
communications biology Article

https://doi.org/10.1038/s42003-024-06772-8

MultiMatch: geometry-informed
colocalization in multi-color
super-resolution microscopy

Check for updates

Julia Naas 1,2, Giacomo Nies3,4, Housen Li 3,4, Stefan Stoldt4,5,6, Bernhard Schmitzer7,
Stefan Jakobs 4,5,6,8 & Axel Munk 3,4

With recent advances inmulti-color super-resolution light microscopy, it is possible to simultaneously
visualize multiple subunits within biological structures at nanometer resolution. To optimally evaluate
and interpret spatial proximity of stainings on such an image, colocalization analysis tools have to be
able to integrate prior knowledge on the local geometry of the recorded biological complex. We
present MultiMatch to analyze the abundance and location of chain-like particle arrangements in
multi-color microscopy based on multi-marginal optimal unbalanced transport methodology. Our
object-based colocalizationmodel statistically addresses the effect of incomplete labeling efficiencies
enabling inference on existent, but not fully observable particle chains. We showcase that MultiMatch
is able to consistently recover existing chain structures in three-color STED images of DNA origami
nanorulers and outperforms geometry-uninformed triplet colocalization methods in this task.
MultiMatch generalizes to an arbitrary number of color channels and is provided as a user-friendly
Python package comprising colocalization visualizations.

Colocalization analysis aims to unravel the interconnection and interaction
network between two or more groups of particles based on their spatial
proximity in a microscopy image. By visualizing biological structures, like
DNA, RNA and proteins, that are only a few nanometers in size, colocali-
zation analysis makes it possible to study a wide range of biological pro-
cesses, such as DNA replication and the transcription of genes1, nuclear
import of splicing factors2 or the dynamics of cargo sorting zones in the
trans-Golgi networks of plants3, to name only a few.

In the following, wewill denote any objects of interest that are depicted
within a microscopy image, e.g., proteins as well as loci on DNA or RNA
strands, as particles. In fluorescence light microscopy, such particles are
stained, i.e., in case they do not already intrinsically fluoresce, they are
labeled with fluorophores, which in turn are excited by an external light
source. The emitted fluorescence radiation then can be imaged via several
microscopy technologies.

Diffraction unlimited super-resolution fluorescence microscopy
technologies, also called nanoscopy, are classified into two broad concepts4:

In coordinate-stochastic microscopy, fluorophores within the sample
are stochastically excited resulting in a temporally resolved blinking
dynamic5–7, which allows to spatially separate fluorophores. Their coordi-
nates are estimated bymeans of the detected radiation peak, yielding a list of
coordinates of detectedfluorophores as output data. If only onefluorophore
is detected for one particle, the output translates into a list of particle
coordinates. Else, fluorophore coordinates can be aggregated in order to
localize the particle of interest in the imaged biological sample.

In scanning-based microscopy methods such as Stimulated Emission
Depletion (STED)8–10, the fluorescence distribution is stored as an intensity
matrix, in which every entry encodes the detected radiation within a
respective pixel of themicroscopy image. To obtain coordinate estimates of
particle positions, object detection algorithms have to be applied to the
intensity matrix.

Inorder to studypossible particle interactionsor connections, stainings
with different fluorescent markers are recorded in different color channels.
Particles colocalize, if they are spatially closer than or equal to a
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colocalization distance, which heavily depends on the underlying biological
setting and might be unknown prior to colocalization analysis11.

Colocalization methods are divided in two categories based on the
input data format they require:

Pixel-based colocalization methods take an intensity matrix as input
and compare the pixel intensities across color channels, e.g., by utilizing
overlap, correlationor intensity transport analysis. Suchapproachesare thus
only applicable for scanning-based images and examples for well-
established methods are Mander’s Colocalization Coefficient12,13, Pear-
son’s Correlation Coefficient14, BlobProb15, SACA16, and OTC curves17.

Object-based colocalization methods, which our method MultiMatch
classifies as, require the coordinates of particles and evaluate their distances,
where pairwise particle distances can be defined in several ways18. Examples
for other object-based tools are ConditionalColoc18 and Ripley’s K based
methods19,20 as SODA21.

While nanoscopy for dual-color stainings is well studied for a long
time, multi-color imaging including three or more stainings has received
increased attention more recently since it allows simultaneous measure-
ments of multiple particle types. There is a steadily increasing number of
published multi-color STED microscopy datasets22–28, of other super-
resolution microscopy methods29,30 and the development of appropriate
labeling methods allowing for an ever-increasing number of channels is
ongoing24,30–33.

However, most pixel- and object-based colocalization tools are
designed for and therefore limited to the analysis of two-color stainings.
Applying them to multi-color images is not an obvious task: Particle
arrangements with more than two different particle types can occur in
different configurations and depending on the biological context, somemay
be of interest and others may simply not exist in the imaged sample. A
geometry-uninformed, pairwise analysis of all possible channel
combinations34, as well as the few established methods that are explicitly
presented as multi-color pixel-based15,35–37 and object-based18,21,38 colocali-
zation tools are prone to overestimate colocalization, as soon as the biolo-
gical complex of interest has a fixed geometry and stoichiometry, as we can
show in a simulation study. To exploit the full potential of multi-color
microscopy imaging in such a situation, it is therefore beneficial to actively
incorporate prior knowledge of the local geometry into the colocalization
analysis.

To this end, we introduce MultiMatch, a widely applicable colocali-
zation methodology based on optimal transport theory, which is especially
tailored to detect chain-like, one-to-one particle arrangements. Integrating
this type of colocalization geometry optimizes themulti-color colocalization
analysis of quadruples, triplets, pairs, and singlets, as they appear when
marking different loci of a chain-like molecule with multi-color stainings.
MultiMatch is able to statistically address the effect of incomplete labeling
efficiencies on the detection results and includes statistical guarantees on the
estimated number of structures of interest. It is provided as computationally
efficient Python package allowing for a user-friendly visualization of colo-
calization results via colocalization curves and the exploratory napari
viewer39.

Results
Chain-like particle assembly detection with MultiMatch
One exemplary biological framework, in which the localization of chain-
like particle arrangements is especially insightful, is the highly con-
densed mammalian mitochondrial genome: It is transcribed from both
strands of the mitochondrial DNA as long polycistronic transcripts that
have to undergo multiple processing steps, including endonucleolytic
cleavage, in order to get to the different functional RNA species. Tran-
scription of the heavy strand leads to polycistronic primary transcripts
containing the premature mRNAs of 12 of the 13 oxidative phosphor-
ylation (OXPHOS) subunits encoded in the mitochondrial genome.
Labeling more than two of the mRNAs within such a primary construct,
in combination with our colocalization approach, can significantly
contribute to our understanding of the post-transcriptional processing

steps and their dynamics, that lead to the generation of matured mRNA
molecules40,41.

We consider a particle arrangement as chain-like when exactly one
particle of each type is stringed together in an ordered fashion and pairwise
distances of chain-neighbors are smaller than or equal to a maximal colo-
calization threshold t. InMultiMatchwe implemented the distance between
reference points, i.e., the center of detected particles, as t by default (Fig. 1A).
This approach is especially suited for particles of small size or in case the
center of the particle is a suitable representation for its location on the
microscopy image. However, we allow the user to also input arbitrary
particle-to-particle distance matrices18 as they are output by alternative
particle detection and segmentation algorithms.

Even if the biological complex of interest itself is not chain-like, chain
detection still can give substantial insights on the abundance and location of
colocalization events inside a microscopy image as soon as the chain is a
substructure of the colocalization geometry (Fig. 1B). The converse, on the
other hand, does not hold true in general.

To fix the chain order of particles, we will refer to color channels, in
which the respective particle type was imaged, as channelA, B, C, D etc. For
simplicity, wewill explain themainmethodology for a three-color setting in
what follows, but MultiMatch is applicable to an arbitrary number of color
channels, which we showcase in the evaluation of simulated four-color
STED images.We stress, that our software is alreadydesigned to process any
number of channels (“Methods” section).

All configurations resulting froma three-color staining of an chain-like
molecule are sketched in Fig. 1C, where we assume the following unknown
abundances n ¼ nABC; nAB; nBC; nA; nB; nC

� �
of chain-like assem-

blies, where
nABC is the number of true ABC triplets,
nAB, nBC is the numbers of true AB and BC pairs,
nA, nB, nC is the numbers of true A, B, and C singlets.

Optimal transport (OT) theory42 has a wide range of applications
throughout statistics43, data science, and machine learning44. Generally, OT
aims to allocate (transport plan) one mass distribution into another by
minimizing the transportation cost arising frommovingonemass unit from
one location to another. Applied to fluorescence intensity distributions on a
pixel grid andusing the euclidean distances between pixels as transportation
cost, OT introduces an intuitive distance between two microscopy images
and could already successfully be utilized in the context of pixel-based, dual-
color colocalization methods17,45.

