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High-harmonic generation (HHG) is a nonlinear process in which a material sample is irradiated by
intense laser pulses, causing the emission of high harmonics of the incident light. HHG has histor-
ically been explained by theories employing a classical electromagnetic field, successfully capturing
its spectral and temporal characteristics. However, recent research indicates that quantum-optical
effects naturally exist, or can be artificially induced, in HHG, such as entanglement between emitted
harmonics. Even though the fundamental equations of motion for quantum electrodynamics (QED)
are well-known, a unifying framework for solving them to explore HHG is missing. So far, numer-
ical solutions employed a wide range of basis-sets, methods, and untested approximations. Based
on methods originally developed for cavity polaritonics, here we formulate a numerically accurate
QED model consisting of a single active electron and a single quantized photon mode. Our frame-
work can in principle be extended to higher electronic dimensions and multiple photon modes to
be employed in ab initio codes for realistic physical systems. We employ it as a model of an atom
interacting with a photon mode and predict a characteristic minimum structure in the HHG yield
vs. phase-squeezing. We find that this phenomenon, which can be used for novel ultrafast quantum
spectroscopies, is partially captured by a multi-trajectory Ehrenfest dynamics approach, with the
exact minima position sensitive to the level of theory. On the one hand, this motivates using multi-
trajectory approaches as an alternative for costly exact calculations. On the other hand, it suggests
an inherent limitation of the multi-trajectory formalism, indicating the presence of entanglement
and true quantum effects (especially prominent for atomic and molecular resonances). Our work
creates a road-map for a universal formalism of QED-HHG that can be employed for benchmarking
approximate theories, predicting novel phenomena for advancing quantum applications, and for the
measurements of entanglement and entropy.

I. INTRODUCTION

High-harmonic generation (HHG) is a nonlinear
optical process in which molecules [1, 2], liquids [3],
or solids [4] are exposed to an intense light source
and radiate higher harmonics of the driving light main
frequency. This phenomenon has enabled the birth of
new research areas like attosecond spectroscopy [5, 6],
and is routinely used for generating coherent X-rays
table-top [7]. Initially, HHG in atomic and molecular
systems was understood as a consequence of the semi-
classical motion of the electron around the nucleus [8]
and later it was explained using quantum mechanical
models [9–11]. In these models the light source was
treated as a classical electromagnetic field, making it
inapplicable for analyzing HHG from emerging quantum
light sources or for explaining quantum-optical effects
and interferometry in the emitted harmonic spectra.

Recent research shows that quantum-optical effects
are in fact potentially prominent in high-harmonic
generation [12, 13]. This has motivated the develop-
ment of new theories [14, 15] capable of accounting
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for nonclassical light sources [16–20] or entanglement
in the emitted harmonics, even when the source is
treated classically [21–25]. The field is also experiencing
major experimental efforts [12, 13], e.g. applying
quantum sources for HHG [26, 27] or exploring violation
of Cauchy-Schwarz’s inequalities in the emitted light [28].

The main equations describing such phenomena
are known exactly from quantum-electrodynamics
(QED) [29, 30]. Nonetheless, they cannot be practically
solved without resorting to approximations of either the
Hamiltonian or wave functions [31], which has already
lead to some developments in cavity materials engineer-
ing by making use of density functional theory [32–34].
However, to date, multiple papers predicted a variety
of phenomena based on various methodologies and ap-
proximations, mostly ad-hoc, and some not necessarily
agreeing with each other. An ab initio solution of the
HHG system is unfeasible even with only a single active
electron due to the exponential scaling of the bosonic
basis set for highly populated photon states. Such large
number of photon modes are essential in HHG that
is driven by very intense lasers and causes emission
of a broad spectrum. Generally, one would want to
exploit the success of semiclassical multi-trajectory
techniques in the field of quantum chemistry for the
electron-phonon coupling [35, 36], a formalism which
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has also been tested for electron-photon systems in the
context of spontaneous emission [37, 38], and employ
such an approach for describing quantum HHG. The
multi-trajectory Ehrenfest dynamics (MTEF) approach
should capture qualitative dynamics intuitively and
presents a linear scaling with the system size, bridging
the notions of classical electrodynamics with quantum
optics and enabling its use for more complicated systems.
Yet, it fails to provide an exact quantitative description
of processes, e.g. wrong predictions of final state
population in spontaneous emission processes [37, 38] or
zero-point energy leakage [39]. In the context of HHG,
no testing of MTEF of trajectory-based theories has
previously been done and that level of approximation is
untested.

