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Abstract

This thesis examines the dynamics of electrons in a gravitational

plane wave. To this end, a plane wave solution to the Dirac equa-

tion for an electron in a gravitational plane wave is first presented. A

comparison of this solution with the ”Volkov state” not only demon-

strates that electrons behave almost identically as in a electromagnetic

plane wave, but also enables the assignment of a generalized ”vector

potential” −H µ
i to the gravitational wave, which couples to the ini-

tial kinetic momentum pµ rather than to the mass. Furthermore, a

solution to the Dirac equation for an electron vortex beam in a grav-

itational plane wave is constructed, that is, a solution with orbital

angular momentum (OAM). In contrast to the plane wave solutions,

this solution differs from that of a vortex beam in an electromagnetic

plane wave, which is primarily due to the coupling of the generalized

”vector potential” −H µ
i to the initial kinetic momentum pµ. Finally,

a spinor is presented that represents a solution to the classical equiva-

lent of the Dirac equation for a particle in a gravitational plane wave.

The comparison with the plane wave solution to the Dirac equation

reveals that the dynamics can also be accurately described by the

classical spinor.



Zusammenfassung

In dieser Thesis wird die Dynamik von Elektronen in einer ebenen

Gravitationswelle untersucht. Dazu wird zunächst eine ebene Wellen-

Lösung der Dirac Gleichung für ein Elektron in einer ebenen Gravita-

tionswelle präsentiert. Ein Vergleich dieser Lösung mit dem
”
Volkov

Zustand“ zeigt dabei nicht nur, dass sich Elektronen in einer ebe-

nen elektromagnetischen und einer ebenen Gravitationswelle nahezu

identisch verhalten, sondern macht es auch möglich der Gravitations-

welle ein generalisiertes
”
Vektorpotential“ −H µ

i zuzuordnen, welches

an den initialen kinetischen Impuls pµ koppelt und nicht an die Masse.

Darüber hinaus wird eine Lösung der Dirac Gleichung für einen Elek-

tron Vortex Beam in einer ebenen Gravitationswelle konstruiert, d.h.

eine Lösung mit Bahndrehimpuls (OAM). Im Gegensatz zu den ebe-

ne Wellen-Lösungen, unterscheidet sich diese Lösung von der für einen

Vortex Beam in einer ebenen elektromagnetischen Welle, was maßgeb-

lich darauf zurückzuführen ist, dass das generalisierte
”
Vektorpoten-

tial“ −H µ
i an den initialen kinetischen Impuls pµ koppelt. Abschlie-

ßend wird ein Spinor präsentiert, welcher eine Lösung des klassischen

Äquivalents der Dirac Gleichung für ein Teilchen in einer ebenen Gra-

vitationswelle darstellt. Der Vergleich mit der ebene Wellen-Lösung

der Dirac Gleichung zeigt dabei, dass die Dynamik auch vollständig

und korrekt durch den klassischen Spinor beschrieben werden kann.
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1 Introduction

Physical processes are described by the so-called equations of motion, nor-
mally comprising of differential equations, whose sought-after solutions are
usually hard to find. Even after identifying the symmetries of the problem
at hand (for instance spherical, cylindrical, etc.), there is still a considerable
freedom on the exact form of the solution. Take, for instance, the Dirac equa-
tion [1], which is required for the relativistic description of spin-1

