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A B S T R A C T

Background: The segmentation of cells and neurites in microscopy images of neuronal networks provides valuable 
quantitative information about neuron growth and neuronal differentiation, including the number of cells, 
neurites, neurite length and neurite orientation. This information is essential for assessing the development of 
neuronal networks in response to extracellular stimuli, which is useful for studying neuronal structures, for 
example, the study of neurodegenerative diseases and pharmaceuticals.
New method: We have developed NeuroQuantify, an open-source software that uses deep learning to efficiently 
and quickly segment cells and neurites in phase contrast microscopy images.
Results: NeuroQuantify offers several key features: (i) automatic detection of cells and neurites; (ii) post- 
processing of the images for the quantitative neurite length measurement based on segmentation of phase 
contrast microscopy images, and (iii) identification of neurite orientations.
Comparison with existing methods: NeuroQuantify overcomes some of the limitations of existing methods in the 
automatic and accurate analysis of neuronal structures. It has been developed for phase contrast images rather 
than fluorescence images. In addition to typical functionality of cell counting, NeuroQuantify also detects and 
counts neurites, measures the neurite lengths, and produces the neurite orientation distribution.
Conclusions: We offer a valuable tool to assess network development rapidly and effectively. The user-friendly 
NeuroQuantify software can be installed and freely downloaded from GitHub at https://github.com/StanleyZ0 
528/neural-image-segmentation.

1. Introduction

Quantitative analysis of neuronal cell structures is important for 
biomedical and pharmaceutical research, such as the determination of 
drug uptake and toxicity (Lilienberg et al., 2021; Pai et al., 2022). 
Typical analysis involves monitoring changes in the culture properties, 
such as the neuron numbers, neurite outgrowth directions, and neurite 
differentiation, to assess the physiological state of the neuronal culture 
(Dravid et al., 2021). Changes in the neuronal networks are indicative of 
neuronal development in response to extracellular stimuli (e.g., 
biochemical, electrical, optical, mechanical, and topographical) (Graves 
et al., 2009; Sacher et al., 2022; Dang et al., 2017; Mattioni and Novère, 
2013; Lignani et al., 2013), and properties such as cell numbers and 

neurite lengths can serve as cues for such changes (Kim et al., 2022; 
Sordini et al., 2021). For instance, blue light exposure can cause the 
retraction of neurites in neurons differentiated from neuroblastoma 
cells, resembling pathological neurite degradation, while red-light can 
induce the regrowth of retracted neurites (Kao et al., 2019; Chang et al., 
2014). Furthermore, the direction of neurite extension provides insights 
into neurite outgrowth and nerve guidance (Chédotal, 2019; Endo et al., 
2016). However, the analysis of phase contrast biological images is 
challenging due to the presence of halo and shade-off artifacts (Vicar 
et al., 2019), as well as the diverse shapes and sizes of neurons, making 
segmentation difficult (Greenwald et al., 2022). In addition, measuring 
the neurite length and direction of neurite extension typically involves 
manual tracing, which is time-consuming and may yield inconsistent 
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results in repeated measurements. To address these challenges, 
numerous image-processing algorithms have developed using software 
such as ImageJ, and toolboxes in Matlab, enabling semi-automatic or 
automatic detection and quantification of neuronal structures (Boulan 
et al., 2020; Torres-Espín et al., 2014; Pemberton et al., 2018; Kim et al., 
2015; Long et al., 2017; Ho et al., 2011). The most commonly used al
gorithms for analyzing neuronal development are catered to fluores
cence microscopy that utilize indicators to color cells and neurites. 
However, using fluorescent indicators can cause cellular damage or 
change neuronal properties (Stockley et al., 2017). Thus, depending on 
the application, modifying cells for fluorescence microscopy is not al
ways possible (Alford et al., 2009; Lulevich et al., 2009).

