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Tidal disruptions of stars on the equatorial plane orbiting Kerr black holes have been widely
studied. However thus far, there have been fewer studies of stars in inclined precessing orbits
around a Kerr black hole. In this paper, we use the tensor virial equations to show the presence
of possible resonances in these systems for typical physical parameters of black hole-neutron star
binaries in close orbits or of a white dwarf/an ordinary star orbiting a supermassive black hole. This
suggests the presence of a new instability before the tidal disruption limit is encountered in such
systems.

I. INTRODUCTION

The classical Roche problem studies the equilibrium
and stability of a self-gravitating fluid in a binary sys-
tem. Its main result is the presence of a critical orbital
distance, the so-called Roche limit, below which there
is no stable configuration, i.e., mass shedding and tidal
disruption of the star are induced [1, 2]. Extensions of
these results to eccentric orbits have also been the fo-
cus of some studies [3, 4]. Furthermore, the concept of
the Roche limit has been extended to general relativistic
scenarios, such as when the binary companion is a black
hole (BH) [5–8]. The previous studies for this focused on
the star in circular equatorial orbits around the BH, and
to our knowledge, the only exception is [9].

In this paper, we study the case of a star in a circu-
lar orbit on the non-equatorial plane around a spinning
BH. To study this, as a first step, we assume that the
star is incompressible and utilize the tensor virial for-
malism developed by Chandrasekhar [2]. This formalism
has generally been used to study the assumed ellipsoidal
shape of a self-gravitating fluid and provided a number
of knowledge on the equilibrium and stability of the stars
qualitatively.

After reviewing the previous results, we show the pres-
ence of a resonance when the orbit has an inclination with
respect to the equatorial plane. To compute the impact
of the inclination on the shape of the star, we use a per-
turbative expansion assuming that the inclination angle
is small: We perform this expansion up to the second or-
der in the angle of the inclined orbit ε = θ−π/2 and show
that the resulting equations take a linear form, which is
usually solvable. When this is not the case, we posit a
new kind of a resonance for such systems. We show that
the resonances can play an important role in the evolu-
tion of BH-neutron star (NS) binaries in close orbits or of
a white dwarf/an ordinary star orbiting a supermassive
BH.

∗ matteo.stockinger@aei.mpg.de

This paper is organized as follows: In Sec. II, we
present the working assumptions and the tensor virial
equations adapted to our system, by which we derive
the equilibrium solution of a star on an equatorial orbit
around a BH [5–8]. In Sec. III, we present our method
for the perturbative expansion, which we apply up to the
second order in ε. In Sec. IV, we show the presence of
new resonances in these systems, using the equations de-
rived in Sec. III. Finally, we discuss the implications of
our findings in Sec. V. Throughout this paper, we use the
geometrical units of c = G = 1 where c and G are the
speed of light and gravitational constant, respectively.
We will not use the Einstein summation convention.

II. FRAMEWORK OF THE SYSTEM

A. System

The purpose of this paper is to study the tidal effect
on a star orbiting a Kerr BH. We assume that the star
is modeled by an incompressible fluid of mass M and
constant density ρ. This star is assumed to have an
ellipsoidal shape determined by its principal semi-axes
(a1, a2, a3). We assume that it orbits a spinning BH
of mass m and of spin parameter a. When referencing
its position relative to the BH, we will use the Boyer-
Lindquist coordinates in which the line element is written
as

ds2 = −∆

Σ
(dt− a sin2 θdϕ)2+

sin2 θ

Σ
[(r2 + a2)dφ− adt]2 +

Σ

∆
dr2 +Σdθ2, (1)

where ∆ = r2 − 2mr + a2 and Σ = r2 + a2 cos2 θ. In the
following we assume thatM ≪ m and do not consider the
self-gravitating effect of the stars on the orbital motion
around the BH. That is, we assume that the star has a
geodesic orbit around the BH.
To study the effect on the stars of the tidal force from

the BH, we prepare Fermi-normal coordinates on the
geodesics [10]. The tidal force acting on the star by the
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BH is evaluated in the local inertial frame on the Fermi-
normal coordinates. This allows us to treat the problem
in the similar way to Newtonian hydrodynamics.

The geodesics on the Kerr spacetime are described by
the four constants of motion, E: specific energy, L: spe-
cific angular momentum for the BH spin direction, K:
the Carter constant [11], and the mass of the star. The
geodesic equations are written as (e.g., [12])

dt

dτ
=

[(r2 + a2)2 −∆a2 sin2 θ]E − 2mraL

∆Σ
,(2)

Σ2

(
dr

dτ

)2

=
{
E(r2 + a2)− aL

}2 −∆(r2 +K)

:= R(r), (3)

Σ2

(
dθ

dτ

)2

= K − a2 cos2 θ − (aE sin2 θ − L)2

sin2 θ
(4)

dφ

dτ
=

1

∆

[
2mraE

Σ
+

(
1− 2mr

Σ

)
L

sin2 θ

]
, (5)

where τ is an affine parameter of the geodesics. In this
paper, we will assume that the star has a circular orbit
with a fixed value of r = r0; R = 0 = dR/dr = 0 at
r = r0. These relations give us the two relations among
E, L, and K.

In this paper, we consider precessing orbits with re-
spect to the equatorial plane, i.e., θ ̸= π/2. For a given
maximum value of θ for the orbit, we then have an addi-
tional relation among E, L, and K, and thus, these quan-
tities are written as a function of r0 (see, e.g., [13, 14]).

In the inertial frame defined above, we refer to the axes
of the corresponding orthonormal basis as 1, 2, and 3. We
assume that the axis 3 points in the same direction as the
orbital angular momentum of the fluid or in other words,
the direction of (∂/∂θ)µ. Note that our 2 and 3 axes
agree with the 3 and 2 axes of [10], and that we changed
the direction of our 2-axis. Assuming that the stellar
radius, Rstar, is much smaller than the orbital separation
to the BH, r0, one can write the tidal tensor as [10]

C11 =
(
1− 3

ST (r2 − a2 cos2 θ)

KΣ2
cos2 Ψ

)
Ia

+6ar cos θ
ST

KΣ2
cos2 ΨIb, (6)

C22 =
(
1− 3

ST (r2 − a2 cos2 θ)

KΣ2
sin2 Ψ

)
Ia

+6ar cos θ
ST

KΣ2
sin2 ΨIb, (7)

C33 =
(
1 + 3

r2T 2 − a2 cos2 θS2

KΣ2

)
Ia

−6ar cos θ
ST

KΣ2
Ib, (8)

C12 = −3
[
(a2 cos2 θ − r2)Ia

+2ar cos θIb

] ST

KΣ2
cosΨ sinΨ, (9)

C13 = 3
[
− ar cos θ(S + T )Ia

+(a2 cos2 θS − r2T )Ib

]√ST

KΣ2
cosΨ, (10)

C23 = −3
[
− ar cos θ(S + T )Ia

+(a2 cos2 θS − r2T )Ib

]√ST

KΣ2
sinΨ, (11)

where

Ia =
mr

Σ3
(r2 − 3a2 cos2 θ), (12)

Ib =
ma cos θ

Σ3
(3r2 − a2 cos2 θ), (13)

S = r2+K, T = K−a2 cos2 θ, and Ψ is a time-dependent
angle which obeys the following equation [10]

dΨ

dτ
=

√
K

Σ

(
E(r2 + a2)− aL

r2 +K
+ a

L− aE sin2 θ

K − a2 cos2 θ

)
.

