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Supplementary Figure 1. Replication of the morphospace in four additional parcellation

approaches. Pearson’s r of the comparison between each additional parcellation and the morphospace

is indicated for the 100 (top left), 400 (top right), 800 (bottom left) and a control random parcellation

(i.e. null model, bottom right).
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Supplementary Figure 2. Representation of the morphospace embedding with different n

neighbours and minimum distance values. Higher values average the manifold largely across the

data and vastly distribute the data in the low embedding. Extremely low values result in spurious

clusters of connected neighbours. Given that the neuron-shaped architecture is stable across low to

medium values and that there is no goal standard in the finer manifold/global structure trade-off, we

opted to rely on the low default metrics that reveal the data manifolds maintaining the global structure

without spurious neighbouring connections. Points represent the 506 meta-analytic maps.
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Supplementary Figure S3. Comparison between versions of the morphospace built in 2, 3, 4, and

5 dimensions. (a) The distribution of the MAE between measured and predicted maps indicates that

the 3D predictions are more precise than the 2D (z = 4.37; p<.001) and 5D (z = 5.18; p<.001). (b) The

difference in predictability index between the different dimensions indicates that the 3D predictability

index is higher than the 4D (z = 3.29; p<.001), and the 2D (z = 9.63; p<.001). ***: p<.001. Lines,

boxes, whiskers and dots represent the median, quartiles, distribution, and observations (506

meta-analytc maps).
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Supplementary Figure 4. The association of the predictability index the number of terms aggregated

in each out-of-sample meta-analytic map. The low Pearson’s correlation (r = 0.15) between the

predictability index (x-axis) and the number of terms aggregated in each map (y-axis) reveals that the

index is not associated with the magnitude of data used for each meta-analysis. Datapoints

representing the 888 meta-analytic maps are represented in blue, and the regression line is indicated in

red. r: Pearson’s regression coefficient.
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Supplementary Figure S5. Robustness of results against a spatial autocorrelation-preserving

null model. a) Pearson’s correlation of the comparison between the 400 parcels resolution of the

Schaefer and colleagues atlas (2018) applied to the maps’ surface projection and the original

morphospace. b)The plot shows the distribution similarity between the surface-projected empirical

and SA-preserving null versions an example meta-analytic map (auditory). c) Pearson’s r of the

comparison of the Euclidean distances between the surface-projected empirical and SA-preserving

null maps, both parcellated via Schaefer and colleagues’ atlas (2018). d) Pearson’s r of the comparison

between predictability indices obtained from the predicted 506 meta-analytic maps and the predicted

SA-preserving null maps. Datapoints representing the 506 meta-analytic maps are represented in blue,

and the regression line is indicated in red. The axial slices next to the x and y axes represent the

example version of the auditory map predicted from the original morphospace and the SA-preserving

null space, respectively. Dim: dimension. SA: spatial autocorrelation.
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Supplementary Figure S6. predictability index of 888 Neuroquery meta-analytic maps. Topic

modelling allowed for (a) 12 broader and (b) 55 finer clusters summary of the predictability index of

(c) the meta-analytic maps colocalised onto the morphospace. Bar colours indicate the predictability

index of their five nearest neighbours (5nn) in the morphospace. Triangles indicate each new map’s

coordinate in the morphospace, while transparent circles indicate the morphospace meta-analytic

maps’ location.

7



Table S1 Features of the new task-related activation maps.

Map
Type
of

map
Reference Task Contrast Results

Abstract
Words

T-ma
p

Pauligk et
al., 20191

A delayed lexical
decision task required
indicating if a visually
presented stimulus was a
word or a pseudoword
by left and right button
presses.

Abstract VS.
concrete
words

Inferior frontal,
superior and
middle
temporal
cortices

Emotional
Words

T-ma
p

Pauligk et
al., 20191

Same as above.
Emotional
VS. neutral
words

Superior and
medial frontal,
cingulate

cortices, middle
temporal gyrus
and amygdala,
precuneus

Concrete
Words

T-ma
p

Pauligk et
al., 20191

Same as above
Concrete VS.

abstract
words

Superior and
middle frontal
gyri, medial
temporal and
calcarine
cortices

Acute Fear
T-ma
p

Hudson et
al., 20202

Participants watched
feature-length horror
movies.