Recently, supervised learning using deep learning has offered a so
lution to analyzing phase-contrast microscope images that overcomes 
the limitations of conventional analysis methods (Su et al., 2013). 
Neural networks, specifically convolutional neural networks (CNNs), 
have shown success in cell segmentation (Xu et al., 2019), providing 
more accurate segmentations with greater robustness (LeCun et al., 
2015). Among CNN-based methods, U-Net has emerged as the most 
widely adopted approach for image segmentation, delivering promising 
results in live cell images (Falk et al., 2019; Ronneberger et al., 2015). 
However, manually creating image segmentation masks for training 
models is a time-intensive process, resulting in a limited number of 
training images (Dinsdale et al., 2022). Furthermore, deep learning 
approaches for quantitative biological images have mostly focused on 
the cell morphology (Kwonmoo Lee; Helgadottir et al., 2021), or 
single-cell segmentation among multiple types of cells (Stringer et al., 
2021). Automated segmentation of cell in phase-contrast microscopy 
images using deep learning models have been introduced by Ayanzadeh 

et.al (Ayanzadeh et al., 2020, 2019) and Shrestha et.al (Shrestha et al., 
2023). Additionally, Zhou et.al introduced DeepNeuron (Zhou et al., 
2018) for tracing of axon and dendrite morphology in light microscopy 
images, but it lacks quantitative information about neurite length and 
orientation. An effective model for automated segmentation and quan
tification of neurites is needed in neuronal studies.

In this paper, we develop a well-tuned machine learning model for 
neuronal image segmentation based on a modified U-Net architecture. 
Additionally, we present a software package called NeuroQuantify, 
which offers functionalities such as cell and neurite detection, counting, 
neurite length measurement, and neurite orientation distribution of two 
dimensional (2D) images. This comprehensive tool enables quick and 
efficient quantitative evaluation of neuronal circuits, providing valuable 
insights into neuronal networks on a large scale. NeuroQuantify is 
implemented in Python 3 using open-source packages and is freely 
available for download and local installation from GitHub. Its user- 
friendly graphical interface facilitates precise annotation of cells and 
neurites from phase-contrast microscopy images, making it a useful 
resource for investigating biological questions concerning neuronal 
networks.

2. Material and methods

We introduce a neuron quantification method based on deep 
learning for cell and neurite segmentation. Our method uses phase- 
contrast microscope images and labeled images as masks to train the 
neural network. After image segmentation, an algorithm of image post- 
processing is performed for neuron quantification. Fig. 1 illustrates our 
computational pipeline: First, a deep learning model classifies features 

Fig. 1. Overview of the computational pipeline of NeuroQuantify, a) Deep learning for cell and neurite segmentation, and b) Quantification number of cells and 
measurement of neurite lengths and its orientation distribution.
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in the image as cells or neurites (Fig. 1a), then the cells and neurites are 
counted, and the lengths and orientations of the neurites are measured 
(Fig. 1b).

2.1. Dataset

2.1.1. Data acquisition and preprocessing methodology

2.1.1.1. Dataset collection. The dataset and the ground truth data 
employed in this study encompasses two-dimensional (2D) phase- 
contrast microscopy images of neuroblastoma cells (SH-SY5Y). These 
neuron-like cells were grown in a T25 flask and treated with Retinoic 
acid (R2625, Sigma–Aldrich) following a standard protocol (Kovalevich 
and Langford, 2013). The imaging process was initiated on the third day 
of cultivation, using a Zeiss microscope with a 10x magnification 
objective and phase contrast mode. Multiple regions of interest were 
selected on each T25 flask, focusing on the areas with a high density of 
cells and neurites. Each image has a resolution of 2560×1920 pixels.

2.1.1.2. Manual annotation and class labeling. To facilitate subsequent 
analysis, a total of 200 images (2563×1920 pixels) were manually an
notated, using a specialized software provided by ByteBridge. Three 
different classes on the image were assigned distinct colors corre
sponding to cells, neurites, and background.