(14)
We note that higher-order corrections in Rstar/r0 for the
tidal tensors are found in [15]. One important aspect of
the tidal tensor is that C23 and C13 are non-zero only
in the presence of the BH spin and for θ ̸= π/2. This
implies that for a star in precessing orbits around a Kerr
BH, a qualitatively new tidal force, which is absent in
Newtonian gravity, is exerted.
The expression of the tidal tensor can be simplified by

changing the frame we are working on. Indeed in a rotat-

ing frame of rotation Ω⃗ along the 3-axis with magnitude
Ω = dΨ/dτ , the tidal tensor is simplified as [10]

C̃11 =
(
1− 3

ST (r2 − a2 cos2 θ)

KΣ2

)
Ia

+ 6ar cos θ
ST

KΣ2
Ib, (15)

C̃22 = Ia, (16)

C̃33 =
(
1 + 3

r2T 2 − a2 cos2 θS2

KΣ2

)
Ia

− 6ar cos θ
ST

KΣ2
Ib, (17)

C̃12 = 0, (18)

C̃13 = 3
[
− ar cos θ(S + T )Ia

+ (a2 cos2 θS − r2T )Ib

]√ST

KΣ2
, (19)

C̃23 = 0. (20)

In the following, all the analyses will be carried out in
this frame.

B. Tensor virial equations

As already stated in Sec. I, we employ the tensor virial
equations [2, 16] to study the equilibrium state of stars
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orbiting a Kerr BH. The hydrodynamics equation for the
fluid on the local inertial frame is written as

ρ
dUi

dτ
= − ∂P

∂Xi
− ρ

∂ϕ

∂Xi
− ρ

3∑
l=1

CilXl, (21)

where Xi = (X1, X2, X3) denote the coordinates in the
local inertial frame, Ui is the velocity field of the star, P
the pressure, and ϕ the Newtonian potential of the fluid,
which obeys the Poisson equation as

△ ϕ = 4πρ, (22)

where △ denotes the Laplacian in the flat space. We as-
sume that the self-gravity of the star is not so strong that
the equation of motion is written as in the Newtonian
case. We have to keep in mind that this can introduce
an error of the size of GM/c2Rstar in considering NSs as
the star.

As seen above, it is preferable to work in a rotating

frame of angular velocity vector Ω⃗, as this simplifies the
expression of the tidal tensor. In this case, the equation
of motion is rewritten as

ρ
dui

dτ
= − ∂P

∂xi
− ρ

∂ϕ

∂xi
+ ρ(Ω2xi − δi3Ω

2x3)

+ 2ρ

3∑
l=1

ϵil3ulΩ+ ρ

3∑
l=1

ϵil3xlΩ̇− ρ

3∑
l=1

C̃ilxl, (23)

where xi and ui denote the coordinates and the velocity
field of the star in the rotating frame, δij is the Kronecker
delta, ϵijk is the completely antisymmetric tensor in 3

dimensions, and Ω̇ = dΩ/dτ .

We then assume that the pressure is given by

P = pc

(
1−

3∑
i=1

x2
i

a2i

)
, (24)

where pc is the central pressure and ai (i = 1–3) denote
the axial lengths of the star for the corresponding direc-
tions. This setting enables us to assume that the velocity
depends linearly on the position as

ui =

3∑
k=1

Qikxk, (25)

where Qik is a matrix to be defined.

We now follow the method developed by Chan-
drasekhar to derive the second-rank tensor virial equa-
tions [2]. First, we multiply xj to Eq. (23) and integrate

over the volume V of the entire star. Then we obtain∫
V

ρ
dui

dτ
xjd

3x = −
∫
V

∂P

∂xi
xjd

3x−
∫
V

ρ
∂ϕ

∂xi
xjd

3x

+

∫
V

ρ(Ω2xi − δi3Ω
2x3)xjd

3x

+ 2Ω

3∑
l=1

ϵil3

∫
V

ulxjd
3x+

3∑
l=1

ϵil3Ω̇

∫
V

xlxjd
3x

−
3∑

l=1

∫
V

ρC̃ilxlxjd
3x. (26)

To rewrite this equation, we introduce the following in-
tegral variables:

Iij =

∫
V

ρxixjd
3x, (27)

2Tij =

∫
V

ρuiujd
3x =

3∑
k=1

3∑
l=1

QikQjlIkl, (28)

Jij =

∫
V

ρuixjd
3x =

3∑
k=1

QikIkj , (29)

Mij = −
∫
V

ρxi∂jϕd
3x, (30)

Π =

∫
V

Pd3x. (31)

Then, Eq. (26) is written as

d

dτ
Jij = 2Tij +Πδij +Mij +Ω2Iij − δi3Ω

2I3j

+ 2Ω

3∑
l=1

ϵil3Jlj +

3∑
l=1

ϵil3Ω̇Ilj −
3∑

l=1

C̃ilIlj . (32)

From this, we can deduce the symmetrized version

1

2

d2

dτ2
Iij = 2Tij +Πδij +Mij

+Ω2

[
Iij −

1

2
(δi3I3j + δj3I3i)

]
+Ω

3∑
l=1

(ϵil3Jlj + ϵjl3Jli)

+
1

2
Ω̇

3∑
l=1

(ϵil3Ilj + ϵjl3Ili)

−1

2

3∑
l=1

(C̃ilIlj + C̃jlIli), (33)

and the antisymmetrized version of the tensor virial re-
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lation [16],

d

dτ
(Jij − Jji) = −Ω2(δi3I3j − δj3I3i)

+2Ω

3∑
l=1

(ϵil3Jlj − ϵjl3Jli)

+Ω̇

3∑
l=1

(ϵil3Ilj − ϵjl3Ili)

−
3∑

l=1

(C̃ilIlj − C̃jlIli). (34)

Equation (34) is interpreted as the evolution equation of
the angular momentum.

Equation (32) will serve as our basis for the exploration
of the influence of the tidal force on stars orbiting a Kerr
BH.

C. Equatorial plane case

When the star orbits a BH on its equatorial plane, the
equations become analytically solvable. Although this
case was already studied in [8], we will here restate the
main results, as they serve as the zeroth-order solutions
for the main problem in this paper.

