations are also P-representations. Then, for all finite dimensional

k-representations which embed in the basic representation, there exists an N ∈ N0 such

that the representation is equivalent to WN or to a subrepresentation of WN . Then, this

is the finest k-structure of the basic representation.

Proof. If Ψ is the trivial representation, it is equivalent to the quotient of VerR(0) by

VerR(0). Let us assume Ψ is non-trivial. Because Ψ is a projection of the basic represen-

tation, there exists a surjective homomorphism G′ : R(Λ0) → Ψ which commutes with k.

By Proposition 8 and because Ψ is non-trivial by assumption and G′ is surjective, G′ does

not vanish on the maximal states. By commutation of G′ and the Heisenberg algebra

necessarily Ψ and G′ satisfy

G′(eγ ⊗ f) = FN,R
f G′(eγ ⊗ f) . (5.14)

Therefore, Ψ as a representation of the parabolic Heisenberg algebra is equivalent to

ṼerR(N) or to the quotient of ṼerR(N) with a subrepresentation.
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To show that Ψ is a quotient space of ṼerR(N) w.r.t. the equivalence relation in (5.2)

and that G′ = GN , we perform several derivations explained below

G′(eγ+α ⊗ 1) = ϵ(α, γ)Eα
−(α|γ)−1G

′(eγ ⊗ 1)

= − ϵ(α, γ)
N+1∑
m=1

(−1)m
(
N + 1

m

)
G′
(
Eα
−(α|γ)−1+2me

γ ⊗ 1
)

= −
N+1∑
m=1

(−1)m
(
N + 1

m

)
S2m−2({−Rα})G′(eγ−α ⊗ 1)

= S̄N,−R
α (−2)G′(eγ−α ⊗ 1) = ω2

αG
′(eγ−α ⊗ 1) . (5.15)

In the first line, we used that G′ commutes with Eα
−(α|γ)−1. In the second line, we used

that Ψ has parabolic level N , then we applied the ideal relation in Proposition 5 and used

again commutation of G′ and Eα
m. For the third line, we evaluate Eα

m on the maximal state

with weight γ, then we used commutation of the G′ with the compact Heisenberg algebra

and applied the Lie algebra homomorphism which provides the R-Schur polynomials.

In the fourth line, we applied (3.19) and the fact that S̄N,R
α (n) are polynomials for the

first equation. The last equation derives from Proposition 13 for n = 2. Therefore Ψ is a

quotient space w.r.t. the equivalence relation in (5.2). Commutation of G′ and Eα
m implies

by Proposition 13, that Eα
m acts on Ψ by (5.4). Thus, Ψ is equivalent to VerR(N) or to

the quotient of ṼerR(N) with a subrepresentation.

By these two theorems, we can derive the cosocle filtration of the basic representation,

but therefore, it is beneficial to add some notation. For k ≤ N let VerR(N)k be the

projection of VerR(N) onto the k̊-representation at parabolic level k

VerR(N) =
N⊕
k=0

VerR(N)k . (5.16)

Then, due to the parabolic grading, for M ∈ N0 also

N⊕
k=M

VerR(N)k (5.17)

are k-representations. Using this notation, we provide the cosocle filtration of the basic

representation in the next corollary.

Corollary 24. For all N ∈ N0, with VerR(N) and GN : R(Λ0) → VerR(N) as in Propo-

sition 15 and Theorem 18, the following identities hold.

a.) The kernel of WN = Ker(GN) ⊂ R(Λ0) is a non-trivial proper k-invariant subspace

and we set W−1 = R(Λ0).
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b.) The k-invariant subspaces of WN , for which the quotient of WN by the subrepre-

sentation is a finite dimensional P-representation are WM and subrepresentations

of WM for M > N . Equivalently, if WN projects onto a finite dimensional P-

representations, which is also a k-representation by ρ, then there exists a M ∈ N,

M ≥ N + 1 such that the P-representation is equivalent to

M⊕
k=N+1

VerR(M)k (5.18)

or to a quotient of this representation by a subrepresentation.

c.) For M ∈ Z≥−1, the quotients of the invariant subspaces

WM

WM+1

≃ VerR(M + 1)M+1 (5.19)

are finite-dimensional semisimple k-representations, on which the generators with

positive parabolic level act trivial.

d.) For M ∈ Z≥−1, the cosocle and the radical (see Appendix C) of WM are

rad(WM) =WM+1 , cosoc(WM) ≃VerR(M + 1)(M+1) . (5.20)

e.) The k-cosocle filtration (see Appendix C) of R(Λ0) is (WN)N∈N

R(Λ0) ⊃ W0 ⊃ W1 ⊃ W2 ⊃ . . . (5.21)

This corollary provides the cosocle filtration of the basic representation under k. In

the next subsection, we show that the cosocle filtration is indeed an infinite composition

series (see Appendix C) of the basic representation.

5.2 Infinite composition series of basic representation

We prove the quite remarkable fact that the basic representation has an infinite com-

position series with cosocle filtration under k. That means, we prove that the basic

representation has a descending chain of infinitely many invariant subspaces such that

the quotient of two adjacent subspaces in the chain is finite dimensional semisimple. As

vector spaces, the sum of all these finite dimensional quotients is equivalent to the basic

representation.

First, we derive the infinite completion VerR(∞) of the family (VerR(N))N and of the

cosocle filtration of the basic representation (5.21). Conversely to VerR(N), which is a

projection of the basic representation, the infinite completion is not a projection of the

31



basic representation but the basic representation embeds in the infinite completion. This

will be used to show that the cosocle filtration (5.21) is indeed also an infinite composition

series (define in Appendix C). Clearly, these statements must be properly defined, so first

let us define the infinite completion VerR(∞) and then show that the basic representation

embeds in it.

For each N ∈ N0, the quotient universal enveloping algebra of the parabolic Heisen-

berg algebra U(⟨R⟩)N is defined analogous to U(P)N . The inverse limit of the family

(U(⟨R⟩)N)N∈N and (ṼerR(N))N with the morphism given by the natural projection are

called

U(⟨R⟩)∞ = lim←−
N→∞

U(⟨R⟩)N ,

ṼerR(∞) = lim←−
N→∞

ṼerR(N) ∈ U(⟨R⟩)∞ ⊗R[Q] . (5.22)

The map ωα,∞ on the space ṼerR(∞) is defined uniquely from ωα,N and the universal

property of the inverse limit

ωα,∞ = exp

(∑
k≥0

2
2k+1

Rα
2k+1,0

)
∈ U(⟨R⟩)∞ . (5.23)

The equivalence relation (5.2) extends to an equivalence relation of the completions. For

every α ∈ ∆, and e∞γ ∈ ṼerR(∞)

(ωα,∞)
2e∞γ ≃ e∞γ+2α ∈ ṼerR(∞) , (5.24)

which defines the quotient space

VerR(∞) =
(
ṼerR(∞)

/
∼
)

≡ lim←−
N→∞

VerR(N) . (5.25)

The action of k and the generating elements is uniquely given by the universal property

of the inverse limit and (5.4)

F∞,R
f = ρ(FHf ) ∈ U(⟨R⟩)∞ . (5.26)

These elements allow to give the mapG∞ explicitly, which embeds the basic representation

in VerR(∞). By the universal property of the inverse limit, the map

G∞ : R(Λ0) → VerR(∞) (5.27)

eγ ⊗ f({α ∈ ∆}) 7→ F∞,R
f ({R})eγ , (5.28)

is uniquely defined, such that for every N ∈ N0 the projection of the codomain U(⟨R⟩)∞
of G∞ to U(⟨R⟩)N is the map GN .
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Proposition 25. The map G∞ : R(Λ0) → VerR(∞) is injective but not surjective.