Here we theoretically study HHG in a 1D atom model
irradiated by an intense quantum light source. In
order to introduce quantum-optical states of light
for HHG, we couple the electron to the light field
through two models: (i) an exact quantized single
photon mode with the frequency of the HHG driving
field, leading to a formally accurate quantum model
of the dynamics; and (ii) MTEF that approximates
the quantized photon mode via multiple semiclassical
simulations sampling a quantum-optical distribution
function. Both numerical methods can in principle
be extended and employed in a universal theory for
benchmarking approximations and makings predictions,
either by including many electrons into consideration in
quantum chemistry codes, or by adding multiple photon
modes. We employ these methods in a 1D model atom
and test the viability of MTEF by comparing HHG
driven by squeezed-coherent light with different degrees
of squeezing between both methods. We observe a
characteristic minimum emerges in all harmonic orders
vs. the phase squeezing parameter, a phenomenon that
MTEF only partially captures, potentially exposing true
quantum effects in the light-matter entanglement which
MTEF systematically neglects. Our work paves the path
for the development of an ab initio framework for solving
QED-HHG, and provides a quantitative prediction of
the squeezing-dependence of the HHG spectrum that
can be used for novel quantum ultrafast spectroscopy
and benchmark previous approaches.

The manuscript is ordered as follows: in Sec. II we de-
scribe our theoretical approaches. The comparison be-
tween methods for quantum HHG is given in Sec. III,
as well as a discussion of the results. Finally, Sec IV
summarizes our results and presents a future outlook.

II. COMPUTATIONAL METHODOLOGY

Let us begin by describing our main observable of inter-
est, how it is extracted from calculations and our motiva-
tion. The standard theory for HHG uses a coherent light

FIG. 1. Schematic illustration of HHG driven by quantum
light, and leading to quantum-optical effects. Laser fields with
different squeezings (left) are irradiated onto an atom and
this produces the HHG spectrum with potentially quantum
features.

pulse with field intensity α0: |α0⟩ ≡ D̂(α0) |0⟩, where

D̂ is the displacement operator [40] and |0⟩ is the vac-
uum state of the driving photon mode. The main result
of the standard HHG theory allows us to compute the
electromagnetic emission from the Fourier transform of
the electronic dipole dE/dω ∼ |d(ω)|2 [11, 14, 41]. The
dipole d(t) is governed by a time-dependent Schrödinger
equation (TDSE) with a driving electric field Ecl(t) ≡
⟨α0| Ê(t) |α0⟩ ∼ α0 cos (ωLt), where ωL is the laser fre-

quency and the electric field operator Ê(t) is in the inter-
action picture [29, 30]. In this theory the mean field of the
driving photon system determines completely the HHG
spectrum and, consequently, nonclassical states of light
like squeezed states |α0, ξ⟩ ≡ D̂(α0)Ŝ(ξ) |0⟩ (where Ŝ is
the squeezing operator [40] and ξ the degree of squeez-
ing) would lead to the same spectrum owing to their ir-
relevance in the expectation value of the electric field
Ecl(t) = ⟨α0| Ê(t) |α0⟩ = ⟨α0, ξ| Ê(t) |α0, ξ⟩. Any such
potential numerical approach must include the contribu-
tion of the squeezing, ξ, into the dipole spectrum, d(ω),
such that these effects are noticeable in the HHG energy
spectrum, dE/dω. We will now develop two methods that
are in principle capable of describing quantum light ef-
fects in HHG, and compare their effects on the dipole
spectrum d(ω): an exact single-mode quantum electro-
dynamical model (Sec. II A) and an approximate semi-
classical multi-trajectory model (Sec. II B). Notably both
models presuppose that photons live in a cavity, which
enables the use of quantized photon modes and relies
on methods developed for ab initio cavity electrodynam-
ics [19, 29, 30, 32–34, 37, 42].

