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Abstract. We generalize the targeted B-statistic for continuous gravitational
waves by modeling the h0-prior as a half-Gaussian distribution with scale
parameter H. This approach retains analytic tractability for two of the four
amplitude marginalization integrals and recovers the standard B-statistic in the
strong-signal limit (H → ∞). By Taylor-expanding the weak-signal regime
(H → 0), the new prior enables fully analytic amplitude marginalization, resulting
in a simple, explicit statistic that is as computationally efficient as the maximum-
likelihood F-statistic, but significantly more robust. Numerical tests show that
for day-long coherent searches, the weak-signal Bayes factor achieves sensitivities
comparable to the F-statistic, though marginally lower than the standard B-
statistic (and the Bero-Whelan approximation). In semi-coherent searches over
short (compared to a day) segments, this approximation matches or outperforms
the weighted dominant-response F̂ABw-statistic and returns to the sensitivity of
the (weighted) F̂w-statistic for longer segments. Overall the new Bayes-factor
approximation demonstrates state-of-the-art or improved sensitivity across a wide
range of segment lengths we tested (from 900 s to 10 days).
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1. Introduction

Continuous gravitational waves (CWs), expected to be emitted by spinning non-
axisymmetric neutron stars in our galaxy, are one of the most anticipated but still
undetected types of gravitational waves. Finding CWs will mark the culmination of
decades of research aimed at refining search methods and applying them to data from
ground-based detectors, such as LIGO Hanford (H1), Livingston (L1) [1], and Virgo
(V1) [2]. For recent reviews, see, for example, [3, 4].

CW signals manifest in the detector data as amplitude-modulated quasi-sinusoidal
waveforms with slowly varying (generally decreasing) frequency. These are long-lasting
but extremely weak signals compared to the detector noise, and will therefore require
combining months to years of data to become detectable. The signals are characterized
by four amplitude parameters: the overall amplitude h0, two polarization angles ι and
ψ, and the initial phase ϕ0. An additional set of phase-evolution parameters, such as
the frequency (and its time derivatives), sky position and binary-orbital parameters,
is required to fully determine the signal, depending on the search space considered.
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A key research focus for detecting CWs is the development of statistics that
maximize the detection probability at a fixed false-alarm level, while being as
computationally efficient as possible. A significant milestone in this area was the
seminal work by Jaranowski, Królak, and Schutz [5] (henceforth “JKS”), demonstrating
that the likelihood ratio can be analytically maximized over the four unknown
amplitude parameters after a coordinate transformation. This results in the F-
statistic, which only requires explicit searches over phase-evolution parameters,
thereby substantially reducing the computing cost. Another closely-related coherent
statistic was constructed by different arguments within the “5-vector” formalism
[6], equally dispensing with the amplitude parameters and resulting in very similar
detection power.

Searle pointed out in [7] that for composite signal hypotheses (i.e., those with
unknown parameters), the Neyman-Pearson lemma shows that the optimal statistic
is the marginalized (rather than maximized) likelihood ratio, also known as the Bayes
factor. This was illustrated in the CW context in [8], showing that marginalizing
with more physical priors over the amplitude parameters resulted in a (slightly) more
powerful statistic (referred to as the B-statistic) than the F-statistic. However, this
statistic entails a substantially higher computing cost, given that only two of the
four marginalization integrals have been solved analytically [9], while the remaining
two need to be performed numerically. There have been a number of attempts
[10, 11, 12, 13] to find usable solutions and approximations to these integrals, with
the most successful fully-analytic approximation to date provided by Bero & Whelan
[14].

On the other hand, recent work [15] on semi-coherent all-sky searches for neutron
stars in unknown binary systems has revealed some unexpected weaknesses of the F-
statistic: the extreme computational cost of these searches requires using very short
segments, of order O (100 s). Surprisingly, the F-statistics turns out to be quite sub-
optimal for such short segments, and an empirically-constructed dominant-response
statistic FAB, effectively dropping two of the four amplitude degrees of freedom, was
shown in [16] to beat the F-statistic sensitivity by up to ∼ 19% in the short-segment
limit. Furthermore, when signal power varies over segments, which can happen both
due to varying (i) antenna-pattern response, and (ii) noise floors and duty factors,
then an explicit segment-weighting scheme was shown in [17] to improve sensitivity
over the conventional directly-summed semi-coherent F̂- (or F̂AB) statistics.

These empirical findings raise the question of how to understand and leverage
them within the Bayesian framework. Given that three of the four amplitude
parameters (namely ι, ψ, ϕ0) have well-defined ignorance priors [8], the only remaining
freedom left is the choice of h0-prior. Previous works on the CW Bayes factor
have all used a uniform h0-prior, for simplicity and because it enables analytical
marginalization. However, this is intrinsically a “strong-signal” prior, in the sense that
it puts more probability weight on larger orders of magnitude compared to smaller
ones.

Here we explore a new h0-prior in the form of a half-Gaussian with scale parameter
H, which is more “physical” in the sense of giving more weight to smaller h0 amplitudes
compared to larger ones. This contains the uniform prior in the asymptotic strong-
signal limit (H → ∞), while preserving the ability for analytic h0 integration. In the
“weak-signal” limit (H → 0), we can Taylor-expand in small H and obtain a fully
analytic solution for all four Bayes- factor integrals. Used as a semi-coherent statistic,
this performs as well and better than the weighted F̂ABw statistic for short segments
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and the weighted F-statistic F̂w for long segments.
The plan of this paper is as follows: introduction to the F-statistic formalism

in Sec. 2, followed by a recap of the corresponding Bayesian formalism in Sec. 3
with B-statistic and Bero&Whelan approximation. Derivation of the new generalized
B-statistic and analytic weak-signal approximation in Sec. 4. Derivation of the weak-
signal statistic as a generalized χ2-distribution in Sec. 5, followed by numerical tests
and results presented in Sec. 6, with conclusions in Sec. 7.

2. The F-statistic formalism

2.1. Signal model

The signal depends on amplitude parameters A ≡ {h0, η, ψ, ϕ0}, where h0 is the
overall amplitude, η ≡ cos ι quantifies the degree of circular polarization in terms of
the inclination angle ι of the neutron-star spin axis to the line of sight, ψ describes
the polarization in terms of its rotation angle on the sky, and ϕ0 is the signal phase
at a reference time (see [9] for a more detailed discussion of the geometry). We refer
to this parametrization as the physical amplitude coordinates.