Remark 26. By this proposition the map GN and G∞ between the modules R(Λ0) as

a k-module and VerR(N), VerR(∞) as a P-module behave similar to the Lie algebra

homomorphism ρN and ρ from k to PN resp. P. By Proposition 9 and 11 in [8], the map

ρN is surjective but not injective, while its completion ρ is injective but not surjective. In

particular the elements in P which contain only finitely many terms in the formal power

series are not in the image of ρ. The basic representation does not project onto the infinite

completion VerR(∞), but rather embeds in it.

Proof. First, we show that G∞ is injective. Because the map ρ is injective, the generating

element, as a function F∞,R
f : f ∈ R[{α ∈ ∆}] 7→ U(⟨R⟩) is injective. Therefore, for

γ ∈ Q, the map G∞ is injective on the states {eγ ⊗ f | f ∈ R[{α ∈ ∆}]}.
The elements eγ and eγ′ are independent if γ − γ′ /∈ 2Z∆ and therefore it remains to

show that the images of G∞ on the states

{eγ+2lα ⊗ f | f ∈ R[{β ∈ ∆}, α ∈ ∆, l ∈ N]} (5.29)

are linearly independent. The image of G∞ on eγ+2lα ⊗ f and on eγ+2kα ⊗ f differ by a

factor of (ωα,∞)
l−k. Therefore, it remains to show that the images of G∞ on the states

{eγ ⊗ f | f ∈ R[{β ∈ ∆}]} (5.30)

are linearly independent to the images of G∞ on the states

{eγ+2lα ⊗ f | f ∈ R[{β ∈ ∆}, α ∈ ∆]} (5.31)

for l ∈ N. The remaining independents relations of the image of the states in (5.29)

follow by division with ωα,∞. To show that the image on the states in (5.30) and (5.31)

are independent we show that the generating elements F∞,R
f are linearly independent

from the elements F∞,R
f ′ (ωα,∞)

2l for l ̸= 0. By the series expansion (3.22), it is sufficient

to show that there is no elements in ⟨H⟩ which is mapped to
∑

k≥0
4l

2k+1
Rα

2k+1,0 by ρ. It

is clear, that this is true for all elements Hβ
m ∈ k with β ̸= ±α or m odd. Suppose now

0 = ρ(
I∑

i=1

viHα
2ni

) + v0
∑
k≥0

4l
2k+1

Rα
2k+1,0

=
I∑

i=1

vi
∑
k≥0

2ni−1∑
s=1

c(2ni)
s (2k + 1)sRα

2k+1,0 + +v0
∑
k≥0

4l
2k+1

Rα
2k+1,0. (5.32)

where c
(n)
s ∈ R are the polynomial coefficients. While 1

2k+1
has no finite series expansion,

the first term in the equation are polynomials in 2k + 1 of finite degree. But since this

equation must hold for all k ∈ N0, the second and first term must cancel independently.
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We show that G∞ is not surjective. By Proposition 9 in [8], the element Rα
1,0 is not in

the image of ρ. Therefore, there exists no polynomial f ∈ R[{β ∈ ∆}] and γ ∈ Q such

that G∞(e
γ ⊗ f) = Rα

1,0e0.

Corollary 27. The cosocle filtration (WN)N∈Z≥−1
in Corollary 24 is an infinite compo-

sition series of the basic representation under the action of k

lim←−
N→∞

WN = {0} . (5.33)

Proof. By the definition of an infinite composition series in Appendix C it remains to

show (5.33). For VerR(−1) = {0}, the family (VerR(N)N∈Z≥−1
together with the natural

projection VerR(N + 1) → VerR(N) provides the family (WN = Ker(GN))N∈Z≥−1
with

R(Λ0)/WN ≃ VerR(N) and implies the natural projective embedding WN+1 → WN ⊃
WN+1. Then, by the universal property of the inverse limit applied to GN which provides

G∞, the inverse limit of the family (WN = Ker(GN))N is W∞ = Ker(G∞) = {0} by

Proposition 25.

In this section we derived infinitely many k-subrepresentations of the basic represen-

tation as the kernels of infinitely many different k-projections of the basic representations

on finite dimensional k-representations. We proved, that these are all finite dimensional

P-representations onto which the basic representation can project by the pull back of ρ.

This allowed us to provide the cosocle filtration and to show that it is an infinite composi-

tion series of the basic representation. In particular, as vector spaces or k̊-representations,

the basic representation is isomorphic to a direct sum of infinitely many finite-dimensional

semisimple k-representations.

In the next section we provide examples and applications of the results.

6 Examples and applications to supergravity

In this section we provide some explicit examples of the projection of the basic represen-

tation onto finite dimensional k-representations and we give applications of our results to

supergravity in two dimensions.

First, in Subsection 6.1 we prove a Proposition which allows to evaluate the generating

elements FH to any state of the basic representation in a closed form and which simplifies

the evaluation of FR significantly. Then, we add some comments on the finite dimensional

compact subalgebra k̊ to further analyze the k-representations as k̊-representations.

Second, in Subsection 6.2 the results of the previous section are applied to obtain ex-

plicit examples of invariant subspaces and about the projection of the basic representation

onto P-representations of parabolic level zero and parabolic level one. We use the proven

proposition to give the projection homomorphism explicitly.
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Third, in Subsection 6.3 we apply the results in the previous section to the basic

representation of the split real e9(9) algebra with maximal compact subalgebra k(e9(9)). We

find the k(e9(9))-representations of parabolic level zero, one and two which are projections

of the basic representation and compare these representations with tensor products of

representations of the single parabolic algebra constructed in [8]. This provides an so(16)-

covariant formulation of the k(e9(9))-representations on which the basic representation

projects. At the end, we discuss applications to supergravity in D = 2 dimensions.

6.1 Evaluation of projection

To understand the k-subrepresentations of the basic representations explicitly, the homo-

morphism GN must be evaluated on the states eγ⊗f of the basic representation (5.8). By

Theorem 18 it remains to evaluate the generating elements FR
f = ρ(FHf ) for polynomials

f ∈ R[{α ∈ ∆}]. The next Proposition provides an explicit expressions of the generating

elements FHf .

Proposition 28. Let {vi ∈ h̊∨ | 1 ≤ i ≤ r} be an orthonormal basis of h̊∨ and let

{Hv,i ∈ h̊ | 1 ≤ i ≤ r} be the dual basis with Hv,i
n = 1

2
Hv,i(tn − t−n), then

a.) FHf1({vi})f2({vj}) = FHf1({vi}F
H
f({vj}) for i ̸= j,

b.) FH(vi−l)
n =

n∑
k=0

cl,n,k
(
Hv,i

l

)k
eγ ⊗ 1

cl,n,k =

{
(−1)n

(2l(n−k−1))!(4l)(2n)!(2)
k!(2n−2k)!(2)

for n− k even

0 otherwise
. (6.1)

where for n,N ∈ N, N !(n) = N(N − n)!(n) for N ≥ n, N !(n) = N for 1 ≤ n ≤ N ,

0!(n) = (−N)!(n) = 1.