Assuming that the star is in equilibrium, Eq. (33) is
written as

0 = 2Tij +Πδij +Mij +Ω2

[
Iij −

1

2
(δi3I3j + δj3I3i)

]
+Ω

3∑
l=1

(ϵil3Jlj + ϵjl3Jli)−
1

2

3∑
k=1

(C̃ikIkj + C̃jkIki),

(35)

while Eq. (34) is trivially satisfied because Ω̇ = 0 and

off-diagonal components of C̃ij vanish: In this case, the
non-zero components of the tidal tensor are

C̃11 = Ω2
0

(
1− 3

∆0

P0

)
, (36)

C̃22 = Ω2
0, (37)

C̃33 = Ω2
0

(
− 2 + 3

∆0

P0

)
, (38)

where Ω2
0 = m/r30 [6], ∆0 = r20 − 2mr0 + a2, and P0 =

r20 − 3mr0 + 2am1/2r
1/2
0 . Like in the standard Roche

problem, we can assume that the principal axes of the
ellipsoid coincide with the axes of our frame. Thus, we
have [2]

Iij =
1

5
Ma2i δij , (39)

Mij = −2πρAiIij , (40)

Aj = a1a2a3

∫ ∞

0

du

D(a2j + u)
, (41)

where

D =
√

(a21 + u)(a22 + u)(a23 + u). (42)

As we assume that the internal motion is characterized
by a vorticity around the 3-axis, we set

Q = Λ

 0 a1a
−1
2 0

−a−1
1 a2 0 0
0 0 0

 , (43)

where Λ is the magnitude of the vorticity. The circulation
of the star in the inertial frame is then written as

CΓ = πa1a2

(
2Ω0 −

a21 + a22
a1a2

Λ

)
= 2πa1a2Ω0(1− f), (44)

where

f =
a21 + a22
2a1a2

Λ

Ω0
. (45)

In this paper, we pay attention to the cases of f = 0 and
f = 1. For f = 0, the fluid has no internal motion in
the rotating frame, while in the inertial frame, the fluid’s
internal motion comes only from the rotation. On the
other hand, for f = 1, the fluid has a certain vorticity in
the rotating frame, while in the inertial frame, the fluid
does not have any circulation. We refer to this case as
irrotational Roche-Riemann ellipsoid (IRRE) [2]. It has
been shown that this velocity configuration is typically
(approximately) satisfied for binary neutron stars and
BH-NS binaries in the late inspiraling stage [17, 18].
In the case of equatorial orbits, Eq. (35) becomes

0 = Λ̃2 − 2α2Ω̃Λ̃− 2A1 + 2
pc

πρ2a21
+ 3Ω̃2∆0

P0
, (46)

0 = α2
2Λ̃

2 − 2α2Ω̃Λ̃− 2α2
2A2 + 2

pc
πρ2a21

, (47)

0 = −2α2
3A3 + 2

pc
πρ2a21

− α2
3Ω̃

2

(
3
∆0

P0
− 2

)
, (48)

where we defined dimensionless quantities, α2 := a2/a1,

α3 := a3/a1, Ω̃ := Ω0/(πρ)
1/2, and Λ̃ := Λ/(πρ)1/2.

After fixing f and eliminating pc/(πρ
2a21), we can de-

termine α2 and Ω̃ as functions of α3. We plot the the
relations between Ω̃ and α3 for f = 0 and f = 1 in
Fig. 1, which agree with those in [8].

One notices that Ω̃ reaches a maximum value Ω̃crit cor-
responding to α3,crit. Above this value, there is no possi-
ble equilibrium configuration of the star. This gives the
relativistic Roche limit, already computed in [5, 8]. As
in [8], we find that at the innermost stable circular orbit

(ISCO) Ω̃2
crit ≈ 0.06364 for f = 1, and Ω̃2

crit ≈ 0.06640
for f = 0 [5]. As in the classical case, one can expect that
the star is unstable against mass shedding/tidal disrup-
tion for α3 < α3,crit and stable for α3 > α3,crit. Thus,
for a given value of ρ, Ω has a maximum value, i.e., the
orbital separation r0 has a minimum value, and for the
smaller orbital separation, the star should start the tidal
disruption process.
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FIG. 1. Ω̃2 as a function of arccos(α3)/(π/2) at the ISCO for
f = 0 and f = 1. We note that ∆0/P0 = 4/3 at the ISCO
irrespective of the dimensionless spin parameter, a/m, and
hence, the curves are universal irrespective of a/m.

III. STARS IN SLIGHTLY PRECESSING
ORBITS

A. Method for the expansion

We now explore the cases that the star does not lie
on the equatorial plane. For this, we perform perturba-
tive calculations using ε = θ − π/2 as an infinitesimal
parameter. The zeroth-order solution is determined by
the equations for the equatorial orbits reviewed in the
previous section. We then need to consider a small per-
turbation away from this configuration for 0 < ε ≪ 1.
By perturbing the equatorial solution, we do not pro-

vide any change to the Roche limit for stars in spherical
orbit as in [9]. However this method enables us to study
more in detail the dynamical behavior of the star. In
particular we do not restrict the motion of the fluid to
be in the 1-2 plane. While we assume such a motion
in the equatorial case, we should expect a wider range
of motions due to the non-diagonal elements of the tidal
tensor. This intuition will be confirmed in the following
analyses.

To obtain the perturbed configuration, we assume that
every fluid element is displaced as xi → xi + ξi where
ξi is an infinitesimal displacement. For this, we as-
sume the form of ξi =

∑3
j=1 ξijxj , which can satisfy

the perturbation equations for the incompressible fluid
self-consistently (see below). Furthermore, to solve this
system in such an assumption, it is sufficient to consider
the modified second-rank tensor virial equations [2] to-
gether with the incompressible condition, which leads to

ξ11 + ξ22 + ξ33 = 0. (49)

The displacement will depend on time, as the orbital
value of θ does too. Thus, as a first step, we have to

determine the time-dependent orbital motion. To do this
we analyze the geodesic equation for θ, Eq. (4), which is
rewritten for ε = θ − π/2 ≪ 1 as (e.g., [19])

r4
(
dε

dτ

)2

= C − ε2
[
a2(1− E2

0) + L2
0

]
, (50)

where C = K − (L− aE)2, which vanishes for equatorial
orbits, and we took into account the terms atO(ε2). Note
that E0 and L0 denote E and L for equatorial circular
orbits [12] while for C we need the second-order quantities
in ε. Then, for r = r0, we obtain

ε(τ) = ε0 cos(ωθτ), (51)

where

ωθ =

√
L2
0 + a2(1− E2

0)

r20

=

√
r20 − 4a

√
mr0 + 3a2

P0
Ω0, (52)

ε0 =

√
C

ωθ
. (53)

Here ε0 and
√
C are first-order parameters which we will

use for the perturbative expansion. It is worthy to note
at this stage that cos θ(τ) = −ε(τ) at the first order.

We consider a spherical orbit with always the same
radius r0 but different values of θ. Following [14], to
study the orbit of the star, we fix r0 and C and deduce the
other parameters from R = 0 = dR/dr at r = r0. Thus,
E, L, and K depend on the inclination angle ε0. These
changes occur at the second order in ε0 (see appendix).

The tidal tensor components can be decomposed using
a Taylor expansion around θ = π/2 :

C̃ij =

∞∑
k=0

C̃
(k)
ij εk. (54)

The components only contain even-order contributions,
if its indices are even in the component 3, and odd-order
contributions, if its indices are odd in the component 3.

Likewise, we write Ω and Ω̇ as a Taylor expansion,
which contain only the terms of even power in ε. We

note Ω0 =

√
m

r30
at the zeroth order of Ω.

We do the same for the displacement coefficients ξij .
By considering the symmetry x3 → −x3, one can con-
strain the expression of the displacement. We thus have
that if the indices of the displacement are odd in the com-
ponent 3, then the series expansion only contains terms
of odd power in ε, and likewise for indices even in the
component 3, the series expansion only contains terms of
even power in ε.

