English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Design requirements for human UHF magnets from the perspective of MRI scientists

MPS-Authors
/persons/resource/persons84187

Scheffler,  K       
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ladd, M., Quick, H., Scheffler, K., & Speck, O. (2024). Design requirements for human UHF magnets from the perspective of MRI scientists. Superconductor Science and Technology, Epub ahead. doi:10.1088/1361-6668/ad7d3f.


Cite as: https://hdl.handle.net/21.11116/0000-000F-DE58-5
Abstract
The highest magnetic field strength for human-sized magnetic resonance imaging (MRI) currently lies at 11.7 tesla. Given the opportunities for enhanced sensitivity and improved data quality at higher static magnetic fields, several initiatives around the world are pursuing the implementation of further human MRI systems at or above 11.7 tesla. In general, members of the MR research community are not experts on magnet technology. However, the magnet is the technological heart of any MR system, and the MRI community is challenging the magnet research and design community to fulfill the current engineering gap in implementing large-bore, highly homogeneous and stabile magnets at field strengths that go beyond the performance capability of niobium-titanium. In this article, we present an overview of magnet design for such systems from the perspective of MR scientists. The underlying motivation and need for higher magnetic fields are briefly introduced, and system design considerations for the magnet as well as for the MRI subsystems such as the gradients, the shimming arrangement, and the radiofrequency hardware are presented. Finally, important limitations to higher magnetic fields from physiological considerations are described, operating under the assumption that any engineering or economic barriers to realizing such systems will be overcome.