Remark 29. By (6.1) it is straightforward to evaluate the generating elements FHf for

any f ∈ R[{α ∈ ∆}]. The Lie algebra homomorphism ρN maps group like the gener-

ating elements FH to the parabolic generating elements FR ∈ U(⟨R⟩). Because of the

parabolic grading, and because every element of the parabolic Heisenberg algebra has at

least parabolic level one, the Lie algebra homomorphism ρN is easy evaluated for low N .

Proof. The loop generators of the dual roots Hv,i
n commute and therefore Hv,i

n does not

act on eγ ⊗ (vj−l)
n for i ̸= j and l, n ∈ N, which proves a.

We prove b by induction in n. For n = 0 the statement is true and for n = 1,

cl,1,k = −2δk,1 and

Fvi−l
= −2Hv,i

l , (6.2)
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the statement is also true. Assuming b is true for n ≤ N and applying the commutation

[Hv,i
−l , (H

v,i
−l)

k] = −kl(Hv,i
−l)

k−1 results in

F(vi−l)
N+1 = Hv,i

−l

n∑
k=0

cl,N,k(Hv,i
−l)

k

= − lcl,n,1 +
N∑
k=1

− ((k + 1)lcl,N,k+1 + 2cl,N,k−1) (Hv,i
−l)

k − 2cl,N,N(Hv,i
−l)

N+1 .

(6.3)

From the explicit form of c follow the identities

cl,N+1,0 = − lcl,N,1 , cl,N+1,N+1 = −2cl,N,1

cl,N+1,k = − l(k + 1)cl,N,k+1)− 2cl,n,k−1 , (6.4)

which, inserted in (6.3) prove b.

The Proposition allows to evaluate the homomorphism GN , which projects R(Λ0)

onto VerR(N). To analyze the k-representations VerR(N), they may be decomposed into

k̊-representations. Therefore, let us first consider the quotient algebra P0 which is also a

finite dimensional subalgebra of the double parabolic algebra

P0 =
{
Pα
0,a |α ∈ ∆, a ∈ {0, 1}

}
. (6.5)

By definition these are the only elements of the double parabolic algebra which preserve

the parabolic level of states in the parabolic representation. The Lie bracket of these

elements is [
Pα
0,a, P

β
0,b

]
= ϵ(α, β)

(
Pα+β
0,a+b + Pα−β

0,a+b

)
. (6.6)

Therefore, P0 is a Z2 graded algebra P0 = k̊0 ⊕ k̊1, where k̊0 ≃ k̊ as Lie algebras and

k̊1 ≃ k̊ as vector spaces. In particular k̊0 is a subalgebra as well and equivalent to the

semisimple Lie algebra k̊. This analysis helps to analysis the decomposition of VerR(N)

in k̊-representations in Subsection 6.3. However, first, let us provide general examples of

the projections GN in the next subsection.

6.2 General examples

In this section we provide the projection of the basic representation on the parabolic level

zero and parabolic level one representations VerR(0) and VerR(1) and give the projections

G0 and G1 explicitly. We analyze the representations VerR(0) and VerR(1) in more detail

and add some comments on the decomposition into k̊-representations. It is straightforward

to generalize this to any parabolic level N ∈ N0 and representation VerR(N).
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6.2.1 Parabolic level zero

The simplest k-representation onto which the basic representation can be projected is of

parabolic level zero. By Theorem 18 this representation is VerR(0) given in Proposition

15. Let us analyze this representation in more detail.

Because the representation has parabolic level zero, all parabolic generators of higher

parabolic level than zero act trivial. In particular ω2
α − 1 ∈ I0 acts trivial and implies

that for α ∈ ∆ and γ ∈ Q, eγ+2α − eγ ∼ 0 ∈ VerR(0). Therefore, the representation

has dimension dim(VerR(0)) = 2r, where r is the rank of the finite algebra g̊. The action

of the parabolic generators of level 0 is given in Proposition 15 in terms of the extended

R-Schur polynomials S0,R(2n) = 1 and S0,R(2n+ 1) = 0 (D.5)

Pα
0,aeγ = ϵ(α, γ)

{
0 if (α|γ) + a even

eγ+α if (α|γ) + a odd.
(6.7)

This action allows us to analyze the decomposition of VerR(0) into k̊-representations.

The representation is generated from the action of Pα
0,1 and P

(α
0,1P

β)
0,1 for different α ∈ ∆

on e0, because for α, β ∈ ∆, and α + 2β ∈ ∆, then β = −α. Explicitly we obtain

e0 −→ 1̊k

Pα
0,1e0 = eα −→ ad̊k

Pα
0,1P

β
0,1e0 = 1

2
{Pα

0,1, P
β
0,1}e0 ⊂ (ad̊k ⊗sym ad̊k) . (6.8)

The first line is a singlet under k̊. The second line is the adjoint representation of k̊ and

the last line takes values in the symmetric product of two adjoint representations of k̊.

The k̊ singlet in the last line is proportional to e0 because P
β
0,1P

α
0,1 = ηα,βe0. All together,

VerR(0) ⊂ ad(̊k)⊗ ad(̊k). This provides some inside in the decomposition of VerR(0) into

k̊-representations.

The basic representation is projected onto VerR(0) with the homomorphism G0 in

Theorem 18. By Proposition 28 and the Lie algebra homomorphism ρ0 we can evaluate

the projection in terms of the generating elements F0,R
f efficiently. For the case of parabolic

level zero, all Heisenberg generators act trivial and one evaluates (6.1) for k = 0. Then

the projection G0 acts on the basic representation by

G0

(
eγ ⊗

r∏
i=1

(vi−li)
ni

)
=

{
(
∏r

i=1(2li(ni − 1))!4li) eγ for all ni even

0 otherwise .
(6.9)

By Corollary 24, the kernel of G0 is a k-invariant subspace. For instance all elements of

the basic representation which contain in vertex operator realization an odd power of a

indexed simple root are in the kernel of G0.
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6.2.2 Parabolic level one

Let us decompose the parabolic level one representations VerR(1). The states of the

representation are

VerR(1) =
{
eγ , R

αi

1,aeγ | γ ∈ Q, αi ∈ Π, a ∈ {0, 1}
}
. (6.10)

Therefore, the representation has dimension dim(VerR(1)) = 2r+2·r·2r. The states Rαi

1,aeγ
are strictly of parabolic level one while the states eγ have contributions from parabolic

level zero and one. Thus, to parabolic level zero, the representation VerR(1) has 2
r number

of states contained in eγ. The remaining states are Ri
1,aeγ, which accounts for 2 · r · 2r

number of states at parabolic level one. These are all the states of the representation and

therefore, parabolic level one contribution in eγ are necessarily linear combinations of the

2 · r · 2r states Rαi

1,aeγ.