A. Single-mode quantum electrodynamical model

The Hamiltonian of our single quantized photon mode
model consists of an electronic Hamiltonian ĤA, a sin-
gle photon mode Hamiltonian ĤF , and the length-gauge
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dipole approximation interaction Hamiltonian Ĥint [19,
21] (we use atomic units unless stated otherwise):

Ĥ = ĤA + ĤF + Ĥint, (1)

where the electronic Hamiltonian is that of a one-
dimensional model potential ĤA = ∇̂2

x/2−1/
√
x̂2 + b2+

λ2x̂2/2, with b the softening parameter and λ the light-
matter coupling (this coupling defines the cavity length

λ =
√
8π/LC and physically describes the amplitude

of vacuum fluctuations inside the cavity [43]). The
term λ2x̂2/2 describes the self-interaction of the elec-
tronic dipole through the photon-mode in the length
gauge [29, 30]. The free photon Hamiltonian ĤF =

∇̂2
y/2 + ω2

Lŷ
2/2 is that of a simple harmonic oscillator,

where ωL is the photon mode frequency. The opera-
tor ŷ is related to the creation and annihilation oper-
ators of the photon mode via ŷ =

(
â+ â†

)
/
√
2ωL. Note

that the free photon Hamiltonian can also be rewritten
in terms of the creation and annihilation operators as
ĤF = ωL(1/2 + â†â). Finally, the length gauge inter-
action Hamiltonian is the dipole coupling to the electric
field Ĥint = −x̂Ê(t). The electric field operator of the
photon is:

Ê(t) = λωLf(t)ŷ = λf(t)

√
ωL

2

[
â+ â†

]
, (2)

such that the interaction Hamiltonian takes the form
Ĥint = −λωLf(t)x̂ŷ if we write it in terms of the position
operators x̂ and ŷ. In this representation overall the elec-
tronic coordinate is represented by the coordinate x, and
the photonic coordinates by y. In Eq. (2), f(t) is the en-
velope of the light-matter interaction, which is off at the
beginning of the simulation f(t0) = 0 and is smoothly
turned on during the simulation time to f(t) = 1, as is
back off at the end of the simulation f(t0 + T ) = 0. The
specific shape of f(t) (depicted in Fig. 1) used in our
simulation is:

f(t0 + t) = [1−Θ(t− τ1)] sin
2 (πt/2τ1) + Θ(t− τ1)−

− Θ(t− τ2) + Θ(t− τ2) sin
2 {π [(t− τ2)/τ1 + 1] /2},

(3)

where τ1 = 6π/ωL and τ2 = 12π/ωL, thus the total sim-
ulation time is T = τ1 + τ2 = 18π/ωL, which translates
into 9 optical cycles with the full width at half maximum
(FWHM) being 8 optical cycles. It corresponds to a
trapezoidal shape with smooth transitions. As an initial
state we choose the electronic ground-state, |g⟩, and a
squeezed-coherent state for the photon mode, |α0, ξ⟩.
The combined electron-photon initial state is then
|Ψ(t0)⟩ = |g⟩⊗|α0, ξ⟩. This model allows fully correlated
light-matter wavefunctions as the system evolves over
time.

We employ Octopus code [44, 45] to solve the Schrödinger
equation in this two-dimensional system (x, y) by ex-
pressing photon modes as 1D harmonics oscillators in the
photon phase-space [Eq. (2)]. For a multimode photon
system, it would suffice to increase the dimensionality of
the problem by adding more coordinates y′, y′′, ... to the
Hamiltonian of Eq. (1). This has the disadvantage of ex-
ponential scaling, but enables us to benefit from already
implemented and optimized softwares that solve TDSE
in N-dimensional systems, such as Octopus. At the very
least, such an approach should be applicable for a single
electronic coordinate, and up to five photonic ones, in
accordance with efforts on exactly solving two-electron
systems in 3D [46]. Overall, this approach employs
methods originally developed for quantum electrody-
namics in cavities (e.g. for polaritonic chemistry [47]),
and repurposes it for quantum HHG by changing the
boundary and initial conditions. This allows it to be
implemented in typical quantum chemistry packages.

