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Tidal disruptions of stars on the equatorial plane orbiting Kerr black holes have been widely studied.
However, thus far, there have been fewer studies of stars in inclined precessing orbits around a Kerr black
hole. In this paper, we use the tensor virial equations to show the presence of possible resonances in these
systems for typical physical parameters of black hole–neutron star binaries in close orbits or of a white
dwarf/an ordinary star orbiting a supermassive black hole. This suggests the presence of a new instability
before the tidal disruption limit is encountered in such systems.
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I. INTRODUCTION

The classical Roche problem studies the equilibrium and
stability of a self-gravitating fluid in a binary system. Its
main result is the presence of a critical orbital distance,
the so-called Roche limit, below which there is no stable
configuration, i.e., mass shedding and tidal disruption
of the star are induced [1,2]. Extensions of these results
to eccentric orbits have also been the focus of some
studies [3,4]. Furthermore, the concept of the Roche limit
has been extended to general relativistic scenarios, such as
when the binary companion is a black hole (BH) [5–8].
The previous studies for this focused on the star in circular
equatorial orbits around the BH, and to our knowledge, the
only exception is Ref. [9].
In this paper, we study the case of a star in a circular orbit

on the nonequatorial plane around a spinning BH. To study
this, as a first step, we assume that the star is incompressible
and utilize the tensor virial formalism developed by
Chandrasekhar [2]. This formalism has generally been used
to study the assumed ellipsoidal shape of a self-gravitating
fluid and provided a number of knowledge on the equilib-
rium and stability of the stars qualitatively.
After reviewing the previous results, we show the

presence of a resonance when the orbit has an inclination
with respect to the equatorial plane. To compute the impact

of the inclination on the shape of the star, we use a
perturbative expansion assuming that the inclination angle
is small: we perform this expansion up to the second order
in the angle of the inclined orbit ε ¼ θ − π=2 and show that
the resulting equations take a linear form, which is usually
solvable. When this is not the case, we posit a new kind of
a resonance for such systems. We show that the resonances
can play an important role in the evolution of BH-neutron
star (NS) binaries in close orbits or of a white dwarf/an
ordinary star orbiting a supermassive BH.
This paper is organized as follows. In Sec. II, we present

the working assumptions and the tensor virial equations
adapted to our system, by which we derive the equilibrium
solution of a star on an equatorial orbit around a BH [5–8].
In Sec. III, we present our method for the perturbative
expansion, which we apply up to the second order in ε. In
Sec. IV, we show the presence of new resonances in these
systems, using the equations derived in Sec. III. Finally, we
discuss the implications of our findings in Sec. V.
Throughout this paper, we use the geometrical units of
c ¼ G ¼ 1 where c and G are the speed of light and
gravitational constant, respectively. We will not use the
Einstein summation convention.

II. FRAMEWORK OF THE SYSTEM

A. System

The purpose of this paper is to study the tidal effect on a
star orbiting a Kerr BH. We assume that the star is modeled
by an incompressible fluid of mass M and constant density
ρ. This star is assumed to have an ellipsoidal shape
determined by its principal semiaxes ða1; a2; a3Þ. We
assume that it orbits a spinning BH of mass m and of spin
parameter a. When referencing its position relative to the
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BH, we will use the Boyer-Lindquist coordinates in which
the line element is written as

ds2 ¼ −
Δ
Σ
ðdt − asin2θdϕÞ2 þ sin2θ

Σ
½ðr2 þ a2Þdφ − adt�2

þ Σ
Δ
dr2 þ Σdθ2; ð1Þ

where Δ ¼ r2 − 2mrþ a2 and Σ ¼ r2 þ a2cos2θ. In the
following, we assume that M ≪ m and do not consider the
self-gravitating effect of the stars on the orbital motion
around the BH. That is, we assume that the star has a
geodesic orbit around the BH.
To study the effect on the stars of the tidal force from the

BH, we prepare Fermi-normal coordinates on the geodesics
[10]. The tidal force acting on the star by the BH is
evaluated in the local inertial frame on the Fermi-normal
coordinates. This allows us to treat the problem in a way
similar to how we would treat Newtonian hydrodynamics.
The geodesics on the Kerr spacetime are described by the

four constants of motion, E, specific energy; L, specific
angular momentum for the BH spin direction; K, the Carter
constant and the mass of the star. The geodesic equations
are written as (e.g., Ref. [12])

dt
dτ

¼ ½ðr2 þ a2Þ2 − Δa2sin2θ�E − 2mraL
ΔΣ

; ð2Þ

Σ2

�
dr
dτ

�
2

¼ fEðr2 þ a2Þ − aLg2 − Δðr2 þ KÞ

≔ RðrÞ; ð3Þ

Σ2

�
dθ
dτ

�
2

¼ K − a2cos2θ −
ðaEsin2θ − LÞ2

sin2θ
ð4Þ

dφ
dτ

¼ 1

Δ

�
2mraE

Σ
þ
�
1 −

2mr
Σ

�
L

sin2θ

�
; ð5Þ

where τ is an affine parameter of the geodesics. In this
paper, we will assume that the star has a circular orbit with a
fixed value of r ¼ r0; R ¼ 0 ¼ dR=dr ¼ 0 at r ¼ r0.
These relations give us the two relations among E, L,
and K.
In this paper, we consider precessing orbits with respect

to the equatorial plane, i.e., θ ≠ π=2. For a given maximum
value of θ for the orbit, we then have an additional relation
among E, L, and K, and thus these quantities are written as
a function of r0 (see, e.g., Refs. [13,14]).
In the inertial frame defined above, we refer to the axes

of the corresponding orthonormal basis as 1, 2, and 3. We
assume that the axis 3 points in the same direction as the
orbital angular momentum of the fluid or in other words,
the direction of ð∂=∂θÞμ. Note that our axis 2 and axis 3
agree with the axis 3 and axis 2 of Ref. [10] and that we
changed the direction of our 2-axis. Assuming that the

stellar radius, Rstar, is much smaller than the orbital
separation to the BH, r0, one can write the tidal tensor
as [10]

C11 ¼
�
1 − 3

STðr2 − a2cos2θÞ
KΣ2

cos2Ψ
�
Ia

þ 6ar cos θ
ST
KΣ2

cos2ΨIb; ð6Þ

C22 ¼
�
1 − 3

STðr2 − a2cos2θÞ
KΣ2

sin2Ψ
�
Ia

þ 6ar cos θ
ST
KΣ2

sin2ΨIb; ð7Þ

C33 ¼
�
1þ 3

r2T2 − a2 cos2 θS2

KΣ2

�
Ia

− 6ar cos θ
ST
KΣ2

Ib; ð8Þ

C12 ¼ −3
h
ða2cos2θ − r2ÞIa

þ 2ar cos θIb
i ST
KΣ2

cosΨ sinΨ; ð9Þ

C13 ¼ 3
h
−ar cos θðSþ TÞIa

þ ða2cos2θS − r2TÞIb
i ffiffiffiffiffiffi

ST
p

KΣ2
cosΨ; ð10Þ

C23 ¼ −3
h
−ar cos θðSþ TÞIa

þ ða2cos2θS − r2TÞIb
i ffiffiffiffiffiffi

ST
p

KΣ2
sinΨ; ð11Þ

where

Ia ¼
mr
Σ3

ðr2 − 3a2cos2θÞ; ð12Þ

Ib ¼
ma cos θ

Σ3
ð3r2 − a2cos2θÞ; ð13Þ

S ¼ r2 þ K, T ¼ K − a2 cos2 θ, and Ψ is a time-dependent
angle which obeys the following equation [10]:

dΨ
dτ

¼
ffiffiffiffi
K

p

Σ

�
Eðr2 þ a2Þ − aL

r2 þ K
þ a

L − aEsin2θ
K − a2cos2θ

�
: ð14Þ

We note that higher-order corrections in Rstar=r0 for the
tidal tensors are found in Ref. [15]. One important aspect
of the tidal tensor is that C23 and C13 are nonzero only in
the presence of the BH spin and for θ ≠ π=2. This implies
that for a star in precessing orbits around a Kerr BH a
qualitatively new tidal force, which is absent in Newtonian
gravity, is exerted.
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The expression of the tidal tensor can be simplified by
changing the frame we are working on. Indeed, in a rotating
frame of rotation Ω⃗ along the 3-axis with magnitude
Ω ¼ dΨ=dτ, the tidal tensor is simplified as [10]