The seminal paper [5] introduced a new set of amplitude coordinates {Aµ},
referred to as JKS coordinates, which are defined as

A1 ≡ A+ cosϕ0 cos 2ψ −A× sinϕ0 sin 2ψ ,

A2 ≡ A+ cosϕ0 sin 2ψ +A× sinϕ0 cos 2ψ ,

A3 ≡ −A+ sinϕ0 cos 2ψ −A× cosϕ0 sin 2ψ ,

A4 ≡ −A+ sinϕ0 sin 2ψ +A× cosϕ0 cos 2ψ ,

(1)

in terms of the polarization amplitudes A+ ≡ h0 (1 + η2)/2 and A× ≡ h0 η. Using
these coordinates, the signal h(t) in the detector frame takes the linear form

h(t;A, λ) = Aµ hµ(t;λ), (2)

with automatic summation over repeated amplitude indices µ = 1, . . . , 4, and with
four matched-filter basis functions hµ(t;λ) defined as

h1(t) ≡ a(t) cosϕ(t), h2(t) ≡ b(t) cosϕ(t),

h3(t) ≡ a(t) sinϕ(t), h4(t) ≡ b(t) sinϕ(t),
(3)

in terms of the signal phase ϕ(t;λ) at the detector with sky-direction dependent
antenna-pattern functions a(t; n⃗), b(t; n⃗) (cf. [5, 18] for explicit expressions).

The phase-evolution parameters λ include the remaining signal parameters,
namely the sky-position n⃗, frequency f and higher-order derivatives ḟ , f̈ , . . . at some
given reference time, describing the slowly-changing intrinsic signal frequency. For
CW sources in binary systems λ also includes the binary orbital parameters. The
sky position n⃗ is most commonly specified in terms of the equatorial longitude α and
latitude δ, measured in radians.

Here we only consider the standard “mountain” emission model, where the
gravitational-wave frequency f = 2ν is twice the rotation frequency ν of the neutron
star, with discussion of free-precession (with additional emission at f ≈ ν) and r-modes
(with f ≈ 4ν/3) postponed to future work.
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2.2. Likelihood ratio

We want to construct the optimal detection statistic for distinguishing between the
Gaussian-noise hypothesis HG : x(t) = n(t), when the data x contains only Gaussian
noise n, and the signal hypothesis HS : x(t) = n(t) + h(t;A, λ), when there is an
additional signal h(t;A, λ) of the form (2). Optimality of a statistic S(x) is defined
in terms of the Neyman-Pearson criterion of maximizing the detection probability
pdet = P (S > Sthr|HS) at a fixed false-alarm probability pfa ≡ P (S > Sthr|HG),
parametrized in terms of a detection threshold Sthr.

For two simple hypothesis, i.e., with no unknown parameters, the classic Neyman-
Pearson lemma [19] proves that the optimal statistic is the likelihood ratio, namely

L(x;A, λ) ≡ P (x|HS,A, λ)
P (x|HG)

= exp

[
(x|h)− 1

2
(h|h)

]
, (4)

where the last expression holds for the specific hypotheses HG,HS being considered
here, and we introduced the “matched-filter” scalar product (x|y), see [20].

The scalar product for narrow-band signals (such as CWs) in a single detector
with stationary noise floor and no gaps in the data, would simply be (x|y) ≡
2S−1

∫ Tdata

0
x(t) y(t) dt, in terms of the (single-sided) noise power spectral density S(f)

around the signal frequency f and data duration Tdata. One can generalize this to
several detectors, allowing for gaps in the data and non-stationary noise-floors (see
Appendix B for the full expression), and still write it in the form

(x|y) ≡ 2γ ⟨x y⟩ , (5)

in terms of a (weighted) multi-detector average ⟨. . .⟩ and a dimensionless data factor
γ [18, 16], which we define as

γ ≡ S−1 Tdata, (6)

which can be understood as the product of the data “quality” (i.e., S−1) and “quantity”,
Tdata. Note that this involves the non-stationary generalization of the overall noise
floor S given in (B.2).

Substituting the JKS signal form (2), we can express the log-likelihood ratio as

lnL(x;A, λ) = Aµxµ − 1

2
AµMµνAν , (7)

where we defined

xµ ≡ (x|hµ) , and Mµν ≡ (hµ|hν) . (8)

The four numbers xµ are the scalar products of the data x matched against the basis
functions hµ of (3), while the detector-response matrix Mµν can be expressed more
explicitly‡ as

M = γM = γ

(
m 0
0 m

)
, with m ≡

(
A C
C B

)
, (9)

where A = ⟨a2⟩, B = ⟨b2⟩, and C = ⟨a b⟩ are the (sky-position dependent) averaged
antenna-pattern coefficients. This expression shows two contributions to the detector
response, namely the data factor γ and a geometric antenna-pattern matrix M ,
encoding the detector sensitivity to a particular sky direction (integrated over the
available observation time). We can express the determinant as

detM = γ4D2 with D ≡ detm = AB − C2 . (10)

‡ Assuming the long-wavelength limit for ground-based detectors.
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In practice the amplitude parameters A are (generally) unknown, and depending
on the type of search, also some or all of the phase-evolution parameters. The
signal hypothesis HS is therefore always a composite hypothesis involving unknown
parameters. Therefore the likelihood ratio (4) is a function of these unknown
parameters and cannot be directly used as a detection statistic.

2.3. The F-statistic

A classic method for dealing with composite hypotheses is the maximum-likelihood
approach, which consists of using the maximized likelihood ratio as a detection
statistic. Applying this approach to (7), one can analytically maximize L over the
JKS amplitude parameters Aµ and obtain

F(x;λ) ≡ max
{Aµ}

lnL(x;A, λ) = 1

2
xµ

(
M−1

)µν
xν , (11)

defining the F-statistic [5], with the corresponding maximum-likelihood estimators
Âµ for the amplitude parameters given by

Âµ ≡
(
M−1

)µν
xµ . (12)

This statistic can be shown [5] to follow a χ2-distribution with four degrees of freedom,
and noncentrality parameter

ρ2 ≡ (h|h) = AµMµνAν , (13)

which we refer to as the signal power, also commonly known as the squared signal-to-
noise ratio (SNR) in this context.

3. Bayesian detection framework

3.1. Bayes factor

Unlike the ad-hoc maximum-likelihood approach discussed earlier, the Bayesian
framework offers a natural and unique method for handling unknown parameters,
grounded in the three fundamental laws of probability [21].

The likelihood for a composite signal hypothesis HS can be directly obtained as

P (x|HS) =

∫
P (x|HS,A, λ) P (A, λ|HS) dA dλ, (14)

also referred to as the marginalized likelihood, which requires an explicit specification
of the prior probabilities for the unknown signal parameters {A, λ}. Assuming for
simplicity a Gaussian-noise hypothesis with known noise floor S, this further leads to
the marginalized likelihood ratio

BS/G(x) ≡
P (x|HS)

P (x|HG)
=

∫
L(x;A, λ)P (A, λ|HS) dA dλ, (15)

commonly known as the Bayes factor between the signal and the Gaussian-noise
hypothesis.

Here we focus exclusively on the marginalization over amplitude parameters A,
and therefore consider only a single phase-evolution point λ in the following. This
could be interpreted as a “targeted” search scenario, but could equally represent simply
a single template step in a wide-parameter space search.
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3.2. Rediscovering the F-statistic

Building on the pioneering work [22, 23] in burst searches, [8] demonstrated that the F-
statistic can also be derived as a Bayes factor, assuming a (somewhat arbitrary) prior
that is uniform in Aµ-space. Specifically, P ({Aµ}|HS) = k, leading to a Gaussian
integral that yields

BS/G(x;λ) = k
4π2

√
detM

eF(x;λ) . (16)

The Jacobian for the coordinate transformation (1) between Aµ and physical
amplitude parameters can be obtained [8, 9] as

P (h0, η, ψ, ϕ0|HS) =
1

4
h30

(
1− η2

)3
P ({Aµ}|HS) , (17)

therefore a constant-Aµ prior favors signals with large h0 and linear polarization
(η ∼ 0) over circular polarization η ∼ ±1, both of which are unphysical.