2
particles

interacting with external electromagnetic fields; its solutions are given by
spinors, complex four component column vectors, requiring the determina-
tion of four complex valued functions. Apart from some physical constraints,
i.e. normalisation, continuity and so on, and after identifying the symmetries
of the interaction (spherical, cylindrical, etc.) no other constraints are im-
posed on the form that each component can take. Recently a new technique
for constructing solutions to the Dirac equation, the so-called ”Relativistic
Dynamical Inversion” (RDI), was proposed in Ref. [2], providing a different
way of finding solutions to the Dirac equation in the presence of electro-
magnetic fields. RDI relies on the fact that relativistic interactions and the
corresponding equations of motion are inextricably intertwined with geom-
etry, i.e. group theory and the Poincaré group. This in turn fixes the form
a spinor can take, thus imposing further constraints and making it easier to
find solutions.
An important exact solution to the Dirac equation is the so-called ”Volkov
state” [3], which describes the dynamics of a free electron in an electro-
magnetic plane wave. In Ref. [4] RDI was used to construct a more general
solution for an electron beam with orbital angular momentum along its prop-
agation direction, a so-called vortex beam [5], in the presence of an electro-
magnetic plane wave. Since the Dirac equations for an electron interacting
with both an electromagnetic and a gravitational plane wave are mathemat-
ically very similar, in this work RDI is applied to the latter. Given that
gravity can be understood as a gauge theory [6, 7, 8], the result presented
here supports the idea underlying RDI that one can construct solutions to
dynamical equations by using their group symmetries. In Ref. [9] the va-
lidity of the hypothesis that all interactions of elementary particles can be
described by group structures of spinor fields in spacetime was demonstrated
for weak interactions. Moreover, a scheme for how such concept could be
extended to the strong interaction was given. With the results of this thesis
for gravitational waves, the next step would then be the application of RDI
to the weak and strong interactions.
Gravitational waves were first postulated by Oliver Heaviside in 1893 as the
equivalent of electromagnetic waves [10, 11]. In 1916 Albert Einstein showed
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that gravitational waves come as a result of his general theory of relativity
as ripples in spacetime [12, 13]. It was not until 43 years later, in 1959, that
the first exact solutions to Einstein’s field equations for gravitational waves
were found [14]. The first experimental detection of gravitational waves was
achieved another 56 years later in 2015 by the LIGO collaboration [15]. The
observed gravitational wave was identified as the merger of two black holes
and the measured waveform was in agreement with the predictions of the
general theory of relativity.
In this thesis a solution to the Dirac equation for an electron vortex beam
interacting with a gravitational plane wave is constructed. To achieve this,
the known plane wave solution to the Dirac equation for an electron in a
gravitational plane wave [16, 17] is first reformulated within the RDI for-
malism. Thus both the group symmetries and geometrical features of the
solution are highlighted. Then using a procedure similar to that of Ref. [18]
a wave packet with orbital angular momentum, hence an electron vortex
beam, is build through superposition in momentum space of wave functions
with orbital angular momentum along their propagation direction. Finally
a solution of a classical equivalent of the Dirac equation [19] in a gravita-
tional wave is presented. This generalises the result of Ref. [20], where it
was shown that the classical spinor for an electromagnetic interaction, apart
from an additional phase, corresponds to the Dirac spinor. The idea that
RDI can also be applied to classical systems is supported by this.

This thesis is structured as follows. In section 2 the Dirac equation in
Minkowski spacetime is introduced and some known solutions to it are pre-
sented. A short introduction to Spacetime Algebra then allows the Dirac
equation and its solution to be converted into a Spacetime Algebra represen-
tation. How to formulate the Dirac equation in curved spacetime and how
this is also useful to write the Dirac equation using curvilinear coordinates
is presented in section 3. Section 4 is then devoted to the main topic of this
thesis and therefore deals with solutions of the Dirac equation in a gravita-
tional plane wave. This includes both a plane wave solution and a solution
for an electron vortex beam, i.e. a solution with orbital angular momentum
(OAM). The aforementioned classical equivalent of the Dirac equation and its
solution for an electron in a gravitational plane wave is presented in section
5. In particular, similarities and differences between the treatment of the
dynamics of an electron in a gravitational wave using classical and quantum
mechanics are discussed. A summary of the results and a conclusion can be
found in section 6.
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2 The Dirac equation in Minkowski space-

time

In the subsequent section, the Dirac equation in Minkowski spacetime is
introduced and some of its known solutions are presented, which will be used
for comparison later on. In addition, the necessary mathematical foundations
and notations are introduced, including in particular Spactime Algebra. The
Dirac equation is also reformulated using Spacetime Algebra and its solutions
are converted accordingly.

2.1 Motivating the Dirac equation

The following derivation of the Dirac equation is based on Ref. [21].
The Dirac equation represents the relativistic equivalent to the Schrödinger
equation and was derived in 1928 by Paul Dirac in Ref. [1]. It describes
massive spin-1

2
particles such as electrons, on which this thesis will focus.