C̃11 ¼
�
1 − 3

STðr2 − a2cos2θÞ
KΣ2

�
Ia þ 6ar cos θ

ST
KΣ2

Ib;

ð15Þ

C̃22 ¼ Ia; ð16Þ

C̃33 ¼
�
1þ 3

r2T2 − a2cos2θS2

KΣ2

�
Ia − 6ar cos θ

ST
KΣ2

Ib;

ð17Þ

C̃12 ¼ 0; ð18Þ

C̃13¼ 3½−ar cosθðSþTÞIaþða2cos2θS−r2TÞIb�
ffiffiffiffiffiffi
ST

p

KΣ2
;

ð19Þ

C̃23 ¼ 0: ð20Þ

In the following, all the analyses will be carried out in
this frame.

B. Tensor virial equations

As already stated in Sec. I, we employ the tensor virial
equations [2,16] to study the equilibrium state of stars
orbiting a Kerr BH. The hydrodynamics equation for the
fluid on the local inertial frame is written as

ρ
dUi

dτ
¼ −

∂P
∂Xi

− ρ
∂ϕ

∂Xi
− ρ

X3
l¼1

CilXl; ð21Þ

where Xi ¼ ðX1; X2; X3Þ denote the coordinates in the local
inertial frame, Ui is the velocity field of the star, P the
pressure, and ϕ the Newtonian potential of the fluid, which
obeys the Poisson equation as

▵ϕ ¼ 4πρ; ð22Þ

where ▵ denotes the Laplacian in the flat space. We assume
that the self-gravity of the star is not so strong that the
equation of motion is written as in the Newtonian case. We
have to keep in mind that this can introduce an error of the
size of GM=c2Rstar in considering NSs as the star.
As seen above, it is preferable to work in a rotating frame

of angular velocity vector Ω⃗, as this simplifies the expres-
sion of the tidal tensor. In this case, the equation of motion
is rewritten as

ρ
dui
dτ

¼−
∂P
∂xi

− ρ
∂ϕ

∂xi
þ ρðΩ2xi − δi3Ω2x3Þ

þ 2ρ
X3
l¼1

ϵil3ulΩþ ρ
X3
l¼1

ϵil3xlΩ̇− ρ
X3
l¼1

C̃ilxl; ð23Þ

where xi and ui denote the coordinates and the velocity
field of the star in the rotating frame, δij is the Kronecker
delta, ϵijk is the completely antisymmetric tensor in three
dimensions, and Ω̇ ¼ dΩ=dτ.
We then assume that the pressure is given by

P ¼ pc

�
1 −

X3
i¼1

x2i
a2i

�
; ð24Þ

where pc is the central pressure and ai (i ¼ 1–3) denote the
axial lengths of the star for the corresponding directions.
This setting enables us to assume that the velocity depends
linearly on the position as

ui ¼
X3
k¼1

Qikxk; ð25Þ

where Qik is a matrix to be defined.
We now follow the method developed by Chandrasekhar

to derive the second-rank tensor virial equations [2]. First,
we multiply xj and Eq. (23) and integrate over the volume
V of the entire star. Then, we obtainZ
V
ρ
dui
dτ

xjd3x ¼ −
Z
V

∂P
∂xi

xjd3x −
Z
V
ρ
∂ϕ

∂xi
xjd3x

þ
Z
V
ρðΩ2xi − δi3Ω2x3Þxjd3x

þ 2Ω
X3
l¼1

ϵil3

Z
V
ulxjd3x

þ
X3
l¼1

ϵil3Ω̇
Z
V
xlxjd3x

−
X3
l¼1

Z
V
ρC̃ilxlxjd3x: ð26Þ

To rewrite this equation, we introduce the following
integral variables:

Iij ¼
Z
V
ρxixjd3x; ð27Þ

2Tij ¼
Z
V
ρuiujd3x ¼

X3
k¼1

X3
l¼1

QikQjlIkl; ð28Þ

Jij ¼
Z
V
ρuixjd3x ¼

X3
k¼1

QikIkj; ð29Þ
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Mij ¼ −
Z
V
ρxi∂jϕd3x; ð30Þ

Π ¼
Z
V
Pd3x: ð31Þ

Then, Eq. (26) is written as

d
dτ

Jij ¼ 2Tij þ Πδij þMij þΩ2Iij − δi3Ω2I3j

þ 2Ω
X3
l¼1

ϵil3Jlj þ
X3
l¼1

ϵil3Ω̇Ilj −
X3
l¼1

C̃ilIlj: ð32Þ

From this, we can deduce the symmetrized version

1

2

d2

dτ2
Iij ¼ 2Tij þ Πδij þMij

þ Ω2

�
Iij −

1

2
ðδi3I3j þ δj3I3iÞ

�

þ Ω
X3
l¼1

ðϵil3Jlj þ ϵjl3JliÞ

þ 1

2
Ω̇
X3
l¼1

ðϵil3Ilj þ ϵjl3IliÞ

−
1

2

X3
l¼1

ðC̃ilIlj þ C̃jlIliÞ ð33Þ

and the antisymmetrized version of the tensor virial
relation [16],

d
dτ

ðJij − JjiÞ ¼ −Ω2ðδi3I3j − δj3I3iÞ

þ 2Ω
X3
l¼1

ðϵil3Jlj − ϵjl3JliÞ

þ Ω̇
X3
l¼1

ðϵil3Ilj − ϵjl3IliÞ

−
X3
l¼1

ðC̃ilIlj − C̃jlIliÞ: ð34Þ

Equation (34) is interpreted as the evolution equation of the
angular momentum.
Equation (32) will serve as our basis for the exploration

of the influence of the tidal force on stars orbiting a
Kerr BH.

C. Equatorial plane case

When the star orbits a BH on its equatorial plane, the
equations become analytically solvable. Although this case
was already studied in Ref. [8], we will here restate the

main results, as they serve as the zeroth-order solutions for
the main problem in this paper.
Assuming that the star is in equilibrium, Eq. (33) is

written as

0¼ 2TijþΠδijþMijþΩ2

�
Iij−

1

2
ðδi3I3jþδj3I3iÞ

�

þΩ
X3
l¼1

ðϵil3Jljþ ϵjl3JliÞ−
1

2

X3
k¼1

ðC̃ikIkjþ C̃jkIkiÞ; ð35Þ

while Eq. (34) is trivially satisfied because Ω̇ ¼ 0 and off-
diagonal components of C̃ij vanish; in this case, the
nonzero components of the tidal tensor are

C̃11 ¼ Ω2
0

�
1 − 3

Δ0

P0

�
; ð36Þ

C̃22 ¼ Ω2
0; ð37Þ

C̃33 ¼ Ω2
0

�
−2þ 3

Δ0

P0

�
; ð38Þ

where Ω2
0 ¼ m=r30 [6], Δ0 ¼ r20 − 2mr0 þ a2, and P0 ¼

r20 − 3mr0 þ 2am1=2r1=20 . Like in the standard Roche prob-
lem, we can assume that the principal axes of the ellipsoid
coincide with the axes of our frame. Thus, we have [2]

Iij ¼
1

5
Ma2i δij; ð39Þ

Mij ¼ −2πρAiIij; ð40Þ

Aj ¼ a1a2a3

Z
∞

0

du
Dða2j þ uÞ ; ð41Þ

where

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða21 þ uÞða22 þ uÞða23 þ uÞ

q
: ð42Þ

As we assume that the internal motion is characterized
by a vorticity around the 3-axis, we set