In order to be normalizable, this prior needs to be artificially truncated at some
large-Aµ surface. One can also use this to (arbitrarily) remove the prefactor by
choosing an M-dependent truncation surface, as discussed in [24], resulting in a F-
statistic Bayes factor of the form BS/G(x;λ) = k′ eF(x;λ) instead, where the prefactor
k′ is now independent of the detector-response matrix M. Empirically this form was
found to result in better performance on transient-CW signals [24], and was also used
as the basis for constructing extended “line-robust” Bayes factors in [25, 26].

3.3. Neyman-Pearson-Searle optimality

As Searle noted in [7], the Neyman-Pearson proof for the optimal detection statistic
only requires the likelihoods for the two competing hypotheses. Since the Bayesian
framework uniquely provides a marginalized likelihood (14) for the composite signal
hypothesis, it follows that the marginalized likelihood ratio (7) (i.e., the Bayes factor)
is the Neyman-Pearson optimal statistic, assuming the unknown signal parameters
are drawn from the priors.

Thus, the somewhat unphysical prior of Sec. 3.2 implies that the F-statistic is
not optimal, and using more appropriate priors can lead to a more powerful detection
statistic. This was demonstrated in [8], where an isotropic prior on the neutron star’s
spin orientation (reflecting our ignorance of the spin axis) was used instead, namely

P (h0, η, ψ, ϕ0|HS) =
1

2π2
P (h0|HS) , (18)

which is uniform in η ∈ [−1, 1], ψ ∈ [−π/4, π/4] and ϕ0 ∈ [0, 2π]. We can therefore
write the general form of the optimal Bayes factor as

BS/G(x;λ) ≡
1

2π2

∫
L(x;λ,A)P (h0) dh0 dη dψ dϕ0 . (19)

The correct choice for an h0-prior is less obvious and would ultimately have to be
constructed from astrophysical arguments about the expected distance, rotation rate
and deformation of neutron stars. Generally speaking, however, we expect a “physical”
h0-prior to favor weaker signals over stronger ones, contrary to the implicit F-statistic
prior ∝ h30 of (17).
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3.4. Likelihood ratio in physical coordinates

In order to make progress on the Bayes-factor integral (19), it is useful to express the
likelihood ratio L of (7) in terms of the physical amplitude parameters {h0, η, ψ, ϕ0}.
This can be obtained [9] in the following form,

lnL(x;A) = h∗ q(x; η, ψ) cos (ϕ0 − φ0)−
1

2
h2∗ g

2(η, ψ), (20)

where we defined the relative signal amplitude h∗ as

h∗ ≡ h0
√
γ = h0

√
Tdata
S , (21)

and the geometric response function§
g2(η, ψ) ≡ α1A+ α2B + 2α3 C , (22)

in terms of the amplitude coefficients αi(η, ψ):

α1(η, ψ) ≡
(A1)2 + (A3)2

h20
=

1

4
(1 + η2)2 cos2 2ψ + η2 sin2 2ψ,

α2(η, ψ) ≡
(A2)2 + (A4)2

h20
=

1

4
(1 + η2)2 sin2 2ψ + η2 cos2 2ψ,

α3(η, ψ) ≡
A1A2 +A3A4

h20
=

1

4
(1− η2)2 sin 2ψ cos 2ψ.

(23)

This allows us to write the signal power ρ2 of (13) as
ρ2 = h2∗ g

2(η, ψ) . (24)
The explicit form for the phase offset φ0(x; η, ψ) in (20) will not be required in the
following, but can be found in (C.3). The matched-filter response term q(x; η, ψ) in
(20) can be expressed as

q2(x; η, ψ) ≡ 2FA(x)α1A+ 2FB(x)α2B + 4FC(x)α3C , (25)
where we used the “partial” F-statistics of [16], namely

2FA(x) ≡
x21 + x23
γA

, 2FB(x) ≡
x22 + x24
γB

, 2FC(x) ≡
x1 x2 + x3 x4

γC
, (26)

which can be used to write the F-statistic (11) as

2F(x) =
2

D

[
AB(FA(x) + FB(x))− 2C2FC(x)

]
. (27)

For data x = n+ s containing a signal s, one can show that
E [xµ] = sµ with sµ ≡ (s|hµ) , and
E [xµxν ] = Mµν + sµsν ,

(28)

which allows one to show that
E [2FA] = 2 + ρ2A, E [2FB] = 2 + ρ2B, E [2FC] = 2 + ρ2C , (29)

in terms of the respective “partial” signal powers

ρ2A ≡ s21 + s23
γA

, ρ2B ≡ s22 + s24
γB

, ρ2C ≡ s1s2 + s3s4
γC

. (30)

As shown in [16], 2FA and 2FB are χ2-distributed with two degrees of freedom and
non-centrality parameters ρ2A and ρ2B, respectively.

§ This is closely related to the definition used in [27, 28], namely R ≡ 5g/2, chosen such that the
polarization- and sky average is ⟨R2⟩n⃗,η,ψ = 1.
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3.5. The B-statistic

With the likelihood ratio expressed in physical coordinates (20), the Bayes-factor
integral (19) now takes the form

BS/G(x) =
1

2π2

∫
dh0dηdψ P (h0) e

− 1
2h

2
∗g

2

∫
eh∗q cos(ϕ0−φ0) dϕ0 . (31)

The ϕ0-integral can be performed analytically [9] using the Jacobi-Anger expansion,
resulting in

∫ 2π

0
ex cosϕ dϕ = 2π I0(x) in terms of the modified Bessel function of the

first kind I0(x), which yields

BS/G(x) =
1

π

∫
e−

1
2h

2
∗g

2

I0 (h∗q) P (h0) dh0 dη dψ. (32)

In [8] and all subsequent analyses of this Bayes factor, only the uniform h0 prior,
P (h0) = κ (for h0 ∈ [0, hmax ]), has been used. This simple choice allows for analytic
integration over h0, serving as a proof of principle by demonstrating that the resulting
Bayes factor is more sensitive than the F-statistic. The prior leads to a known integral
[9] for h0, specifically using Eq. 11.4.31 in Abramowitz & Stegun [29]:

∫ ∞

0

e−a
2 t2 I0(b t) dt =

π
1
2

2a
e

b2

8a2 I0

(
b2

8a2

)
, (33)

and so we are left with a two-dimensional integral

B(x) ≡ κ

π

∫
1

g
eΘ I0(Θ) dη dψ, with

Θ(x; η, ψ) ≡ q2(x; η, ψ)

4g2(η, ψ)
,

(34)

defining the “B-statistic”.
Several studies have investigated this statistic and its integral, exploring different

amplitude coordinate systems and testing various approaches to derive useful
analytical approximations [10, 9, 11, 12, 14]. Recently, a novel geometric approach to
expressing the likelihood ratio and deriving the F-statistic through marginalization
was explored in [13]. In the next section we will discuss the approach of [14], which is
the most effective analytic approximation to (34) found so far.