2.1.1.3. Image enhancement through gamma correction. The raw phase- 
contrast microscope images displayed variations in background bright
ness levels, which could potentially introduce inconsistencies during 
subsequent processing. To ensure consistency in the output images, 
gamma correction is applied according to the following equations: 

γ =
log (255 × 0.5)

log (mean(Input image gray values))
(1a) 

Output image = (Input image)γ (1b) 

From Eq. (1a), the original image brightness value is first compared 
to the relative brightness parameter log(255× 0.5), and then the 
adjustment is conducted using Eq. (1b). This correction process equal
izes the brightness level, reducing bias in the subsequent training 
process.

2.1.1.4. Image cropping and dataset generation. The initial phase- 
contrast images, with a size of 2563×1920 pixels, were divided into 
training, validation, and test sets. Each of these images was cropped into 
20 smaller images each with a smaller size of 512×512 pixels (Fig. 2). 
During the crop, filtering was applied to remove the small images 
(512×512 pixels) that contained a scale bar on the corner of the image 
and those displaying mostly background. The 512×512 size was selected 
due to the memory limitation during the model training process. The 

final datasets consist of training dataset (2740 frames), validation set 
(247 frames), and test set A (323 frames), where the size of each frame 
was 512×512 pixels. To accurately assess cellular and neurite counts, as 
well as neurite lengths within the high-resolution images (2563×1920 
pixels), an additional test set of 20 images with 2563×1920 pixels was 
deliberately introduced. The test set images (ground truth) were chosen 
with cell densities varying from 1 % to >10 % and captured in various 
experiments. Cell density is defined by the fractional area of the image 
occupied by the cell body. This supplementary dataset, called test set B, 
served the explicit purpose of evaluating the performance of the post- 
processing phase, i.e. the analysis of the segmentation masks, and has 
not been used during the training of the neural network. The segmen
tation mask of these high-resolution images has been enriched by in
formation on the number of cells and neurites manually counted by an 
expert using ImageJ, and the average length of the neurites as given by 
the NeuronJ plugin.

2.2. Neural network architecture

2.2.1. U-net for semantic segmentation
The models used in the paper are based on U-Net, which consists of 

an encoder and a decoder. U-Net is a CNN specifically designed for 
biomedical image segmentation. Its architecture includes a contracting 
path to capture context and an expanding path for precise localization. 
The model generates a pixel-by-pixel mask that represents the class of 
each pixel. One major advantage of the U-Net model is its ability to learn 
effectively from a relatively small dataset.

Fig. 3 illustrates the architecture diagram for the primary model used 
in our work, referred to as the large model. This model consists of 4 
down-sampling blocks and 4 up-sampling blocks, with an initial con
volutional block with 64 output channels. In each down-sampling block, 
the input data undergoes two consecutive 3×3 kernel size convolutions 
with a ReLu activation function. Subsequently, a 2×2 kernel max pool 
layer is applied to reduce data size. After the fourth block, the data 
enters the up-sampling path. During up-sampling, the data undergoes a 
reverse convolution layer with a 2×2 kernel and half the original 
number of features. It is then concatenated with a copy of the data 
outputted at the same block level in the down-sampling path. The 
combined tensor is passed through a double convolution layer, with the 
number of output channels matching the reverse convolution step. 
Finally, after 4 blocks of up-sampling, the data goes through a 3×3 
convolutional layer with an output channel size set of 3, performing the 
final three-class segmentation task. In addition to the large model, there 
is also a simplified model, named small model. This model comprises 3 
blocks of down-sampling and 3 blocks of up-sampling. The number of 
output channels in the initial convolution block is reduced to 16 fea
tures, significantly reducing the random access memory usage during 
training. The small model demonstrates more efficient computation in 
practice.