To derive the Dirac equation one needs the Schrödinger equation

iℏ
∂

∂t
ψ = Ĥψ (2.1)

and the relativistic energy-momentum relation

E2 = m2c4 + p2c2 (2.2)

to begin with. Here and below, x = (x1, x2, x3)T denotes the spatial compo-
nents of a four-vector. By looking at these two equations one is tempted to
use

Ĥf =
√
m2c4 + p̂2c2 (2.3)

as the Hamiltonian for a free particle in the Schrödinger equation (2.1), where
the hat notation is used to denote operators. But since taking the square
root of a differential operator is too complicated, it would be favourable if
the radicand could be written as a perfect square. Upon introducing the
parameters αi with i = {1, 2, 3} and β one can write

m2c4 + p̂2c2 =
(
cα · p̂+ βmc2

)2
(2.4)

with the still unknown parameters αi and β fulfilling the following relations:

αiαj + αjαi = 2δij1 ,

αiβ + βαi = 0 ,

α2
i = β2 = 1 .

(2.5)

6



As the relations (2.5) suggest the parameters αi and β are not just real or
complex numbers, but matrices since they do not commute.
Additionally, to ensure the hermiticity of the Hamiltonian

Ĥf =
√
m2c4 + p̂2c2 =

√
(cα · p̂+ βmc2)2 = cα · p̂+ βmc2 , (2.6)

one has to impose hermiticity for the matrices αi and β as well:

α†
i = αi ,

β† = β .
(2.7)

The smallest Dimension in which all above listed requirements on the αi and
β can be met is N = 4 [21]. An explicit representation of these matrices is:

αi =

(
0 σi
σi 0

)
,

β =

(
1 0
0 −1

)
.

(2.8)

Here σi are the 2× 2 Pauli matrices and 1 is the 2× 2 identity matrix.
Putting it all together one obtains the Dirac equation:

iℏ
∂

∂t
ψ =

(
cα · p̂+ βmc2

)
ψ =

(
−iℏc

3∑
i=1

αi
∂

∂xi
+ βmc2

)
ψ . (2.9)

Here the momentum operator p̂i = −iℏ ∂
∂xi was substituted in explicitly.

Since the Dirac equation contains 4× 4 matrices, it is obvious that the wave
function ψ has to be a column vector of dimension N = 4, the so-called Dirac
spinor [21]. The spinor therefore can be represented as:

ψ =


ψ1

ψ2

ψ3

ψ4

 =


r0 − ir3
r2 − ir1
s3 + is0
s1 + is2

 . (2.10)

Here the rµ and sµ are real valued functions of space and time [4].
Multiplying both sides of equation (2.9) with β from the left and rearranging
some terms results in the today common representation of the Dirac equation
for a free electron:

(γµp̂µ −mc)ψ = (γµiℏ∂µ −mc)ψ = 0 . (2.11)
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Here p0 = E
c
as well as the notation ∂µ = ∂

∂xµ was used and µ = {0, 1, 2, 3}.
p̂µ =

(
Ê
c
,−p̂

)
= iℏ

(
1
c
∂t,∇

)
= iℏ∂µ denotes the four-momentum operator.

Note that γ0 = β and γi = βαi. Additionally summation over repeated
indices is used here and throughout the following thesis. In the Dirac repre-
sentation the so-called gamma matrices are:

γ0 =

(
1 0
0 −1

)
,

γi =

(
0 σi

−σi 0

)
.

(2.12)

They obey the following relation

{γµ, γν} = γµγν + γνγµ = 2ηµν14 , (2.13)

where ηµν = diag(1,−1,−1,−1) is the Minkowski metric. This relation is
also called the Dirac algebra. γµ is treated like a normal Minkowski spacetime
vector, i.e. the index is raised and lowered by means of the metric ηµν .
In addition, there is a fifth gamma matrix

γ5 =

(
0 1

1 0

)
, (2.14)

which can be used to write:

α1α2α3 = γ0γ1γ2γ3 = i = iγ5 ,

i2 = −14 .
(2.15)

Here, the αi = γiγ0 correspond to those in (2.8). Furthermore, the matrices
σµν = 1

4
[γµ, γν ] will be used later on.