Q ¼ Λ

0
BB@

0 a1a−12 0

−a−11 a2 0 0

0 0 0

1
CCA; ð43Þ

whereΛ is the magnitude of the vorticity. The circulation of
the star in the inertial frame is then written as
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CΓ ¼ πa1a2

�
2Ω0 −

a21 þ a22
a1a2

Λ
�

¼ 2πa1a2Ω0ð1 − fÞ; ð44Þ

where

f ¼ a21 þ a22
2a1a2

Λ
Ω0

: ð45Þ

In this paper, we pay attention to the cases of f ¼ 0 and
f ¼ 1. For f ¼ 0, the fluid has no internal motion in the
rotating frame, while in the inertial frame, the fluid’s
internal motion comes only from the rotation. On the other
hand, for f ¼ 1, the fluid has a certain vorticity in the
rotating frame, while in the inertial frame, the fluid does not
have any circulation. We refer to this case as irrotational
Roche-Riemann ellipsoid [2]. It has been shown that this
velocity configuration is typically (approximately) satisfied
for binary neutron stars and BH-NS binaries in the late
inspiraling stage [17,18].
In the case of equatorial orbits, Eq. (35) becomes

0 ¼ Λ̃2 − 2α2Ω̃ Λ̃−2A1 þ 2
pc

πρ2a21
þ 3Ω̃2Δ0

P0

; ð46Þ

0 ¼ α22Λ̃
2 − 2α2Ω̃ Λ̃−2α22A2 þ 2

pc

πρ2a21
; ð47Þ

0 ¼ −2α23A3 þ 2
pc

πρ2a21
− α23Ω̃

2

�
3
Δ0

P0

− 2

�
; ð48Þ

where we defined dimensionless quantities, α2 ≔ a2=a1,
α3 ≔ a3=a1, Ω̃ ≔ Ω0=ðπρÞ1=2, and Λ̃ ≔ Λ=ðπρÞ1=2.
After fixing f and eliminating pc=ðπρ2a21Þ, we can

determine α2 and Ω̃ as functions of α3. We plot the relations
between Ω̃ and α3 for f ¼ 0 and f ¼ 1 in Fig. 1, which
agree with those in Ref. [8].
One notices that Ω̃ reaches a maximum value Ω̃crit

corresponding to α3;crit. Above this value, there is no
possible equilibrium configuration of the star. This gives
the relativistic Roche limit, already computed in Refs. [5,8].
As in Ref. [8], we find that at the innermost stable circular
orbit (ISCO) Ω̃2

crit ≈ 0.06364 for f ¼ 1 and Ω̃2
crit ≈ 0.06640

for f ¼ 0 [5]. As in the classical case, one can expect that
the star is unstable against mass shedding/tidal disruption
for α3 < α3;crit and stable for α3 > α3;crit. Thus, for a given
value of ρ, Ω has a maximum value, i.e., the orbital
separation r0 has a minimum value, and for the smaller
orbital separation, the star should start the tidal disruption
process.

III. STARS IN SLIGHTLY PRECESSING ORBITS

A. Method for the expansion

We now explore the cases in which the star does not lie
on the equatorial plane. For this, we perform perturbative
calculations using ε ¼ θ − π=2 as an infinitesimal param-
eter. The zeroth-order solution is determined by the
equations for the equatorial orbits reviewed in the previous
section. We then need to consider a small perturbation away
from this configuration for 0 < ε ≪ 1.
By perturbing the equatorial solution, we do not provide

any change to the Roche limit for stars in spherical orbit as
in Ref. [9]. However, this method enables us to study more
in detail the dynamical behavior of the star. In particular, we
do not restrict the motion of the fluid to be in the 1-2 plane.
While we assume such a motion in the equatorial case, we
should expect a wider range of motions due to the non-
diagonal elements of the tidal tensor. This intuition will be
confirmed in the following analyses.
To obtain the perturbed configuration, we assume that

every fluid element is displaced as xi → xi þ ξi where ξi is
an infinitesimal displacement. For this, we assume the form
of ξi ¼

P
3
j¼1 ξijxj, which can satisfy the perturbation

equations for the incompressible fluid self-consistently
(see below). Furthermore, to solve this system in such
an assumption, it is sufficient to consider the modified
second-rank tensor virial equations [2] together with the
incompressible condition, which leads to

ξ11 þ ξ22 þ ξ33 ¼ 0: ð49Þ

The displacement will depend on time, as the orbital
value of θ does, too. Thus, as a first step, we have to
determine the time-dependent orbital motion. To do this,

FIG. 1. Ω̃2 as a function of arccosðα3Þ=ðπ=2Þ at the ISCO for
f ¼ 0 and f ¼ 1. We note that Δ0=P0 ¼ 4=3 at the ISCO
irrespective of the dimensionless spin parameter, a=m, and hence
the curves are universal irrespective of a=m.
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we analyze the geodesic equation for θ, Eq. (4), which is
rewritten for ε ¼ θ − π=2 ≪ 1 as (e.g., Ref. [19])

r4
�
dε
dτ

�
2

¼ C − ε2½a2ð1 − E2
0Þ þ L2

0�; ð50Þ

where C ¼ K − ðL − aEÞ2, which vanishes for equatorial
orbits, and we took into account the terms at Oðε2Þ.
Note that E0 and L0 denote E and L for equatorial circular
orbits [12], while for C we need the second-order quantities
in ε. Then, for r ¼ r0, we obtain

εðτÞ ¼ ε0 cosðωθτÞ; ð51Þ

where

ωθ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
0 þ a2ð1 − E2

0Þ
p

r20

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 − 4a

ffiffiffiffiffiffiffiffi
mr0

p þ 3a2

P0

s
Ω0; ð52Þ

ε0 ¼
ffiffiffi
C

p

ωθ
: ð53Þ

Here, ε0 and
ffiffiffi
C

p
are first-order parameters which we will

use for the perturbative expansion. It is worth it to note at
this stage that cos θðτÞ ¼ −εðτÞ at the first order.
We consider a spherical orbit with always the same

radius r0 but different values of θ. Following Ref. [14], to
study the orbit of the star, we fix r0 and C and deduce the
other parameters fromR ¼ 0 ¼ dR=dr at r ¼ r0. Thus, E,
L, and K depend on the inclination angle ε0. These changes
occur at the second order in ε0 (see the Appendix).
The tidal tensor components can be decomposed using a

Taylor expansion around θ ¼ π=2:

C̃ij ¼
X∞
k¼0

C̃ðkÞ
ij ε

k: ð54Þ

The components only contain even-order contributions if
its indices are even in component 3 and odd-order con-
tributions if its indices are odd in component 3.
Likewise, we write Ω and Ω̇ as a Taylor expansion,

which contain only the terms of even power in ε. We note
Ω0 ¼

ffiffiffi
m
r3
0

q
at the zeroth order of Ω.

We do the same for the displacement coefficients ξij.
By considering the symmetry x3 → −x3, one can constrain
the expression of the displacement. We thus have that if the
indices of the displacement are odd in component 3 then the
series expansion only contains terms of odd power in ε, and
likewise for indices even in component 3, the series
expansion only contains terms of even power in ε.