Following [2], the integrals associated with a displace-
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ment ξi of the fluid are given as

2δTij =

3∑
k=1

[
Qjk

dVi;k

dτ
+Qik

dVj;k

dτ

− ((Q2)jkVi;k + (Q2)ikVj;k)

]
, (55)

δIij = Vi;j + Vj;i, (56)

δMij = −2πρBijVij + πρa2i δij

3∑
l=1

AilVll, (57)

δΠ =

∫
V

δPd3x, (58)

δ
d

dτ

∫
V

ρuixjd
3x =

d2Vi;j

dτ2

+

3∑
k=1

[
Qik

dVj;k

dτ
−Qjk

dVi;k

dτ

]
,(59)

δ

∫
V

ρuixjd
3x =

dVi;j

dτ
+

3∑
k=1

[QikVj;k −QjkVi;k] ,(60)

where

Vi;j =

∫
V

ρξixjd
3x = ξijIjj , (61)

Bij = a1a2a3

∫ ∞

0

udu

D(a2i + u)(a2j + u)
, (62)

Aij = a1a2a3

∫ ∞

0

du

D(a2i + u)(a2j + u)
. (63)

The resulting equations can be divided in two types as
shown in the subsequent subsections. In the following,
we only consider equations which contain non-zero con-
tributions of lower-order solutions of the fluid. This al-
lows us to focus only on the displacement induced by the
inclination of the orbit.

B. First-order calculations

To solve the first-order equations for the displacement,
we select only the contribution of order ε0 in the equa-
tion. If we start from Eq. (32), this gives us

d2

dτ2
Vi;j − 2

3∑
k=1

Qjk
dVi;k

dτ
= −

3∑
l=1

((Q2)jlVi;l + (Q2)ilVj;l)− 2πρBijVij + πρa2i δij

3∑
l=1

AilVll

+Ω2
0Vij − δi3Ω

2
0V3j + δijδΠ+ 2

3∑
l=1

ϵil3Ω0

(
d

dτ
Vl;j +

3∑
k=1

(QlkVj;k −QjkVl;k)

)
−

3∑
k=1

C̃
(0)
ik Vkj −

3∑
k=1

C̃
(1)
ik Ikj , (64)

with Vij = Vi;j + Vj;i.

As before, we can write the corresponding sym-
metrized and antisymmetrized equations. We only
need to consider four of these equations at first or-
der. Indeed only the equations for the indices (i, j) =
(1, 3), (3, 1), (2, 3), (3, 2) contain the non-zero contribu-
tion from the inertia tensor.

Since the first-order perturbative quantities should
vary periodically in time with the angular velocity ωθ,
we use the ansatz for the variables as

V1;3 = V
(1)
1;3 cos(ωθτ), (65)

V3;1 = V
(1)
3;1 cos(ωθτ), (66)

V2;3 = V
(1)
2;3 sin(ωθτ), (67)

V3;2 = V
(1)
3;2 sin(ωθτ). (68)

Then the symmetrized equations become

(−ω2
θ + 4πρB13 − Ω2

0 + C̃11 + C̃33)V
(1)
1;3

+(−ω2
θ + 4πρB13 − Ω2

0 − 2Λ2

+2Ω0Λα2 + C̃11 + C̃33)V
(1)
3;1

−2Ω0ωθV
(1)
2;3 − 2Λωθα

−1
2 V

(1)
3;2 = −MC̃

(1)
13

a23 + a21
5

,(69)

(−ω2
θ + 4πρB23 − Ω2

0 + C̃22 + C̃33)V
(1)
2;3

+(−ω2
θ + 4πρB23 − Ω2

0 − 2Λ2

+2Ω0Λα
−1
2 + C̃22 + C̃33)V

(1)
3;2

−2Ω0ωθV
(1)
1;3 − 2Λωθα2V

(1)
3;1 = 0, (70)
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while the antisymmetrized equations are

(−ω2
θ − Ω2

0 + C̃11 − C̃33)V
(1)
1;3

+(ω2
θ − Ω2

0 + 2Ω0Λα2 + C̃11 − C̃33)V
(1)
3;1

−2Ω0ωθV
(1)
2;3 + 2Λωθα

−1
2 V

(1)
3;2 = −MC̃

(1)
13

a23 − a21
5

,(71)

(−ω2
θ − Ω2

0 + C̃22 − C̃33)V
(1)
2;3

+(ω2
θ − Ω2

0 + 2Ω0Λα
−1
2 + C̃22 − C̃33)V

(1)
3;2

−2Ω0ωθV
(1)
1;3 + 2Λωθα2V

(1)
3;1 = 0. (72)

These equations can be recasted as a matrix equation

4∑
k=1

M
(1)
ik V

(1)
k = C

(1)
i , (73)

where

V
(1)
i = (V

(1)
1;3 , V

(1)
3;1 , V

(1)
2;3 , V

(1)
3;2 ), (74)

C
(1)
i = −MC̃

(1)
13

5
(a23 + a21, a

2
3 − a21, 0, 0), (75)

C̃13 = C̃
(1)
13 cos(ωθτ)

= 3aε0 cos(ωθτ)
m
√
r20 +K0(r

2
0 + 5K0)√

K0r6
, (76)

and

M
(1)
11 =− ω2

θ + 4πρB13 − Ω2
0 + C̃11 + C̃33,

M
(1)
12 =− ω2

θ + 4πρB13 − Ω2
0 − 2Λ2

+ 2Ω0Λα2 + C̃11 + C̃33,

M
(1)
13 =− 2Ω0ωθ,

M
(1)
14 =− 2Λωθα

−1
2 ,

(77)

M
(1)
21 =− 2Ω0ωθ,

M
(1)
22 =− 2Λωθα2,

M
(1)
23 =− ω2

θ + 4πρB23 − Ω2
0 + C̃22 + C̃33,

M
(1)
24 =− ω2

θ + 4πρB23 − Ω2
0 − 2Λ2

+ 2Ω0Λα
−1
2 + C̃22 + C̃33,

(78)

M
(1)
31 =− ω2

θ − Ω2
0 + C̃11 − C̃33,

M
(1)
32 =ω2

θ − Ω2
0 + 2Ω0Λα2 + C̃11 − C̃33,

M
(1)
33 =− 2Ω0ωθ,

M
(1)
34 =2Λωθα

−1
2 ,

(79)

M
(1)
41 =− 2Ω0ωθ,

M
(1)
42 =2Λωθα2,

M
(1)
43 =− ω2

θ − Ω2
0 + C̃22 − C̃33,

M
(1)
44 =ω2

θ − Ω2
0 + 2Ω0Λα

−1
2 + C̃22 − C̃33.

(80)

Note that all the components of M
(1)
ij and C

(1)
i are writ-

ten in the zeroth-order quantities, and hence, the solu-

tion for V
(1)
k is obtained straightforwardly by inverting

the matrix equation (see Sec. IV).

C. Second-order calculations

To find the second-order equations, we need to take
into account second-order corrections to Ω and Ω̇ for the
equations. We denote the former as Ω = Ω0 + Ω(2) +
O(ε40). The second-order corrections to Ω and Ω̇ are given
in the appendix B.