For object-basedanalysis, reference points of detectedparticles can also
be interpreted as support points ofmass one of a (discrete) two-dimensional
distribution. For only two color channels with the same number of particles
the standardOTproblem simply assigns each particle from the first channel
to one particle from the second channel while minimizing the total sum of
Euclideanmatching costs. This can be also generalized for other particle-to-
particle distance matrices, in case the Euclidean distance between particle
reference points is not suitable to represent particle proximity. We can
obtain an optimalmatching betweenmore than two particle types bymulti-
marginal OT46,47 and at the same time account for the not necessarily equal
numbers of support points per channel by utilizing an unbalanced OT
formulation48 (“Methods” section). A combination of both OT general-
izations, i.e., multi-marginal optimal unbalanced transport problems, have
been recently discussed in the literature49–52.

In thismanner, the basic concept ofMultiMatch canbe interpretedas a
linear assignment problem as described, e.g., in the field of object
tracking53–56. In contrast to methods of this research field, we explicitly
formulate the matching problem as a function of the colocalization
threshold, allowing to plot the chain abundances dependent on a range of t
(“Methods” section). We utilize the equivalence of the optimal transport
methodology to a network flow problem to overcome the otherwise pro-
hibitively high computational complexity of its corresponding linear pro-
gram formulation57 (“Methods” section, Supplementary Note 1, and
Supplementary Fig. 1).
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MultiMatch provides two different modes to solve the particle
matching problem (Fig. 1A(3)):

Mode I: By restricting a k-marginal optimal unbalanced transport
problem to particle pairs with a distance smaller than t and introducing a
chain-cost that only considers distances between neighboring particle types
(“Methods” section), the resultingOTplan encodes themaximalnumber of,
for k = 3, triplets within the nanoscopy image. If requested, the matching
process is subsequently repeated on the remaining particles to detect yet
unresolved AB and BC pairs, respectively.

Mode II: This mode only detects AB, BC, etc. pairs by solving
respective two-marginal unbalanced OT problems. Subsequently, the
two-marginal OT matchings are coupled to chain structures: For k = 3,
all pairs occupying the same intermediate particle are redefined as
respective ABC triplet.

Depending on the underlying biological experiment, the user can select
the appropriate mode for colocalization analysis: Mode I prioritizes the
detection of a predefined chain structure of choice. For example, if a user
aims to analyze triplets, Mode I will detect a triplet as soon as three particles
A, B, andCare close enough to eachother– even if another particleAorC is
nearby that would allow to match two pairs instead of one triplet (as
depicted in Fig. 1A(3)). If k > 3 and the user wants to detect multiple chain
structures, one needs to set a prioritization order for Mode I. For example,
for k = 4 and after ABCD quadruplet detection, one can search either for
ABC or BCD triplets next. Depending on the order, the final matching
resultsmay change as soon as some particles cannot be uniquely assigned to
one particle arrangement.

Mode II, on the other hand, does not need a predefined prioritization
order of structures for subsequent matching steps, hence it does not over-
emphasize structures that arematched in the earlier steps. It is useful in case
we do not have any prior knowledge on which structures might appear in
themicroscopy image andwe do notwant to prioritize any chain structures.

In the evaluation of experimental and simulated three-color STED
microscopy imageswe show that for sparse particle distributions andmixed
singlets, pairs, and triplet ratios the differences in detected abundances
between the two modes is neglectable (Supplementary Note 2, Supple-
mentary Fig. 2). However, in case of dense particle distributions (Supple-
mentary Note 3 and Supplementary Figs. 3–5), or in case we know in
advance that only one chain structure exists in the biological context, the
multi-marginal approach of Mode I, which is also the default setting in the
MultiMatch tool, outperforms the pairwise matching approach of Mode II.

MultiMatch outputs detected abundances w = (wABC, wAB, wBC,
wA,wB,wC) for a known colocalization distance t and depicts configuration
positions on the respectivemicroscopy image allowing further investigation
on the spatial distribution of recorded biological complexes. If t is unknown
(optionally channel-wise scaled) abundance curves w(t) are output for a
user-defined range of t values.MultiMatch is compatiblewith the interactive
GraphicalUser Interface of napari (Fig. 1D) enabling the visual evaluationof
structure locations for different t values in formof a colocalization threshold
slider.

The differentiation between triplets, pairs, and singlets within a
microscopy image is additionally hindered by incomplete labeling effi-
ciencies and point detection artifacts. This is a notorious problem in

interaction geometry biases colocalization analysis

Interactive MultiMatch output visualization
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Fig. 1 |MultiMatchworkflow to detect chain-like particle arrangements inmulti-
color microscopy images. AAfter microscopy imaging (0) and object detection (1),
the distances between channel-specific lists of reference points or a user-defined
distance matrix are input to the optimal matching procedure. Restricted on particle
pairs with distance smaller or equal than colocalization distance t (2), MultiMatch
either outputs the maximal number of triplets and subsequently pairs (Mode I) or
simultaneously searches for triplets and pairs (Mode II) (3). MultiMatch provides
the localization and number of detected chains for a known or abundance curves for
a range of colocalization distances t (4). For known incomplete labeling efficiencies
true abundances can be estimated with confidence statements (5) (“Methods”

section). B If more than two different particle types are involved, multiple geometric
colocalization patterns can emerge. In case the chain is a substructure of the colo-
calization geometry of interest, its detection will help to localize and quantify
colocalization events. C Structures of interest in three-color colocalization analysis
for chain-like, one-to-one particle interactions and fixed particle type order. All
pairwise distances between neighboring particles in a chain are smaller or equal than
colocalization distance t. D Exemplary MultiMatch output for an experimental
STED image of DNA origami nanoruler structures (as sketched in C) in the inter-
active napari viewer39.
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fluorescence microscopy, e.g., described in Hummert et al.58, and missing
detections can add an unpredictable bias toward systematic under-
estimation of triplet numbers and overestimation of singlet abundances, if
not corrected. Currently, the problem of incomplete labeling efficiency is
barely addressed in the field of colocalization analysis. Therefore, we pro-
pose a statistical framework to correct for incomplete labeling efficiencies
and introduce an unbiased estimator n̂ðtÞ of true chain-structure abun-
dances and confidence statements on the estimated quantities (“Methods”
section, Supplementary Note 4, Supplementary Fig. 6, Supplementary
Table 1).

An overview on the full workflow of MultiMatch from microscopy
image to abundance curves is depicted in Fig. 1A.

Simulation study
To systematically evaluate the performance of MultiMatch against com-
patible colocalization methods, we simulated 100 microscopy images for
each of three scenarios with different combinations of singlets, pairs, and
triplet abundances. For this simulation study, we decreased the noise level to

aminimumto allowa fair comparisondespite different point detection tools
implemented in the respective colocalization tools. Also, we amplified
simulating linear triplet structures over randomly folded triplets (“Methods”
section). For every simulated image,

Scenario 1: 50 singlets of each type A, B, and C were simulated.
Scenario 2: 50 A, B, and C singlets and 50 AB and BC pairs were simu-
lated, respectively.
Scenario 3: 100 triplets and 50 AB and BC pairs and 50 A, B, and C
singlets were simulated, respectively.

Exemplary, simulated images and the results of the simulation study
for a fixed colocalization threshold of t = 5 pixels are shown in Fig. 2A, B.
Analysis results for all considered methods across a range of colocalization
thresholds are presented in Supplementary Note 3 and Supplemen-
tary Fig. 3.

As a representative of pixel-based methods, we include BlobProb15,
which counts the number of colocalized intensity blobs, i.e., groups of
neighboring pixels with high intensity. In each channel, blobs are detected
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Fig. 2 | Simulation study for three-color microscopy images with three combi-
nations of chain structures. In each scenario 100 independent STED images and
different abundances of triplets, pairs, and singlets were simulated with 100%
labeling efficiency. A Method specific boxplots of the errors in detected relative
(scaled by the total number of points in channel B) structure abundances are dis-
played. The error is computed by subtracting true relative abundance from detected

relative abundances. In Scenario 1 only A, B, and C singlets, in Scenario 2 all possible
singlets as well as AB and BC pairs and in Scenario 3ABC triplets, AB, BC pairs and
A, B, andC singlets were simulated.B Simulated STED images for Scenarios 1, 2, and
3 with respective image details. For visualization purposes, contrast stretching and
increasement of image brightness was applied.
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via image segmentation and for each blob the local intensity maximum is
defined as reference particle coordinate. A blob pair colocalizes if the first
reference point lies within the second blob and vice versa. Triplet colocali-
zation is detected if all involved reference points are included in all three
blobs. SODA21 is an object-based method, which uses the Ripley’s K
function19 and computes the coupling probability of point pairs based on
marked-point process theory. In the most recently published method
ConditionalColoc18 particles are defined as colocalized as soon as their
distance is below a maximal colocalization radius. Then, utilizing Bayes’
Theorem, (conditional) probabilities are computed and assigned for triplet
and pair colocalization. We experienced that ConditionalColoc, although
aiming to output probabilities, in some cases yields values greater than one
andhence the errors in relative abundancedetectionarenot boundedbyone
aswell. For a better comparison, we restricted the respective results to values
between -0.5 and 1 in Fig. 2A and show ConditionalColoc outliers in
Supplementary Note 5, Supplementary Fig. 7.