Fig. 2. a) An original image, size of 2653×1920, and b) 20 smaller images of size 512×512 retrieved from the same image.
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2.2.1.1. Training process. The models have been trained on the 2740 
512×512 frames in the training dataset. For both the large and small 
models, we used the Adam optimizer with a learning rate of 0.0001. The 
Adam optimizer (Adaptive Moment Estimation) is an iterative optimi
zation algorithm used to minimize the loss function during the training 
of neural network (Kingma and Ba, 2017). It adjusts the learning rate for 
each parameter and to achieve fast convergence and reliable perfor
mance. The learning rate, as well as hyper-parameters, was selected 
through a process of optimization, driven by the generalization perfor
mance of our models evaluated on the 247 images in the validation set.

2.2.1.2. Loss function. We used a combination of cross entropy loss (CE) 
(CoinCheung, 2023) and soft dice loss (CrossEntropyLoss) as the loss 
function to train both the small and large model. CE is widely used for 
classification tasks, and it measures the dissimilarity between the pre
dicted probability distribution and the ground truth label for each pixel. 
To emphasize the segmentation performance for the cells and neurites 
while minimizing the impact on the background pixels, rescaling weight 
were assigned to each class when computing the overall CE. Specifically, 
the weight factor was set to 2.0 for background, 3.0 for cell bodies, and 
5.0 for neurites.

The D function is computed individually for each class separately and 
then averaged to obtain a final score (An overview of semantic image 
segmentation, 2018). Using soft dice loss, the model mitigates the issue 
of inflated accuracy caused by correctly classifying the background, 
which takes most of the region within the image. Instead, it prioritizes 
the accuracy of cell classification by assessing intersectional aspects.

The global loss functions of the large and small models are, respec
tively, 

Llarge = 0.5D+0.5CE, (2a) 

Lsmall = 0.8D+0.2C. (2b) 

2.3. Image post processing

2.3.1. Algorithm for cell counting and neurites analysis from segmentation 
mask

After performing image segmentation, we proceeded to group non- 
adjacent cells into cell clusters, while non-adjacent neurites were 
grouped into clusters based on their connections. Subsequently, we 
assigned the corresponding neurite groups to their respective cell clus
ters. To perform precise measurement of neurite length, we considered 
neurites originating from cells within the image to identify both the 
original spot where the neurite begins to grow and its endpoint, while 
excluding those originating from cells outside the image.

To count the number of cells, we started by establishing a typical 
area based on the histogram of cell area distribution on 200 images of 
our training dataset (Figure S1). We observed that the distribution 
centered around approximately 40 µm in diameter, with the corre
sponding cell area of approximately1256 µm2. For each cell cluster, we 
calculated the number of cells by dividing the cluster area by the typical 
cell area and rounding to the nearest integer. Adding the number of cells 
across all clusters yielded the final cell count for the image.

To determine the number of neurites and analyze their length, we 
based on the segmentation mask. The segmentation mask categorizes 
each pixel as background, cells or neurites accordingly. Fig. 4a shows 
the segmentation mask with three colors for background, cells and 
neurites. The masked pixels for the cells and neurites are then filtered 

Fig. 3. U-Net architecture in NeuroQuantify (large model). The large model uses 4 down sampling blocks and 4 up sampling blocks, while only 3 of each are used for 
small model. Both models use ReLU as activation functions. Down Sampling blocks extract and transform features, simultaneously reducing the spatial dimensions. 
Up sampling block restore spatial dimensions for improved localization. In the diagram, the shape of the tensors is also shown in channel-first format (c, h, w 
representing channels, the height and the width of a tensor).
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out separately by colors as shown in Fig. 4b and c. To convert the seg
mentation neurite region to a single-pixel-width skeleton along the 
center region, we used skeletonization in the fil-finder library (Koch and 
Rosolowsky, 2015), resulting in the neurite skeleton shown in Fig. 4d. In 
this figure, white lines represent the neurite skeleton, green dots indi
cate “end points”; blue dots signify “intersection points”, and red dots 
denote “touch points”. The presence of “touch points” aims to include 
the connectivity of the neurites and cells in the analysis. They are the 
closest points on the skeleton where the neurite and the cell are con
nected. The “touch points”, “intersection points” and “end points” 
separate the neurites into smaller branch segments and do further 
analysis. After the detection of neurites, NeuroQuantify measures the 
length and orientation of the detected neurites. The length of a neurite is 
calculated based on the scale information of captured images (1 µm =
2.21 pixel). In scope of our analysis, we only count neurites with lengths 
longer than 20 µm to eliminate short neurites that are potential noise 
from the segmentation mask. In case where multiple neurites protrude 
from a single location in the cluster, we only count the longest. When the 
neurites cross each other, we trace their origins. Therefore, the algo
rithm is designed to find a “touching” branch segment which starts from 
at least one “touch point” and use it as the starting of a branch. Then we 
assign additional branch segments that are directly connected to the 
previous branch. This process is repeated until no branch segment can be 
found. In case there are multiple branches connected to the previous 
branch, the program counts the extending branch with the longer pro
jection length on the existing branch. The longer projection branch is 
illustrated as Fig. 4e. By applying these criteria, the data can be 