Following Ref. [2], the integrals associated with a
displacement ξi of the fluid are given as

2δTij ¼
X3
k¼1

�
Qjk

dVi;k

dτ
þQik

dVj;k

dτ

− ððQ2ÞjkVi;k þ ðQ2ÞikVj;kÞ
�
; ð55Þ

δIij ¼ Vi;j þ Vj;i; ð56Þ

δMij ¼−2πρBijVijþ πρa2i δij
X3
l¼1

AilVll; ð57Þ

δΠ ¼
Z
V
δPd3x; ð58Þ

δ
d
dτ

Z
V
ρuixjd3x ¼ d2Vi;j

dτ2
þ
X3
k¼1

�
Qik

dVj;k

dτ
−Qjk

dVi;k

dτ

�
;

ð59Þ

δ

Z
V
ρuixjd3x ¼ dVi;j

dτ
þ
X3
k¼1

½QikVj;k −QjkVi;k�; ð60Þ

where

Vi;j ¼
Z
V
ρξixjd3x ¼ ξijIjj; ð61Þ

Bij ¼ a1a2a3

Z
∞

0

udu
Dða2i þ uÞða2j þ uÞ ; ð62Þ

Aij ¼ a1a2a3

Z
∞

0

du
Dða2i þ uÞða2j þ uÞ : ð63Þ

The resulting equations can be divided in two types as
shown in the subsequent subsections. In the following, we
only consider equations which contain nonzero contribu-
tions of lower-order solutions of the fluid. This allows us to
focus only on the displacement induced by the inclination
of the orbit.

B. First-order calculations

To solve the first-order equations for the displacement,
we select only the contribution of order ε0 in the equation.
If we start from Eq. (32), this gives us
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d2

dτ2
Vi;j − 2

X3
k¼1

Qjk
dVi;k

dτ
¼ −

X3
l¼1

ððQ2ÞjlVi;l þ ðQ2ÞilVj;lÞ − 2πρBijVij þ πρa2i δij
X3
l¼1

AilVll

þΩ2
0Vij − δi3Ω2

0V3j þ δijδΠþ 2
X3
l¼1

ϵil3Ω0

 
d
dτ

Vl;j þ
X3
k¼1

ðQlkVj;k −QjkVl;kÞ
!

−
X3
k¼1

C̃ð0Þ
ik Vkj −

X3
k¼1

C̃ð1Þ
ik Ikj; ð64Þ

with Vij ¼ Vi;j þ Vj;i.
As before, we can write the corresponding symmetrized

and antisymmetrized equations. We only need to consider
four of these equations at first order. Indeed, only the
equations for the indices ði; jÞ ¼ ð1; 3Þ; ð3; 1Þ; ð2; 3Þ; ð3; 2Þ
contain the nonzero contribution from the inertia tensor.
Since the first-order perturbative quantities should vary

periodically in time with the angular velocity ωθ, we use the
ansatz for the variables as

V1;3 ¼ Vð1Þ
1;3 cosðωθτÞ; ð65Þ

V3;1 ¼ Vð1Þ
3;1 cosðωθτÞ; ð66Þ

V2;3 ¼ Vð1Þ
2;3 sinðωθτÞ; ð67Þ

V3;2 ¼ Vð1Þ
3;2 sinðωθτÞ: ð68Þ

Then, the symmetrized equations become

ð−ω2
θ þ 4πρB13 −Ω2

0 þ C̃11 þ C̃33ÞVð1Þ
1;3

þ ð−ω2
θ þ 4πρB13 −Ω2

0 − 2Λ2

þ 2Ω0Λα2 þ C̃11 þ C̃33ÞVð1Þ
3;1

− 2Ω0ωθV
ð1Þ
2;3 − 2Λωθα

−1
2 Vð1Þ

3;2 ¼ −MC̃ð1Þ
13

a23 þ a21
5

; ð69Þ

ð−ω2
θ þ 4πρB23 −Ω2

0 þ C̃22 þ C̃33ÞVð1Þ
2;3

þ ð−ω2
θ þ 4πρB23 −Ω2

0 − 2Λ2

þ 2Ω0Λα−12 þ C̃22 þ C̃33ÞVð1Þ
3;2

− 2Ω0ωθV
ð1Þ
1;3 − 2Λωθα2V

ð1Þ
3;1 ¼ 0; ð70Þ

while the antisymmetrized equations are

ð−ω2
θ −Ω2

0 þ C̃11 − C̃33ÞVð1Þ
1;3

þ ðω2
θ −Ω2

0 þ 2Ω0Λα2 þ C̃11 − C̃33ÞVð1Þ
3;1

− 2Ω0ωθV
ð1Þ
2;3 þ 2Λωθα

−1
2 Vð1Þ

3;2 ¼ −MC̃ð1Þ
13

a23 − a21
5

; ð71Þ

ð−ω2
θ −Ω2

0 þ C̃22 − C̃33ÞVð1Þ
2;3

þ ðω2
θ −Ω2

0 þ 2Ω0Λα−12 þ C̃22 − C̃33ÞVð1Þ
3;2

− 2Ω0ωθV
ð1Þ
1;3 þ 2Λωθα2V

ð1Þ
3;1 ¼ 0: ð72Þ

These equations can be recast as a matrix equation

X4
k¼1

Mð1Þ
ik V

ð1Þ
k ¼ Cð1Þ

i ; ð73Þ

where

Vð1Þ
i ¼ ðVð1Þ

1;3; V
ð1Þ
3;1; V

ð1Þ
2;3; V

ð1Þ
3;2Þ; ð74Þ

Cð1Þ
i ¼ −

MC̃ð1Þ
13

5
ða23 þ a21; a

2
3 − a21; 0; 0Þ; ð75Þ

C̃13 ¼ C̃ð1Þ
13 cosðωθτÞ

¼ 3aε0 cosðωθτÞ
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ K0

p
ðr20 þ 5K0Þffiffiffiffiffiffi

K0

p
r6

; ð76Þ

and

Mð1Þ
11 ¼ −ω2

θ þ 4πρB13 −Ω2
0 þ C̃11 þ C̃33;

Mð1Þ
12 ¼ −ω2

θ þ 4πρB13 −Ω2
0 − 2Λ2

þ 2Ω0Λα2 þ C̃11 þ C̃33; ð77Þ
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Mð1Þ
13 ¼ −2Ω0ωθ;

Mð1Þ
14 ¼ −2Λωθα

−1
2 ;

Mð1Þ
21 ¼ −2Ω0ωθ;

Mð1Þ
22 ¼ −2Λωθα2;

Mð1Þ
23 ¼ −ω2

θ þ 4πρB23 −Ω2
0 þ C̃22 þ C̃33;

Mð1Þ
24 ¼ −ω2

θ þ 4πρB23 −Ω2
0 − 2Λ2

þ 2Ω0Λα−12 þ C̃22 þ C̃33; ð78Þ

Mð1Þ
31 ¼ −ω2

θ − Ω2
0 þ C̃11 − C̃33;

Mð1Þ
32 ¼ ω2

θ − Ω2
0 þ 2Ω0Λα2 þ C̃11 − C̃33;

Mð1Þ
33 ¼ −2Ω0ωθ;

Mð1Þ
34 ¼ 2Λωθα

−1
2 ; ð79Þ

Mð1Þ
41 ¼ −2Ω0ωθ;

Mð1Þ
42 ¼ 2Λωθα2;

Mð1Þ
43 ¼ −ω2

θ −Ω2
0 þ C̃22 − C̃33;

Mð1Þ
44 ¼ ω2

θ −Ω2
0 þ 2Ω0Λα−12 þ C̃22 − C̃33: ð80Þ

Note that all the components ofMð1Þ
ij and Cð1Þ

i are written in

the zeroth-order quantities, and hence the solution for Vð1Þ
k

is obtained straightforwardly by inverting the matrix
equation (see Sec. IV).