In none of the abovemethods triplet colocalization is restricted to one-
to-one interactions. This has barely any negative effect on the detection of
singlets in Scenario 1, where no additional pairs and triplets occur. Apart
from few outliers of overestimation in pairs and triplet abundances in
ConditionalColoc and SODA, all considered colocalization measures show
consistently low errors with small variability. The maximal median error in
relative abundances of 0.03 in Scenario 1 is obtainedbyConditionalColoc in
the detection of AB as well as BC pairs.

In Scenarios 2 and 3 on the other hand, we observe a consistent
overestimation of relative pairs and triplet abundances in object-based
methods SODAandConditionalColoc, sinceoneparticle canbe included in
several structures at the same time. Additionally, in Scenario 2 SODA
exhibits a larger variation in pairs abundances, resulting in median errors
0.14 in both AB and BC pairs with interquartile ranges of 0.16, respectively.
In Scenario 3 the variation in abundance detection decreased and median
errors are 0.1 for ABC triplets and 0.04 for AB as well as BC pairs. Con-
ditionalColoc performances worst in Scenario 3 yielding a median error of
0.48 for ABC triplets.

The pixel-based method BlobProb mostly obtains zero relative abun-
dances of triplets and pairs across all three scenarios and hence severely
underestimates the triplet and pair configurations within the simulated
images. This is due to the high resolution in the simulation setup, whichwas
chosen tomimic conventional STED imaging. If particles are small and their
respective intensity blobs do not overlap, BlobProb does not detect any
colocalization.

MultiMatch on the other hand searches for optimal matches on a
global scale while considering the local geometry of chain-like particle
assemblies. It consistently recovers the ground truth abundances for each
simulation scenario. The maximal median error across all scenarios and
chain structures for both Modes of MultiMatch is 0.03 with a maximal
interquartile range in errors of 0.04.

Apart from above considered, already established colocalization
methods,wealso implementedaNearestNeighborMatching as comparable
object-based method. We can show that greedily matching particle pairs
based on local optima leads to underestimation of ABC triplets in dense
particle distributions (Supplementary Note 3 and Supplementary Fig. 4).

Incomplete labeling efficiencies and point detection errors
In experimental STED microscopy, typically it is impossible to record all
existing particles of interest. This can, for example, be due to the fluorescent
marker not being successfully attached to the probe or a flawed point
detection. All such scenarios resulting in a failure of particle detection for
simplicity will be summarized under incomplete labeling efficiency
hereafter.

If only singlets were to be counted inmulti-color images with the same
labeling efficiency across channels, the relative abundance could still be
estimated consistently. However, as soon as configurations of two or more
particle types are to be recovered, incomplete labeling efficiencies can lead to
under- and overestimation of structures. Figure 3A shows that a triplet can

be erroneously detected as pair or singlet or not at all, which can introduce a
severe bias. However, if the labeling efficiencies are known, the detection
success of a particle can be modeled with a Bernoulli distribution, which
allows the definition of an unbiased estimator n̂ for the vector of true chain
structures abundances n. This approach allows for constructing multi-
dimensional joint confidence ellipsoids covering nwith a given significance
level, e.g., α = 0.1 (Fig. 3B, C). The multi-dimensional confidence ellipsoid
then can be respectively projected onto one dimension to obtain structure-
specific confidence intervals or bands for a range of t values, while fixing the
estimated abundances of all other considered structures (“Methods”
section).

Note that microscopy images are also influenced by other sources of
noise that complicates the detection of chain-like particles as we show in
Fig. 3D: In this small study we simulated 100 STED images containing only
one triplet (nABC = 1) and observe that the discrete nature of the pixel grid
can effect on the accuracy of the measured distance between particles and
hence the stabilization behavior of colocalization curves. For square pixels
with side length l the worst case for pairwise particle comparisons is

ffiffiffi
2

p
l.

Evaluation of experimental STED images
Chain-like particle structures occur within several biological complexes. To
showcase the performance of our method on experimentally retrieved data
we used one-, two-, and three-color nanorulers. Nanorulers are DNA-
origamiswith a predefined distance between spots at which 20 fluorophores
are attached and hence, as their name suggests, can be used as rulers inside a
microscopy image1,59–61. For this experimental setup, we chose nanorulers
with pairwise distances between neighboring spots of 70 nanometers (nm).
For each chain structure (as depicted in Fig. 1C), respective nanoruler ori-
gamis are available in separate solutions, which allows us to control whether
in an experiment we record singlets, pairs or triplets only or a combination
of those structures. We performed three experiments:

Setting 1: The experiment consists of all three single marker nanorulers
(22 images in total). We expect to detect no pairs or triplets, i.e.,
wABC =wAB =wBC = 0.
Setting 2: The experiment consists of all three singlets, two pairs and
triplet marker nanoruler solutions (22 images in total). We expect to
detect all possible configurations, i.e., A, B, and C singlets, AB and BC
pairs as well as ABC triplets.
Setting 3: The experiment consists of only triplet marker nanorulers (12
images in total). We expect to detect ABC triplets only, i.e.,
wAB=wAB=wA =wB =wC = 0.

For each experimental setting we recorded STED images of size
400 × 400 pixels with a pixel size of 25 × 25 nm. In channelA, stainingswith
Star Red 640 nm are recorded, in channel B, stainings withAlexa 488 and in
channel C, stainings with Alexa 594. Note, however, that the exact numbers
of nanorulerswithin a recordedSTEDimage is unknown.Due tomisfolding
and clumping of nanorulers and different nanoruler immobilization rates
for each STED image one cannot compute a fixed unit of nanorulers per
microscopy image and experiment.

The results of the colocalization analysis for all three settings (with
default MultiMatch Mode I) are shown in Fig. 4A via relative abundance
curves with standard deviation bands quantifying variation across images
within the same setting.Here,we usedMultiMatchMode I and included the
analysis with Mode II showing comparable results, but slightly under-
estimating the number of triplets in Setting 3, in Supplementary Note 2,
Supplementary Fig. 2. Exemplary images for each setting are shown
in Fig. 4B.

For Setting 1 we can appreciate that, as expected, across a range of t
values only a few pairs and triplets are detected (Fig. 4A). The rise of relative
abundance curves is unavoidable for large t, since the probability increases
that randomly scattered particles are matched. In Setting 2, despite
experimental variation, we clearly recover all supplied nanoruler structures.
Even more, colocalization curves are still stabilizing for a colocalization
threshold t greater than approximately 4 pixels (=100 nm): For t > 100 nm
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ABCtriplets are approximately detectedwith relative abundance of 0.32,AB
pairswith 0.16 andBCpairs with 0.42 relative abundance, yielding a relative
amount of 0.1 unmatched B singlets. The relative abundance curves of all
structures reach a plateau at approximately t ≥ 4 pixels (= 100 nm), i.e., the
slope of all curves within the same setting decreases rapidly. In Setting 3, as
expected, the relative abundances ofAB andBCpairs converge to zerowhile
triplets are the dominantly detected structure for t ≥ 4 pixels.

Notably, in Settings 2 and 3 stable abundance curves are reached at
around 100 nm, which is 30 nm more than the experimentally fixed,
maximal distance between neighboring fluorophore spots in the nanoruler
structures. This effect can be explained by the still limited resolution in the
microscopy image and can be reproduced via simulation (Fig. 3D).

Limited resolution alone does not explain why 20%–30% of detected B
particles (for t ≥ 5 pixels) are not matched to a triplet in Setting 3: The
attachment of a single fluorophore to a nanoruler spot is expected to have a
success probability of 85% to 90%andhence at least onefluorophore should
be attached to each spot in almost 100% of all cases. Still, due to the above-
described experimental variation in nanoruler imaging and additional
errors in point detection, especially due to nanoruler clumping, the overall
success rate of fluorophore spot detection is incomplete. Hence, we erro-
neously detect pairs instead of triplets or singlets due to noise. As in Setting 1
those artifacts will be matched into triplets for large enough t.

For simplicity, wemodel a 90% labeling efficiency across all three-color
channels in the experimental STED setup. The estimated abundance curves
n̂ðtÞ (dotted lines in Fig. 4A), in Setting 3 visibly correct the measurements
towards the expected relative abundances. Additional confidence bands
around n̂ allow to infer on the robustness of the abundance estimation as
presented in (Fig. 3C) for one of the experimental STED images of Setting 3.

Evaluation of simulated four-color STED images
MultiMatch is applicable to an arbitrary number of color channels, which
we showcase in a second simulation studywith an adapted simulation setup
for quadruples, triplets, pairs, and singlets in simulated four-color STED
microscopy images. In contrast to the first simulation study simulating
triplets, tuples, and singlets, we additionally challenged ourMultiMatch tool
with an increased noise level and by allowing arbitrarily curled chain
structures (“Methods” section). In Fig. 5A–D we show the colocalization
analysis results of two simulation scenarios:

Scenario I: We simulated 50 ABCD quadruples, 30 ABC triplets, 20 AB
pairs and 30 C and D singlets, respectively, to mimic a chain-like
molecule being split at loci C and D.
Scenario II: We simulated 100 ABCD quadruples and no triplets, pairs
nor singlets
Exemplary images of both simulation scenarios are shown in Fig. 5E

and three additional simulations setups are shown inSupplementaryNote3,
Supplementary Fig. 5. For each scenario, we simulated 100 images with full
labeling efficiencies (sA = sB = sC = sD = 1) and 100 images with incomplete
labeling efficiencies (sA = sB = sC = sD = 0.95) by randomly deleting 5% of
points simulated in the prior, full labeling efficiency simulation in each
channel.