One must not forget quadratic contributions from the
first order perturbations. Indeed the total moment of
inertia tensor computed up to the second order is

Itotij =

∫
V

(xi + ξ
(1)
ik xk + ξ

(2)
ik xk)(xj + ξ

(1)
jl xl + ξ

(2)
jl xl)d

3x

= I
(0)
ij + V

(1)
ij + V

(2)
ij +

5

Ma2k
V

(1)
i;k V

(1)
j;k +O(ε3). (81)

We will in the following abbreviate these contributions

to Qij(V
(1)
k;l ), while giving them their complete form in

the appendix B. Given our displacement, these terms are
non-zero only when (i, j) is even on the component 3.
For the second-order perturbation, we only need to

consider the even terms on the component 3. We then
have five equations. By adding Eq. (49), we obtain six
equations for six variables, V1;1, V2;2, V3;3, V1;2, V2;1, and
δΠ.
Eliminating δΠ from the equations, and using the re-

lations

− 2B11V11 + a21

3∑
l=1

A1lVll + 2B33V33 − a23

3∑
l=1

A3lVll

= −(3B11−B13)V11+(B23−B12)V22+(3B33−B13)V33,
(82)

we obtain( d2

dτ2
+ 2πρ(3B11 −B13)− 2Ω2

0 − 2Λ2 + 2Ω0Λα2

+ 2C̃11

)
V1;1 + (−2πρ(B23 −B12) + 2Ω0Λα

−1
2 )V2;2

+
(
− d2

dτ2
− 2πρ(3B33 −B13)− 2C̃33

)
V3;3

−2Λα−1
2

d

dτ
V1;2 − 2Ω0

d

dτ
V2;1

= −C̃
(2)
11 I11 + C̃

(2)
33 I33 + 4Ω(2)(Ω0 − Λα2)I11 +Q11(V

(1)
k;l ),

(83)
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(−2πρ(B13 −B12) + 2Ω0Λα2)V1;1

+
( d2

dτ2
+ 2πρ(3B22 −B23)− 2Ω2

0 − 2Λ2 + 2Ω0Λα
−1
2

+2C̃22

)
V2;2 +

(
− d2

dτ2
− 2πρ(3B33 −B23)− 2C̃33

)
V3;3

+2Ω0
d

dτ
V1;2 + 2Λα2

d

dτ
V2;1

= −C̃
(2)
22 I22 + C̃

(2)
33 I33 + C̃13(V3;1 + V1;3)

+ 4Ω(2)(Ω0 − Λα−1
2 )I22 +Q22(V

(1)
k;l ), (84)

(2Λα2 + 2Ω0)
d

dτ
V1;1 − (2Ω0 + 2Λα−1

2 )
d

dτ
V2;2

+
( d2

dτ2
+ 4πρB12 − 2Ω2

0 − 2Λ2 + C̃11 + C̃22

)
V1;2

+
( d2

dτ2
+ 4πρB12 − 2Ω2

0 − 2Λ2 + C̃11 + C̃22

)
V2;1

= −2C̃13(V3;2 + V2;3) + Ω̇(I22 − I11)

+Q12(V
(1)
k;l ) +Q21(V

(1)
k;l ), (85)

(2Λα2 − 2Ω0)
d

dτ
V1;1 − (2Ω0 − 2Λα−1

2 )
d

dτ
V2;2

+
( d2

dτ2
+ C̃11 − C̃22

)
V1;2

+
(
− d2

dτ2
+ C̃11 − C̃22

)
V2;1

= Ω̇(I22 + I11) +Q12(V
(1)
k;l )−Q21(V

(1)
k;l ), (86)

and

V1;1 +
1

α2
2

V2;2 +
1

α2
3

V3;3 =

3∑
k=1

3∑
l=1

V
(1)
k;l V

(1)
l;k

2α2
kα

2
l

. (87)

There is an additional subtlety in this second-order
equations since the right hand side of the equations has
two different time dependence because of ε2(t) = ε20[1 +
cos(2ωθτ)]/2. That is, there is a contribution from the
constant terms and from the terms of angular velocity
2ωθ.

We must treat the different time dependence sepa-
rately. We thus separate the terms of different frequen-
cies and make the ansatz

V1;1 = V
(2,0)
1;1 + V

(2,2)
1;1 cos(2ωθτ),

V2;2 = V
(2,0)
2;2 + V

(2,2)
2;2 cos(2ωθτ),

V3;3 = V
(2,0)
3;3 + V

(2,2)
3;3 cos(2ωθτ),

V1;2 = V
(2,0)
1;2 + V

(2,2)
1;2 sin(2ωθτ),

V2;1 = V
(2,0)
2;1 + V

(2,2)
2;1 sin(2ωθτ).

(88)

We then separate the source terms in the same way:

C̃
(2)
11 = C̃

(2,0)
11 + C̃

(2,2)
11 cos(2ωθτ),

C̃
(2)
22 = C̃

(2,0)
22 + C̃

(2,2)
22 cos(2ωθτ),

C̃
(2)
33 = C̃

(2,0)
33 + C̃

(2,2)
33 cos(2ωθτ),

Ω(2) = Ω(2,0) +Ω(2,2) cos(2ωθτ),

Ω̇ = Ω̇(2) sin(2ωθτ),

C̃13(V3;1 + V1;3) =
C̃

(1)
13 (V

(1)
3;1 + V

(1)
1;3 )

2
[1 + cos(2ωθτ)],

C̃13(V3;2 + V2;3) =
C̃

(1)
13 (V

(1)
3;2 + V

(1)
2;3 )

2
sin(2ωθτ).

(89)

For the complete expression of these terms, we refer the
reader to the appendix.

As before, we write the corresponding equations using
the matrix notation

3∑
k=1

M
(2,2)
ik V

(2,2)
k = C

(2,2)
i , (90)

where

M
(2,2)
11 =− 4ω2

θ + 2πρ(3B11 −B13)

− 2Ω2
0 − 2Λ2 + 2Ω0Λα2 + 2C̃11,

M
(2,2)
12 =− 2πρ(B23 −B12) + 2Ω0Λα

−1
2 ,

M
(2,2)
13 =4ω2

θ − 2πρ(3B33 −B13)− 2C̃33,

M
(2,2)
14 =− 4Λωθα

−1
2 ,

M
(2,2)
15 =− 4Ω0ωθ,

(91)

M
(2,2)
21 =− 2πρ(B13 −B12) + 2Ω0Λα2,

M
(2,2)
22 =− 4ω2

θ + 2πρ(3B22 −B23)

− 2Ω2
0 − 2Λ2 + 2Ω0Λα

−1
2 + 2C̃22,

M
(2,2)
23 =4ω2

θ − 2πρ(3B33 −B23)− 2C̃33,

M
(2,2)
24 =4Ω0ωθ,

M
(2,2)
25 =4Λωθα2,

(92)

M
(2,2)
31 =(−4Λα2 − 4Ω0)ωθ,

M
(2,2)
32 =(4Λα−1

2 + 4Ω0)ωθ,

M
(2,2)
33 =0,

M
(2,2)
34 =− 4ω2

θ + 4πρB12 − 2Ω2
0 − 2Λ2 + C̃11 + C̃22,

M
(2,2)
35 =− 4ω2

θ + 4πρB12 − 2Ω2
0 − 2Λ2 + C̃11 + C̃22,

(93)
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M
(2,2)
41 =(−4Λα2 + 4Ω0)ωθ,

M
(2,2)
42 =(−4Λα−1

2 + 4Ω0)ωθ,

M
(2,2)
43 =0,

M
(2,2)
44 =− 4ω2

θ + C̃11 − C̃22,

M
(2,2)
45 =4ω2

θ + C̃11 − C̃22,

(94)

M
(2,2)
51 =1,

M
(2,2)
52 =

1

α2
2

,

M
(2,2)
53 =

1

α2
3

,

M
(2,2)
54 =0,

M
(2,2)
55 =0.