Joint analysis
of jump-scare

events

Cingulate,
Temporal,

Insular cortices,
Amygdala and
Thalamus

Congruent
Movement

T-ma
p

Limanowski
and Friston,

20203

Participants control a
virtual hand and are
asked to match the
movement with their
own or the virtual hands.

Congruent
VS.

incongruent
movement

Superior,
middle

temporal and
postcentral

gyri,
somatosensory

cortex
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Visuo-propri
oception

T-ma
p

Limanowski
and Friston,

20203
Same as above

Visuo-propri
oception of
Congruent

VS.
Incongruent
movement

Bilateral
temporal and
left secondary
somatosensory

cortices

Danger
Expectance

T-ma
p

Suarez-Jimen
ez et al.,
20184

Activity differences
during stationary periods
of the threat learning
task after picking
flowers predicting either
danger or safety.

Danger VS.
safe

caudate, dACC,
insula and
midbrain

Friends
Ownership

T-ma
p

Lockwood et
al., 20185

Associative learning task
foster learning about
fractal images that
belonged to participants,
their best friend, or a
stranger. Ownership
associative strength
(OAS) between picture
and label at the time of
the picture (the strength
of ownership) and the
size of the ownership
prediction error (OPE) at
the time of the outcome.

Friends_OAS

Ventromedial
prefrontal and
cingulate

cortices, middle
temporal gyrus
and medial
temporal
cortex.

Friends
Prediction

T-ma
p

Lockwood et
al., 20185

Same as above. Friends_OPE

Caudate,
putamen,
globus

pallidum, left
inferior

temporal gyrus.
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Ingroup
Prediction
Errors

T-ma
p

Zhou et al.,
20216

Participants expected to
receive painful shocks
but were saved from pain
by different ingroup or
outgroup members in
75% of all trials. Initial
ingroup bias in
impression ratings was
significantly reduced
over the course of
learning (prediction
errors).

Ingroup vs.
outgroup
prediction
errors

Inferior parietal
lobule and

anterior insula.

Latent
Group

T-ma
p

Lau et al.,
20207

Participants are asked to
report their position on a
political issue. They then
learned the positions of
three other hypothetical
participants (A, B and C)
on the same issue
(trial-by-trial dyadic
similarity learning).
After repeating this
procedure for eight
different issues, the
volunteers had to decide
whether they would
align with A or with B
on a 'mystery' political
issue (latent structure
learning is influenced by
C views).

Latent
structure
learning

Right Anterior
Insula and

Inferior Frontal
Gyrus

Social
Dyadic
Similarity

T-ma
p

Lau et al.,
20207

Same as above.

Trial-by-trial
dyadic

similarity
index

Pregenual
Anterior
Cingulate

Learning
through

verification

T-ma
p

Berens et al.,
20188

Participants have to
associate unfamiliar
objects with obscure
pseudowords. Learning
through verification
model predicts that the
representations rapidly
change from being

Whole-brain
searchlight
representatio
nal similarity
analysis on
learning
through

Left
hippocampus
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equally similar to all
others before they have
been learnt to being
dissimilar after learning.

verification
model

Memory
Integration

T-ma
p

van Kesteren
et al., 20209

Participants learn
combination of
pseudoword and scene
(AB association) and
object (AC association)
so that B and C were
linked via A in a
congruent (known) or
incongruent (unknown)
manner.

AB encoding

Middle and
inferior

temporal gyri
and cuneus

Congruency
T-ma
p

van Kesteren
et al., 20209

Same as above
Correct

associations

Medial
prefrontal
cortex,

hippocampal
and parietal
cortices

Speech
T-ma
p

Steiner et al.,
202110

Participants discriminate
nonverbal (non-speech)
and speech-based voice
and non-voice (natural,
artificial) sounds

Speech VS.
non-voice

Left anterior,
middle and
posterior
superior

temporal gyrus,
posterior
superior

temporal sulcus

Voice
T-ma
p

Steiner et al.,
202110

Same as above
Voice VS.
non-voice

Left middle and
posterior
superior

temporal and
right middle
superior

temporal sulcus

Touch
T-ma
p

Suvilehto et
al., 202111

Touch is delivered by
confederates on the
upper thigh of the
participants

Touch
stimulation
VS. Baseline

Insular, primary
and secondary
somatosensory

cortex
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Relationship between cognitive domains branches