The numerical values of the parameters used in the
simulation are the electron-photon coupling λ = 0.015
(corresponding to a photon cavity length of LC ∼ 6 µm
and a cavity fundamental frequency of ωC ∼ 0.0038 a.u.),
the driving laser frequency ωL = 0.057 a.u. (correspond-
ing to ωL ∼ 15ωC and a wavelength of λL = 800 nm),
the coherent intensity of the squeezed-coherent states
α0 ∼ 10.46 (which corresponds to a maximum electric

field intensity of 0.053 a.u. or 1014 W/cm
2
), a squeez-

ing parameter that is swept among a range of values
s = e2ξ ∈ (0.05, 25), and the softening parameter for the
electron model potential b = 0.816 a.u. (corresponding
to a Neon ionization potential Ip ∼ 0.7925 a.u.). The
converged parameters of the simulation are those of a
2D time-dependent simulation over time: electron box
size Lx = 120 a.u., photon box size Ly = 100 a.u.,
electron finite-difference step dx = 0.7 a.u., photon
finite-difference step dy = 0.1 a.u., time-step dt = 0.02
a.u., and complex absorbing potential with absorbing
length for both coordinates Lab = 30 a.u. [48].

Note that the numerical parameters are converged for
this particular value of λ, as the light state is weighted
by λ when analyzing the scale of the photon coordinate
y [see Eq. (2) and (9)], which also affects convergence.
Although this choice of λ is somewhat arbitrary, we will
show below that the main minima feature in the HHG
spectra exists for a wide range of values of λ, under the
condition that a stronger coupling leads to a stronger ef-
fect of the squeezing in the HHG yield (see App. A). The
particular value we used corresponds to medium light-
matter coupling as attainable within optical cavities [37],
and are expected to be physical for reasonable experi-
mental conditions (though the exact choice of λ heavily
depends on the cavity geometry that the simulation em-
ploys [19, 24, 37, 43]). Importantly, λ is not a fully in-
dependent parameter in our simulation, as together with
the choice of α0 it defines the expectation value of the
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laser peak power. Thus, whenever different values of λ
are explored (see App. A), we also set α0 to keep the
same peak field strengh.

B. Multi-trajectory Ehrenfest description

Multi-trajectory Ehrenfest dynamics (MTEF) is a
model that approximates a quantum electrodynamical
simulation with multiple semiclassical simulations that
take into account the quantum uncertainty as classical
statistical uncertainty [37], also analogous to including
phonon modes [36]. In our case, the photon mode
is treated semiclassically while keeping the electronic
system fully quantum, in-line with recent theories [36–
38]. MTEF approximates the comined electron-photon
system to be uncorrelated, such that the combined
density operator is ρ̂(t) ≈ ρ̂A(t) ⊗ ρ̂F (t), where ρ̂A(t)
represents the density operator for the electron (atomic)
system and ρ̂F (t) represents the density operator for the
photon system. We expect improvements to the uncor-
related evolution between light and matter that MTEF
presupposes, building upon recent work regarding the
possibility of an exact-factorization procedure between
light and matter [49]. Ths contrasts with the single
quantum photon mode of Sec. IIA, which grants that
light-matter correlations are fully integrated.

We use the Wigner representation for the photon sys-
tem [40], such that the photonic density operator be-
comes a function of the complex phase-space variable
α (usually interpreted as the classical phase-space vari-
able). The Wigner distribution of the photon mode is
the analog of the density operator in the Wigner rep-
resentation: ρ̂F (t) → ρF,W (α; t), with ρF,W (α; t) ≡
⟨δ̂(â− α)⟩ (t) = Tr

[
ρ̂F (t)δ̂(â− α)

]
. Expectation values

are expressed as integrals over the phase-space variable α:
⟨Ô⟩ →

∫
d2αO(α)ρW (α), where O(α) is the operator Ô

in the Wigner representation [40]. In the multi-trajectory
Ehrenfest algorithm, we approximate the Wigner distri-
bution of the photon at the initial time ρF,W (t0) to be
equivalent to a statistical sampling of Ntraj trajectories
αj , where j is the index of the trajectory, enabling a
classical treatment of the photonic dynamics:

ρF,W (α; t0) ≈
∑
j

1

Ntraj
δ(2)

[
α− αj(t0)

]
. (4)

The electron-photon system density operator ρ̂(α; t)
(whose photon part is expressed in the Wigner repre-
sentation) takes the form: [37, 38]:

ρ̂W (α; t) =
1

N2
traj

∑
j

ρ̂jA(t)