effectively analyzed and processed to obtain meaningful insights.

2.4. Evaluation metrics

2.4.1. Metrics for semantic segmentation: precision, Recall, F1 score, IoU 
score

To evaluate the performance of our deep learning models, we 
computed the metrics including total precision, per-class recall, and F1 
score. The metrics are defined as follows, 

Total Precision =
TPcell + TPneurite + TPbackground

TPcell + TPaxon + TPbg + FPcell + FPneurite + FPbackground

(3a) 

Recall =
TP

TP + FN
(3b) 

F1 score =
2 × Precision × Recall

Precision + Recall
(3c) 

where TP, FP, and FN are respectively per class true positive, false 
positive, false negative. The detailed definition of TP, FP and FN for 
multi-classification can be seen in the supplementary.

The intersection over union (IoU) score is computed to estimate how 
well the segmentation of each class matches the ground truth mask at 
the pixel level. The IoU score is given by 

IoU =
A ∩ B
A ∪ B

(3d) 

Fig. 4. Post-image processing for neurite length quantification a) segmentation of prediction image, b) filtered image of neurites, c) filtered image of cells with 
different colors, d) neurite skeleton, e) priority of adding an extending branch into an existing branch.
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where A is a predicted class and B is the corresponding ground truth 
mask.

2.4.2. Metrics for cell, neurite counting and average neurite length accuracy
The accuracy is calculated by comparing the predicted cell, neurite 

count and average neurite length from the predicted segmentation im
ages analyzed by NeuroQuantify with the ground truth images. The 

Fig. 5. Comparison of performance for two models in NeuroQuantify. Significance was tested by the two-sided Wilcoxon signed-rank test, (*): p < 0.05; The bar plots 
shows the average and the standard deviation across the images in test set A of a) the total precision; b) the cell and neurite recall; c) the cell and neurite F1 score, d) 
the IoU score, and e) confusion matrices of the segmentation performance for the large and small models.
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equation used is as follow: 

Accuracy = 1 −
|Predicted − Ground Truth|

Ground Truth
. (4) 

3. Results

In the sections to follow, we summarize the results of the model. We 
begin by evaluating the large and small models in the segmentation task 
using the test set A in Section 3.1. In Section 3.2, we present the analysis 
pipeline including the post processing phase. We discuss the accuracy in 
the cells and neurites counting tasks by comparing the prediction of 
NeuroQuantify with the annotations by experts, and the neurite length 
measurement using NeuroQuantify is compared with the NeuronJ plu
gin from ImageJ. In Section 3.3, we highlight the advantages of our post- 
image processing, including cell counting with neurites, neurite orien
tation distribution. Finally, Section 3.4 introduces a user-friendly 
graphical interface and provides information regarding its processing 
time for two models.

3.1. Validating the segmentation performance in the large and small 
model

We evaluated the performances in the segmentation task of two deep 
learning models using the images of neuroblastoma cells contained in 

test set A. As discussed in Section 2.4, to quantitatively evaluate the 
quality of a segmentation mask we used the total precision, the per-class 
recall, F1 score, and the IoU score (Eqs. (3a), (3b), (3c), and (3d)).