The generators of parabolic level higher than one act trivial and the action of the

other generators is given in (5.4) and in terms of the extended R-Schur polynomials

S1,R
α (2n) = 1 + 4nRα

1,0, S1,R
α (2n+ 1) = 4(n+ 1)Rα

1,1 . (6.11)

The action of the parabolic generators is then evaluated from (5.4)

Pα
0,aeγ = ϵ(α, γ)

{
1− 2 ((α|γ) + 2)Rα

1,0 if (α|γ) + a is odd

−2(α|γ)Rα
1,1 if (α|γ) + a is even.

Pα
1,aeγ = ϵ(α, β)Rα

1,a+1+(α,β)eα+γ . (6.12)

On the states at level one, the generators Pα
1,a act trivial while the action of Pα

0,a is given

by the commutation relations.

The homomorphism G1 from Theorem 18 can be evaluated by Proposition 28. For

parabolic level one, products of more than one Heisenberg generators act trivial. There-

fore, (5.4) must be evaluated at k = 0 and k = 1 and thus, the homomorphism G1 of

VerR(1) is

G1

(
eγ ⊗

r∏
i=1

(vi−li)
ni

)

=


(
∏r

i=1(2li(ni − 1))!4li) eγ for all ni even(∏r
j ̸=i=1(2li(ni − 1))!4ji

)
4nj(2lj(n− 2))!(4lj)R

αj

1,lj
eγ for nj odd, ni even for i ̸= j

0 otherwise .

(6.13)

It is straightforward to evaluate the projection of the basic representation onto even higher

parabolic representations by applying Proposition 15, Theorem 18 and Proposition 28.
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To obtain a better understanding of the k-representations in Proposition 15 on which

the basic representation projects, we decompose these representations into k̊-representations.

In general, this does not lead to new obstacles but may be achieved with standard tech-

niques of representation theory, but it requires a suitable basis change of the generators

in (2.2) to a k̊-covariant basis. Therefore it seems useful to restrict to a specific affine

Kac-Moody algebra which we do in the next subsection.

6.3 Projections of e9 basic representation

Certainly, one of the most interesting split real simply-laced affine Kac-Moody algebras

is e9(9) with maximal compact subalgebra k(e9(9)). In this section we decompose the finite

dimensional k(e9(9))-representations VerR(0), VerR(1) and VerR(2) on which the basic

representation projects under the finite compact subalgebra k̊(e9(9)) = so(16). This is

an so(16)-covariant form of the k(e9(9))-representations which has the additional benefit,

that it is significantly easier to obtain subrepresentations of VerR(N).

Instead of performing the explicit so(16)-decomposition of VerR(N), we rather apply

the construction of so(16)-covariant k(e9(9))-representations in [8] to build up so(16)-

covariant k(e9(9))-representations which are equivalent to VerR(0), VerR(1) and VerR(2).

This is equivalent to a direct decomposition of these k(e9(9))-representations. In this

work we restrict the analysis to dimensional arguments, because the explicit analysis

to show that the so(16)-covariant k(e9(9))-representations are equivalent to VerR(N) for

some N ∈ N0 would exceed the scope of this paper. However, the explicit analysis

finds important application in supergravity in two dimensions as it describes the yet

unknown supersymmetry of vector fields and the decomposition of the embedding tensor

into fermion bilinears. Therefore, we present it in a subsequent paper.

First, we introduce an so(16)-covariant notation of the algebras of interest. Second,

we construct so(16)-covariant k(e9(9))-representation along [8] which are equivalent to

VerR(N) for N ≤ 2. Third, we apply these concrete results to supergravity in two

dimensions.

6.3.1 so(16)-covariant formulation

A thorough introduction of k(e9(9)) and the single parabolic algebra in so(16)-covariant

formulation is provided in [8] section 5.1 and 5.2. Here, only the necessary notation and

identities for this work are introduced.

The finite dimensional Lie algebra e8(8) has dimension dim(e8(8)) = 248, its maximal

subalgebra is so(16) with 120 generators XIJ = −XJI for 1 ≤ I, J ≤ 16. The non-

compact orthogonal complement transforms as the 128so(16) dimensional so(16)-spinor

representation with basis elements Y A for 1 ≤ A ≤ 128. In this so(16)-covariant formu-

lation, the Lie bracket and the Killing form are
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[
XIJ , XKL

]
= 4δJKXIL ,[

XIJ , Y B
]
= −1

2
ΓIJ
ABY

B ,[
Y A, Y B

]
= 1

4
ΓIJ
ABX

IJ ,

κ(XIJ , XKL) = − 2δIKδJL ,

κ(Y A, Y B) = δAB . (6.14)

For e8(8) with positive roots α ∈ ∆+, we formally write the basic change from Eα and

Hα to the so(16)-covariant basis by

XIJ =
∑
α∈∆+

xIJα
(
Eα + E−α

)
Y A =

∑
α∈∆+

yAα
(
Eα − E−α

)
+

R∑
i=1

yAi H
αi

(6.15)

For the inverse basis change one might use the coefficients xαIJ and yαA, y
i
A. To explicitly

branch the finite dimensional k(e9(9))-representations VerR(N) under so(16) many useful

relations of the coefficients of the basis change may be derived. This explicit analysis is

performed in a subsequent paper while we restrict here on dimensional arguments.

The Lie bracket of the affine algebra e9(9) is given by (6.14) and (2.5). Therefore, this

basis change extends straightforward to the affine algebra e9(9) and the maximal compact

subalgebra k(e9(9)). On the parabolic algebra P(e9(9)) the basis change is

AIJ
2k,a = XIJ ⊗ u2k ⊗ ra =

∑
α∈∆+

xIJα P
α
2k,a

SA
2k+1,a = Y A ⊗ u2k+1 ⊗ ra =

∑
α∈∆+

yAαP
α
2k+1,a +

r∑
i=1

yAi R
αi

2k+1,a . (6.16)

Setting r = 1 the double parabolic algebra restricts to the single parabolic algebra of e9(9)
in [8] section 5.

This sets up the so(16)-covariant notation of e9(9), k(e9(9)) and the parabolic algebra

P(e9(9)). Next, let us also give the e8(8) and so(16)-decomposition of the first few loop

levels of the basic representation

R(Λ0) =
(
1e8(8)

)
0
⊕
(
248e8(8)

)
1
⊕
(
1e8(8) ⊕ 248e8(8) ⊕ 3875e8(8)

)
2
⊕ . . .

=
(
1so(16)

)
0
⊕
(
120so(16) ⊕ 128so(16)

)
1
⊕ (6.17)(

1so(16) ⊕ 120so(16) ⊕ 135so(16) ⊕ 1820so(16) ⊕ 128so(16) ⊕ 1920so(16)

)
2
⊕ . . .