For this analysis we applied MultiMatch Mode II, i.e., allowing the
detection of both ABC as well as BCD triplets and AB, BC and CD pairs
without any prioritization order of chain structures. Again, also in the
case of four-color images, we can appreciate that MultiMatch con-
sistently recovers true abundances of quadruplets in case of full labeling
efficiencies. Absolute abundance curves, as also described in the analysis
of our experimental dataset in Fig. 4, stabilize for approximately t = 4
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Fig. 3 | Chain-like particle structure detection is influenced by incomplete
labeling efficiencies and structure rotation. A Because of channel-specific
incomplete labeling efficiencies, triplets and pairs can erroneously counted to other
structure abundances. B For entrywise large enough n, estimator n̂ is approximately
multi-dimensional normally distributed: Estimated abundances of 10,000 inde-
pendent simulations with labeling efficiencies sA = sB = sC = 0.95 and true abun-
dances nABC = 500, nAB = nBC = nA = nB = nC = 50 (“Methods” section). The

respective 3-dimensional, normal 90% quantile ellipsoid is plotted. C Estimated
abundance curves for one of the experimental multi-color STED images in Setting 3
with additional confidence bands for significance level α = 0.1. D Restricted image
resolution and 3-dimensional rotation of particle arrangements lead to variability in
the observed colocalization thresholds: simulation study of 100 independent images
only containing one triplet with pairwise distances set to 70 nm = 2.8 pixels per
image (100% complete labeling efficiency, ”Methods” section).
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pixels. For images simulated with incomplete labeling efficiencies, the
colocalization curves show underestimation of quadruplets as expected.
With our statistical framework we again can visibly correct the coloca-
lization curves towards the true, simulated structures abundances and
additionally gain confidence bands confirming the stability of our
estimator.

For denser distributions, as shown in Supplementary Note 3, Supple-
mentary Fig. 5C-F, we can observe that 1. MultiMatch II misses quadruples
for the sake of closer particle pairs, and 2. similar to the experimental
nanoruler analysis depends on the performance of the point detection and
hence the noise level in themicroscopy image. If consistent noise challenges
the point detection, abundance curves still stabilize, but the plateau shows a
smaller number of matched quadruples than simulated in absolute num-
bers. Hence, we advise user of MultiMatch to check the noise level of the
microscopy image and the point detection result with the interactive napari

viewer (Fig. 1D and Supplementary Fig 5G) and if necessary evaluate
channel-wise scaled, relative instead of absolute abundances.

Discussion
In this article we introduce multi-marginal optimal unbalanced transport
methodology for geometry-informed, multi-color colocalization analysis.
We are able to show, that for the analysis ofmore than two color channels, it
is crucial to take into account the colocalization geometry of the biological
complex.

By either choosing chain costs in amulti-marginalOTproblem (Mode
I) or coupling consecutive two-marginal OT matchings (Mode II), Multi-
Match successfully detects k-chain particle assemblies such as quadruples,
triplets, pairs, and singlets, as they appear when staining multiple loci on
chain-like molecules like DNA or RNA strands. Both modes have their
advantages, which depend on the number of particles imaged and prior
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Fig. 4 | MultiMatch Mode I relative abundance curves w(t) for experimental
STED images. For each setting the solid curves are mean relative abundances with
standard deviation bands across a range of colocalization threshold t from 0 to 10
pixels (25 nm = 1pixel). The abundances are scaled by the total number of points
detected in channel B. Additionally, incomplete labeling efficiency (90% in each
channel) corrected abundances are plotted as dotted curves. The true colocalization
distance of 70 nmwithin nanoruler structures is depicted as vertical line.A Setting 1:
mean abundance curves for only singlets consistently show the expected 0% relative
triplet and pair abundances (22 independent experimental STED images). Setting 2:

triplets, pairs, and singlet nanoruler are detected with stable abundances for ~t ≥ 4
pixels (22 independent experimental STED images). Setting 3: mean abundance
curves for analyzing the triplet nanoruler solution only. The incorporation of
incomplete labeling efficiency clearly corrects the relative triplet abundance towards
the in this setup expected 100% (12 independent experimental STED images).
B Representative STED images for Settings 1, 2, and 3 with image details. For
visualization purposes, contrast stretching and increasement of image brightness
was applied.
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knowledge on the biological context: Mode I is best for detecting one chain
structure of choice and ismore robust in dense particle distributions.When
the particle distribution is sparser and multiple chain structures in the
imaged biological setting are of interest, Mode II is suited to detect them
without any predefined prioritization order.

Since often the true colocalization distance is unknown, MultiMatch
results can be output as structure-wise relative or absolute abundance curves
across a rangeof colocalization thresholds t. In our simulation studies aswell
as our experimental settings we could show, that output curves stabilize
close to ground truth abundances.

ab
so

lu
te

 a
bu

nd
an

ce
s

0 2 4 6 8 10
colocalization distance t in pixels

A B

E

ab
so

lu
te

 a
bu

nd
an

ce
s

labeling efficiencies sA=sB=sC=sD=1 labeling efficiencies sA=sB=sC=sD=0.95

mean wABCD

mean wA

mean wB

mean wC

mean wD

stand.
dev.

mean nABCD

mean nA

mean nB

mean nC

mean nD

Scenario I
labeling efficiencies sA=sB=sC=sD=0.95

0 2 4 6 8 10
colocalization distance t in pixels

ab
so

lu
te

 a
bu

nd
an

ce
s

0 2 4 6 8 10
colocalization distance t in pixels

Scenario IIC D

20

40

60

80

100

120

140

160

0 0

20

40

60

80

100

120

140

160

0

20

40

60

80

100

120

140

160
nABCD

nA

nB

nC

nD

conf.
bands

ab
so

lu
te

 a
bu

nd
an

ce
s

0 2 4 6 8 10
colocalization distance t in pixels

ab
so

lu
te

 a
bu

nd
an

ce
s

labeling efficiencies sA=sB=sC=sD=1 labeling efficiencies sA=sB=sC=sD=0.95

mean wABCD

mean wA

mean wB

mean wC

mean wD

stand.
dev.

mean nABCD

mean nA

mean nB

mean nC

mean nD

labeling efficiencies sA=sB=sC=sD=0.95

0 2 4 6 8 10
colocalization distance t in pixels

ab
so

lu
te

 a
bu

nd
an

ce
s

0 2 4 6 8 10
colocalization distance t in pixels

20

40

60

80

100

120

140

160

0 0

20

40

60

80

100

120

140

160

0

20

40

60

80

100

120

140

160
nABCD

nA

nB

nC

nD

conf.
bands

1
2

1

2

1

2

Scenario I Scenario II 1

2

1 μm 200 nm

nABCD=50, nABC=30, nAB=20, nC=nD=30

nABCD=100

Fig. 5 | MultiMatch Mode II absolute abundance curves w(t) and estimation
results n̂ðtÞ for simulated four-color STED images. For each simulated scenario
100 independent images were simulated with complete labeling efficiency
(sA = sB = sC = sD = 1) and with incomplete labeling efficiency
(sA = sB = sC = sD = 0.95), respectively. Solid curves are mean absolute detected
abundances with standard deviation bands across a range of colocalization thresh-
olds t from 0 to 10 pixels (25 nm = 1pixel). Corrected abundances are plotted as
dotted curves. A Scenario I: a mixture of ABCD quadruplets, ABC triplets, AB pairs
and C, D singlets were simulated. All curves stabilize at approximately t = 4 pixel
close to the true simulated number of structures. For images with incomplete

labeling efficiency uncorrected detected abundances plus standard deviation bands
are plotted as solid curves showing consistent underestimation of quadruples.
Corrected abundances recover the true number of simulated structures. B For one
exemplary STED image of Scenario I simulated with incomplete labeling efficiency,
corrected abundance curves and corresponding confidence bands are shown.
C, D show the same analysis as shown in A and B but for Scenario II: only ABCD
quadruplets were simulated. E Representative STED images for Scenarios I and
Scenario II with image details. For visualization purposes, contrast stretching and
increasement of image brightness was applied.
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However, as for all object-based colocalization methods, the perfor-
mance MultiMatch scales with the noise level of the microscopy image, the
performance of the object detection and the resolution of the microscopy.
Abundance curve plateaus can be less clear in case the microscopy image
contains detected singlets of different particles types. In this case, the larger t,
the more far away singlets are matched. In such cases it might be unclear,
whether singlets truly exist in the biological sample or whether they are an
artifact of the experiment and image processing. For such cases, we advise to
observe the quality of the microscopy image with the MultiMatch compa-
tible, interactive napari viewer.