3.6. The Bero-Whelan approximation BBW(x)

This approximation is expressed using circular-polarization-factored (CPF) amplitude
coordinates Aµ̌, introduced in [9] as the linear combinations

A1̌ ≡ 1

2

(
A1 +A4

)
, A2̌ ≡ 1

2

(
A2 −A3

)
,

A3̌ ≡ 1

2

(
A1 −A4

)
, A4̌ ≡ 1

2

(
−A2 −A3

)
,

(35)

with corresponding transformation of the detector-response matrix (9) into∥

Mµ̌ν̌ = γ




I 0 L −K
0 I K L
L K J 0

−K L 0 J


 , (36)

∥ This definition differs from [9, 14] by factoring out the data factor γ.



Analytic weak-signal approximation of the Bayes factor for continuous gravitational waves9

in terms of the CPF antenna-pattern coefficients

I = J = A+B, K = 2C, L = A−B , (37)

where we assumed the long-wavelength limit.
The Bayes-factor approximation follows from assuming small off-diagonal terms

K/I = 2C/(A+B) and L/I = (A−B)/(A+B), and Taylor-expanding to first order
around a diagonal CPF antenna-pattern matrix, which eventually can be shown to
result in the explicit solution

ln
BBW(x)

B(0) ≡ ln b0(ŷR) + ln b0(ŷL) + ÂRÂLγ
[
K sin 4ψ̂ + L cos 4ψ̂

]

×
[
1

4

b1(ŷR)

b0(ŷR)
+

1

4

b1(ŷL)

b0(ŷL)
− 1

16

b1(ŷR)

b0(ŷR)

b1(ŷL)

b0(ŷL)

]
, (38)

in terms of the functions

ln b0(y) ≡ ln 1F1

(
1

4
, 1, y

)
y≫1∼ − ln Γ

(
1

4

)
+ y − 3

4
ln y,

ln b1(y) ≡ ln 1F1

(
5

4
, 2, y

)
y≫1∼ − ln Γ

(
5

4

)
+ y − 3

4
ln y,

(39)

where the asymptotic forms [14, 30] are used for y > 700 to avoid numerical overflow.
We further defined the shortcuts

ŷR ≡ γIÂ2
R

2
, ŷL ≡ γJÂ2

L

2
, (40)

and the above expressions are evaluated at the maximum-likelihood amplitude
estimators Âµ of (12), translated to polar CPF coordinates [9]

AR =
A+ +A×

2
, AL =

A+ −A×
2

, (41)

and polarization angle ψ, which can be obtained by inverting (1). The normalization
B(0) ≈ κΓ(1/4)2

25/2(γ2IJ)1/4
represents a (sky-dependent) offset and does not affect the

detection power of the statistic.

4. Generalized B-statistic and weak-signal approximation

4.1. Motivation

Recent work [16] has revealed some surprising shortcomings of the F-statistic for
short coherence times T ≲ 1 day. In fact, it was explicitly shown that an empirically-
constructed “dominant-response” statistic FAB, defined as

FAB(x) ≡ {FA(x) if A ≥ B, FB(x) otherwise} , (42)

using the partial F-statistics FA and FB of (26), can substantially improve upon the
sensitivity of the F-statistic for short coherence times, by up to 19%.

In the Bayesian framework there is no handle for encoding “short segments”, and
in fact the only remaining freedom in the B-statistic definition (32) is in the choice of
h0-prior, P (h0). However, considering that shorter coherence times will correspond
to less signal power (24), motivates the idea of exploring an h0-prior that allows for
describing “weak signals”.
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4.2. New h0 prior: introducing an amplitude scale H

We consider a half-Gaussian prior on h0 with scale parameter H, namely

P (h0) =

√
2√
πH

e−
h2
0

2H2 , for h0 ≥ 0. (43)

This prior preserves the functional form of the integrand (32) and therefore still
allows for analytic h0 integration via (33) as with the uniform prior, resulting in
the generalized BH-statistic:

BH(x) ≡ 1

π

∫
dη dψ

1√
1 +H2∗g2

eΘH I0(ΘH) , with

ΘH(x; η, ψ) ≡
H2

∗ q
2

4(1 +H2∗ g2)
,

(44)

where we defined the relative scale H∗ in analogy to (21), as

H∗ ≡ H
√
γ . (45)

In the strong-signal limit (H → ∞) this prior converges to a uniform prior, and we can
also recover the standard B-statistic of (34) in that limit, namely BH(x)

H→∞−→ B(x).
Furthermore, the half-Gaussian prior is more “physical” than the uniform one in
two respects: (i) it favors weaker signals over stronger ones, as would be physically
expected, and (ii) it is normalizable and therefore does not rely on an arbitrary cutoff
at some large h0 value.

From a practical point of view, the new prior does not help with
analytically solving the remaining two marginalization integrals, and is therefore as
computationally impractical as the B-statistic. It does, however, open up a new
limiting regime of weak signals, when H → 0, which we will explore next.

4.3. Weak-signal approximation Bweak(x)

Assuming the weak-signal limit H → 0 of the new h0-prior (43), we can Taylor-expand
the integrand (44) in terms of small H∗ ≪ 1, namely

1√
1 +H2∗g2

= 1− 1

2
H2

∗g
2 +O

(
H4

∗
)
,

ΘH(x; η, ψ) =
1

4
H2

∗q
2 +O

(
H4

∗
)
,

eΘH = 1 +
1

4
H2

∗q
2 +O

(
H4

∗
)
,

I0(ΘH) = 1 +O
(
H4

∗
)
,

(46)

and to leading order in H∗ the BH-statistic now takes the form

BH(x) =
1

π

∫
dη dψ

(
1 +

1

4
H2

∗
(
q2 − 2g2

))
+O

(
H4

∗
)

= 1 +
H2

∗
4

⟨q2 − 2g2⟩η,ψ +O
(
H4

∗
)
.

(47)

Using the known η, ψ-averages of (23), namely ⟨α1⟩η,ψ = ⟨α2⟩η,ψ = 2
5 and ⟨α3⟩η,ψ = 0,

applied to (22) and (25), we find

⟨g2⟩η,ψ =
2

5
(A+B) , ⟨q2⟩η,ψ =

2

5
(2FA(x)A+ 2FB(x)B) , (48)
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resulting in the weak-signal Bayes-factor Bweak defined as

lnBweak(x) ≡
H2

10
[γA (2FA(x)− 2) + γB (2FB(x)− 2)]

=
H2

10

[
x2 − TrM

]
,

(49)

where boldface denotes a (column-) four-vector in amplitude space, i.e., {x}µ = xµ,
and x2 ≡ xTx =

∑
µ x

2
µ. It will be useful to define a simpler but equivalent β-statistic

as

β(x) ≡ x2

γ
= A 2FA(x) +B 2FB(x), (50)

which is of order β ∼ O (1) in the absence of a signal and is independent of the prior
scale H. It is interesting to compare this to the F-statistic expressions of (27) and
(11), and we can further also write it as

2F(x) =
xTM−1x

γ
. (51)

In terms of the β-statistic, the weak-signal Bayes factor (49) is now just

lnBweak(x) =
H2

∗
10

(β(x)− TrM) , (52)

which is a monotonic function of β and therefore an equivalent statistic.
We can further point out that the β-statistic is also equivalent to the (initial) 5-

vector-method statistic constructed in [6], and further analyzed (in terms of its noise
distribution) in [31]. However, as noted originally in [6] and more recently discussed
in greater detail in [32], a different choice of weights in that framework can also lead
to the F-statistic instead.