The decomposition to higher levels is in (D.6), it provides some intuition about the so(16)-

representations to expect in the so(16)-branching of VerR(N) on which the basic repre-

sentation projects k-covariant. For example, the basic representation does not contain

at any level the 16so(16) vector representation nor the conjugate spinor representation
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128so(16). More generally, the basic representation only contains so(16)-representations

which are also in the root lattice of e8(8). We use these constraints about possible

so(16)-representations in the basic representation to construct the so(16)-decomposition

of VerR(N) for N ≤ 2 in the next subsection

6.3.2 Embedding of so(16)-covariant representations and applications

The plan of this subsection is to build up so(16)-covariant k(e9(9))-representations along

section 5.3 in [8] which have the same dimensions as VerR(N) for N = 0, 1, 2 at every

parabolic level. This is a strong indication that the different so(16)-covariant representa-

tions are indeed equivalent to the different VerR(N). Therefore, first we argue that the

basic representation cannot project on a pure representation of the single parabolic alge-

bra but only on a tensor product. Then, we sketch the construction of representations

of the single parabolic algebra in [8] and we build up the representations VerR(N) for

N = 0, 1, 2 from tensor products of representations of the single parabolic algebra.

By the different action of Pα
0,0 and P

α
0,1 of the double parabolic generators on VerR(N)

in (6.8) it is evident that the basic representation cannot project onto pure representa-

tion of the single parabolic algebra. Therefore, the representations onto which the basic

representation can be projected must be at least a tensor product of two representations

of the single parabolic algebra which are pulled back to representations of k by the two

different Lie algebra homomorphisms ρ± (for details see also Footnote 5). Henceforth, we

consider the tensor product of two representations Φ and Ψ of the single parabolic algebra

and it remains to build up Φ and Ψ such that the tensor product is equivalent to VerR(0),

VerR(1) and VerR(2). Because the representations decompose in the different parabolic

levels, the analysis can be carried out for the different levels individually. Therefore, we

branch Φ and Ψ in so(16)-representations φX
k and ψX

k where X is the index of the so(16)

representation and k is the parabolic level.

Now, let us describe how to construct the representations Φ and Ψ of the single

parabolic algebra. One start with an so(16)-representations φX
0 and ψY

0 at parabolic level

zero. The next parabolic levels of the representation are constructed as a Verma module

of the parabolic generators with positive parabolic level (6.16) acting on φX
0 and ψY

0 .

From the Verma module, finite dimensional representations are obtained by quotienting

with subrepresentations. Here, an so(16)-covariant basis of the generators (6.16) already

implies that the full representation will be so(16)-covariant.

Parabolic level zero. For N ∈ N, the elements of VerR(N) at parabolic level zero are

{eγ ∈ VerR(0) | γ ∈ Q} . (6.18)

These are 28 = 256 inequivalent elements by the equivalence relation (5.2). Thus, the ten-

sor product of the two representation φ0 and ψ0 must have dimension 256 and the decom-
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position of the tensor product into so(16)-representations takes weights in the e8(8) weight

lattice. The general pattern of VerR(0) in (6.8) also predicts the tensor product to decom-

pose into an so(16)-singlet, an so(16)-adjoint representation and an so(16)-representation

in the symmetric tensor product of two so(16)-adjoint representations.

These constraints seem to be uniquely solved by φ0 and ψ0 the vector representation

of so(16) with components ψI
0 and φI

0 for I = 1, . . . , 16. The action of the generators AIJ
0,0

is given by so(16)-covariance, while the action of the generators AIJ
0,1 is

AIJ
0,1 φ

I
0 = AIJ

0,0 φ
I
0 AIJ

0,1ψ
I
0 = −AIJ

0,0ψ
I
0 . (6.19)

In fact, the tensor product of these two representation has the right dimension 16·16 = 256

and decomposes into representations which also appear in (6.17)

16so(16) ⊗ 16so(16) = 1so(16) ⊕ 120so(16) ⊕ 135so(16) . (6.20)

The 120so(16) is the adjoint representation and the 135so(16) representation appears in

the symmetric product of two adjoint representations 120so(16) ⊗sym 120so(16) = 1so(16) ⊕
135so(16) ⊕ 1820so(16) ⊕ 5403so(16). The singlet is

ψK
0 ⊗ φK

0 ⊗ 1 → 1so(16) (6.21)

and the double parabolic generators (6.19) map this singlet into the 120so(16) representa-

tion and the 135so(16) representation

AIJ
0,1

(
ψK
0 ⊗ φK

0

)
= 4ψ

[J
0 ⊗ φ

I]
0 → 120so(16)

AKL
0,1

(
ψ[J ⊗ φI]

)
= 4 δLIψ

(K
0 ⊗ φ

J)
0 → 1so(16) ⊕ 135so(16) . (6.22)

as it is predicted in the general analysis in (6.8). This is the so(16)-decomposition of

VerR(0).

Parabolic level one. Next, for N ≥ 1 we analyze VerR(N) at parabolic level one with

elements {
eγ, R

i
1,0eγ, R

i
1,1eγ ∈ VerR(1) | γ ∈ Q, 1 ≤ i ≤ 8

}
(6.23)

There are 256 + 2 · 8 · 256 inequivalent elements. However, 256 of these elements are of

parabolic level zero and therefore, 2 ·8 ·256 of these elements are of of parabolic level one.

This implies restrictions on the possible so(16)-representations at level one in Φ and Ψ.

By the construction in [8], the level one representations of Φ and Ψ is the Verma

module action of SA
1,0 on φI

0 and ψI
0

SA
1,0 φ

I
0 = ΓI

A,Ȧ
φȦ
1 + φAI

1 SA
1,0 ψ

I
0 = ΓI

A,Ȧ
ψȦ
1 + ψAI

1 , (6.24)
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where φȦ
1 and ψȦ

1 are the conjugate spinor representations 128so(16), φ
IA
1 and ψIA

1 are the

1920so(16) representations and ΓI
AȦ

are the so(16) gamma matrices.

Then, at level one, the tensor product of Φ and Ψ has dimensions 2 ·16 ·(128+1920) >

2 ·8 ·256 which is clearly larger than the dimension of VerR(N) at level one. However, the

1920so(16) representations φIA
1 and ψIA

1 can be quotiented from Φ and Ψ and therefore

they can be set to 0 [8]. Hence, the representations Φ and Ψ are up to parabolic level one

ΦI,Ȧ,... =
(
φI
0, φ

Ȧ
1 , . . .

)
ΨI,Ȧ,... =

(
ψI
0 , ψ

Ȧ
1 , . . .

)
(6.25)

and the action of the double parabolic algebra is uniquely given by so(16)-covariance,

(6.19) and (6.24). On the tensor product, up to parabolic level one, the double parabolic

algebra acts by

SA
1,0

(
ψI
0 ⊗ φJ

0

)
= ΓJ

A,Ȧ
ψI
0 ⊗ φȦ

1 + ΓI
A,Ȧ

ψȦ
1 ⊗ φJ

0

SA
1,1

(
ψI
0 ⊗ φJ

0

)
= ΓJ

A,Ȧ
ψI
0 ⊗ φȦ

1 − ΓI
A,Ȧ

ψȦ
1 ⊗ φJ

0 . (6.26)

Indeed, these representations on the right hand side are exactly the representations to

expect in VerR(N) at parabolic level one because

2 ·
(
16so(16) ⊗ 128so(16)

)
= 2 ·

(
128so(16) ⊕ 1920so(16)

)
≃ 2 · 2048 ≃ dim(VerR(1))− dim(VerR(0)) . (6.27)

This fixes Φ and Ψ up to parabolic level one and together with parabolic level zero

determines the so(16)-decomposition of VerR(1).