Our network flow implementation significantly decreases computa-
tional costs compared to standard approaches solving comparable OT
problems and comparable colocalization tools (“Methods” section). The
simulation studies show that as soon as we have prior knowledge on the
chain colocalization geometry, MultiMatch, in contrast to other triplet
colocalization methods, is robust against overestimation of triplets with
chain geometry since it only considers one-to-one interactions.MultiMatch
is also tested on experimental STED images of different nanoruler combi-
nations and can correct structure abundances for predefined incomplete
labeling efficiencies and point detection errors, where confidence bands
allow further inference on the estimated abundances.

All experimental studies have been performed for k = 3 color channels.
However, in many scientific fields the detection of k-chains for larger k is of
interest. The mathematical and statistical frameworks allow straight-
forward generalization (“Methods” section) and we exemplarily show
successful detection results for simulated four-color STED images. With
current technical standards, the experimental setup of multi-color nano-
scopy imaging is still challenging, costly and time consuming, but in view of
further technological improvements our algorithm is already applicable for
the evaluation of this type of experimental setups, and especially promising
in view of recent developments in super-resolution microscopy with a
resolution of a few nanometers and below62,63.

In the same way channel specific colocalization thresholds as tAB, tBC
and tCD can be considered within the OT problem. Although we only
present the evaluation of 2D STED images with constant labeling effi-
ciencies across channels, our software package can directly be applied to
multi-color 3D microscopy images with channel-specific labeling
efficiencies.

Limitations: If the microscopy image shows especially dense point
clouds, MultiMatch necessarily will have difficulties in differentiating
between random and biological reasonable proximity. Note, however, that
this is not a specificweakness ofMultiMatch, but any othermethodwill face
this identifiability problem, which is caused bymissing linkage information.
It can only be overcomewith additional prior information of the underlying
biological sample. However,MultiMatchMode I is especially robust against
dense particle distribution in comparison to pairwise matching approaches
as implemented in MultiMatch Mode II or greedy Nearest Neighbor
Matchings. An adaption to tree like particle arrangements and the inclusion
of additional constraints, e.g., incorporating regions of interest are future
research objectives.

Methods
Optimal chain-matching
In the following we will denote the sets of two-dimensional particle coor-
dinates in the image domain for each of the k color channels as

Xð1Þ :¼ xð1Þl

n on1

l¼1
; . . . ;XðkÞ :¼ xðkÞl

n onk

l¼1
� R2; ð1Þ

where number of particles nj 2 N≥ 0 for j ∈ {1, …, k}. For simplicity and
related to the considered data in this article, we will only consider the cases
k = 2, 3 in the following. Generalization to larger k is straight-forward. In a
chain-likeparticle arrangement of the form xð1Þ; . . . ; xðkÞ

� �
withx(j)∈X(j), all

neighbors x(j), x(j+1) have to be closer than the colocalization threshold t and
we will denote according tuples as dkt -chains:

Definition 1. (dkt -chain). Fix k ≥ 2. For sets X(1), …, X(k), a distance d :
R2 ×R2 ! R ≥ 0 and a predefined maximal threshold t ≥ 0 a tuple of k
points

xð1Þ; . . . ; xðkÞ
� � 2 R2× k with xðjÞ 2 XðjÞ for j 2 f1; . . . ; kg ð2Þ

is adkt -chain, if pairwise point distances along thefixed tuple point order are
smaller or equal than t, i.e.,

d xðjÞ; xðjþ1Þ� �
≤ t for j 2 f1; . . . ; k� 1g: ð3Þ

In the context of our colocalizationproblem,d is theEuclideandistance
(this can easily be generalized), a d3t -chain is a triplet and a d

2
t -chain a pair.

For given t, we now aim to detect as many dkt -chains as possible:

Definition 2. (Optimal dkt -matching). A collection of pairwise disjoint
dkt -chains is called d

k
t -matching. It is called optimal if its number of chains

is maximal among all matchings.
Such an optimal dkt -matching can be found by utilizing a multi-

marginal and unbalanced formulation of OT. For example, if k = 3, for each
channel i = 1, 2, 3, we interpret coordinates of detected particles as support
points with mass 1 of a respective discrete distribution. Due to this discrete
structure, the resulting optimization problem will be finite-dimensional.
Since in our measurements the number of detected particles per channel
might differ, we require an unbalanced formulation to compare distribu-
tions with different total masses. A wide variety of penalty terms for mass
discrepancies has been studied in the literature, see for instance64. Our
problem formulation is closely related to an ℓ

1-penalty for unmatched
particles, see also52. We first consider the problem of finding optimal
d2t -matchings between two point clouds, i.e. k = 2. This can be solved via the
following optimization problem:

Definition 3. (Optimal d2t -matchings via unbalanced optimal transport).
Let λ 2 R≥ 0, set the cost function

c : R2 ×R2 ! R≥ 0 ∪ f1g;

ðx1; x2Þ7!
dðx1; x2Þ � λ if dðx1; x2Þ≤ t;
þ1 otherwise ;

� ð4Þ

and c 2 Rn1 × n2 the pairwise cost between all points inX(1) andX(2), defined
by ci1 ;i2 ¼ cðxð1Þi1

; xð2Þi2
Þ. The optimal unbalanced transport problem of

interest can now be stated as the following linear program

argmin
π2Rn1 × n2 × n3

Xn1
i1¼1

Xn2
i2¼1

ci1i2πi1i2

s: t:
Xn2
i2¼1

πi1i2 ≤ 1 for all i1 ¼ 1; . . . ; n1

Xn1
i1¼1

πi1i2 ≤ 1 for all i2 ¼ 1; . . . ; n2

πi1i2 ≥ 0 for all ði1; i2Þ 2 f1; . . . ; n1g× f1; . . . ; n2g:

ð5Þ

Entries of an optimal π indicate which particles have been
matched. The constraints enforces that each particle can at most be
part of one matching, but it may also be discarded. By the definition
of the cost vector c, the solution of Equation (5) does not match
points x(1) and x(2) as soon as they are farther apart than t, but for
each matching below distance t there is an incentive by the parameter
λ. For λ sufficiently large in comparison to t one can show that the
solution yields an optimal d2t -matching. Among all optimal match-
ings the above problem prefers one with the lowest sum of pairwise
particle distances among matched particles.

We now generalize this to k = 3 via a multi-marginal transport
problem.
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Definition 4. (Optimal d3t -matchings via unbalanced multi-marginal
optimal transport). Let λ 2 R≥ 0, set the cost function

c : R2 ×R2 ×R2 ! R≥ 0 ∪ f1g;

ðx1; x2; x3Þ7!
dðx1; x2Þ þ dðx2; x3Þ � λ if dðx1; x2Þ ≤ t ^ dðx2; x3Þ≤ t;
þ1 otherwise;

� ð6Þ

and let c 2 Rn1 × n2 × n3 , be the cost tensor between all triplets in
(X(1), X(2), X(3)), defined by ci1 i2i3 ¼ cðxð1Þi1

; xð2Þi2
; xð3Þi3

Þ. Then the unbalanced
multi-marginal OT problem can be stated as the following linear program:

argmin
π2Rn1 × n2 × n3

Xn1
i1¼1

Xn2
i2¼1

Xn3
i3¼1

ci1 i2 i3πi1 i2 i3

s: t:
Xn2
i2¼1

Xn3
i3¼1

πi1 i2i3
≤ 1 for all i1 2 ½n1�

Xn1
i1¼1

Xn3
i3¼1

πi1 i2i3
≤ 1 for all i2 2 ½n2�

Xn1
i1¼1

Xn3
i3¼1

πi1 i2i3
≤ 1 for all i3 2 ½n1�

πi1 i2i3
≥ 0 for all ði1; i2; i3Þ 2 ½n1�× ½n2�× ½n3�;

ð7Þ

where we used the notation [n] = {1,…, n}. As mentioned above, note that
per themarginal constraints, particlesmaybematched atmost once and can
also be discarded. Likewise, by definition of the cost vector c only allows
matchings between points that are valid d3t -chains. Analogously there is a
matching incentive via the parameter λ and for sufficiently high values
(relative to t) one can show that the above problem provides an optimal
d3t -matching. Among all these matchings, one with minimal sum of pair-
wise distances is selected by the problem.

Generalization of Definition 4 to arbitrary k is now obvious,
leading to a multi-marginal problem with k marginals. In general,
multi-marginal problems quickly become numerically impractical
due to the large number of variables. The cost function c in (6) has a
chain structure, i.e. it can be written as a sum of functions only
depending on (x1, x2) and (x2, x3). This chain structure allows the
reformulation of the problem as a much more compact network flow
problem (see Section below), and it implies the existence of optimal
binary matchings. Problems where the cost exhibits a tree-structure
can still be solved efficiently, see ref. 51 and references therein, but
they cannot be formulated as network flow problems and do not
exhibit binary minimizers in general.