To assess the statistical significance of performance between the two 
models, we employed the two-sided Wilcoxon signed-rank test with a 
significance level of 0.05. Fig. 5 shows the results. The average total 
precision for three classes segmentation in both models is significantly 
high, reaching approximately 0.98. Fig. 5b shows that the large model 
exhibits significant higher average recall values for cells and neurites 
compared to the small model (0.98 vs. 0.93 for cells, and 0.95 vs. 0.75 
for neurites), suggesting that the large model more effectively detects 
cells and neurites. There is significant difference in the F1 score for the 
cell and neurite class between two models as shown in Fig. 5c.

To further evaluate the precision of object detection in both models, 
we used IoU score, which measures the overlap between the predicted 
image and the ground truth mask. Fig. 5d illustrates the result. Both 
models attain a high IoU matching, with the large model achieving an 
IoU score of 0.84, while the small model achieves a score of 0.81. Fig. 5e 
presents the confusion matrices for both the large and small models, 
highlighting the improved accuracy in cells and especially the neurites 
detection achieved by the large model.

Fig. 6. Evaluation of the segmentation performance of NeuroQuantify in the small and large models by calculating the accuracy of number of cells, neurites and 
neurite length quantification, Significance was tested by the two-sided Wilcoxon signed-rank test, ns: p > 0.05; *: p < 0.05; a) the accuracy of the number of cells and 
number of neurites as predicted by both models, b) a comparison between manual measurement and automated measurement using the large and small models, and 
c) a plot of average and standard deviation of neurite length accuracy for both models.
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3.2. Assessing cell and neurite count accuracy with NeuroQuantify

3.2.1. Accuracy of cell and neurite counting using NeuroQuantify
We used test set B consisting of 20 high-resolution phase-contrast 

images (2563×1920 pixels) to assess the capabilities of NeuroQuantify 
in counting cells and neurites by comparing the predicted images from 
NeuroQuantify with the ground truth. In Fig. 6a, we present the accu
racy of cell and neurite classification. Interestingly, the small model 
exhibits slightly higher accuracy in cell prediction compared to the large 
model. Specifically, the small model achieves an accuracy of 0.83, while 
the large model achieves 0.79. Regarding neurite detection, the small 
model achieves 0.65 accuracy, while the large model achieves 0.77.

We examined the inaccurate segmentation of the small model for 
neurite detection by investigating the predicted masks (segmented 
image from the model), where neurites are colored in orange, and the 
skeleton masks (image after post-processing), where neurites are colored 

in red. As shown in Figure S3a-d, which provides examples of neurite 
detection, both the large and small models exhibited a similar ability to 
detect long neurites (with lengths > 20 µm). However, when using the 
skeleton mask for neurite counting, the small model tended to overlook 
short neurites (with lengths < 20 µm). This issue is further illustrated in 
Figure S3e-g, where the small model failed to detect the short neurites.

3.2.2. Accuracy of neurite length quantification using NeuroQuantify
A feature of NeuroQuantify is the quantification of the neurite 

length. To assess the effectiveness of NeuroQuantify in measuring neu
rite lengths, we compared the average results on test set B with the 
ground truth obtained by NeuronJ, an ImageJ plugin (NeuronJ, ImageJ 
Wiki). To determine the statistical significance between the two 
methods, we conducted a two-sided Wilcoxon signed-rank test at a sig
nificance level of 0.05. Fig. 6b illustrates the comparison of average 
neurite length measurements between NeuroQuantify and manual 