Parabolic level two. The elements in VerR(N) for N ≥ 2 which have contribution to

parabolic level 2 are{
eγ, R

i
1,0eγ, R

i
1,1eγ, R

i
1,0R

j
1,0eγ, R

i
1,1R

j
1,0eγ, R

i
1,1R

j
1,1eγ, R

i
1,1eγ | γ ∈ Q, 1 ≤ i, j ≤ 8

}
(6.28)

These are 256 + 2 · 8 · 256 + (2 · 36 + 64) · 256 independent elements, however there are

256 + 2 · 8 · 256 elements at parabolic level zero and one, such that

(2 · 36 + 64) · 256 = 34816 (6.29)

independent elements remain at parabolic level 2. Let us build the representations Φ and

Ψ such that the tensor product has at level 2 the same number of elements.

In [8] Section 5.3, the second parabolic level of the Φ and Ψ is evaluated and it consists

of the so(16)-vector representation and the three form 560so(16), such that Φ and Ψ are

ΦI,Ȧ,J,[KLM ] =
(
φI
0, φ

Ȧ
1 , φ

J
2 , φ

[KLM ]
2

)
, ΨI,Ȧ,J,[KLM ] =

(
ψI
0 , ψ

Ȧ
1 , ψ

J
2 , ψ

[KLM ]
2

)
. (6.30)
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The tensor product of these two representations at parabolic level 2 has the components

φI
0 ⊗ ψJ

2 , φI
0 ⊗ ψ

[KLM ]
2 , φȦ

1 ⊗ ψȦ
1 , φJ

2 ⊗ ψI
0 , φ

[KLM ]
2 ⊗ ψI

0 (6.31)

which are indeed the number of elements of VerR(N) at parabolic level 2

16 · 16 + 16 · 560 + 128 · 128 + 16 · 16 + 560 · 16 = 34816 . (6.32)

Together with the decomposition of parabolic level zero and one above this is the so(16)-

covariant form of VerR(2).

This is a quite remarkable result and shows how the basic representation projects onto

a tensor product of two different ‘spinor’-representations of the single parabolic algebra.

However, this has even more consequences to obtain quotients of subrepresentations of

VerR(N) which are also projections of the basic representation. Usually, if these quotients

by subrepresentations do not correspond to a representation VerR(M) with M < N , they

are very hard to identify since they must the subrepresentations must be subrepresen-

tations of the full double parabolic algebra and not only of the single parabolic algebra.

However, since we identified VerR(N) for N ≤ 2 with the tensor product of Φ and Ψ, the

tensor product of subrepresentations of Φ and Ψ are also subrepresentations of VerR(N).

The advantage is that the subrepresentations of Φ and Ψ are much simpler to identify,

because these are representations of the single parabolic algebra. Let us discuss possible

subrepresentations of interest for applications to supergravity in two dimensions.

6.3.3 Application to Supergravity in two dimensions

Different subrepresentations of VerR(2) and VerR(4) find applications in maximal super-

gravity in two dimensions. One application is the supersymmetry of the gauge fields of

the theory while another application is the decomposition of the embedding tensor in

fermion bilinears. We first introduce the e9(9) and k(e9(9)) representations for the fields of

interest.

For each of the two space time indices, the gauge fields of supergravity in two dimen-

sions transform in the basic representation [15]. The fermions of the supergravity theory

are Φ⊗C2 with Φ in (6.30) but without the three form at parabolic level 2 and C2 accounts
for the two chiralities of spinors in two dimensions [7]. The supersymmetry parameter of

the theory is ϵI ≃ ψI
0 ⊗ C2, which is Ψ ⊗ C2 in (6.30) but keeping only the so(16)-vector

representation at parabolic level zero. Then, schematically the supersymmetry of the

vector fields is associated to the homomorphism G2 in (5.8) which maps onto the tensor

product of

ϵK ⊗ ΦI,Ȧ,J ⊗ C2 . (6.33)

Only one factor of C2 remains because the two factors of C2 are multiplicative.
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Another interesting object necessary for gauged maximal supergravity in two dimen-

sions is the embedding tensor. On the one hand, the embedding tensor takes values in the

basic representation of e9(9) [15] on the other hand it decomposes into fermion bilinears.

This decomposition is the homomorphism G4 in (5.8) mapping on the tensor product of

the fermions

ΨK,Ḃ,L ⊗ ΦI,Ȧ,J ⊗ C2 (6.34)

but with the same so(16)-components ψX
k = φX

k . This is a subrepresentation of VerR(4).

In a subsequent paper, we extend this schematic realization of supersymmetry and the

decomposition of the embedding tensor to a full description.

A Representations of double parabolic algebra

The representations of the single parabolic algebra are constructed in [8] from a Verma

module starting as a k̊-representation at parabolic level zero. By the parabolic grad-

ing, every k̊-representation in this Verma module generates a subrepresentation. These

subrepresentations can be quotiented from the module to obtain finite dimensional rep-

resentations. This procedure extends to the double parabolic algebra(̊
k⊗R[u2n] ⊕ p̊⊗ uR[u2n]

)
⊗ C2 (A.1)

but in both parameters u and 1 ̸= r ∈ C2. However, r has only a Z2 grading and requires

additional considerations. The Lie bracket is multiplicative in u and r ∈ C2 and has

therefore a graded structure in u and a Z2 graded structure in r. However, the universal

enveloping algebra is not multiplicative in u and r, which equips the universal enveloping

algebra with a natural graded structure in u and in r. Therefore, representations of

the double parabolic algebra are graded with respect to u and r. To construct these

representations we extend the construction in [8] to the double parabolic algebra.

Therefore, let us use N for the single parabolic algebra, which is obtained from P by

setting r = 1 and the universal enveloping algebra of the single parabolic generators with

positive power in u is U(N+) in [8]. This extends for the double parabolic algebra to the

universal enveloping algebra of double parabolic algebra with positive power in u or in r

U(P+) = U
(
N+ · r ⊕ N+ ⊕ Sym

(
k̊ · r

))
. (A.2)

A basis of U(P+) is given by products of elements of N+ · r to the left of N+, which are

to the right of symmetric products in k̊ · r.
Let BN+ be a PBW basis of U(N+) and let B̃N+ be the set BN+ but with each

generator of N+ multiplied by r. Let B̃̊k be the PBW basis of k̊ but with each generator
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multiplied by r, then a PBW basis of U(P+) is given by the ordered products of

BP+ = B̃N+ ×BN+ × B̃̊k . (A.3)

By the construction in [8], the representations of the double parabolic algebra P are

constructed from the action of U(P+) on a k̊-representation at level u0 and r0.

The parabolic grading in r and u allows to identify infinite many ideals by restricting

to a maximal level in u and r of a representation. These ideals allow for finite dimensional

representations of P, by setting the action of the ideals to zero. For example, restricting

to r0 reduces the representations of the double parabolic algebra to representations of

the parabolic algebra N. Finite dimensional representation of the parabolic algebra are

obtained for example by considering a maximal level uN .