4.4. Semi-coherent generalization

A semi-coherent Bayes factor can be derived [24] by relaxing the signal hypothesis
to allow for independent amplitude parameters Aℓ for ever segment ℓ = 1, . . . , Nseg.
The resulting semi-coherent Bayes factor is then given by the product of per-segment
coherent Bayes factors, each marginalized over its per-segment amplitude parameters
Aℓ independently. The resulting semi-coherent weak-signal Bayes factor is therefore

ln B̂weak(x) ≡
Nseg∑

ℓ=1

lnBweak,ℓ(x)

=
H2

10

∑

ℓ

[γℓAℓ (2FA,ℓ(x)− 2) + γℓBℓ (2FB,ℓ(x)− 2)] .

(53)

This expression shows that each FA,ℓ(x) and FB,ℓ(x) contribution is naturally summed
over segments with respective segment weights (γA)ℓ and (γB)ℓ, which account for
varying data-factors (i.e., different quality and/or quantity of available data) and
antenna-pattern sensitivity (to a particular sky-direction n) over segments. Only
recently [17] has shown that applying segment weights of the form ∝ γ(A + B) to
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the F-statistic (and similarly for the dominant-response statistic FAB) improves their
detection power, defining the weighted semi-coherent statistics as:

F̂w(x) ≡
∑

ℓ

w′
ℓ Fℓ(x) , with w′

ℓ ≡ K ′γℓ(Aℓ +Bℓ) ,

F̂AB,w(x) ≡
∑

ℓ

w′′
ℓ FAB,ℓ(x) with w′′

ℓ ≡ K ′′γℓ

(
Qℓ +

Cℓ
Qℓ

)
,

(54)

where Q ≡ max(A,B) and K ′,K ′′ are weight normalizations, typically chosen to
obtain unit mean over segments, i.e., ⟨w⟩ℓ = 1.

Defining per-segment data weights as

wℓ ≡ γℓ
γ
, with γ ≡ 1

Nseg

∑

ℓ

γℓ , (55)

in terms of the average data factor γ over segments, such that
∑
ℓ w

ℓ = Nseg, we can
introduce a semi-coherent β̂-statistic as

β̂(x) ≡
∑

ℓ

wℓ βℓ(x) =
∑

ℓ

x2
ℓ

γ
, (56)

and with a corresponding average relative scale defined as H2∗ ≡ H2γ, the semi-
coherent Bayes factor now takes the form

ln B̂weak(x) =
H2∗
10

(
β̂(x)− TrM̂

)
, (57)

in terms of the semi-coherent antenna-pattern matrix

M̂ =
∑

ℓ

wℓMℓ =

∑
ℓMℓ

γ
. (58)

4.5. Do detectable signals falls into the weak-signal regime?

Using the simple (albeit slightly biased [27, 28]) sensitivity estimate of [33], we can
express the weakest detectable signal amplitude as h′0 ∼ 11.4

√
S/Tdata at a false-alarm

probability of pfa = 1% and a detection probability of pdet = 90%. This corresponds
to a relative amplitude of h′∗ = 11.4 for a typical well-detectable signal. Even for
semi-coherent searches, assuming a rough N

1/4
seg sensitivity scaling in terms of the

number of segments, this would only reach the weak-signal threshold of h∗ ∼ 1 over a
single segment at around Nseg ∼ O

(
104

)
. This shows that for most typical searches,

detectable signals would not actually be expected to fall into the “weak signal” regime
h∗ ≪ 1. On the other hand, the half-Gaussian prior has no hard cutoff and does not
intrinsically limit the sensitivity to stronger signals. In fact, looking at the resulting
Bweak and β statistics, increased signal power always translates into higher detection-
statistic values.

One could argue that this weak-signal prior is sensible, however, exactly because
any real detectable CW signal will most likely come from the tail of the h0 distribution,
while most CW signals out there are in fact undetectably weak.
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5. Distribution of the β-statistic

5.1. Decorrelating {xµ}
We see in (49) that β(x) is a quadratic function of the four matched-filter scalar
products {x}µ ≡ (x|h), similar to the F-statistic (11). The four xµ are Gaussian
distributed with mean and covariance obtained from (28) as:

E [x] = s , cov [x,x] = M , (59)

We can decorrelate these variables by diagonalizing the detector response matrix M
of (9) in the form

M = RWRT, (60)

in terms of the orthogonal rotation matrix

R =

(
r 0
0 r

)
, with

(
cos θ − sin θ
sin θ cos θ

)
, (61)

with the rotation angle θ given by

tan 2θ = c, with c ≡ 2C

A−B
. (62)

The resulting diagonal matrix is W = γ diag (w+, w×, w+, w×) in terms of the two
unique eigenvalues

w+,× =
1

2

(
A+B ± (A−B)

√
1 + c2

)
. (63)

The action of R on the amplitude-vector Aµ can be shown to be

A′ ≡ RTA = A|2ψ→2ψ−θ , (64)

namely a rotation of the polarization axes in the sky plane by θ, defining a new
polarization angle 2ψ′ ≡ 2ψ− θ, defining search-specific “+” and “×” polarizations. It
is further useful to define the matrix

Q ≡ R
√
W, (65)

such that

QQT = M, and QTQ = W . (66)

This allows us to define the transformed matched-filter quantities zµ = {z}µ as

z ≡ Q−1x, (67)

with mean and covariance

E [z] = Q−1s = QTA =
√
WA′,

cov
[
z, zT

]
= Q−1MQ−1T = I ,

(68)

i.e., the four zµ are uncorrelated unit normal variates.
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5.2. Coherent statistics

The β-statistic of (50) now reads as

β(x) ≡ xTx

γ
=

zTWz

γ
= w+ 2F+(x) + w× 2F×(x) , (69)

where we defined

2F+(x) ≡ z21 + z23 2F×(x) ≡ z22 + z24 , (70)

which are two uncorrelated χ2-distributed statistics with two degrees of freedom and
non-centrality parameters