C. Second-order calculations

To find the second-order equations, we need to
take into account second-order corrections to Ω and

Ω̇ for the equations. We denote the former as Ω ¼ Ω0 þ
Ωð2Þ þOðε40Þ. The second-order corrections to Ω and Ω̇
are given in Appendix B.
One must not forget quadratic contributions from the

first-order perturbations. Indeed, the total moment of inertia
tensor computed up to the second order is

Itotij ¼
Z
V
ðxi þ ξð1Þik xk þ ξð2Þik xkÞðxj þ ξð1Þjl xl þ ξð2Þjl xlÞd3x

¼ Ið0Þij þ Vð1Þ
ij þ Vð2Þ

ij þ 5

Ma2k
Vð1Þ
i;k V

ð1Þ
j;k þOðε3Þ: ð81Þ

We will in the following abbreviate these contributions to

QijðVð1Þ
k;l Þ, while giving them their complete form in

Appendix B. Given our displacement, these terms are
nonzero only when ði; jÞ is even on component 3.
For the second-order perturbation, we only need to

consider the even terms on component 3. We then have
five equations. By adding Eq. (49), we obtain six equations
for six variables, V1;1, V2;2, V3;3, V1;2, V2;1, and δΠ.
Eliminating δΠ from the equations and using the

relations

− 2B11V11þa21
X3
l¼1

A1lVllþ 2B33V33−a23
X3
l¼1

A3lVll

¼−ð3B11−B13ÞV11þðB23−B12ÞV22þð3B33−B13ÞV33;

ð82Þ

we obtain

�
d2

dτ2
þ 2πρð3B11 − B13Þ − 2Ω2

0 − 2Λ2 þ 2Ω0Λα2 þ 2C̃11

�
V1;1 þ ð−2πρðB23 − B12Þ þ 2Ω0Λα−12 ÞV2;2

þ
�
−

d2

dτ2
− 2πρð3B33 − B13Þ − 2C̃33

�
V3;3 − 2Λα−12

d
dτ

V1;2 − 2Ω0

d
dτ

V2;1

¼ −C̃ð2Þ
11 I11 þ C̃ð2Þ

33 I33 þ 4Ωð2ÞðΩ0 − Λα2ÞI11 þQ11ðVð1Þ
k;l Þ; ð83Þ

ð−2πρðB13 − B12Þ þ 2Ω0Λα2ÞV1;1 þ
�
d2

dτ2
þ 2πρð3B22 − B23Þ − 2Ω2

0 − 2Λ2 þ 2Ω0Λα−12 þ 2C̃22

�
V2;2

þ
�
−

d2

dτ2
− 2πρð3B33 − B23Þ − 2C̃33

�
V3;3 þ 2Ω0

d
dτ

V1;2 þ 2Λα2
d
dτ

V2;1

¼ −C̃ð2Þ
22 I22 þ C̃ð2Þ

33 I33 þ C̃13ðV3;1 þ V1;3Þ þ 4Ωð2ÞðΩ0 − Λα−12 ÞI22 þQ22ðVð1Þ
k;l Þ; ð84Þ
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ð2Λα2 þ 2Ω0Þ
d
dτ

V1;1 − ð2Ω0 þ 2Λα−12 Þ d
dτ

V2;2

þ
�
d2

dτ2
þ 4πρB12 − 2Ω2

0 − 2Λ2 þ C̃11 þ C̃22

�
V1;2

þ
�
d2

dτ2
þ 4πρB12 − 2Ω2

0 − 2Λ2 þ C̃11 þ C̃22

�
V2;1

¼ −2C̃13ðV3;2 þ V2;3Þ þ Ω̇ðI22 − I11Þ
þQ12ðVð1Þ

k;l Þ þQ21ðVð1Þ
k;l Þ; ð85Þ

ð2Λα2 − 2Ω0Þ
d
dτ

V1;1 − ð2Ω0 − 2Λα−12 Þ d
dτ

V2;2

þ
�
d2

dτ2
þ C̃11 − C̃22

�
V1;2 þ

�
−

d2

dτ2
þ C̃11 − C̃22

�
V2;1

¼ Ω̇ðI22 þ I11Þ þQ12ðVð1Þ
k;l Þ−Q21ðVð1Þ

k;l Þ; ð86Þ

and

V1;1 þ
1

α22
V2;2 þ

1

α23
V3;3 ¼

X3
k¼1

X3
l¼1

Vð1Þ
k;l V

ð1Þ
l;k

2α2kα
2
l

: ð87Þ

There is an additional subtlety in this second-order
equations since the right-hand side of the equations has
two different time dependences because of ε2ðtÞ ¼
ε20½1þ cosð2ωθτÞ�=2. That is, there is a contribution
from the constant terms and from the terms of angular
velocity 2ωθ.
We must treat the different time dependence separately.

We thus separate the terms of different frequencies and
make the ansatz

V1;1 ¼ Vð2;0Þ
1;1 þ Vð2;2Þ

1;1 cosð2ωθτÞ;
V2;2 ¼ Vð2;0Þ

2;2 þ Vð2;2Þ
2;2 cosð2ωθτÞ;

V3;3 ¼ Vð2;0Þ
3;3 þ Vð2;2Þ

3;3 cosð2ωθτÞ;
V1;2 ¼ Vð2;0Þ

1;2 þ Vð2;2Þ
1;2 sinð2ωθτÞ;

V2;1 ¼ Vð2;0Þ
2;1 þ Vð2;2Þ

2;1 sinð2ωθτÞ: ð88Þ

We then separate the source terms in the same way:

C̃ð2Þ
11 ¼ C̃ð2;0Þ

11 þ C̃ð2;2Þ
11 cosð2ωθτÞ;

C̃ð2Þ
22 ¼ C̃ð2;0Þ

22 þ C̃ð2;2Þ
22 cosð2ωθτÞ;

C̃ð2Þ
33 ¼ C̃ð2;0Þ

33 þ C̃ð2;2Þ
33 cosð2ωθτÞ;

Ωð2Þ ¼ Ωð2;0Þ þΩð2;2Þ cosð2ωθτÞ;
Ω̇ ¼ Ω̇ð2Þ sinð2ωθτÞ;

C̃13ðV3;1 þ V1;3Þ ¼
C̃ð1Þ
13 ðVð1Þ

3;1 þ Vð1Þ
1;3Þ

2
½1þ cosð2ωθτÞ�;

C̃13ðV3;2 þ V2;3Þ ¼
C̃ð1Þ
13 ðVð1Þ

3;2 þ Vð1Þ
2;3Þ

2
sinð2ωθτÞ: ð89Þ

For the complete expression of these terms, we refer the
reader to the Appendix.
As before, we write the corresponding equations using

the matrix notation

X3
k¼1

Mð2;2Þ
ik Vð2;2Þ

k ¼ Cð2;2Þ
i ; ð90Þ

where

Mð2;2Þ
11 ¼ −4ω2

θ þ 2πρð3B11 − B13Þ
− 2Ω2

0 − 2Λ2 þ 2Ω0Λα2 þ 2C̃11;

Mð2;2Þ
12 ¼ −2πρðB23 − B12Þ þ 2Ω0Λα−12 ;

Mð2;2Þ
13 ¼ 4ω2

θ − 2πρð3B33 − B13Þ − 2C̃33;

Mð2;2Þ
14 ¼ −4Λωθα

−1
2 ;

Mð2;2Þ
15 ¼ −4Ω0ωθ; ð91Þ

Mð2;2Þ
21 ¼ −2πρðB13 − B12Þ þ 2Ω0Λα2;

Mð2;2Þ
22 ¼ −4ω2

θ þ 2πρð3B22 − B23Þ
− 2Ω2

0 − 2Λ2 þ 2Ω0Λα−12 þ 2C̃22;

Mð2;2Þ
23 ¼ 4ω2

θ − 2πρð3B33 − B23Þ − 2C̃33;

Mð2;2Þ
24 ¼ 4Ω0ωθ;

Mð2;2Þ
25 ¼ 4Λωθα2; ð92Þ

Mð2;2Þ
31 ¼ ð−4Λα2 − 4Ω0Þωθ;

Mð2;2Þ
32 ¼ ð4Λα−12 þ 4Ω0Þωθ;

Mð2;2Þ
33 ¼ 0;

Mð2;2Þ
34 ¼ −4ω2

θ þ 4πρB12 − 2Ω2
0 − 2Λ2 þ C̃11 þ C̃22;

Mð2;2Þ
35 ¼ −4ω2

θ þ 4πρB12 − 2Ω2
0 − 2Λ2 þ C̃11 þ C̃22; ð93Þ
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Mð2;2Þ
41 ¼ ð−4Λα2 þ 4Ω0Þωθ;