B Generalized summation

It is useful to have a notation of generalized sums over polynomials p(k), where the upper

limit can be lower than the lower limit, but the sum remains finite. For a meaningful

definition of generalized sum Faulhaber’s formula is useful.

Let n,N ∈ N and let p ∈ R[k]N be a polynomial of degree N , then the sum

P (n) =
n∑

k=1

p(k) ∈ nR[n]N (B.1)

is a polynomial of degree N + 1 on the domain n ∈ N with a zero at n = 0 [36].8

The polynomial P extends uniquely to the domain n ∈ Z as a polynomial P̄ ∈ nR[n]N of

degree N+1. For this polynomial we derive an identity, therefore, let n0 ∈ N, 1 ≤ n ≤ n0,

then in

P (n) = P (n0)−
n0∑

k=n+1

p(k), (B.3)

the right hand side is a polynomial P ′ ∈ R[n]N+1 on the domain n ∈ Z, n ≤ n0. The

unique polynomial extension of P ′ from the domain n ∈ Z, n ≤ n0 to n ∈ Z defines P̄ ′,

but because n0 is arbitrary, P̄ ′(n) = P̄ (n) for all n ∈ Z and therefore P̄ ′ = P̄ . For all

n ∈ N0 this implies the identity

P̄ (−n) = −
n−1∑
k=0

p(−k) . (B.4)

8The full formula for sums over monomials is called the Faulhaber formula
n∑

k=1

kp =
1

p+ 1

p∑
r=0

(
p+ 1

r

)
Brn

p+1−r (B.2)

where Br are the Bernoulli numbers. It was proven by L. Tits in 1923.

46



Now, we define the generalized sum over the polynomial p of degree N

n∑
m=1

p(m) = P̄ (n) ∈ nR[n]N (B.5)

as the polynomial extension of
∑n

m=1 p(m) from the naturals to the integers n ∈ Z. By

the above argument, the generalized sum satisfies for every n ∈ N

−n∑
k=1

p(k) = −
n−1∑
k=0

p(−k) (B.6a)

0∑
k=1

p(k) = −
−1∑
k=0

p(−k) = 0 (B.6b)

C Definitions and Notations

We introduce some notations and frequently used definitions in this work.

Notation sets and families. We write the set of elements with an additional index by

{x}I = {xn |n ∈ I}
{x ∈ X}I = {xn|x ∈ X, n ∈ I} , (C.1)

but if I is clear from the context, then we also write {x} = {x}I .

Embedding and projection. For two vector spaces V,W and a homomorphism G′ :

V → W we say that V is embedded in W if G′ is injective and if G′ is surjective we say

that W ≃ V/(Ker(G′) is a projection of V . If the vector spaces are representations of a

Lie algebra l and G′ respects the action of l we also call the embedding (resp. projection)

a l-embedding (resp. l-projection). If it is clear from the context we also avoid the symbol

l and simply write embedding (resp. projection).

Lie algebra structure and fineness. For a Lie algebra l with a representation V , a

l-structure of V is a family of l-representations Vi ⊂ V . For two l-structures A and B, we

call A finer than B if B ⊂ A. If for a l-structure A holds B ⊂ A for all l-structures B,

we call A the finest l-structure.

Cosocle Filtration and composition series. Let us introduce the cosocle filtration

and the infinite composition series in a series of definition and implications. For further

insides see also [37]. Therefore, let l be a Lie algebra with a representation V .
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a.) A subrepresentation V ̸= W ⊂ V is maximal if for any other subrepresentation

U ∈ V hold that W ⊂ U implies U = W or U = V .

⇔ If W ⊂ V is maximal then, V
W

is simple.

b.) The radical rad(V ) of V is the intersection of all maximal subrepresentations of V .

⇔ The quotient V
rad(V )

is maximal semisimple.

c.) The cosocle of V is the quotient by the radical cosoc(V ) = V
rad(V )

. ⇔ The cosocle is

the maximal semisimple quotient of V .

d.) The cosocle filtration resp. (radical filtration) of V is inductively defined. V−1 = V

and for i ∈ N0, Vi is the kernel of the projection of Vi−1 to its cosocle. ⇔ V0 is the

radical of V and for i ∈ N0, Vi+1 is the radical of Vi. The filtration has finite length

if J ∈ N exists, such that Vj = 0 for j > J . Then VJ is semisimple.

e.) A composition series of V is a family of subrepresentations (Vi)0≤i≤n for an n ∈ N
such that

V = V0 ⊃ V1 ⊃ . . . ⊃ Vn = {0} (C.2)

and Vi/Vi+1 is semisimple. If Vn−1 ̸= {0}, then n is the length of the composition

series.

f.) An infinite composition series of V are subrepresentations (Vi)i∈N such that

i.) V0 = V , Vi ⊃ Vi+1 , Vi ̸= {0}.

ii.) The inverse limit of (Vj)j∈N with the natural embedding Vi+1 ⊂ Vi is properly

defined and lim←−
j→∞

Vj = 0

iii.) The quotients Vi/Vi+1 are semisimple.

This is the proper generalization of e.). The cosocle filtration is an infinite compo-

sition series if i. and ii. hold.

D Expansions in first orders

We break down commonly used expressions into explicit expansions to make further cal-

culations easier and to gain some intuition about the underlying concepts.
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Lie algebra homomorphism. The Lie algebra homomorphism from the maximal com-

pact subalgebra to the double parabolic algebra is explicitly on the first 3 loop generators

ρ(Eα
0 ) = Pα

0,0

ρ(Eα
±1) = Pα

0,1 + 2
∑
k≥1

(∓)kPα
k,1

ρ(Eα
±2) = Pα

0,0 + 4
∑
k≥1

(∓)kkPα
k,1

ρ(Eα
±3) = Pα

0,1 + 2
∑
k≥1

(∓)k(1 + 2k2)Pα
k,1 (D.1)

. . .

ρ(Hα
±1) = − 2

∑
k≥1

(±)kRα
2k+1,1

ρ(Hα
±2) = − 4

∑
k≥1

(±)k(2k + 1)Rα
2k+1,1

ρ(Hα
±3) = − 2

∑
k≥1

(±)k(8k2 + 8k + 3)Rα
k,1 (D.2)

. . .

Schur Polynomials. Up to index 4, the Schur polynomials are

Sn≤−1({x}) = 0

S0({x}) = 1

S1({x}) = x−1

S2({x}) = 1
2
x−2 +

1
2
x2−1

S3({x}) = 1
3
x−3 +

1
2
x−1x−2 +

1
6
x3−1

S4({x}) = 1
4
x−4 +

1
3
x−1x−3 +

1
8
x2−2 +

1
4
x2−1x−2 +

1
24
x4−1 (D.3)

. . .

H -Schur Polynomials. The H-Schur polynomials generate the Schur polynomials by

action on 1. They are given by

SH0 ({Hα}) = 1 ,

SH1 ({Hα}) = − 2Hα
1 ,

SH2 ({Hα}) = 1 + 2(Hα
1 )

2 −Hα
2 ,

SH3 ({Hα}) = − 2Hα
1 − 4

3
(Hα

1 )
3 + 2Hα

1Hα
2 − 2

3
Hα

3 , (D.4)

. . .
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Extended R-Schur Polynomials. The extended R-Schur polynomials S̄R
α,a(n) are sat-

isfy for n ≥ 0 the identity S̄R
α,0(2n) = ρ(SH2n({Hα}) and S̄R

α,1(2n + 1) = ρ(SH2n+1({Hα})),
they are given up to parabolic level 2 by

S̄R
α,0(n) = 1 + 2nRα

1,0 + (2n+ n2)Rα
1,1R

α
1,1 + (−2n+ n2)Rα

1,0R
α
1,0 + . . .