Fig. 7. Post-processing of the images for analyzing neurite orientation distribution. a) an example of image post-processing from the phase-contrast image input to 
annotation mask and b) a plot of neurite length and neurite orientation distribution of the whole image, the color bars indicate the range of neurite length, the 
number of neurites presented on y-axis and the orientation of neurites presented on x-axis, c), d) show an example of neurite orientation distribution (N, E, S from left 
to right respectively), e) a diagram shows definition of neurite orientation in NeuroQuantify, and f) Percentage of cell clusters with neurite counted manually and 
using the large and small models.
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measurement. The results reveal that there is no significant difference 
between the manual technique and the large model (p > 0.05), whereas 
the small model exhibits a significant difference in neurite length mea
surement (p < 0.05). Furthermore, Fig. 6c presents a plot illustrating the 
average neurite length accuracy for test set B. As depicted in Fig. 6c, the 
average neurite length accuracy of both models is quite similar, with a 
value of 0.88 for the large model, and 0.84 for the small model.

3.3. Neurites orientation distributions and counting cells with neurites 
using NeuroQuantify

NeuroQuantify offers an additional feature of providing the orien
tation distribution of neurites in the images. The orientation of a neurite 
is determined by drawing a straight line from the point where it attaches 
to the cell (known as the touch point) to its endpoint. If the other end of 
the neurite is connected to another cell, the orientation will be displayed 
in both directions. Four directions, namely north (N), south (S), east (E), 
and west (W), are defined to represent the neurite orientation (Fig. 7e). 
NeuroQuantify allows users visualize the orientation of individual 

neurites which belong to a specific cell (Figure S4). Fig. 7a and b illus
trate the post-image processing steps involved in analyzing the neurite 
orientation. Fig. 7c and d provide an example of a single cell with three 
neurites, each pointing in a different direction.

Furthermore, NeuroQuantify offers the capability to count the 
number of cells that have neurites. The algorithm specifically counts 
cells with neurites attached to it based on an adjacency analysis of the 
skeleton mask. The comparison of the manual counting and perfor
mance of the NeuroQuantify models in terms of the average percentage 
of cells with neurites is shown in Fig. 7f. As shown in the figure, the small 
model was less effective in recognizing neurites when connected to cell 
clusters. Conversely, the large model demonstrates a similar percentage 
of cell clusters with neurites compared to manual counting.

3.4. NeuroQuantify user interface and processing time

To make the NeuroQuantify easier to use, we have developed a 
graphical user interface, as shown in Fig. 8a. The user interface utilizes 
the Python library PyQt6 as its primary framework. This choice of 

Fig. 8. a) User Interface of NeuroQuantify and b) a comparison of the average processing time of the large and small models of NeuroQuantify.
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framework ensures cross-platform compatibility, enabling users to ac
cess NeuroQuantify seamlessly on Windows 10 (1809 or later), MAC OS 
(12/11/10.15) (64 bit Intel, 64 bit ARM; XCode 12), and Linux (Ubuntu 
20.04 (64 bit Intel; gcc9), CentOS Linux 8.2, SLES 15 SP2 (SUSE Linux 
Enterprise Server, 64 bit Intel; gcc10), Open SUSE 15.3 (64 bit; gcc9)). 
Additionally, since the main algorithm and machine learning model 
have been implemented in Python, the integration of PyQt6 provides a 
more streamlined connection for Python-based functionalities. Within 
this user interface, as illustrated in Fig. 8a, users can interact with 
NeuroQuantify by simply clicking on cells or neurites of interest. Upon 
selection, NeuroQuantify highlights the selected elements and provides 
relevant information. Moreover, users have the option to export neurite 
length information as a csv file, while the generated plot depicting 
neurite orientation and annotated data is automatically saved in the 
result folder. The analysis of neurite orientation offers valuable insights 
for studying axon guidance in diverse local environments (Matsumoto 
et al., 2021; Andersson et al., 2020).

To assess the performance of NeuroQuantify, we compared the 
processing time between two models using 20 images in the test set B. 
The processing time encompasses segmentation, annotation and post- 
image processing, which involves tasks such as cell and neurite count
ing, neurite length measurement, and neurite orientation distribution 
analysis. This analysis was conducted on a laptop with an 11th gener
ation Intel i7–11800 H CPU, 16 GB of RAM, Windows 10. Fig. 8b pre
sents the processing time for both models. As depicted in Fig. 8b, the 
processing time for the large model is approximately five times longer 
than that of the small model.