Network flow formulation
In this section, we show that the multi-marginal optimal unbalanced
transport problem corresponds to a min cost flow problem if the cost
function has a chain structure as in (6). This has two relevant consequences:
1. It guarantees that (7) has integer solutions and thus indeed corre-

sponds to amatching problem, which in general does not hold true for
discrete OT problems;

2. It allows us to solve the multi-marginal optimal unbalanced transport
problem efficiently.

Definition 5. Let (V, E) be a directed graph with a source node S ∈ V, a
target node T ∈ V, an edge capacity function lE : E ! R∪1 and an
edge cost function cE : E ! R∪1. Then we call (V, E, cE, lE) a flow
network. Given an amount of flow, m 2 Rþ the min cost flow problem
consists in finding a function f : E ! R that solves the following

optimization problem:

min
f

X
ðu;vÞ2E

f ðu; vÞcEðu; vÞ

s:t: 0≤ f ðu; vÞ ≤ lEðu; vÞ for all ðu; vÞ 2 E ðcapacity constraintsÞX
fu:ðu;vÞ2Eg

f ðu; vÞ �
X

fw:ðv;wÞ2Eg
f ðv;wÞ ¼ 0 for all v 6¼ S;T

X
fu:ðS;uÞ2Eg

f ðS; uÞ �
X

fv:ðv;SÞ2Eg
f ðv; SÞ ¼ m ðflow sourceÞ

X
fu:ðu;TÞ2Eg

f ðu;TÞ �
X

fv:ðT;vÞ2Eg
f ðT; vÞ ¼ m ðflow sinkÞ:

Notably, due to the total unimodularity of the constraint matrix, the
min cost flow problem with integer total flow m and integer capacity
function lEhas an integer solution (Theorem13.11 in65). In the following,we
recast (7) to a min cost flow problem (see sketch in Supplementary Fig. 1):
• Node set V:Define source node S ∈ V and target node T ∈ V and add

two nodes vðjÞl and v̂ðjÞl for each detected particle position xðjÞl in
Equation (1).

• Edge set E:
Connect nodes referring to the same detected point and set edge costs
cEðvðjÞl ; v̂

ðjÞ
l Þ ¼ � λ

k where k is the number of point clouds as in (1).

Add all possible edges of form ðv̂ðjÞ; vðjþ1ÞÞ 2 E for j = 1,…, k− 1. Set
edge costs

cEðv̂ðjÞ; vðjþ1ÞÞ ¼ 1; if dðxðjÞ; xðjþ1ÞÞ>t
dðxðjÞ; xðjþ1ÞÞ; otherwise:

(

Include source and target nodes via edges of form
ðS; vð1ÞÞ; ðv̂ðkÞ;TÞ; ðS;TÞ 2 E, and set its costs to 0.

Define edge capacities

lEðvi; vjÞ ¼
1; if vi ¼ S and vj ¼ T

1; otherwise:

�

Proposition 1. Let f : E ! R be an integer solution of the min cost flow
problem for the flow network (V, E, cE, lE) defined abovewith transported
mass m ¼ minðn1; n2; n3Þ. Then one of the optimal solutions π* of the
multi-marginal optimal unbalanced transport problem (7) is given by,

π�
i1 i2i3

¼ f ðv̂ð1Þi1
; vð2Þi2

Þf ðv̂ð2Þi2
; vð3Þi3

Þ; ð8Þ

for i1 ∈ [n1], i2 ∈ [n2] and i3 ∈ [n3] with notation [n] = {1,…, n}.

Proof. First we show thatπ* as defined in Eq. (8) is in fact a valid transport
plan for Eq. (7). For any i3 ∈ [n3] we have that, using the conservation
constraint,

Xn1
i1¼1

Xn2
i2¼1

π�i1 i2 i3 ¼
Xn2
i2¼1

f ðv̂ð2Þi2
; vð3Þi3

Þ
Xn2
i1¼1

f ðv̂ð1Þi1
; vð2Þi2

Þ
 !

¼
Xn2
i2¼1

f ðv̂ð2Þi2
; vð3Þi3

Þf ðv̂ð2Þi2
; vð2Þi2

Þ

≤
Xn2
i2¼1

f ðv̂ð2Þi2
; vð3Þi3

Þ ¼ f ðv̂ð3Þi3
; vð3Þi3

Þ≤ 1
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Analogously it is easy to verify that π* satisfies

Pn1
i1¼1

Pn3
i3¼1

π�i1i2i3 ≤ 1 for all i2 2 ½n2�

Pn2
i2¼1

Pn3
i3¼1

π�i1i2i3 ≤ 1 for all i1 2 ½n1�:

Hence,π* is a feasible solution of (7). Further, since the source node S is directly
connected to the target node Twith an edge of infinite capacity and finite cost,
the total flow cost must be finite. This implies that for any i1 ∈ [n1], i2 ∈ [n2]
and i3 ∈ [n3], we have that f ðv̂ð1Þi1

; vð2Þi2
Þ ¼ 0 if dðxð1Þi1

; xð2Þi2
Þ > t and

f ðv̂ð2Þi2
; vð3Þi3

Þ ¼ 0 if dðxð2Þi2
; xð3Þi3

Þ > t. Hence, using the shorthand notation

hc; πi ¼
Xn1
i1¼1

Xn2
i2¼1

Xn3
i3¼1

ci1i2i3πi1i2i3 ;

we can rewrite the total cost of the transport problem as

hc; π�i ¼
Xn1
i1¼1

Xn2
i2¼1

Xn3
i3¼1

dðxð1Þi1
; xð2Þi2

Þ þ dðxð2Þi2
; xð3Þi3

Þ � λ
� �

� f ðv̂ð1Þi1
; vð2Þi2

Þf ðv̂ð2Þi2
; vð3Þi3

Þ:

By theflow conservation constraints and the fact that f is an integer solution,
we can simply reformulate the sum above in terms of the network flow cost
function to obtain

hc; π�i ¼ P
ðu;vÞ2E

cEðu; vÞf ðu; vÞ:

Let us now assume that there exists a feasible solution of (7), ~π, such that

hc; ~πi < hc;π�i:

Then we can define the flow ~f : E ! R by setting:

~f ðv̂ð1Þi1
; vð2Þi2

Þ ¼
Xn3
i3¼1

~πi1i2i3 and
~f ðv̂ð2Þi2

; vð3Þi3
Þ ¼

Xn1
i1¼1

~πi1i2i3 ;

for i1 ∈ [n1], i2∈ [n2] and i3∈ [n3]. The value of the flow on the remaining
nodes of E can then be determined by the conservation constraints. In
particular, we have ~f ðS;TÞ ¼ minfn1; n2; n3g �

Pn1
i1¼1

Pn2
i2¼1Pn3

i3¼1 πi1 i2i3
. This flow is a feasible solution of the given min cost flow

problem and hence, by the definition of the cost function for the edges we
can derive a contradiction:

X
ðu;vÞ2E

cEðu; vÞ~f ðu; vÞ ¼ hc; ~πi <
X

ðu;vÞ2E
cEðu; vÞf ðu; vÞ: &

As a result of Proposition 1, we immediately obtain that the multi-
marginal optimal unbalanced transport problem Eq. (7) has an integer
solution and hence provides one-to-one point matchings.

Another significant consequence of Proposition 1 is that we can solve
the unbalancedoptimal transport problemgiven inEq. (7) efficiently.While
it is often unfeasible to compute directly the solution of the n1 ⋅ n2 ⋯ ⋅ nk-
dimensional linear programming problem in Eq. (7), the min cost flow
problem can be solved by the Scaling Minimum-Cost Flow Algorithm in
ref. 66 in OðjV j2jEjlogðjV jÞÞ elementary operations, where ∣V∣ is the
number of nodes, ∣E∣ is the number of edges. In our case the number of
nodes is of the order O(n1 ⋅ ⋯ ⋅ nk) and the number of edges can be upper
bounded by an expression of the order Oðn1 � n22 � � � � � n2k�1 � nkÞ. In
practice, it is further possible to omit all edges with infinite cost, since the
source S and the sink T are connected through an edge of cost 0 and with
infinite capacity. This implies that for small t much fewer edges to the
network are added which results in better computational performance.

For an image containing around 1,000 points in each color channel, a
solution of the min cost flow problem can be computed for about 10 dif-
ferent values of t in ~1 s on a standard laptop.

Estimating the true chain-like particle abundances
The quality of fluorescence microscopy suffers from non-optimal labeling
efficiencies and point detection errors. This will be addressed by a statistical
framework to infer on how many of the detected structures in the image
actually concur with the ground truth biological structure and how many
detections represent only incomplete parts of the underlying particle
assembly. For color channels i ∈ {1,…, k} let

ξðiÞj
n oni

j¼1
� R2 ð9Þ

be the pairs of coordinates of all particles that lie within the scope of the
microscope. Note that these point clouds do not necessarily equal those
defined in Eq. (1) describing the coordinates of detected particles, since we
might not be able to measure all of the existing particles to do unsuccessful
labeling or point detection errors.

Definition6. (Labeling Efficiency). For each color channel i∈ {1,…, k}we
assume that there is a specific probability si∈ (0, 1] quantifying whether a
particle of this channel is successfully imaged and detected. For simplicity
in the following we will always call probabilities silabeling efficiencies.