2.1.1 Free particle solution of the Dirac equation

The next paragraph on the derivation of the free particle solution is based
on Ref. [22].
The Dirac equation for a free particle can be solved by making the following
plane wave ansatz:

ψ = N u(E,p) exp

(
−ixµpµ

ℏ

)
. (2.16)

Here N is a normalisation constant, which will not be discussed further at
this point and u(E,p) is a four-component bispinor. Inserting this into the
Dirac equation (2.11), the Dirac equation simplifies to:

(γµpµ −mc)u(E,p) = 0 (2.17)
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This is a purely algebraic equation, which can be solved by expanding the
expression (γµpµ −mc) using (2.12):

γµpµ −mc = γ0p0 − γ1p1 − γ2p2 − γ3p3 −mc

=
E

c

(
1 0
0 −1

)
+

(
0 −σ · p

σ · p 0

)
−mc

(
1 0
0 1

)
=

((
E
c
−mc

)
1 −σ · p

σ · p −
(
E
c
+mc

)
1

)
.

(2.18)

If one then writes the four-component bispinor u(E,p) as a two-component
vector

u(E,p) =

(
uA
uB

)
, (2.19)

one obtains the following coupled equations:(
E

c
−mc

)
uA − σ · p uB = 0 ,

σ · p uA −
(
E

c
+mc

)
uB = 0 .

(2.20)

These can be rearranged to:

uA =
σ · p

E
c
−mc

uB ,

uB =
σ · p

E
c
+mc

uA .
(2.21)

If one now expands the expression σ · p

σ · p =

(
pz px − ipy

px + ipy −pz
)
, (2.22)

the bispinor u(E,p) can be constructed by making explicit choices for uA or
uB. Choosing

uA =

(
1
0

)
or uA =

(
0
1

)
(2.23)

gives

u1 =


1
0
pzc

E+mc2
(px+ipy)c
E+mc2

 or u2 =


0
1

(px−ipy)c
E+mc2
−pzc

E+mc2

 . (2.24)
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These two solutions correspond to solutions with positive energy
E =

√
m2c4 + p2c2, as can easily be checked by solving the Dirac equation

again for p = 0. Similarly, the two solutions

u3 =


pzc

E−mc2
(px+ipy)c
E−mc2

1
0

 and u4 =


(px−ipy)c
E−mc2
−pzc

E−mc2

0
1

 (2.25)

are obtained for

uB =

(
1
0

)
and uB =

(
0
1

)
. (2.26)

These solutions correspond to negative energy E = −
√
m2c4 + p2c2, as can

also be easily checked here by solving the Dirac equation again for p = 0.
Altogether using the ”Feynman-Stückelberg interpretation” for the negative
energy solutions, which means a change in the sign of E and p, this results
in the following four solutions:

ψ1 = N1


1
0
pzc

E+mc2
(px+ipy)c
E+mc2

 exp

(
−ixµpµ

ℏ

)
,

ψ2 = N2


0
1

(px−ipy)c
E+mc2
−pzc

E+mc2

 exp

(
−ixµpµ

ℏ

)
,

ψ3 = N3


−pzc

−E−mc2
−(px+ipy)c
−E−mc2

1
0

 exp

(
ixµpµ
ℏ

)
,

ψ4 = N4


−(px−ipy)c
−E−mc2

pzc
−E−mc2

0
1

 exp

(
ixµpµ
ℏ

)
.

(2.27)

Here, ψ1 and ψ2 represent the spin up and spin down solutions for positive
energies, while ψ3 and ψ4 are the spin up and spin down solutions for negative
energies, i.e. for antiparticles.
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2.2 The Dirac equation in an external electromagnetic

field Aµ

If one substitutes the kinetic momentum pµ in (2.11) by the canonically
conjugated momentum πµ = pµ − eAµ [23] (this is also called ”minimal
coupling”), one obtains the Dirac equation for an electron moving in an
electromagnetic potential Aµ:

(γµiℏ∂µ − eγµAµ −mc)ψ = 0 . (2.28)

Here e denotes the elementary charge and Aµ the four-vector potential.
For the motion of an electron in an electromagnetic plane wave, which is
moving in the direction of the wave vector k with the speed of light c, the
solution of the Dirac equation was found by Volkov [3]. Using the notation
aµb

µ = a · b, as well as the Feynman slash notation γµaµ = /a, the so-called
”Volkov state” is [24]:

ψp = Np

(
1 +

e

2k · p
/k /A

)
up exp

(
−iΦ− ix · p

ℏ

)
. (2.29)