Mð2;2Þ
42 ¼ ð−4Λα−12 þ 4Ω0Þωθ;

Mð2;2Þ
43 ¼ 0;

Mð2;2Þ
44 ¼ −4ω2

θ þ C̃11 − C̃22;

Mð2;2Þ
45 ¼ 4ω2

θ þ C̃11 − C̃22; ð94Þ

Mð2;2Þ
51 ¼ 1;

Mð2;2Þ
52 ¼ 1

α22
;

Mð2;2Þ
53 ¼ 1

α23
;

Mð2;2Þ
54 ¼ 0;

Mð2;2Þ
55 ¼ 0: ð95Þ

Vð2;2Þ ¼ ðVð2;2Þ
1;1 ; Vð2;2Þ

2;2 ; Vð2;2Þ
3;3 ; Vð2;2Þ

1;2 ; Vð2;2Þ
2;1 Þ, and

Cð2;2Þ
1 ¼ −C̃ð2;2Þ

11 I11 þ C̃ð2;2Þ
33 I33 þ 4Ωð2;2ÞðΩ0 − Λα2ÞI11 þQð2;2Þ

11 ðVð1Þ
k;l Þ;

Cð2;2Þ
2 ¼ −C̃ð2;2Þ

22 I22 þ C̃ð2;2Þ
33 I33 þ

C̃ð1Þ
13 ðVð1Þ

3;1 þ Vð1Þ
1;3Þ

2
þ 4Ωð2;2ÞðΩ0 − Λα−12 ÞI22 þQð2;2Þ

22 ðVð1Þ
k;l Þ;

Cð2;2Þ
3 ¼ −C̃ð1Þ

13 ðVð1Þ
3;2 þ Vð1Þ

2;3Þ þ Ω̇ð2ÞðI22 − I11Þ þQð2;2Þ
12 ðVð1Þ

k;l Þ þQð2;2Þ
21 ðVð1Þ

k;l Þ;
Cð2;2Þ
4 ¼ Ω̇ðI22 þ I11Þ þQð2;2Þ

12 ðVð1Þ
k;l Þ −Qð2;2Þ

21 ðVð1Þ
k;l Þ;

Cð2;2Þ
5 ¼

X3
k¼1

X3
l¼1

Vð1Þ
k;l V

ð1Þ
l;k

2α2kα
2
l

: ð96Þ

The differential equations for the constant term must be
considered with more care. If we proceed as before, we

obtain again linear equations
P

5
k¼1 M

ð2;0Þ
ik Vð2;0Þ

k ¼ Cð2;0Þ
i .

The matrix of this equation Mð2;0Þ
ik is the same as Mð2;2Þ

ik
when we set ωθ ¼ 0. However, this matrix is never
invertible as its third and fourth lines are colinear.
However, in this case, the term in the right-hand side,

Cð2;0Þ
i , is also simpler because Cð2;0Þ

3 ¼ Cð2;0Þ
4 ¼ 0 [see

Eq. (89)]. This would imply that we have four equations
for five variables. We have thus a certain freedom for

setting Vð2;0Þ
1;2 and Vð2;0Þ

2;1 . We could set them both to 0.
By exploring further, we also find that one can assume

Vð2;0Þ
1;2 ¼ w1τ, V

ð2;0Þ
2;1 ¼ w2τ. The differential equations only

impose w1 þ w2 ¼ 0. It thus seems that there is a certain
freedom on the choice of the angular momentum at this
order. While we could fix all these variables to 0 as a
simplifying assumption, we could also enforce the value f,
as defined in Eq. (45), at this order by comparing the
corresponding vorticity of this second-order correction to
the second-order correction of Ω. We may then set

w1 ¼
2a21a

2
2Ωð2;0Þf

a21 þ a22
: ð97Þ

D. Higher orders

Even for higher orders, the form of the equations stays
essentially the same (the matrix form is identical). Indeed,
as before, we have linear equations for higher-order
displacements.
For higher orders, however, there are three main

differences from the previous analyses. The first comes
from the right-hand side of the matrix equations. It then
reflects the contribution of all the lower-order displace-
ments and the higher-order contributions of the physical
parameters of the system. The second comes from the
different frequencies which one has to consider; specifi-
cally, the frequency is higher. Finally, higher-order con-
tributions to the geodesic motion have to be taken into
account.

E. Elliptic orbits

The method described in the previous subsections can be
extended to other types of orbits, like slightly elliptic orbits.
For this, we write the orbital separation as rðτÞ ¼ r0½1þ
εðτÞ� and assume that εðτÞ is an infinitesimal quantity.
As before, we need to determine the time dependence of

ε. Using the definition of ε and writing E, L, and K by the
geodesic constants of a circular geodesic of radius r0, we
get from Eq. (3)
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�
dε
dτ

�
2

¼ ðδrÞ2 − ε2Ω2
0

�
1 −

3ðL − aEÞ2
r20

�
; ð98Þ

where δr is given by the perturbed values of the geodesic
constants, E and L, and K ¼ ðL − aEÞ2 for the equatorial
orbits. We then obtain

εðτÞ ¼ δr cosðωeτÞ; ð99Þ

where

ωe ¼ Ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3ðL − aEÞ2
r20

s
¼ Ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3

Δ0

P0

s
: ð100Þ

In this setting, the tidal tensor throughout the orbit is
rewritten in the perturbative form.
We can also consider more general orbits, which are

neither circular nor equatorial. In this case, when we are at
order n, we need to consider all frequencies lωθ þmωe for
all jlj þ jmj ¼ n, with l; m∈Z. This is a topic beyond the
scope of our present work.

IV. RESONANCES

A. Determination of resonances

An important aspect of the linear equations described
above comes from the ansatz we made about the time
dependence of the displacement. These are justified as long
as the matrix equations are solvable. This hinges on the
inversability of the matrices considered.
However, during our research, we found that these

matrices could have determinant zero for particular equi-
librium states. Furthermore, the terms in the right-hand side
were not in the image of the matrices. Thus, the linear
equations were not solvable for the particular cases in
which the determinant vanishes, implying the presence of a
resonance. This indicates that the ansatz used in these cases
are inappropriate. To solve the equations at the resonance
point, a better ansatz would be ξ⃗ ¼ ðξ⃗0 þ ξ⃗1τÞeiωθτ. In this
case, the displacements would eventually not be infinitesi-
mal. Thus, our perturbative expansion breaks down at such
points.
These resonances can come either from the first- or

second-order equation. For f ¼ 0, we find a resonance for
both the first- and second-order displacements. For f ¼ 1,
we find it only for the second-order equations. Near the
resonant angular frequencies, ω ≈ ωθ or 2ωθ, the amplitude
of the displacement scales as jω − kωθj−1, where k ¼ 1 or
2, indicating that a significant deformation from the
ellipsoidal shape happens not only at the resonant angular
frequency but also around these frequencies, i.e., at ω that
satisfies jω − kωθj ≪ kωθ. This indicates that for a star
approaching the resonance the degree of the displacement
is significantly enhanced.

To assess the relevancy of these resonances, we plot the
corresponding values of Ω̃2 of these resonances, along with
the values of Ω̃2 that are modeled by a NS, a white dwarf,
and an ordinary star orbiting a variety of Kerr BHs. We
estimate Ω̃2 using typical radius Rstar and massM for these
objects. We then have Ω̃2 as a function of r0 as

Ω̃2 ¼ 4

3

m
M

�
Rstar

r0

�
3

: ð101Þ

In Fig. 2, we plot the values of Ω̃2 for the resonances of
ω ¼ ωθ and 2ωθ as functions of r0=m together with the
Roche (f ¼ 0) and Roche-Riemann (f ¼ 1) limits, for
a=m ¼ 0.8. We also plot the curves along hypothetical
sequences of inspiraling BH-NS binaries in close orbits and
white dwarf/ordinary stars orbiting supermassive BHs. We
note that for the ω ¼ 0 mode in the second-order displace-
ment the resonance appears near the Roche/Roche-
Riemann limits. This corresponds to the onset of dynamical
instability for the ellipsoid, similarly as in the classical
Roche problem [2]. This figure shows that these resonances
may destabilize the objects before reaching the Roche and
Roche-Riemann limits.