⊗

∑
j

δ(2)
[
α− αj(t)

] ,

(5)

where ρjA(t) = |ψj(t)⟩ ⟨ψj(t)| are the electronic wavefunc-
tions that evolve dynamically with the classical photon
mode αj(t) for each respective trajectory j. The dynami-
cal evolution of the coupled electron and photon system is
given by the semiclassical set of equations [in contrast to
the fully quantum Hamiltonian of Eq. (1)] [29, 30, 37, 38]:


i
∂

∂t
|ψj(t)⟩ =

[
ĤA − x̂

√
2ωLλℜ

{
αj(t)

}]
|ψj(t)⟩ ,

α̇j(t) + iωLα
j(t) = iλ

√
ωL

2
⟨ψj(t)| x̂ |ψj(t)⟩ ,

(6)

where ĤA is the Hamiltonian for the electronic sys-
tem, which is the same as in Eq. (1). The initial con-
ditions for each photon trajectory αj(t0) are sampled
from the Wigner distribution of the initial photon state
ρF,W (α; t0). We will assume that there is no feedback
from the electronic system into the classical photon tra-
jectories, that is, λ ⟨x̂⟩ (t) ≪ √

ωLα
j(t) in Eq. (6). The

evolution of the photon modes becomes that of free
Maxwell equations: αj(t) ≈ αj(t0)e

−iωL(t−t0). By sub-
stituting this into Eq. (6), we finally reach the TDSE
for the electornic system coupled to the classical photon
mode:

i
∂

∂t
|ψj(t)⟩ =

[
ĤA − x̂Ejf(t) cos [ωL(t− t0) + ϕj ]

]
|ψj(t)⟩ ,

(7)
where Ej =

√
2ωLλ|αj(t0)| and ϕj = − arg

[
αj(t0)

]
are the field amplitude and phase, respectively,
for the corresponding trajectory j, with Ej(t) =
Ejf(t) cos [ωL(t− t0) + ϕj ] the electric field for this tra-
jectory. The expectation values of the electron operators
can be computed via the average response from the indi-
vidual and independent trajectories through Eq. (5):

⟨ÔA⟩ (t) =
∫
d2αTr

[
ÔAρ̂(α; t)

]
=

=
1

Ntraj

∑
j

⟨ψj(t)| ÔA |ψj(t)⟩ .
(8)

For squeezed-coherent states, the Wigner distribution
has an analytical expression which corresponds to a
gaussian distribution Wα0ξ(α) defined by the parame-
ters of its coherence and squeezing, α0 and ξ respec-
tively [16, 40]:

Wα0ξ(α) =
1

π
exp

{
e2ξ (ℜ [α]− α0)

2
+ e−2ξℑ [α]

2
}
. (9)

The squeezing parameters ξ and s = e2ξ will be used
interchangeably throughout the manuscript. Three
cases of ξ are relevant for this work: ξ < 0 or s < 1
correspond to amplitude-squeezing, ξ = 0 or s = 1
correspond to no-squeezing (coherent state), and ξ > 0
or s > 1 correspond to phase-squeezing. Since we will
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use squeezed-coherent states as the intial photon states
in our simulation, ρ̂F (t0) = |α0, ξ⟩ ⟨α0, ξ|, the initial
Wigner distribution of our photon modes is defined by
Eq. (9): ρF,W (α; t0) = Wα0ξ(α), which will be used
for the sampling of the initial values of the photon
phase-space variable αj(t0).

The single quantized photon mode runs in approximately
20 minutes on one CPU, while the multi-trajectory sim-
ulations requires 30 seconds per trajectory on one CPU,
and the MTEF simulation reaches convergence at around
10000 trajectories. The relative efficiency of MTEF com-
pared to full QED simulation relies on the easy possibility
to avoid the expontential scaling of the bosonic basis sets
(already for two photon modes, we expect MTEF to be
substantially faster and less computationally heavy than
solving the quantum dynamics exactly).

FIG. 2. HHG emission spectra for different values of the
squeezing parameter s = e2ξ = 0.2, 1.0, 5.0, and 25.0; and
comparing both methods QED (blue) and MTEF (orange).
As we enter into the phase-squeezing regime s > 1 a loss of
the typical plateau (11 < n < 31) is observed, predicted by
both methods (QED and MTEF).