(95)

V (2,2) = (V
(2,2)
1;1 , V

(2,2)
2;2 , V

(2,2)
3;3 , V

(2,2)
1;2 , V

(2,2)
2;1 ), and

C
(2,2)
1 =− C̃

(2,2)
11 I11 + C̃

(2,2)
33 I33

+ 4Ω(2,2)(Ω0 − Λα2)I11 +Q
(2,2)
11 (V

(1)
k;l ),

C
(2,2)
2 =− C̃

(2,2)
22 I22 + C̃

(2,2)
33 I33 +

C̃
(1)
13 (V

(1)
3;1 + V

(1)
1;3 )

2

+ 4Ω(2,2)(Ω0 − Λα−1
2 )I22 +Q

(2,2)
22 (V

(1)
k;l ),

C
(2,2)
3 =− C̃

(1)
13 (V

(1)
3;2 + V

(1)
2;3 ) + Ω̇(2)(I22 − I11)

+Q
(2,2)
12 (V

(1)
k;l ) +Q

(2,2)
21 (V

(1)
k;l ),

C
(2,2)
4 =Ω̇(I22 + I11) +Q

(2,2)
12 (V

(1)
k;l )−Q

(2,2)
21 (V

(1)
k;l ),

C
(2,2)
5 =

3∑
k=1

3∑
l=1

V
(1)
k;l V

(1)
l;k

2α2
kα

2
l

.

(96)

The differential equations for the constant term must
be considered with more care. If we proceed as before, we

obtain again linear equations

5∑
k=1

M
(2,0)
ik V

(2,0)
k = C

(2,0)
i .

The matrix of this equation M
(2,0)
ik is the same as M

(2,2)
ik

when we set ωθ = 0. However, this matrix is never in-
vertible as its third and fourth line are colinear.

However, in this case the term in the right hand side,

C
(2,0)
i , is also simpler because C

(2,0)
3 = C

(2,0)
4 = 0 (see

Eq. (89)). This would imply that we have four equations
for five variables. We have thus a certain freedom for
setting V

(2,0)
1;2 and V

(2,0)
2;1 . We could set them both to 0.

By exploring further, we also find that one can assume

V
(2,0)
1;2 = w1τ , V

(2,0)
2;1 = w2τ . The differential equations

only impose w1 + w2 = 0. It thus seems that there is a
certain freedom on the choice of the angular momentum
at this order. While we could fix all these variables to 0 as
a simplifying assumption, we could also enforce the value
f , as defined in Eq. (45), at this order by comparing the

corresponding vorticity of this second-order correction to
the second-order correction of Ω. We may then set

w1 =
2a21a

2
2Ω

(2,0)f

a21 + a22
. (97)

D. Higher orders

Even for higher orders, the form of the equations stays
essentially the same (the matrix form is identical). In-
deed, as before, we have linear equations for higher-order
displacements.
For higher orders, however, there are three main differ-

ences from the previous analyses. The first comes from
the right hand side of the matrix equations. It then
reflects the contribution of all the lower-order displace-
ments and the higher-order contributions of the physical
parameters of the system. The second comes from the
different frequencies which one has to consider: Specifi-
cally, the frequency is higher. Finally, higher-order con-
tributions to the geodesic motion have to be taken into
account.

E. Elliptic orbits

The method described in the previous subsections can
be extended to other types of orbits, like slightly ellip-
tic orbits. For this, we write the orbital separation as
r(τ) = r0[1 + ε(τ)] and assume that ε(τ) is an infinitesi-
mal quantity.
As before, we need to determine the time-dependence

of ε. Using the definition of ε and writing E, L and K
by the geodesic constants of a circular geodesic of radius
r0, we get from Eq. (3) as(

dε

dτ

)2

= (δr)2 − ε2Ω2
0

[
1− 3(L− aE)2

r20

]
, (98)

where δr is given by the perturbed values of the geodesic
constants, E and L, andK = (L−aE)2 for the equatorial
orbits. We then obtain

ε(τ) = δr cos(ωeτ), (99)

where

ωe = Ω0

√
1− 3(L− aE)2

r20
= Ω0

√
4− 3

∆0

P0
. (100)

In this setting, the tidal tensor throughout the orbit is
rewritten in the perturbative form.
We can also consider more general orbits, which are

neither circular nor equatorial. In this case, when we are
at order n, we need to consider all frequencies lωθ +mωe

for all |l|+ |m| = n, with l,m ∈ Z. This is a topic beyond
the scope of our present work.
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FIG. 2. Ω̃2 as functions of r0/m for the first- and second-

order resonances, along with the tidal disruption limit Ω̃2
crit

as well as the expected values of Ω̃2 for typical values of BH-
NS binaries and supermassive BH-white dwarf/ordinary star
binaries. For both plots, we assumed a/m = 0.8 and prograde
orbits. The upper and lower panels show the results for f = 0
and f = 1.

IV. RESONANCES

A. Determination of resonances

An important aspect of the linear equations described
above comes from the ansatz we made about the time
dependence of the displacement. These are justified as
long as the matrix equations are solvable. This hinges on
the inversability of the matrices considered.

However, during our research, we found that these ma-
trices could have determinant zero for particular equilib-
rium states. Furthermore, the terms in the right hand
side were not in the image of the matrices. Thus the lin-
ear equations were not solvable for the particular cases
in which the determinant vanishes, implyimg the pres-
ence of a resonance. This indicate that the ansatz used
in these cases are inappropriate. To solve the equa-
tions at the resonance point, a better ansatz would be:

ξ⃗ = (ξ⃗0+ ξ⃗1τ)e
iωθτ . In this case, the displacements would

eventually not be infinitesimal. Thus our perturbative
expansion breaks down at such points.

These resonances can come either from the first- or
second-order equation. For f = 0, we find a resonance

FIG. 3. The same as Fig. 2 but for a/m = 0.5 (upper and
middle panels) and for a/m = 0.9 (lower panel). The upper
panel shows the case of retrograde orbits, while the middle
and lower panels prograde orbits.

for both the first and second-order displacements. For
f = 1, we find it only for the second-order equations.
Near the resonant angular frequencies, ω ≈ ωθ or 2ωθ, the
amplitude of the displacement scales as |ω−kωθ|−1 where
k = 1 or 2, indicating that a significant deformation from
the ellipsoidal shape happens not only at the resonant
angular frequency but also around these frequencies, i.e.,
at ω that satisfies |ω − kωθ| ≪ kωθ. This indicates that
for a star approaching the resonance, the degree of the
displacement is significantly enhanced.