FIG. 2. Ω̃2 as functions of r0=m for the first- and second-order
resonances, along with the tidal disruption limit Ω̃2

crit as well as
the expected values of Ω̃2 for typical values of BH-NS binaries
and supermassive BH–white dwarf/ordinary star binaries. For
both plots, we assumed a=m ¼ 0.8 and prograde orbits. The
upper and lower panels show the results for f ¼ 0 and f ¼ 1.
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In Fig. 3, we reproduce the same figure for a=m ¼ 0.5
and a=m ¼ 0.9 with f ¼ 0. We find that the spin parameter
a=m does not have much of an impact on the relative
position of the resonances to the Roche limit. As in Ref. [8],
we see that the Roche limit gets farther away and with it the
resonances, as a=m decreases.
In the upper panel of Fig. 3, we produced the curves in

the case of retrograde orbits. While until now we always
presented the results for prograde orbits, they are easily
extended to retrograde orbits. One only has to take
a=m < 0. The observation made before can then also be
extended. Compared to positive values of a=m, we observe
that the resonances happen for larger values of r0=m.

However, their relative positions to the Roche limit are
the same.
These resonances seem to be similar to the instabilities

found for a star in elliptic orbits [4] (note that these are
instabilities in purely Newtonian gravity). They appear
when ωe is equal to one of the oscillatory modes of the star
on the equatorial plane. This then creates the resonance
discussed before. In the case of a star orbiting a Kerr BH,
the possible resonances are more numerous as a result of
the more complicated nature of the geodesics due to the
relativistic effects.
In our present context, the displacement associated with

an oscillatory mode gets excited by the variation of the θ
coordinate of the orbit. It will then grow linearly and
eventually, and it will not be infinitesimal anymore.
Figures 4 and 5 show the displacement vectors associated
with the excited modes, assuming a=m ¼ 0.8. Again, the

FIG. 3. The same as Fig. 2 but for a=m ¼ 0.5 (upper and
middle panels) and for a=m ¼ 0.9 (lower panel). The upper panel
shows the case of retrograde orbits, while the middle and lower
panels show prograde orbits.

FIG. 4. The displacement vector ξi for the first-order perturba-
tion on the surface of the star represented by the red ellipse for
ωθτ ¼ 0 (upper panel) and ωθτ ¼ π=2 (lower panel). The axes
X, Y, and Z correspond to the axis 1, axis 2, and axis 3 of the
problem in units of a1, respectively. For all the plots, the vectors
are plotted for a=m ¼ 0.8, f ¼ 0 and at a distance r0 ¼ 20mwith
Ω̃2 ≈ 0.03459. In this case, α2 ≈ 0.886 and α3 ≈ 0.858.
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spin parameter does not have an important impact on the
qualitative aspect of the resonant displacement.
Figure 4 shows that the resonance in the first-order

displacement will mostly imply a precession of the 3-axis.
As such, this mode is quite reminiscent of the transverse-
shear mode of the MacLaurin spheroids discussed in
Ref. [2]. By the nonlinear amplification of this mode,
matter may be ejected from the surface to the outside of the
star, resulting possibly in the modification of the precessing
orbit as well as the stellar profile. For white dwarfs, the
stellar radius increases with the mass ejection. Thus, this
resonance could trigger the tidal disruption.
From the second-order displacement shown in Fig. 5, we

observe that it will involve mostly a quadrupole displace-
ment in the 1-2 plane. This mode reminds us of toroidal
modes also discussed in Ref. [2].
The resonance in the first- and second-order displace-

ments is always encountered slightly outside the Roche/
Roche-Riemann limits. For BH-NS binaries in precessing
orbits, thus, the resonant deformation may be excited just
prior to the tidal disruption. The tidal disruption may be
assisted by the prior resonance if the relativistic effect on
the self-gravity of the star, which we do not take into

account in the present study, does not qualitatively change
the property of the resonance.
We note that in our analysis we neglected several effects,

which can modify our results quantitatively. Since we
neglected the general relativistic effect for the self-gravity
of the NS, an error of order GmNS=c2Rstar may be expected
on the condition of the tidal disruption. Also, we neglected
the NS’s gravity on the orbital motion, so that an error of
order M=m may be also expected. However, these dimen-
sionless parameters are supposed to be of order 0.1 in this
paper. Hence, the results obtained in this paper is unlikely
to be significantly changed even if we take into account
these effects.

B. Analytical resolution of the first-order resonance

The resonance in the first-order displacement with f ¼ 0
can be determined analytically. If we introduce λ such that
ω2
θ ¼ ð1þ λÞΩ2

0 where λ is a purely relativistic correction
[see Eq. (52)], we have C̃11 ¼ ð−2 − λÞΩ2

0, C̃22 ¼ Ω2
0, and

C̃33 ¼ ð1þ λÞΩ2
0. Then,

detðMð1Þ
ij Þ ¼ −16πρB23ð1þ λÞΩ4

0

× ½−4πρB13λþ ð3þ λÞð1þ λÞΩ2
0�; ð102Þ

and thus we find that the first-order resonance occurs when

Ω̃2 ¼ 4B13λ

ð3þ λÞð1þ λÞ : ð103Þ

We find that the relativistic correction is the key for this
resonance.

V. DISCUSSION

The main result of this paper is the discovery of possible
resonances of stars with precessing orbits around Kerr BHs.
In particular, we found that these resonances could be
relevant for systems such as white dwarfs/ordinary stars
orbiting a supermassive BH and BH-NS binaries in close
orbits.
One interpretation of our results is that as an orbiting star

approaches a Kerr BH, e.g., by the radiation reaction of
gravitational waves, it will approach one of these reso-
nances before encountering the tidal disruption limit. The
closer it gets to it, the more the displacement associated
with it will grow. At some point before the resonance, the
displacement will not be infinitesimal anymore. Our
equations are then not valid.
As such, the instability found is unlike that found at the

Roche limit. Indeed, we do not provide a correction to this
limit as in Ref. [9]. Instead, we provide a resonance which
arises due to the dynamical nature of our analysis. Thus,
our results and their interpretation differ from Ref. [9].

FIG. 5. The displacement vector ξi for a second-order pertur-
bation on the surface of the star represented by the red ellipse for
ωθτ ¼ 0 (upper panel) and ωθτ ¼ π=2 (lower panel). The axes
X, Y, and Z correspond to the axis 1, axis 2, and axis 3 of the
problem in units of a1, respectively. For all the plots, the vectors
are plotted for a=m ¼ 0.8, f ¼ 0 and at a distance r0 ¼ 20mwith
Ω̃2 ≈ 0.06758. In this case, α2 ≈ 0.734 and α3 ≈ 0.694.
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As the first-order resonance has only been found for
f ¼ 0, it will probably not be relevant for BH-NS binaries
for which the NS is likely to be nearly irrotational [17,18]
in such systems. If we consider white dwarfs/ordinary stars
orbiting supermassive BH, we expect that the correspond-
ing star may be corotational because the viscous angular
momentum redistribution can have a timescale shorter
than the orbital evolution one. For these systems, the star
may encounter the first-order resonance before tidal
disruption. If the system has an elliptic orbit, we expect
also resonances of frequency ωe. However, if the object
stays on the equatorial plane, the modification to the orbit
will only give contributions to the diagonal components of
the tidal tensor. As such, the resonances should correspond
to the toroidal mode. If the orbit is neither equatorial nor
spherical, the overall picture gets more complicated.
According to our perturbation analysis, it is likely that
there are more possible resonances of frequency ωθ þ ωe
and ωθ − ωe, and thus these resonances may be excited
as well.
The second-order resonance can be relevant for BH-NS