III. COMPUTATIONAL RESULTS AND
DISCUSSION

The observable to be compared between the two sim-
ulations is the dipole moment of the electron d(t) for
different squeezings ξ, and the resulting HHG spec-
tra, computed as an expectation value of the electron-
photon time-dependent wavefunction for the QEDmodel:

dξ(t) = ⟨Ψξ(t)| x̂ |Ψξ(t)⟩, where |Ψξ(t0)⟩ = |g⟩ ⊗ |α0, ξ⟩;
and using a sum of expectation values for MTEF: dξ(t) =∑

j ⟨ψj(t)| x̂ |ψj(t)⟩ /Ntraj [Eq (8)], where the phase-

space variable for each trajectory, αj(t0) [see Eq. (7)],
has been sampled from a Wigner distribution of its cor-
responding squeezing Wα,ξ(α) [Eq. (9)] for MTEF. The
dipole variable dξ(t) is then Fourier transformed into the
harmonic spectrum dξ(ω) also masked by the envelope of
the incident field [21]:

dξ(ω) =

∫ t0+T

t0

dξ(t)f(t)e
−iωtdt. (10)

Figure 2 presents the calculated HHG emission from
both methods in typical conditions, and for different
values of the squeezing parameter s = e2ξ = 0.2, 1.0, 5.0,
25.0. The data in Fig. 2 predicts that phase-squeezing
removes the plateau (11 < n < 31) and, instead, mani-
fests a consistent drop in its HHG yield (a phenomenon
observed already in previous semiclassical works [18]).
Figure 2 reveals some discrepancy between MTEF and
QED, which suggests true quantum effects beyond
semiclassical interpretations play a role in the dynamics
and HHG emission mechanism.

The spatial symmetry of the electronic model poten-
tial together with that of the incident light forbids
even harmonics of ωL from being emitted [9, 14, 50].
Consequently, for analyzing the HHG yield we in-
tegrate the dipole spectrum from even harmonic to
even harmonic to get the harmonic-order-resolved yield

Y2n+1(ξ) ≡
∫ (2n+2)ωL

2nωL
ω4|dξ(ω)|2dω (Fig. 1). We com-

pare the normalized yield yn(ξ) for different squeezings,
that is, the yield of the dipole emission for different
harmonics Yn(ξ) normalized to the dipole emission of
the coherent state Yn(ξ = 0): yn(ξ) = Yn(ξ)/Yn(0).
The computational results comparing the quantum
electrodynamical simulation and the multi-trajectory
Ehrenfest dynamics are shown in Fig. 3 and 4 for each of
the harmonics from the first to the 33th (the cutoff is at
around ncutoff ∼ 27), where we see the normalized yield
yn(ξ) vs. squeezing s = e2ξ. yn(ξ) is particularly hard to
test for MTEF (as opposed to simpler observables such as
forbidden harmonics, cut-off scalings, etc), but it is an in-
teresting variable to analyze effects of squeezing in HHG.

We observe from Fig. 3 that the changes in the lower
perturbative harmonics due to squeezing (solid line) are
fully captured by the statistical distribution of the initial
squeezed-coherent state (round dots), which means that
the effects of the squeezing in these harmonics can be
explained using the initial Wigner distribution of Eq. (9)
through MTEF. This suggests that lower harmonics can
be described by hidden-variables methods. Figure 3
HHG predicts, in addition, that there is an increase in
the yield for amplitude-squeezing and a decrease in yield
for phase-squeezing.
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FIG. 3. Normalized yield for the first [y1(ξ)], third [y3(ξ)],
and fifth harmonics [y5(ξ)] for the quantum electrodynamical
simulation (QED, solid lines) and the multi-trajectory Ehren-
fest dynamics (MTEF, circles) vs. the squeezing parameter
s = e2ξ.