S̄R
α,1(n) = 2(n+ 1)Rα

1,1 + (−2 + 2n2)Rα
1,1R

α
1,0 + . . . (D.5)

Decomposition of basic representation R(Λ0) of e9(9). The basic representation of

e9(9)-decomposes into e8(8)-representations at the different levels. For the first five levels

this decomposition is given by

R(Λ0) =
(
1e8(8)

)
0
⊕
(
248e8(8)

)
1
⊕
(
1e8(8) ⊕ 248e8(8) ⊕ 3875e8(8)

)
2

⊕
(
1e8(8) ⊕ 2 · 248e8(8) ⊕ 3875e8(8) ⊕ 30380e8(8)

)
3

⊕
(
2 · 1e8(8) ⊕ 3 · 248e8(8) ⊕ 2 · 3875e8(8) ⊕ 30380e8(8) ⊕ 27000e8(8) ⊕ 147250e8(8)

)
4

⊕ . . . (D.6)

The individual e8(8)-representation can be further decomposed into the maximal compact

subalgebra so(16) of e8(8)

1e8(8) → 1so(16)

248e8(8) → 120so(16) ⊕ 128so(16)

3875e8(8) → 135so(16) ⊕ 1820so(16) ⊕ 1920so(16)

30380e8(8) → 120so(16) ⊕ 1920so(16) ⊕ 7020so(16) ⊕ 8008so(16) ⊕ 13312so(16)

. . . (D.7)

E Details in proofs

For the convenience of the interested reader, this appendix provides more details and

explicit calculations of various proofs, which are not given in full detail in the main text.

Commutation of U ∈ U(⟨H⟩) with Er
n. The commutator of E i

n with
∏N

l=1 Hjl
nl

is the

group like action of E i
n on the universal enveloping of the compact Heisenberg algebra.

Therefore, the commutator of E i
n with a product is the product of the commutators. For

Aij = 0, E i
n and Hj

m commute. It remains to repeatedly evaluate the commutator of E i
N

and products of Hj
m for Aij = −1, 2. Here, we evaluate the commutator for Aij = 2.
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Therefore, the set

PN :=
{
p = (p1, . . . , pN) ∈ ZN

2

∣∣ pl ∈ {0, 1}
}
, |p| :=

N∑
l=1

pl . (E.1)

is useful. In this notation, the commutator is[
E i
n ,

N∏
i=1

Hi
nl

]
= (−1)N

(∑
p∈PN

(−1)|p|(1
2
E i
n+

∑N
i=1(−1)plnl

)

+ (−1)N−1
N∑

k1=1

Hi
nk1

 ∑
p∈PN−1

(−1)|p|E i
n+

∑n
k1 ̸=i=1(−1)plnl


+ (−1)N−2

N∑
k1=1

N∑
k2=k1+1

Hi
nk1

Hi
nk2

 ∑
p∈PN−1

(−1)|p|E i
n+

∑n
k1,2 ̸=i=1(−1)plnl


+ . . .

+ (−1)1
N∑

k1=1

N∑
k2=k1+1

. . .
N∑

kN−1=kN−2+1

Hi
nk1

Hi
nk2

. . .HnkN−1(∑
p∈P1

(−1)|p|E i
n+

∑n
k1,2,...N−1 ̸=i=1(−1)plnl

)
,

(E.2)

where k1,2,... ̸= i means i ̸= k1, i ̸= k2, ... . The commutator for Aij = −1 has additional

factors of −1
2
.

Proof Lemma 9. The evaluation of (4.12) in the proof of Lemma 9 is in detail

SHN ({H}i) =
2

N + 1

N+1∑
n=1

(
SHN−2n+1 −HnSN−n+1

)
=
∑
p≥0

∑
k∈Kp

δ(p+N+1)mod2,0

N+1∑
n=1

2

N + 1

(N+1∑
n=1

Θ(N − 2n+ 1− deg(k))− (
nkn
2

)
)
dk(Hi)k

=
∑
p≥0

∑
k∈Kp

δ(p+N+1)mod2,0Θ(N + 1− p)
2

N + 1

(⌊N + 1− p

2

⌋
+

N+1∑
n=1

(
nkn
2

)
)
dk(Hi)k

=
∑
p≥0

∑
k∈Kp

δ(p+N+1)mod2,0Θ(N + 1− p)
2

N + 1

(N + 1− p

2
+
p

2

)
dk(Hi)k

=
∑
p≥0

∑
k∈Kp

δ(p+N+1)mod2,0Θ(N + 1− p)dk(Hi)k . (E.3)
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Proof Proposition 15. To prove the commutation of Eα
m with Eβ

n on VerR(N), we

argued with the commutation relations of the basic representation this translates to the

commutation relations on VerR(N). For the readers convenience, we illustrate this in

more detail here.

Let us define a map G̃N from the basic representation onto the VerR(N) by

G̃N (eγ ⊗ f({α})) = FN,R
f ({R})eγ (E.4)

for γ ∈ Q and f a polynomial. By the definition of the generating elements FR
f the

homomorphism G̃N commutes with the compact Heisenberg algebra. By the action of

Eα
m on eγ (5.4) and by its action on the maximal states (4.1), G̃N commutes with Eα

n on

maximal states. Additionally, by construction Eα
m and the parabolic Heisenberg algebra

satisfy the commutation relations. This is enough to prove the commutation relations of

Eα
m and Eβ

n on eγ

Eα
mEβ

n eγ = ϵ(β, γ)
(
Eα
mS
H
−n−(β|γ)−1G̃N(e

γ+β ⊗ 1) + Eα
mS
H
n+(β|γ)−1G̃N(e

γ−β ⊗ 1)
)

(E.5)

Here, let us just consider the first term in the sum, the other term works the same. We

use the commutation relations of Eβ
m and the compact Heisenberg algebra in (3.7) with

J ′ = J(SH−n−(β|γ)−1), U
′ = U(SH−n−(β|γ)−1). Then, the first term becomes

J ′∑
j=1

U ′
α
j Eα

mG̃N

(
eγ+β ⊗ 1

)
= G̃N

(
J ′∑
j=1

U ′
α
j Eα

me
γ+β ⊗ 1

)
= G̃N

(
Eα
mEβ

ne
γ ⊗ 1

)
. (E.6)

The same argument holds for the second term in (E.5) as well. Therefore, for all γ ∈ Q(
Eα
nEβ

m − Eβ
mEα

n −
[
Eα
n , Eβ

m

])
eγ = G̃N

((
Eα
nEβ

m − Eβ
mEα

n −
[
Eα
n , Eβ

m

])
eγ ⊗ 1

)
= 0 . (E.7)

This proves the third step of the proof of Proposition 15 in detail.
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