ρ2+ ≡ γw+
[(
A′1)2 +

(
A′3)2] = h2∗ w

+ α1(η, ψ
′),

ρ2× ≡ γw×
[(
A′2)2 +

(
A′4)2] = h2∗ w

× α2(η, ψ
′),

(71)

respectively, in terms of the intrinsic (rotated) polarization angle ψ′ introduced in
the previous section. Thus β(x) follows a generalized χ̃2-distribution [34, 35], which
we denote as β ∼ χ̃

w⃗,⃗2,ρ⃗2
, with vectors of weights w⃗ = (w+, w×), degrees of freedom

2⃗ = (2, 2) and non-centrality parameters ρ⃗2 = (ρ2+, ρ
2
×). This distribution has known

mean and variance

E [β] =
∑

p=+,×
wp

(
2 + ρ2p

)
,

var [β] = 2
∑

p=+,×
(wp)2

(
2 + 2ρ2p

)
,

(72)

as well as a known characteristic function, see [36].
It is interesting to note that the F-statistic (11), which in these variables reads

as

2F(x) = xTM−1x = zTz = z21 + z22 + z23 + z24 , (73)

and therefore follows a χ2-distribution with four degrees of freedom as first shown in
[5], is simply an unweighted sum of the two partial statistics 2F+,×, namely

2F(x) = 2F+(x) + 2F×(x) , (74)

with corresponding mean and variance

E [2F ] = 4 + ρ2 , var [2F ] = 2(4 + 2ρ2) , (75)

in terms of the total signal power

ρ2 = ρ2+ + ρ2× . (76)

This is effectively the unweighted special case w+ = w× = 1 of the β-statistic.

5.3. Semicoherent β̂-statistic

The semi-coherent generalization of the β-statistic (56) can now be expressed as

β̂(x) ≡
Nseg∑

ℓ=1

wℓβℓ(x) =

Nseg∑

ℓ=1

∑

p=+,×
wℓp 2Fℓp(x), (77)
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in terms of 2Nseg independent χ2-distributed statistics 2Fℓp with two degrees of
freedom and non-centrality parameters ρ2ℓp, respectively, and per-segment weights wℓp
defined as

wℓp ≡ wℓwp(ℓ) , (78)

in terms of the polarization weights wp(ℓ) of (63) for segment ℓ and the data-weights

wℓ of (55). Therefore we see that β̂ follows a generalized χ̃2-distribution χ̃2

w⃗,⃗2,ρ⃗2
, with

length-2Nseg vectors

w⃗ = (w1+, w2×, . . . , wNseg+, wNseg×),

2⃗ = (2, 2, . . . , 2, 2),

ρ⃗2 = (ρ21+, ρ
2
1×, . . . , ρ

2
Nseg+, ρ

2
Nseg×),

(79)

with resulting mean and variance

E
[
β̂
]

=
∑

ℓp

wℓp
(
2 + ρ2ℓp

)
,

var
[
β̂
]
= 2

∑

ℓp

(wℓp)2
(
2 + 2ρ2ℓp

)
.

(80)

5.4. Noise distribution and false-alarm probability

The mean and variance (80) for β̂ in the noise case can be made more explicit as

E
[
β̂
]
h0=0

= 2
∑

ℓp

wℓp = TrM̂,

var
[
β̂
]
h0=0

= 4
∑

ℓp

(wℓp)2 =
4

γ2

∑

ℓ

γ2ℓ
(
A2
ℓ +B2

ℓ + 2C2
ℓ

)
,

(81)

where we used the eigenvalue expressions of (63). Although the generalized χ̃2-
distribution has a known characteristic function [36], obtaining a probability density
function (pdf) or threshold-crossing probabilities generally requires either direct
numerical approaches (e.g., see [34, 35]) or Monte-Carlo simulation.

Some more analytical progress can be made in the noise case HG : h0 = 0: the
per-segment quantities Zℓ+ ≡

√
wℓ+(zℓ1 − izℓ3) and Zℓ× ≡

√
wℓ×(zℓ2 − izℓ4) are then

circularly-symmetric (centered) complex Gaussians with zero mean, E [Zℓp] = 0, and
variances E

[
|Zℓp|2

]
= 2wℓp, where p ∈ {+,×}. We can write the semi-coherent

β̂-statistic in these variables as

β̂(x) =
∑

ℓp

|Zℓp|2, (82)

and one can then show (cf. Eq. (19) in [37]) that the noise pdf is

P
(
β̂|HG

)
=

∑

ℓp

e−
β̂

2wℓp

2wℓp
∏
ℓ′p′ ̸=ℓp

(
1− wℓ′p′

wℓp

) , (83)

provided that all weights wℓp are unique. In practice this expression will be
problematic for numerical reasons, as any weights being too close to each other will
lead to the denominator approaching zero.
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Alternatively, in the limit of many segments, Nseg ≫ 1 one could use the central-
limit Gaussian distribution with given mean and variance (80), which will likely yield
a feasible approximation for many use cases, but testing and quantifying this approach
left to future work.

In the coherent case we can write this as

P (β|HG) =
1

2(w+ − w×)

[
e−

β

2w+ − e−
β

2w×

]
, (84)

and analytically integrate for the false-alarm probability

pfa(βthr) ≡ P (β > βthr|HG) =

∫ ∞

βthr

P (β|HG) dβ

=
1

w+ − w×

[
w+e−

βthr
2w+ − w×e−

βthr
2w×

]
,

(85)

in terms of the false-alarm threshold βthr. This result agrees with the analysis in
[31] (see Eqs.(34) and (35)) for the classic 5-vector statistic, which is equivalent to
β-statistic as mentioned in Sec. 4.3.

Contrary to the χ2-distributed statistics such as 2F or the dominant-response
statistics FAB, the noise distribution (and therefore false-alarm probabilities) of the
β-statistic depends on the sky position due to the antenna-pattern weights w+,×. The
same is true for the weighted Fw and FABw statistics of (54). This sky-dependent
false-alarm probability complicates the application of this statistic to all-sky searches
and we postpone this topic to future work, focusing instead on searches in single
phase-evolution points λ instead. We have verified the qualitative robustness of all
subsequent results by testing in different sky points (not shown).

The agreement between the theoretical noise distribution (84) and the measured
distribution for β will be tested in the next section.

6. Tests and numerical results

6.1. Synthesizing statistics and χ2 sensitivity estimates

Most of the following tests use synthesized statistics, a method first introduced in
[8, 9], which consists of drawing samples for the 4-vectors xµ from its 4-dimensional
Gaussian distribution with mean sµ = (s|hµ) = MµνAν and covariance Mµν for
signal amplitude parameters Aµ. Given all the statistics tested here are functions
of these four xµ, this allows us to efficiently generate samples for the corresponding
statistics without requiring a full dataset x or computing explicit matches xµ = (x|hµ).

For the F- and dominant-response FAB statistics, however, an even more efficient
(and accurate) method consists in directly computing false-alarm and detection
probabilities by numerically integrating the χ2-distributions governing these statistics,
see [27, 28]. When using this χ2-based sensitivity estimation method, we denote the
corresponding statistics as Fχ2 and FABχ2 in the legend, to distinguish them from
the (default) synthesized sampling method.

For the following results with synthesized statistics, we use Nnoise = 107 noise
samples (to estimate false-alarm thresholds), and Nsignal = 106 signal+noise samples
for estimating the detection probabilities. When using the χ2-integration method
instead, we use 105 samples for ρ2 at fixed h0, histogrammed into 1000 bins for the
numerical sensitivity integrals.