Figure 4 presents the main physical results of this
manuscript analyzing the HHG yield for higher order
harmonics vs. squeezing: (i) We numerically observe
a clear spectral minima behaviour vs. squeezing that
is universal for all harmonic orders (see Fig. 5). This
feature and the exact minima position is expected to
be highly sensititve to the system parameters (e.g.
laser regime and electronic structure), which make it
potentially useful for developing novel ultrafast quantum
spectroscopies. (ii) The MTEF simulation only partially
reconstructs this minima structure (e.g. in harmonics
19 − 33, but failing in harmonics 11 and 17, and often
missing the exact squeezing value for which the minima
is obtained). Remarkably, this disagreement between
MTEF and QED means that the approximations in
MTEF are likely too strong for HHG driven by squeezed
light, and hints that true entanglement (not included
in hidden-variable theories) plays a role in HHG emis-
sion [51]. Let us further emphasize that the minima
structure is also attained for almost all harmonics
in a wider range of coupling strength (see App. A),
but the position of the minima differs between chosen
parameters.

In further analysis we find that the squeezing
value at which the HHG minima is found is nu-
merically close to the minima of the instanta-
neous correlation functions of the photon initial
states g(n)(ξ) = ⟨ϕξ| â†nân |ϕξ⟩ / ⟨ϕξ| â†â |ϕξ⟩n for
|ϕξ⟩ = |α0, ξ⟩, which might be explained by the mul-
tiphoton proceses that are involved in the dipolar
emission of these harmonics [27]. However, we found
that this value does not match the scaling of the minima
position with the laser parameters such as intensity and
wavelength (see App. B), meaning it likely does not
capture the physical mechanism causing it.

Two harmonics are especially important for the analy-
sis: n = 9 and n = 11. These harmonics are resonant
with the electronic system (close to a transition in the

electronic system) and this might explain the much more
pronounced difference between MTEF and exact quan-
tum dynamics for these energies as this resonance could
be the source of high light-matter correlation, not covered
in MTEF model [25]. Thus, our numerical results that
show a particularly strong disagreement between MTEF
and full quantum simulations for resonance harmonics
suggest potential strong quantum optical effects in molec-
ular or atomic resonances [52–56]. Our results reveal the
capacity of MTEF to predict many of the qualitative ef-
fects that squeezed light causes on the electronic dipole,
but they simultaneously also expose the limitation of the
current description of MTEF to cover all the quantitative
effects observed in fully QED simulations.

IV. CONCLUSION

We explored quantum HHG simulations comparing
two different methods for ultrafast electronic dynamics
under a strong and squeezed driving field: an exact quan-
tum electrodynamical model using a single quantized
photon mode for the driving field, and an approximate
semiclassical multi-trajectory Ehrenfest simulation. We
tested MTEF semi-classical approximation for quantum
HHG, concluding that it partially captures the squeezing-
dependence of the HHG yield. MTEF is able to explain
many of the changes that occur in the HHG yield due
to the squeezing, e.g. the existence of a characteristic
minima structure, and especially the behaviour of per-
turbative harmonics. This result provides a milestone
on how HHG with quantum light could be tested in fu-
ture systems, and paves the way to a universal framework
of QED-HHG. Moreover, our result reveals that phase-
squeezing qualitatively affects the HHG spectrum by re-
moving the characteristic plateau structure, manifesting
instead an irregular pattern of decreasing HHG yield, a
phenomenon that both methods (QED and MTEF) pre-
dict. However, we additionally find that not all of the
HHG spectral features can be explained by our MTEF
simulations, which hints that true quantum effects are
required for explaining the full the electron-photon inter-
action. In particular, the exact position of HHG minima
vs. squeezing is sensitive to the level of theory, suggesting
it could provide an emerging observable in novel ultrafast
quantum spectroscopies, as well as to benchmark new
theories and approximations (especially near resonances
that could serve as novel platforms for entanglement [52–
56]). Looking forward, our work should motivate further
theoretical developments and proposes an experimental
set-up and test to benchmark theory and uncover quan-
tum effects in HHG.
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A. Ordóñez, M. F. Ciappina, P. Tzallas, and M. Lewen-
stein, Quantum electrodynamics of intense laser-matter
interactions: A tool for quantum state engineering, PRX
Quantum 4, 010201 (2023).

[12] I. A. Gonoskov, N. Tsatrafyllis, I. K. Kominis, and
P. Tzallas, Quantum optical signatures in strong-field
laser physics: Infrared photon counting in high-order-
harmonic generation, Sci Rep 6, 32821 (2016).

[13] N. Tsatrafyllis, I. K. Kominis, I. A. Gonoskov, and
P. Tzallas, High-order harmonics measured by the photon
statistics of the infrared driving-field exiting the atomic
medium, Nat Commun 8, 15170 (2017).