We further assume that the random event of successful detection is
statistically independent for each point. Accordingly, the detection success
can be described by independent Bernoulli variables

ZðiÞ
j

n oni

j¼1
∼ Ber ðsiÞ; ð10Þ

where si ∈ (0, 1] and ξðiÞj is detectable, if and only if ZðiÞ
j ¼ 1.

If there exists a true dkt -chain of form ðξð1Þ; . . . ; ξðkÞÞ, then this can only
be correctly identified as such, if each of the included particles was detected,
i.e., if and only if

Qk
i¼1Z

ðiÞ ¼ 1. From independence it follows that

Yk
i¼1

ZðiÞ ∼ Ber
Yk

i¼1
si

� �
: ð11Þ

Detecting anABC triplet correctly isBer(sAsBsC) distributed.Therefore,
all possible substructures that can be detected conditioned on the true
underlying ABC triplet, i.e.,

1. ABC triplet, if we see all particles
2. AB pair, if we do not see C
3. BC pair, if we do not see A
4. ACsubstructure, ifwe donot see B–which is detected asAandC singlets
5. A singlet, if we do not see B and C
6. B singlet, if we do not see A and C
7. C singlet, if we do not see A and B
8. ;, if we do not see A,B and C which can not be detected at all,

can accordingly be modeled as Multinomial random variable

W �jABC ¼

WABCjABC
WABjABC
WBCjABC
WACjABC
WAjABC
WBjABC
WCjABC
W;jABC

2
66666666666664

3
77777777777775
: ð12Þ
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This can be done in the samemanner for all other structures of interest, i.e.,
true AB and BC pairs and A, B, and C singlets (and their respective sub-
structures) yielding random variables W⋅∣AB, W⋅∣BC, W⋅∣A, W⋅∣B, W⋅∣C. The
actual detectable numbers of those structures are

WABC ¼
X

WABCj�;

WAB ¼
X

WABj�;

WBC ¼
X

WBCj�;

WA ¼
X

WAj� þ
X

WACj�;

WB ¼
X

WBj�;

WC ¼
X

WCj� þ
X

WACj�;

ð13Þ

which define a random variable
W ¼ ðWABC;WAB;WBC;WA;WB;WCÞT . This leads to a statistical fra-
mework, that allows us to estimate the true underlying structures abun-
dances from the detected number of structures.

Theorem 2. Let known, positive labeling efficiencies sA > 0, sB > 0 and
sC > 0 and unknown structure abundances n ¼
ðnABC; nAB; nBC; nA; nB; nCÞT and defineN =∑i∈{ABC,…, C}ni. Assume the
multinomial model as described in Equation (12) and Equation (13).

Part 1: An unbiased estimator n̂ of true abundances n is given as

n̂ ¼

1
sAsBsC

0 0 0 0 0
sC�1
sAsBsC

1
sAsB

0 0 0 0
sA�1
sAsBsC

0 1
sBsC

0 0 0
sB�1
sAsB

sB�1
sAsB

0 1
sA

0 0

ð1�sAÞð1�sC Þ
sAsBsC

sA�1
sAsB

sC�1
sBsC

0 1
sB

0
sB�1
sBsC

0 sB�1
sBsC

0 0 1
sC

2
6666666666664

3
7777777777775
W: ð14Þ

Part 2: Forn→∞ entrywise,nj/N→ fjwith∞> fj> 0 constant for each
j ∈ {ABC,…, C}, and ΘΣðn̂ÞΘT invertible,

P Ξ≤ χ26;α

� �
≤ 1� α; ð15Þ

where

Ξ ¼ ðn̂� nÞT ðΘμÞT ΘΣðn̂ÞΘT
� ��1ðΘμÞðn̂� nÞ ð16Þ

and χ26;α is the α-quantile of a chi-squared distribution with 6 degrees of
freedom and with Θ, μ and Σðn̂Þ defined as in the following proof. If
ΘΣðn̂ÞΘT
� ��1

does not exist, we get Equation (15) with χ2r;α plugging its
pseudoinverse ΘΣðn̂ÞΘT

� �þ
inEquation (16),where r ¼ rank ΘΣðn̂ÞΘT

� �
.

Proof. Part 1: conditioned on a true ABC triplet, the number of (mis)
specifications resulting from incomplete labeling efficiencies is multi-
nomially distributed:

W �jABC ¼

WABCjABC
WABjABC
WBCjABC
WACjABC
WAjABC
WBjABC
WCjABC
W;jABC

2
66666666666664

3
77777777777775
∼ Mnom ðnABC; pABCÞ ð17Þ

with probability vector

pABC ¼

sAsBsC
sAsBð1� sCÞ
ð1� sAÞsBsC
sAð1� sBÞsC

sAð1� sBÞð1� sCÞ
ð1� sAÞsBð1� sCÞ
ð1� sAÞð1� sBÞsC

ð1� sAÞð1� sBÞð1� sCÞ

2
66666666666664

3
77777777777775
; ð18Þ

where
P8

j¼1pABC½j� ¼ 1. Accordingly, the abundances of (mis)detections of
a true AB pair are

WABCjAB
WABjAB
WBCjAB
WACjAB
WAjAB
WBjAB
WCjAB
W;jAB

2
66666666666664

3
77777777777775
∼ Mnom ðnAB; pABÞ ð19Þ

with

pAB ¼

0

sAsB
0

0

sAð1� sBÞ
ð1� sAÞsB

0

ð1� sAÞð1� sBÞ

2
66666666666664

3
77777777777775
: ð20Þ

This can be done accordingly for all other structures of interest, i.e. BC pairs
and A, B, and C singlets yielding

W �jABC ∼ Mnom ðnABC; pABCÞ
W �jAB ∼ Mnom ðnAB; pABÞ
W �jBC ∼ Mnom ðnBC; pBCÞ
W �jA ∼ Mnom ðnA; pAÞ
W �jB ∼ Mnom ðnB; pBÞ
W �jC ∼ Mnom ðnC; pCÞ

ð21Þ

with

pBC ¼

0

0

sBsC
0

0

sBð1� sCÞ
ð1� sBÞsC

ð1� sBÞð1� sCÞ

2
66666666666664

3
77777777777775
; pA ¼

0

0

0

0

sA
0

0

ð1� sAÞ

2
66666666666664

3
77777777777775
; pB ¼

0

0

0

0

0

sB
0

ð1� sBÞ

2
66666666666664

3
77777777777775
; pC ¼

0

0

0

0

0

0

sC
ð1� sCÞ

2
66666666666664

3
77777777777775
:

ð22Þ

Note, that ; can not be detected at all and substructure AC is counted as a
separate A and C singlet Hence, the total numbers of detected triplets, pairs
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and singlets are defined as the following sums

WABC ¼WABCjABC
WAB ¼WABjABC þWABjAB
WBC ¼WBCjABC þWBCjBC
WA ¼WAjABC þWACjABC þWAjAB þWAjA
WB ¼WBjABC þWBjAB þWBjBC þWBjB
WC ¼WCjABC þWACjABC þWCjBC þWCjC:

ð23Þ

This can be rewritten as

W ¼

WABC

WAB

WBC

WA

WB

WC

2
666666664

3
777777775
¼ Θ W �jABC þW �jAB þW �jBC þW �jA þW �jB þW �jC

� �
;

ð24Þ

using the transformation matrix

Θ ¼

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 1 0 0 1 0

2
666666664

3
777777775
2 R6× 8: ð25Þ

With this definitionofΘwedelete the last entry in eachbinomial distributed
vector and addanACsubstructure appearance to singletdetectionsAandB.
By Eq. (24) we get that

E½W� ¼ Θμn ð26Þ

with

μ ¼ pABC pAB pBC pA pB pC
� 	 2 R8× 6: ð27Þ

Hence,with positive labeling efficiencies sA>0, sB>0 and sC>0,multiplying

ðΘμÞ�1 ¼

1
sAsBsC

0 0 0 0 0
sC�1
sAsBsC

1
sAsB

0 0 0 0
sA�1
sAsBsC

0 1
sBsC

0 0 0
sB�1
sAsB

sB�1
sAsB

0 1
sA

0 0

ð1�sAÞð1�sC Þ
sAsBsC

sA�1
sAsB

sC�1
sBsC

0 1
sB

0
sB�1
sBsC

0 sB�1
sBsC

0 0 1
sC

2
6666666666664

3
7777777777775

ð28Þ

withW introduces an unbiased estimator n̂.
Part 2: we utilize that by the central limit theorem for a multinomially

distributed random variable M ~ Mnom(m, p) with probability vector
p ¼ ðp1; p2; . . . ; pkÞT

1ffiffiffiffi
m

p M �mpð Þ !D N k 0k; diag ðpÞ � ppT
� �

for m ! 1; ð29Þ

where

diag ðpÞ ¼
p1 0 � � �
0 p2 � � �
..
. ..