While all following plots of detection probability show 90% uncertainty bands,
these tend to be smaller than the line-width and are therefore generally not visible.
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6.2. Noise distribution of coherent β-statistic

Figure 1 shows the noise-distribution of the coherent β-statistic for two different sky
positions (α, δ)12 on a short segment of data Tseg = 900 s from two detectors (H1 and
L1). We see excellent agreement between the histogrammed synthesized β-values and
the theoretical generalized-χ̃2 noise-distribution of (84).

0.0 0.5 1.0 1.5 2.0 2.5 3.0

β

0.0

0.5

1.0

1.5

P
(β
|H

G
)

(α, δ)1

(α, δ)2

Figure 1. Noise distribution of coherent β for Tseg = 900 s (starting at GPS
time t0 = 1234 567 890 s, data from H1,L1), for two sky positions (α, δ)1 =
(5.16, 0.78) rad, and (α, δ)2 = (0.32, 0.49) rad. The corresponding weights are
(w+, w×)1 = (0.02, 0.23) and (w+, w×)2 = (0.01, 0.82), respectively. Dashed
lines show the theoretical generalized χ̃2-distribution of (84), and the histograms
are computed on 106 synthesized values for β.

6.3. Coherent statistics

In Fig. 2 we present the same three coherent test cases used in [14], extended with
the dominant-response FAB-statistic (42) of [16], and the weak-signal Bayes-factor
approximation β of (50). All three cases use signals at fixed (relative) amplitude of
h∗ = 10.

(i) top panel : a coherent Tseg = 25h search on H1 data (starting at GPS time
756 950 413 s) for sky-position (α, δ) = (2,−0.5) rad (the original example from
[8]). Here β performs similarly to F and slightly worse than BBW, which perfectly
approximates the performance of B. The dominant-response FAB performs worst
as expected in this relatively long-segment case.

(ii) middle panel : a similar case with Tseg = 1 sidereal day (86 164 s), same start-time
as (i), for a single detector (H1) and sky-position at the equator (α, δ) = (2, 0) rad,
with qualitatively similar results case (i).

(iii) bottom panel : a short coherence length of Tseg = 100 s for two detectors (H1 and
L1), sky position (α, δ) = (2,−0.5) rad at sidereal time 00 : 00 (using GPS mid-
time 756 581 823 s). Here BBW performs worse or similar to F (reproducing the
result of [14]), while both the dominant-response FAB as well as the weak-signal
β-statistics perform as well as the full B-statistic
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case (i) H1, Tseg = 25h, (α, δ) = (2,−0.5) rad
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case (ii) H1, Tseg = 86 164 s, (α, δ) = (2, 0) rad
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case (iii) H1+L1, Tseg = 100 s, (α, δ) = (2,−0.5) rad
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Figure 2. Detection probability as a function of false-alarm probability for
the three different coherent test cases (i)-(iii) previously considered in [14]. In all
cases the signal population has a fixed relative amplitude of h∗ = 10.



Analytic weak-signal approximation of the Bayes factor for continuous gravitational waves19

6.4. Semi-coherent results

We consider semi-coherent searches with a fixed total duration of Tspan = 10d, with
variable segment lengths spanning from a very short-segments at Tseg = 900 s (with
Nseg = 960 segments) to a fully-coherent search at Tspan = 10d. Here we ensure that
all Nseg segments are of equal length Tseg, in order to avoid confounding the results
with the effect of varying data-factors shown and discussed in the next section.

The results of these simulations are shown in figure 3. We use a fixed false-alarm
probability of pfa = 10−3 and a sky position of (α, δ) = (2,−0.5) rad. Note that
here we do not include a semi-coherent summed B-statistic, as this requires numerical
2D integration for each sample and segment, making it impractical to obtain good
sampling in a reasonable time. This is of course the same reason this statistic is not
practical for any real searches in the first place.

The signal strength h∗(Tseg) is determined for each Tseg by requiring a fixed
detection probability of pdet(2F̂) = 0.7 for the standard semi-coherent F̂-statistic, in
order to operate in a relevant pdet range across all Tseg despite the greatly different
sensitivities. This results in a range of h∗(Tseg = 900 s) ∼ 1.9 to h∗(Tseg = 10d) ∼ 13.9
for the per-segment relative amplitude. As discussed in Sec. 4.5, even at the shortest
segment length this relative signal amplitude does not fall into the “weak-signal” regime
of h∗ ≪ 1.

The top panel in figure 3 shows the single-detector case for H1, the middle panel
is for H1+L1 and bottom panel additionally includes Virgo V1, with qualitatively
similar results in all three cases:

- the BBW approximation performs well at segment lengths Tseg ≳ 1 d, where it
effectively equals the performance of the (weighted and unweighted) F̂ statistics.
This may seem surprising given Fig. 2, but at the larger pdet and pfa values used
here the differences become very small. As anticipated from the coherent results
and the discussion in [14], BBW increasingly loses sensitivity at shorter segment
lengths (and can run into similar numerical degeneracy issues with inverting Mµν

(12) as the F-statistic [16]).

- the dominant-response statistic F̂AB performs better than F̂ at short Tseg and
increasingly poorly at longer segments Tseg ≳ 19 h, as expected [16]. We can
also confirm that the (empirical) weighting scheme (54) introduced in [17] further
improves the short-segment performance, for both F̂w as well as F̂ABw. This
can be understood from the fact that the antenna-pattern sensitivity to a fixed
sky position varies more strongly for short segments, which is where the segment
weighting can gain more sensitivity.
However, note that this Monte-Carlo simulation uses perfectly white Gaussian
noise of constant noise floor and 100% duty factor over all segments, which is
why the contribution of the data factor γℓ to the segment weights does not confer
any benefits at longer segment durations Tseg ≳ 1 d here, which will be discussed
further in the next section.

- the semi-coherent weak-signal Bayes-factor approximation β̂ performs effectively
“optimally” across both the short- and long-segment regimes, equalizing (and
improving upon) the weighted dominant-response statistic F̂ABw at short
segments, while converging to the F̂(w) and BBW performance at long segments
(at least for equal-data-factor segments, see next section).
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Figure 3. Detection probability as a function of semi-coherent segment length
Tseg at fixed total span of Tspan = 10d (with GPS start time 756 950 413 s), false-
alarm probability pfa = 10−3 and sky position (α, δ) = (2,−0.5) rad. The top
panel is for a single detector (H1), middle panel is H1+L1 and bottom panel
includes Virgo H1+L1+V1. The relative signal amplitude h∗(Tseg) is adjusted
for a fixed detection probability pdet(2F̂) = 0.7 for the standard semi-coherent
F̂-statistic.
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6.5. Performance for unequal data-factors γℓ

The per-segment weights of various semi-coherent weighted statistics F̂w, F̂ABw, as
well as the weak-signal Bayes-factor approximation β̂ are a combination of an antenna-
pattern- and a data-factor weight contribution, see section 4.4.