[14] A. Gorlach, O. Neufeld, N. Rivera, O. Cohen, and
I. Kaminer, The quantum-optical nature of high har-
monic generation, Nat. Commun. 11, 4598 (2020).

[15] M. Lewenstein, M. F. Ciappina, E. Pisanty, J. Rivera-
Dean, P. Stammer, T. Lamprou, and P. Tzallas, Gen-
eration of optical schrödinger cat states in intense
laser–matter interactions, Nat. Phys. 17, 1104 (2021).

[16] A. Gorlach, M. E. Tzur, M. Birk, M. Krüger, N. Rivera,
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Appendix A: Light-matter coupling analysis

The light-matter coupling λ of Eq. (2) and (6) is a
parameter that we presuppose in our model, as we are
using a single photon mode in a cavity. We use the value
λ = 0.015 in accordance with ref. [37]. This section is
meant to provide a brief discussion on the consequences
of changing the value of λ. For our 1D cavity modes, the
value of the light-matter coupling is related to the size of
the cavity Lc through: λ =

√
8π/LC [37, 38] (analogous

to the quantization volume in 3D models [19, 24, 29, 30])

Figure 6 presents examplary HHG spectra for various
values of λ (changing by ±33% for the value in the main
text). The HHG spectra is largely unaffected by these
changes, supporting the generality of our conclusions,
and indicating our predictions would hold in a wide range
of experimental conditions. At very high squeezing values
(Fig. 6 for s = 25.0), stronger changes begin to emerge in
the harmonic spectra, especially beyong the cutoff. This
agrees with the semiclassical interpretation of the pho-
ton mode Wigner distribution [Eq. (9)], since a higher
λ means that the effects of the squeezing on the mat-
ter system are amplified, and thus for a given value of
phase-squeezing we obtain higher electric field fluctua-
tions (they scale as ∆Emax ∼ λeξ) in relation to the laser
amplitude that remains constant at E0 = 0.053 a.u.. We
observe, nontheless, that the HHG minimum vs. squeez-
ing is still present for these values of the light-matter
coupling for almost all harmonic orders. In real mea-
surements, the value of λ should be determined experi-
mentally.

Appendix B: Testing the correlation function
hypothesis

The minima structure observed for most of the har-
monics in Fig. 4 motivated an analysis of what exactly
was causing this phenomenon. It turns out that this
minima structure is observed also in the nth-order in-
stantaneous correlation function of the initial squeezed-
coherent state g(n)(ξ) vs. the squeezing of this state for
a fixed α0 [40]:

g(n)(s) =
⟨α0, ξ| â†nân |α0, ξ⟩
⟨α0, ξ| â†â |α0, ξ⟩n

, (B1)

where s = e2ξ. If we consider, for the sake of test-
ing this hypothesis, running the single quantum photon
mode simulation for various laser intensities (correspod-
ing to varing α0) we can obtain the resulting minima in
the HHG yield as we did in Fig. 4 (which would be the
case α0 = 0.053). We now compare the phase-squeezing
value smin at which this is observed for various α0 with
the minimum of the correlation function in Eq. (B1) for
the corresponding initial state. The results of this com-
parison are shown in Fig. 7, where we observe that the
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FIG. 6. HHG yield using three values of the light-matter coupling λ: strong coupling λ = 0.020, medium coupling λ = 0.015
and weak coupling λ = 0.010. Four values of the squeezing are given s = e2ξ = 0.2, 1.0, 5.0, 25.0.

trend of the HHG yield is not completely described by
the correlation function, even though the numerical val-
ues and the increasing tendency vs. electric field inten-
sity do have some qualitative agreement. This suggests
that this hypothesis could still be ruled out in future re-
search as a true mechanism to explain the results in HHG
yield, even though it does reveal a numerical correlation
for the parameters of our simulation, which has already
been verified for lower harmonics in [27].

FIG. 7. Comparison of the phase-squeezing minima smin vs.
the power of the laser E0 =

√
2ωLλα0, for the single mode

QED numerical simulation (dots) and the correlation func-

tion g(n)(s) defined in Eq. (B1) [dashed line]. The number
n represents the yield harmonics we are considering and the
order of the correlation function, respectively.
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