In order to assess the relevancy of these resonances, we
plot the corresponding values of Ω̃2 of these resonances,
along with the values of Ω̃2 that are modeled by an NS,
a white dwarf, and an ordinary star orbiting a variety of
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FIG. 4. The displacement vector ξi for the first-order pertur-
bation on the surface of the star represented by the red ellipse
for ωθτ = 0 (upper panel) and ωθτ = π/2 (lower panel). The
axes X, Y , and Z correspond to the axes 1, 2, and 3 of the
problem in units of a1, respectively. For all the plots, the
vectors are plotted for a/m = 0.8, f = 0 and at a distance

r0 = 20m with Ω̃2 ≈ 0.03459. In this case, α2 ≈ 0.886 and
α3 ≈ 0.858.

Kerr BHs. We estimate Ω̃2 using typical radius Rstar and
mass M for these objects. We then have Ω̃2 as a function
of r0 as

Ω̃2 =
4

3

m

M

(
Rstar

r0

)3

. (101)

In Fig. 2, we plot the values of Ω̃2 for the resonances
of ω = ωθ and 2ωθ as functions of r0/m together with
the Roche (f = 0) and Roche-Riemann (f = 1) limits,
for a/m = 0.8. We also plot the curves along hypo-
thetical sequences of inspiraling BH-NS binaries in close
orbits and white dwarf/ordinary stars orbiting supermas-
sive BHs. We note that for the ω = 0 mode in the
second-order displacement, the resonance appears near
the Roche/Roche-Riemann limits. This corresponds to
the onset of dynamical instability for the ellipsoid, sim-
ilarly as in the classical Roche problem [2]. This figure
shows that these resonances may destabilize the objects

FIG. 5. The displacement vector ξi for a second-order pertur-
bation on the surface of the star represented by the red ellipse
for ωθτ = 0 (upper panel) and ωθτ = π/2 (lower panel). The
axes X, Y , and Z correspond to the axes 1, 2, and 3 of the
problem in units of a1, respectively. For all the plots, the
vectors are plotted for a/m = 0.8, f = 0 and at a distance

r0 = 20m with Ω̃2 ≈ 0.06758. In this case, α2 ≈ 0.734 and
α3 ≈ 0.694.

before reaching the Roche and Roche-Riemann limits.

In Fig. 3, we reproduce the same figure for a/m =
0.5 and a/m = 0.9 with f = 0. We find that the spin
parameter a/m does not have much of an impact on the
relative position of the resonances to the Roche limit. As
in [8], we see that the Roche limit gets further away and
with it the resonances, as a/m decreases.

In the upper panel of Fig. 3, we produced the curves
in the case of retrograde orbits. While until now we al-
ways presented the results for prograde orbits, they are
easily extended to retrograde orbits. One only has to
take a/m < 0. The observation made before can then
also be extended. Compared to positive values of a/m,
we observe that the resonances happen for larger values
of r0/m. However their relative positions to the Roche
limit are the same.

These resonances seem to be similar to the instabilities
found for a star in elliptic orbits [4] (note that these are
instabilities in purely Newtonian gravity). They appear
when ωe is equal to one of the oscillatory modes of the
star on the equatorial plane. This then creates the res-
onance discussed before. In the case of a star orbiting a
Kerr BH, the possible resonances are more numerous as
a result of the more complicated nature of the geodesics
due to the relativistic effects.

In our present context, the displacement associated
with an oscillatory mode gets excited by the variation of
the θ-coordinate of the orbit. It will then grow linearly
and eventually, it will not be infinitesimal anymore. Fig-
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ures 4 and 5 show the displacement vectors associated
with the excited modes, assuming a/m = 0.8. Again the
spin parameter does not have an important impact on
the qualitative aspect of the resonant displacement.

Fig. 4 shows that the resonance in the first-order dis-
placement will mostly imply a precession of the 3-axis.
As such, this mode is quite reminiscent of the transverse-
shear mode of the MacLaurin spheroids discussed in [2].
By the non-linear amplification of this mode, matter may
be ejected from the surface to the outside of the star,
resulting possibly in the modification of the precessing
orbit as well as the stellar profile. For white dwarfs, the
stellar radius increases with the mass ejection. Thus, this
resonance could trigger the tidal disruption.

From the second-order displacement shown in Fig. 5,
we observe that it will involve mostly a quadrupole dis-
placement in the 1-2-plane. This mode reminds us of
toroidal modes also discussed in [2].

The resonance in the first- and second-order dis-
placements is always encountered slightly outside the
Roche/Roche-Riemann limits. For BH-NS binaries in
precessing orbits, thus, the resonant deformation may be
excited just prior to the tidal disruption. The tidal dis-
ruption may be assisted by the prior resonance if the
relativistic effect on the self-gravity of the star, which we
do not take into account in the present study, does not
qualitatively change the property of the resonance.

We note that in our analysis we neglected several ef-
fects, which can modify our results quantitatively. Since
we neglected the general relativistic effect for the self-
gravity of the NS, an error of order GmNS/c

2Rstar may
be expected on the condition of the tidal disruption. Also
we neglected the NS’s gravity on the orbital motion, so
that an error of order M/m may be also expected. How-
ever, these dimensionless parameters are supposed to be
of order 0.1 in this paper. Hence, the results obtained in
this paper is unlikely to be significantly changed even if
we take into account these effects.

B. Analytical resolution of the first-order
resonance

The resonance in the first-order displacement with
f = 0 can be determined analytically. If we introduce
λ such that ω2

θ = (1+λ)Ω2
0 where λ is a purely relativis-

tic correction (see Eq. (52)), we have C̃11 = (−2− λ)Ω2
0,

C̃22 = Ω2
0, and C̃33 = (1 + λ)Ω2

0. Then,

det(M
(1)
ij ) = −16πρB23(1 + λ)Ω4

0

×
[
− 4πρB13λ+ (3 + λ)(1 + λ)Ω2

0

]
,(102)

and thus, we find that the first-order resonance occurs
when

Ω̃2 =
4B13λ

(3 + λ)(1 + λ)
. (103)

We find that the relativistic correction is the key for this
resonance.

V. DISCUSSION

The main result of this paper is the discovery of possi-
ble resonances of stars with precessing orbits around Kerr
BHs. In particular, we found that these resonances could
be relevant for systems such as white dwarfs/ordinary
stars orbiting a supermassive BH and BH-NS binaries in
close orbits.
One interpretation of our results is that as an orbit-

ing star approaches a Kerr BH, e.g., by the radiation
reaction of gravitational waves, it will approach one of
these resonances before encountering the tidal disruption
limit. The closer it gets to it, the more the displacement
associated with it will grow. At some point before the
resonance, the displacement will not be infinitesimal any-
more. Our equations are then not valid.
As such, the instability found is unlike that found at

the Roche limit. Indeed, we do not provide a correction
to this limit as in [9]. Instead, we provide a resonance
which arises due to the dynamical nature of our analysis.
Thus our results and their interpretation differ from [9].
As the first-order resonance has only been found for