binaries just prior to the significant tidal deformation of the
NS. In the presence of a precession, this resonance is
excited during the late inspiral phase, and thus the orbital
energy is partly transported to the oscillation energy of the
NS. This can accelerate the orbital evolution of the system,
leading to a gravitational-wave phase shift, in addition to
the phase shift related to the usual tidal deformation
[20,21]. Since the second-order resonance can be induced
only at an orbit close to the tidal disruption limit, it may not
be easy to distinguish the resonant effect from the usual
tidal deformation effect, and thus we may overestimate the
tidal deformation effect if we do not properly take into
account the resonant effect for precessing binaries.
To our knowledge, these results have never been reported

before. A major counterpoint to our analysis is its apparent
reliance on some questionable assumptions, like the incom-
pressibility hypothesis. However, as the general mechanism
for the resonance holds true, we expect resonances even
with more realistic equations of state. Indeed, whatever the
equation of state is, we have characteristic modes for our
star. We may then observe a resonance between these modes
and the oscillation present in the tidal tensor. Thus, while the
equations can change, the resulting phenomenon should not
qualitatively. Of course, this explanation is just tentative
and should be confirmed by a more complete analysis of
the question. We plan to show the results of our approxi-
mate analysis for the compressible equations of state in a
follow-up paper.
As our equations are not valid near the resonance, one

would have to change our method to fully understand the
effects on the orbital change by the resonance. For this
purpose, performing hydrodynamics simulations is a robust
approach. We are currently working on simulations of these
types of systems.
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APPENDIX A: FORMULA FOR SECOND-ORDER
EQUATIONS

To compute all the second-order quantities necessary for
the corresponding equations, we need to compute the
perturbed expressions for the energy E, angular momentum
around the z-axis L, and Carter constant K for the
corresponding orbit.
To do this, we will rely on the formula given in Ref. [14].

Assuming that C is a small quantity, we expand them as

E ¼ E0 þ E1C þOðC2Þ; ðA1Þ

L ¼ L0 þ L1C þOðC2Þ; ðA2Þ

K ¼ K0 þ K1C þOðC2Þ; ðA3Þ

where

E1 ¼
a
2r20

a −
ffiffiffiffiffiffi
mr

pffiffiffiffiffiffi
P0

p ; ðA4Þ

L1¼
a3

ffiffiffiffi
m

p þa
ffiffiffiffi
m

p
r20þr5=20 ð−3mþr0Þþa2r1=20 ð−mþr0Þ

2
ffiffiffiffiffiffiffiffiffi
mP0

p
r50

;

ðA5Þ

K1 ¼ 1−
ffiffiffiffiffi
r0
m

r ð−aþ ffiffiffiffiffiffiffiffi
mr0

p Þða2þ a
ffiffiffiffiffiffiffiffi
mr0

p þð−3mþ r0ÞÞ
P0

:

ðA6Þ

Then, we have

Ωð2Þ ¼ a2cos2θ

ffiffiffiffi
m

p ðr20 − 3mr0 þ 2a
ffiffiffiffiffiffiffiffi
mr0

p Þ
r7=20 ð ffiffiffiffiffiffiffiffi

mr0
p − aÞ2

þ C
�
2K1Ω0 þ

ffiffiffiffiffiffi
K0

p
r20

�
E1ðr20 þ a2Þ − aL1

r20 þ K0

−
K1ðE0ðr20 þ a2Þ − aL0Þ

ðr20 þ K0Þ2

þ aðL1 − aE1Þ
K0

−
aK1ðL0 − aE0Þ

K2
0

��
¼ a2cos2θΩa þ CΩC: ðA7Þ

Therefore,
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Ωð2;0Þ ¼ a2ε20
2

Ωa þ CΩC;

Ωð2;2Þ ¼ a2ε20
2

Ωa: ðA8Þ

Likewise, we have

Ω̇ ¼ −a2θ̇ sin 2θ
ffiffiffiffi
m

p ðr20 − 3mr0 þ 2a
ffiffiffiffiffiffiffiffi
mr0

p Þ
r7=20 ð ffiffiffiffiffiffiffiffi

mr0
p − aÞ2

þOðC2Þ;

ðA9Þ

and thus

Ω̇ð2Þ ¼ −a2ε20ωθ

ffiffiffiffi
m

p ðr20 − 3mr0 þ 2a
ffiffiffiffiffiffiffiffi
mr0

p Þ
r7=20 ð ffiffiffiffiffiffiffiffi

mr0
p − aÞ2

: ðA10Þ

Finally, the second-order contributions to the tidal tensor
are given as

Cð2Þ
11 ¼ 3M

r30

�
−
K1C
r20

þ a2cos2θ

�
15K2

0 þ 14r20K0 þ r40
r40K0

��
;

ðA11Þ

Cð2Þ
22 ¼ −

6M
r50

a2 cos2 θ; ðA12Þ

Cð2Þ
33 ¼ 3M

r30

�
K1C
r20

− a2 cos2 θ

�
15K2

0 þ 12r20K0 þ r40
r40K0

��
:

ðA13Þ

Thus,

Cð2;0Þ
11 ¼ 3M

r30

�
−
K1C
r20

þ a2ε20
2

�
15K2

0 þ 14r20K0 þ r40
r40K0

��
;

Cð2;2Þ
11 ¼ 3Ma2ε20

2r30

15K2
0 þ 14r20K0 þ r40

r40K0

;

Cð2;0Þ
22 ¼ −

3Ma2ε20
r50

;

Cð2;2Þ
22 ¼ −

3Ma2ε20
r50

;

Cð2;0Þ
33 ¼ 3M

r30

�
K1C
r20

−
a2ε20
2

�
15K2

0 þ 12r20K0 þ r40
r40K0

��
;

Cð2;2Þ
33 ¼ 3Ma2ε20

2r30

15K2
0 þ 12r20K0 þ r40

r40K0

: ðA14Þ

APPENDIX B: QUADRATIC CONTRIBUTIONS
TO THE SECOND ORDER

The quadratic contributions to the second order can be
divided in three parts,

QijðVk;lÞ ¼
5

M
ðQgrav

ij ðVk;lÞ þQstat
ij ðVk;lÞ þQdyn

ij ðVk;lÞÞ;
ðB1Þ

where

Qstat
ij ðVk;lÞ ¼

X3
k¼1

X3
l¼1

ðΩ2
0ðδik − δ3kÞ− C̃ð0Þ

ik Þ
Vk;lVj;l

a2l
; ðB2Þ

Qdyn
ij ðVk;lÞ ¼

X3
k¼1

�
−
V̈i;kVj;k

a2k
þ 2

X3
l¼1

ðQjlV̇i;k

− ðQ2ÞjlVi;k þ ðQ2ÞilVj;kÞ
Vl;k

a2k

− 2
X3
l¼1

ϵil3Ω0

�
V̇l;k

Vj;k

a2k

þ
X3
m¼1

ðQlmVj;k −QjmVl;kÞ
Vm;k

a2k

��
; ðB3Þ

and finally

Qgrav
ij ðVk;lÞ¼

X3
l¼1

 
AiVi;lVj;l

a2l
þAijVi;lVj;la2j

a2l
þAiljVilVlja2j

−VilAilVljþVllAilVijþ
VllVijAijla2j

2

þδij
X3
k¼1

 
−
AiV2

l;ka
2
j

a2l a
2
k

−
V2
lkAlkia2j
4

−
AliV2

l;ka
2
j

2a2k
þAlkiVllVkka2j

8

!!
: ðB4Þ

When we consider a displacement Vi;j whose nonzero
terms have indices ði; jÞ ¼ ð1; 3Þ; ð3; 1Þ; ð2; 3Þ; ð3; 2Þ, the
quadratic contributions are nonzero only for the indices
even on component 3.
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