.
pk

2
664

3
775 ð30Þ

and 0k ¼ ð0; :::; 0ÞT 2 Rk (see, e.g., ref. 67). Hence, for n entrywise large
enough, we can approximate properly scaled independent, multinomial
random vectors

W �jABC; W �jAB; W �jBC; W �jA; W �jB; W �jC ð31Þ

with multi-dimensional normal distributions, respectively. In the following
assume n → ∞ entrywise and nj/N → fj with ∞ > fj > 0 constant for each
j ∈ {ABC,…, C}, where N =∑i∈{ABC, …, C}ni. Then, it holds that

P
i2fABC;...;Cg

ffiffiffi
ni
N

q
1ffiffiffi
ni

p W �ji � nipi
� � ¼ ffiffiffi

1
N

q P
i2fABC;...;Cg

W �ji � nipi
� �

!DN 8 08;
P

i2fABC;...;Cg
f i diag ðpiÞ � pip

T
i

� � !
:

ð32Þ

For now, suppose
P

ni diag ðpiÞ � pip
T
i

� �
is invertible. Then in the limit

X
f i diagðpiÞ � pip

T
i

� �� ��1=2
ffiffiffiffi
1
N

r X
W �ji � nipi
� �

¼
X

Nf i diagðpiÞ � pip
T
i

� �� ��1=2X
W �ji � nipi
� �

¼
X

ni diagðpiÞ � pip
T
i

� �� ��1=2X
W �ji � nipi
� �

ð33Þ

and hence

X
ni diagðpiÞ � pip

T
i

� �� ��1=2X
W �ji � nipi
� �!DN 8 08; I8 × 8

� �
; ð34Þ

where I8×8 is the 8-dimensional identity matrix. In the following we denote

ΣðnÞ ¼
X

ni diag ðpiÞ � pip
T
i

� �� �
: ð35Þ

Multiplying (Θμ)−1Θ with Eq. (32) consequently yields

ðΘμÞ�1ΘΣðnÞΘT ðΘμÞ�1� �T� ��1=2
ðΘμÞ�1Θ

P
W �ji � ðΘμÞ�1Θ

P
nipi

� �
¼ ðΘμÞ�1ΘΣðnÞΘT ðΘμÞ�1� �T� ��1=2

n̂� nð Þ!DN 6 06; I6 × 6
� �

ð36Þ

with n̂ ¼ ðΘμÞ�1Θ
P

W �ji and n = (Θμ)−1Θμn = (Θμ)−1Θ∑nipi. By law of
large numbers, it holds that

1
N

n̂� nð Þ ¼ n̂
N
� n
N
!P06: ð37Þ

and hence for all j ∈ {ABC,…, C}

n̂j
N

!P f j: ð38Þ

By Slutsky’s Lemma we can use Eq. (38) to replace n in Σ(n) with n̂. For
n→∞ entrywise this yields

Ξ ¼ ðn̂� nÞT ðΘμÞT ΘΣðn̂ÞΘT
� ��1ðΘμÞðn̂� nÞ!Dχ26: ð39Þ
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In case ΘΣðn̂ÞΘT is not invertible, one can use its pseudoinverse yielding
convergence to a chi-square distributionwith rdegrees of freedom, i.e., χ2r in
Equation (39), where r ¼ rank ΘΣðn̂ÞΘT

� �
&.

With Part 2 of Theorem 2 we can construct a confidence ellipsoid
around n̂ in a straight-forward manner. To show that Ξ in our setting is
approximately chi-square distributed for finite sample sizes and to compare
simulated and theoretical coverages of n̂, we performed a simulation study
as described in the following section.

Simulation study setup
In the first simulation study a predefined number of triplets, pairs, and
singlets are generated as follows:

Step 1: Draw the coordinate for channel B as b∼Uð½0; 400 � r�2Þ, where
U is the continuous uniform distribution.
Step 2a: Draw angle α∼U½0; 2π� and normally distributed distance
dA ∼N ðt; 0:5Þ. Set a ¼ b cosðαÞdA þ sinðαÞdA

� �
.

Step 2b: Draw ϵ∼N ð0; 0:2Þ and set angle β = α + π + ϵ. Draw
dC ∼N ðt; 0:5Þ and set c ¼ b cosðβÞdC þ sinðβÞdC

� �
.

Step 3: Round a, b and c to match the pixel grid ½0; 400�2 � N2
≥ 0.

This design favors to simulate triplets of an approximately linear
structure. Pairs are simulated by skipping either Step 2a or 2b. Singlets are
drawn as in Step 1.

In the second simulation studyquadruples, triplets, pairs, and singletsn
are generated similarly, but replacing and adding

Step 2b: Draw angle β ∼ U½0; 2π� and dC ∼ N ðt; 0:5Þ and
set d ¼ b cosðβÞdC þ sinðβÞdC

� �
.

Step 2c: Draw angle γ ∼ U½0; 2π� and dD ∼ N ðt; 0:5Þ and
set d ¼ c cosðγÞdD þ sinðγÞdD

� �
.

This simulation setup allows arbitrarily curved chain-structures. The
distance threshold is always fixed to t = 70 nm.

To obtain intensity images close to an experimental STED setup from
the simulated point sets we followed the simulation setup introduced in
Tameling et al.17, to mimic experimental STED images of 400 × 400 pixels
with full-width at half-maximum (FWHM) value of 40 nm (approximately
the resolution of the STEDmicroscope) and pixel size 25 nm= 1 pixel). In
the second simulation study (including quadruples) the Poisson noise level
was on average increased by a factor of 10.

Methods included in the simulation study
For the Ripley’s K based Statistical Object Distance Analysis (SODA)21 we
used the triplet colocalization protocol SODA 3 Colors in ICY68 (version
2.4.0.0). For the analysis we used default input parameters and set scale
threshold per channel to be 100. The plugin BlobProb15 was called in
ImageJ/Fiji69 (version 2.3.0/1.53q) and the number of colocalized blobswere
considered.We set voxel size to 25 nm in every dimension and the threshold
per channel to 100. The ConditionalColoc18 from GitHub (https://github.
com/kjaqaman/ConditionalColoc) was executed on MATLAB (version
R2023a). Particles were detected using the “point-source detection” algo-
rithm provided via the integrated u-track package (https://github.com/
DanuserLab/u-track).

For all implementations but ConditionalColoc the detected chain-
structure abundances were output as integers. Therefore, we scaled abun-
dances, i.e., divided them by the total number of particles detected in
channel B. ConditionColoc already aims to output probabilities that are
scaled by detected particles per channel, hence no further transformation of
the output was performed by us. Since for all simulated Scenarios the same
number of particles was generated in every channel, we ensured that both
scaling procedures are comparable. Themaximal colocalization threshold is
set to t = 5 pixels = 125 nm throughout all considered methods.

Nanoruler samples
Custom-made DNA nanoruler samples featuring one, two, or three
fluorophore spots, each consisting of 20 fluorophores (Alexa Fluor488,

Alexa Fluor594, Star Red), with a distance between the spots of 70 nm,
were purchased from Gattaquant - DNA Nanotechnologies (Gräfelfing,
Germany). The biotinylated nanorulers were immobilized on a BSA-
biotin-neutravidin surface according to the manufacturer’s
specifications.

Stimulatedemissiondepletionsuper-resolution lightmicroscopy
Image acquisition was done using a quad scanning STED microscope
(Abberior Instruments, Göttingen, Germany) equipped with a UPlanSApo
100x/1,40 Oil objective (Olympus, Tokyo, Japan). Excitation of Alexa Fluor
488, Alexa Fluor 594 and Star Red was achieved by laser beams featuring
wave lengths of 485 nm, 561 nm, and 640 nm, respectively. For STED
imaging, a laser beam with an emission wavelength of 775 nm was applied.
For all experimental STED images, a pixel size of 25 nm was utilized. For
visualization purposes, contrast stretching and increasement of image
brightness was applied to exemplary STED images within the figures of this
manuscript. No image processingwas applied prior to the application of the
MultiMatch analysis workflow.

Statistics and reproducibility
The statistical framework developed and applied in this manuscript and the
settings of simulation studies performed are presented in the Method sec-
tions. All sample sizes and significance levels of the confidence bands are
listed in the respective figure legends. Experimental and simulated data and
analysis scripts to reproduce results and figures are provided on Zenodo
(https://doi.org/10.5281/zenodo.7221879)70.

Data availability
Datasets generated and analyzed in this manuscript can be accessed via
Zenodo (https://doi.org/10.5281/zenodo.7221879)70.

Code availability
The Python package MultiMatch is available on GitHub repository https://
github.com/gnies/multi_match. All scripts used to create the main and
Supplementary Figs. are implemented in R (version 4.1.0) and Python
(version 3.8.5) and are available via Zenodo (https://doi.org/10.5281/
zenodo.7221879)70. In order to locate the positions of the particles in STED
images, we perform point detection via the Python package scikit-image71

(version 0.19.1). This is provided as an optional analysis step in our Mul-
tiMatch implementation for the evaluation of intensity matrices. Multi-
color microscopy images, point detection results and MultiMatch output
can be loaded into the interactive napari viewer. MultiMatch is compatible
with Python package napari39 (version 0.4.18) and an exemplary use-case is
described on our repository https://github.com/gnies/multi_match. We
utilize the minimum-cost flow solver provided in the package ortools72

(version 9.4.1874).
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