The neuron-shaped architecture of the morphospace clusters cognitive domains within each branch,

with the position of each branch reflecting the relationship between the domains. For instance, the

close position of the vision and attention branches with regard to others reflects the anatomical

overlap between activations related to vision paradigms, from simple stimuli observation to

eye-tracking paradigms, and with attentional networks12. Vision and action activations are also closely

located in the morphospace, and their interaction is known to manifest as embodiment mechanisms

(e.g. rubber hand illusion13). Motor cognition and somatosensory mechanisms are jointly recruited

during a movement to ensure online control and the successful outcome of the performance14. Further,

the clusterisation of the domains within the morphospace shows that the emotion and somatosensory

domains are adjacents, reflecting bodily signal generation and processing of emotional responses15-17.

Emotions and somatic responses guide decision-making18 as confirmed by the proximity of Emotion

and Decision-making within the morphospace. The joint contribution of learning and memory allows

humans to orient in social experiences19, thus their close clusterisation in the space. Contextualisation

of memories occurs by assigning meaning and words to encoded items20, and language has been

ascribed as part of the working memory as the phonological loop component21. Accordingly, memory,

language, and working memory have interrelated aspects and follow one another in the morphospace.

The auditory cognition clusters far away from the other domains. The striking difference in the

anatomical pattern of auditory-modality fMRI task opens further queries on the possible influence of

stimuli modality in activation studies.

Brain structures of the predictability map

The cerebral regions associated with high predictability indices exhibit a strong correlation with the

gradients that explain overall brain activity in particular areas of auditory and motor processing22. The

superior temporal cortex has been shown to contribute to auditory cognition23 and processing of the

object's spatial features24, while medial temporal cortices such as the rhinal cortex, hippocampus, and

amygdala play a role in memory25-28 and stimuli representation (e.g. objects, faces, and scenes)29. The

premotor cortex contributes to action planning30 and speech31, while the FEF and PEF are involved in

visual target detection32,33. An extensive range of functions for the implementation of voluntary action,

such as timing, sensory predictions, sequence implementation, and inhibition of concurrent

movements, involve the SMA and pre-SMA areas34-36. Finally, the involvement of Broca's area as a

hub of the language network in the brain has been extensively confirmed by the literature since its

first description by Broca in 186131,37,38. Prediction, learning and reward mechanisms emerge from the

activity of subcortical structures such as the basal ganglia and its connections39,40 as well as the medial

temporal lobe structures41.
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Replication of the morphospace space architecture in 2021 dataset

In order to assess the morphospace reliability in terms of clustering cognitive domains and their

spatial positioning, the Euclidean distances between the morphospace maps were compared to the

distances in a three-dimensional space built using the updated 2021 version of the 2017 meta-analytic

maps. A total of 506 maps were obtained from the Neurosynth repository and matched with the 2017

dataset terms. No thresholding was applied to the 2021 meta-analytic maps as the newer version of

Neurosynth automatically corrects for multiple comparisons by applying a threshold of z ≥ 3.4. The

maps underwent parcellation using the Glasser and colleagues42 and

AAL343,44 atlases delineated by our group.

The Uniform Manifold Approximation and Projection (UMAP45) algorithm was applied to reduce the

dimensionality of the parcelled 2021 meta-analytic dataset in a three-dimensional space, and UMAP

default parameter values were used. Specifically, the algorithm used the information of 15 local

neighbours to learn the manifold structure of the data points; 0.1 minimum distance was allowed by

the algorithm to pack the data; the Euclidean metric was used for the data embedding.

Using Python (https://github.com/vale-pak/BCS.git), the Euclidean distances between the 2021

three-dimensional space maps were computed and subsequently compared with those of the 2017

morphospace meta-analytic maps. Pearson’s correlations revealed a positive correlation (r = 0.53),

affirming that the cognitive domain clusterisation and positioning observed in 2017 can be reliably

replicated in later versions of the dataset.
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