The semi-coherent Monte-Carlo simulations in the previous section use ideal
segments with equal noise-floors and data amounts, and therefore equal per-segment
data factors γℓ. Given that for segments longer than a day the antenna-pattern
weight contributions also become increasingly constant, this explains why the weighted
statistics F̂w, F̂ABw and β̂ do not confer any benefits over the unweighted version in
that case, as seen in figure 3.

As a proof of principle we now consider a rather extreme example of a semi-
coherent search with three segments of Tseg = 25h with widely different duty factors
of 0.1, 1 and 1, respectively, resulting in the same relative variation of per-segment data
factors γℓ. The result is shown in figure 4, illustrating that the weighted statistics F̂w

and β̂ now do outperform both F̂ and BBW, as well as (maybe somewhat surprisingly)
the full B-statistic.

This result seems to strongly suggest that it is specifically the weak-signal (half-
Gaussian) prior of (43) (but also (A.1)) that yields the right per-segment weighting,
while the strong-signal limit B-statistic (and its approximation BBW) intrinsically lack
this feature.
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Figure 4. Detection probability as a function of false-alarm probability for a
semi-coherent search on three unequal-γℓ segments of Tseg = 25h, with per-
segment duty factors of 0.1, 1 and 1, respectively, assuming two detectors H1 and
L1. The signal sky-position is (α, δ) = (2,−0.5) and the relative amplitude is
fixed at h∗ = 10.

7. Conclusions

In this paper we have generalized the Bayesian B-statistic by using a half-Gaussian
h0-prior instead of a uniform prior. This reduces to the B-statistic in the strong-signal
limit (H → ∞) but yields a new analytic approximation in the weak-signal limit
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(H → 0), defining the new weak-signal statistic β(x). This statistic is shown to follow
a generalized χ̃2-distribution with (2, 2) degrees of freedom per segment, with weights
determined by the eigenvalues of the detector-response matrix Mµν and non-centrality
parameters given by the corresponding signal-power components.

The sensitivity of β is found to be comparable to F for day-long coherent
searches, making it slightly less sensitive than the B-statistic (and the Bero-Whelan
approximation). However, for semi-coherent searches, it matches or outperforms both
(i) the best short-segment statistic (i.e., the weighted dominant-response statistic
F̂ABw), and (ii) the best practical long-segment statistic, i.e., the weighted F̂w-
statistic.

Overall, the weak-signal β-statistic appears to be a powerful and practical
detection statistic across a wide range of segment lengths that we have tested, namely
from 900 s to 10 days. Further testing is needed across various real-world scenarios
and different false-alarm regimes beyond those considered here.

One interesting practical question is how to correctly perform an all-sky search
with a statistic (such as β) that has a sky-position-dependent false-alarm distribution.
This issue is not new and already affects any antenna-pattern-weighted segment
statistics. A common practical solution is to use a “noise-normalized” critical-ratio
statistic for the candidate ranking.

Another potentially interesting application of this new statistic is the line-robust
framework of [25, 26]. The prior scaling parameter H, which governs the new Bayes
factor, has a more direct physical interpretation compared to the unphysical prior
cutoff parameter in the F-statistic-prior, which complicates the correct tuning of the
line-robust BS/GL statistics.
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Appendix A. Alternative derivation of β from weak-signal F-statistic prior

Similar to the idea of using a (half-) Gaussian h0-prior (43), we can use a Gaussian
Aµ prior centered on zero with scale H, namely

P (A|HS) =
1

(2π)2H4
e−

1
2AµCµνAν

with Cµν ≡ 1

H2
δµν , (A.1)

which reduces to the original uniform-Aµ F-statistic prior of Sec. 3.2 in the strong-
signal limit H → ∞. This prior preserves the functional form of the likelihood ratio
(7) and we can write the resulting Bayes-factor integral in analogy to (16) as

BS/G(x) =
1√

detMH

eFH(x) , (A.2)

with modified detector-response matrix

MHµν ≡ Mµν −
1

H2
δµν = γ

(
mH 0
0 mH

)
, (A.3)

where

mH ≡
(
A− 1

γH2 C

C B − 1
γH2

)
(A.4)
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and we defined the modified FH-statistic as

2FH(x) ≡ xµ
(
M−1

H

)µν
xν . (A.5)

Considering detMH = γ4D2
H with the sub-determinant

DH ≡ detmH = D − A+B

γH2
+

1

γ2H4
, (A.6)

in the weak-signal limit H2
∗ ≪ 1 we obtain the limiting expressions DH

H→0−→ 1
γ2H4 ,

MH → 1
H2 I, and

√
detMH → H−4, and finally

2FH(x)
H→0−→ γH2β(x), (A.7)

which yields the resulting Bayes factor as

BS/G → H4eH
2
∗ β(x) , (A.8)

in terms of the weak-signal β-statistic of (50). While normalized differently, this is
otherwise equivalent to the weak-signal Bayes factor obtained in (52).

Appendix B. General matched-filter scalar product (x|y)

The scalar product (x|y) of (5) can be fully generalized [18, 9] to several detectors
X = 1, . . . , Nd, each providing a finite set of data chunks (commonly referred to as
short Fourier transforms or SFTs) α = 1, . . . , NX

sft, each of length Tsft, allowing for
gaps in between SFTs and for individual noise-floors SXα (assumed stationarity only
during each SFT). This results in the general form for the scalar product

(x|y) = 2γ ⟨x y⟩, with γ ≡ S−1 Tdata, (B.1)

where the dimensionless data factor [16] γ is defined in terms of the overall noise-floor
S and total amount of data Tdata, namely

S−1 ≡ 1

Nsft

∑

Xα

S−1
Xα , Tdata ≡ Nsft Tsft , (B.2)

and Nsft ≡
∑
X N

X
sft. The weighted multi-detector average can be written as

⟨x y⟩ ≡ 1

Nsft

∑

Xα

wXα
1

Tsft

∫ Tsft

0

xXα(t) yXα(t) dt, (B.3)

where xXα refers to the data chunk α from detector X, and the corresponding noise
weights are defined as wXα ≡ S−1

Xα/S−1, such that
∑
Xα wXα = Nsft.

Appendix C. Matched filter in physical coordinates

Expressing the scalar-product “match term” (x|h) = Aµxµ of (4) in physical amplitude
coordinates {h0, η, ψ, ϕ0} yields (after some tedious but straightforward algebra):

(x|h) = Aµxµ = Qs sinϕ0 +Qc cosϕ0

= Q(x;h0, η, ψ) cos (ϕ0 − φ0) ,
(C.1)

with
Qs ≡ − sin 2ψ (x1A× + x4A+) + cos 2ψ (x2A× − x3A+) ,

Qc ≡ sin 2ψ (x2A+ − x3A×) + cos 2ψ (x1A+ + x4A×) ,
(C.2)
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where A+ ≡ h0 (1 + η2)/2 and A× ≡ h0 η, and where we defined

Q2 ≡ Q2
s +Q2

c = h2∗q
2 ,

tanφ0 ≡ Qs/Qc,
(C.3)

which was used to write the likelihood ratio in the form (20).
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