f = 0, it will probably not be relevant for BH-NS binaries
for which the NS is likely to be nearly irrotational [17, 18]
in such systems. If we consider white dwarfs/ordinary
stars orbiting supermassive BH, we expect that the cor-
responding star may be corotational because the viscous
angular momentum redistribution can have a timescale
shorter than the orbital evolution one. For these systems,
the star may encounter the first-order resonance before
tidal disruption. If the system has an elliptic orbit, we
expect also resonances of frequency ωe. However, if the
object stays on the equatorial plane, the modification
to the orbit will only give contributions to the diagonal
components of the tidal tensor. As such, the resonances
should correspond to the toroidal mode. If the orbit is
neither equatorial nor spherical, the overall picture gets
more complicated. According to our perturbation analy-
sis, it is likely that there are more possible resonances of
frequency ωθ+ωe and ωθ−ωe, and thus, these resonances
may be excited as well.
The second-order resonance can be relevant for BH-NS

binaries just prior to the significant tidal deformation of
the NS. In the presence of a precession, this resonance
is excited during the late inspiral phase, and thus, the
orbital energy is partly transported to the oscillation en-
ergy of the NS. This can accelerate the orbital evolution
of the system, leading to a gravitational-wave phase shift,
in addition to the phase shift related to the usual tidal
deformation [20, 21]. Since the second-order resonance
can be induced only at an orbit close to the tidal disrup-
tion limit, it may not be easy to distinguish the resonant
effect from the usual tidal deformation effect, and thus,
we may overestimate the tidal deformation effect if we
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do not properly take into account the resonant effect for
precessing binaries.

To our knowledge, these results have never been re-
ported before. A major counterpoint to our analysis is its
apparent reliance on some questionable assumptions, like
the incompressibility hypothesis. However, as the gen-
eral mechanism for the resonance holds true, we expect
resonances even with more realistic equations of state.
Indeed, whatever the equation of state is, we have char-
acteristic modes for our star. We may then observe a res-
onance between these modes and the oscillation present
in the tidal tensor. Thus, while the equations can change,
the resulting phenomenon should not qualitatively. Of
course, this explanation is just tentative and should be
confirmed by a more complete analysis of the question.
We plan to show the results of our approximate analy-
sis for the compressible equations of state in a follow-up
paper (Stockinger and Shibata, in preparation).

As our equations are not valid near the resonance, one
would have to change our method to fully understand the
effects on the orbital change by the resonance. For this
purpose, performing hydrodynamics simulations is a ro-
bust approach. We are currently working on simulations
of these types of systems (Lam et al., in preparation).
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Appendix A: Formula for second-order equations

In order to compute all the second-order quantities
necessary for the corresponding equations, we need to
compute the perturbed expressions for the energy E, an-
gular momentum around the z-axis L, and the Carter
constant K for the corresponding orbit.

To do this we will rely on the formula given in [14].
Assuming that C is a small quantity, we expand them as

E = E0 + E1C +O(C2), (A1)

L = L0 + L1C +O(C2), (A2)

K = K0 +K1C +O(C2), (A3)

where

E1 =
a

2r20

a−
√
mr√

P0

, (A4)

L1 =
a3
√
m+ a

√
mr20 + r

5/2
0 (−3m+ r0) + a2r

1/2
0 (−m+ r0)

2
√
mP0r50

, (A5)

K1 = 1−
√

r0
m

(−a+
√
mr0)(a

2 + a
√
mr0 + (−3m+ r0))

P0
. (A6)

Then, we have

Ω(2) = a2 cos2 θ

√
m(r20 − 3mr0 + 2a

√
mr0)

r
7/2
0 (

√
mr0 − a)2

+C
[
2K1Ω0 +

√
K0

r20

(
E1(r

2
0 + a2)− aL1

r20 +K0
− K1(E0(r

2
0 + a2)− aL0)

(r20 +K0)2
+

a(L1 − aE1)

K0
− aK1(L0 − aE0)

K2
0

)]
= a2 cos2 θΩa + CΩC . (A7)

Therefore

Ω(2,0) =
a2ε20
2

Ωa + CΩC ,

Ω(2,2) =
a2ε20
2

Ωa.

(A8)

Likewise, we have

Ω̇ = −a2θ̇ sin 2θ

√
m(r20 − 3mr0 + 2a

√
mr0)

r
7/2
0 (

√
mr0 − a)2

+O(C2),

(A9)
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and thus

Ω̇(2) = −a2ε20ωθ

√
m(r20 − 3mr0 + 2a

√
mr0)

r
7/2
0 (

√
mr0 − a)2

. (A10)

Finally, the second-order contributions to the tidal ten-
sor are given as

C
(2)
11 =

3M

r30

(
−K1C

r20
+ a2 cos2 θ

(
15K2

0 + 14r20K0 + r40
r40K0

))
,

(A11)

C
(2)
22 = −6M

r50
a2 cos2 θ, (A12)

C
(2)
33 =

3M

r30

(
K1C
r20

− a2 cos2 θ

(
15K2

0 + 12r20K0 + r40
r40K0

))
.

(A13)
Thus

C
(2,0)
11 =

3M

r30

(
−K1C

r20
+

a2ε20
2

(
15K2

0 + 14r20K0 + r40
r40K0

))
,

C
(2,2)
11 =

3Ma2ε20
2r30

15K2
0 + 14r20K0 + r40

r40K0
,

C
(2,0)
22 = −3Ma2ε20

r50
,

C
(2,2)
22 = −3Ma2ε20

r50
,

C
(2,0)
33 =

3M

r30

(
K1C
r20

− a2ε20
2

(
15K2

0 + 12r20K0 + r40
r40K0

))
,

C
(2,2)
33 =

3Ma2ε20
2r30

15K2
0 + 12r20K0 + r40

r40K0
.

(A14)

Appendix B: Quadratic contributions to the second
order

The quadratic contributions to the second order can
be divided in three parts

Qij(Vk;l) =
5

M
(Qgrav

ij (Vk;l) +Qstat
ij (Vk;l) +Qdyn

ij (Vk;l)),

(B1)

where

Qstat
ij (Vk;l) =

3∑
k=1

3∑
l=1

(Ω2
0(δik − δ3k)− C̃

(0)
ik )

Vk;lVj;l

a2l
,

(B2)

Qdyn
ij (Vk;l) =

3∑
k=1

(
− V̈i;kVj;k

a2k
+ 2

3∑
l=1

(
QjlV̇i;k

−(Q2)jlVi;k + (Q2)ilVj;k

)Vl;k

a2k

−2

3∑
l=1

ϵil3Ω0

(
V̇l;k

Vj;k

a2k

+

3∑
m=1

(QlmVj;k −QjmVl;k)
Vm;k

a2k

))
(B3)

and finally

Qgrav
ij (Vk;l) =

3∑
l=1

(AiVi;lVj;l

a2l
+

AijVi;lVj;la
2
j

a2l
+AiljVilVlja

2
j

−VilAilVlj + VllAilVij +
VllVijAijla

2
j

2

+δij

3∑
k=1

(−
AiV

2
l;ka

2
j

a2l a
2
k

−
V 2
lkAlkia

2
j

4

−
AliV

2
l;ka

2
j

2a2k
+

AlkiVllVkka
2
j

8
)
)
. (B4)

When we consider a displacement Vi;j whose non-zero
terms have indices (i, j) = (1, 3), (3, 1), (2, 3), (3, 2), the
quadratic contributions are non-zero only for the indices
even on the component 3.
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