4. Discussion

We have introduced a comprehensive framework for neuron detec
tion and semantic segmentation in images of neuron-like neuroblastoma 
cells. Automatic quantification of phase-contrast neuron culture images 
can accelerate laboratory investigations, and neurites are studied in the 
context of neuron regeneration and neurodegenerative diseases (Wu 
et al., 1998; Szarowicz et al., 2022; Hussain et al., 2018; Costa et al., 
2022). Neuroblastoma cells share certain characteristics with primary 
neurons, particularly in their highly elaborate axon structures, which 
make them suitable for in vitro studies simulating primary neuron 
attachment and proliferation (Arslantunali et al., 2014). These cells are 
commonly employed in research on neurodegeneration and 
neuro-regeneration diseases (Shea et al., 1991; Su et al., 2017; Hoffmann 
et al., 2022; Bell and Zempel, 2022). The NeuroQuantify models offer 
precise analysis of neurite structures, including measurements of neurite 
length and the distribution of orientations. The models allow users to 
analyze complex neuronal networks within seconds. Importantly, our 
large model achieves performance levels comparable to those of human 
experts. Figure S5 illustrates a comparison between a phase-contrast 
image and a segmented image generated by NeuroQuantify. 
High-quality images are crucial for achieving accurate results. Our 
observation of the ground truth images indicate that the model’s accu
racy depends highly on image quality. We analyzed our data to access 
accuracy across various cell density levels. As shown in the Figure S6, 
cell density does not significantly affect the model’s accuracy. The figure 
shows that the accuracy is lower for the low-density images compared to 
high-density cell images. The discrepancy is due to the lower contrast in 
the low-density cell images.

Despite the promising segmentation results, certain aspects of our 
algorithms can be improved. Firstly, it is necessary to enhance the ac
curacy of neurite detection (shorter than 20 µm) in the small model. This 
can be achieved by conducting additional training with a larger dataset 
with higher magnification, which would contribute to higher accuracy. 
Techniques like data augmentation can be employed to introduce more 
variations in the existing dataset during model training. Additionally, 
conducting further experimentation with hyperparameter tuning for 
different model parameters can help identify the most optimal 

configuration. Secondly, a limitation of our models is that the U-Net 
model has been trained specially using our dataset with the 10x mi
croscope images. As such, its performance for segmenting images 
captured with different types of microscopes or at varying magnification 
remains unverified. To make NeuroQuantify more universally appli
cable in diverse capture environments, it is imperative to gather addi
tional datasets encompassing various imaging conditions.

While our primary objective has been to develop an algorithm for 
quick and efficient analysis of neuronal networks in neuroblastoma cells, 
NeuroQuantify also offers the possibility to analyze other cell types, such 
as PC12 cells (as depicted in Figure S7). Overall, NeuroQuantify dem
onstrates its potential for quantitatively assessing neuron cells and their 
associated networks. It exhibits a high level of effectiveness in seg
menting cells and neurites within intricate structures, while also 
providing accurate quantitative measurements of their length and 
orientations.

5. Conclusion

In summary, we have introduced NeuroQuantify, a deep learning 
model for detecting and segmenting cells and neurites in phase contrast 
microscopy 2D images, without the need for fluorescence labelling. 
NeuroQuantify can analyze the images within a few seconds to provide 
quantitative information about cell numbers, neurite numbers, neurite 
lengths, and neurite orientation distribution. These functionalities are 
useful for biological research requiring assessments of neuronal network 
development. Potential extensions to this work are to implement and 
evaluate NeuroQuantify’s performance in three-dimensional (3D) im
ages, to be able to infer 3D information from 2D images, and to improve 
the neurite detection accuracy.
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