It has the phase:

Φ =

∫ k·x

0

(
eA · p
k · p

− e2A2

2k · p

)
dϕ . (2.30)

Here up denotes one of the previously known spinors of a free electron (cf.
(2.24), (2.25)) and Np is a normalisation constant. Use has been made of
the fact that the electromagnetic potential Aµ only depends on the scalar
product ϕ = k · x, i.e. Aµ = Aµ(k · x), since a plane wave is considered.
Due to the fact that the electromagnetic wave moves at the speed of light,
k2 = 0 also applies. In addition, the Lorenz gauge ∂µA

µ = 0 was assumed,
which can also be written as k · ∂ϕA(ϕ) = k · A′(ϕ) = 0 with the previous
assumption Aµ = Aµ(k · x).
A detailed derivation of this Volkov state can be found, for example, in Ref.
[24]. Here, however, it will be instead checked that the Volkov state satisfies
the Dirac equation by inserting it back into the equation. To do so the Dirac
equation is first rearranged to:

(iℏγµ∂µ − e /A−mc)ψp = 0 . (2.31)

The next step is to evaluate the partial derivatives:

γµiℏ∂µψp = γµ(pµ + ∂µΦ)ψp

=

(
/p+ /k

(
eA · p
k · p

− e2A2

2k · p

))
ψp .

(2.32)
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Here
γµ∂µ/k /A = /k/k /A′ (2.33)

with (Aµ)′ = ∂ϕA
µ and

/k/k =
1

2
kµkν(γ

µγν + γνγµ) = kµkνη
µν
1 = k21 = 0 (2.34)

was used. Since /pup = mcup is known from the solution of the Dirac equation
for a free particle , the term /pψp is examined in more detail in the next step:

/pψp = /pNp

(
1 +

e

2k · p
/k /A

)
up exp

(
−iΦ− ix · p

ℏ

)
,

= Np

(
/p+

e

2k · p/
p/k /A

)
up exp

(
−iΦ− ix · p

ℏ

)
.

(2.35)

Using the identity

γµγνγρ = ηµνγρ + ηνργµ − ηµργν − iϵσµνργσγ
5 (2.36)

twice, one gets

/p/k /A = 2k · p /A− 2p · A/k + /k /A/p . (2.37)

This results in:

/pψp =

((
1 +

e

2k · p
/k /A

)
/p+ e /A− ep · A

k · p
/k

)
Npup exp

(
−iΦ− ix · p

ℏ

)
= mcψp +

(
e /A− eA · p

k · p
/k

)
Npup exp

(
−iΦ− ix · p

ℏ

)
.

(2.38)

Furthermore, with /k
2
= 0:

/k

(
eA · p
k · p

− e2A2

2k · p

)
ψp

=

(
eA · p
k · p

− e2A2

2k · p

)
Np

(
/k +

e

2k · p
/k
2 /A

)
up exp

(
−iΦ− ix · p

ℏ

)
=

(
eA · p
k · p

− e2A2

2k · p

)
/kNpup exp

(
−iΦ− ix · p

ℏ

)
.

(2.39)

Additionally, it follows from /A/k = −/k /A and /A
2
= A2

1:

−e /Aψp = −eNp

(
/A+

e

2k · p
/A/k /A

)
up exp

(
−iΦ− ix · p

ℏ

)
=

(
−e /A+

e2A2

2k · p
/k

)
Npup exp

(
−iΦ− ix · p

ℏ

)
.

(2.40)
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A final comparison of equations (2.31), (2.32), (2.38), (2.39) and (2.40) shows
that the Volkov state satisfies the Dirac equation (2.31) as expected.
At this point, one might ask why the solution of the Dirac equation for an
electron interacting with an electromagnetic plane wave has been treated in
such detail when this thesis is actually about electron dynamics in a grav-
itational plane wave. The reason is quite simply that the electromagnetic
case and the gravitational case have some striking similarities, which are
explained in what follows.

2.3 Fundamentals of STA

The following introduction to Spacetime Algebra (STA) is based on Refs.
[19, 25] and will form the framework for some subsequent calculations and
results. Here Latin letters are used to denote vectors, while Greek letters are
used for scalars.
The easiest way to understand the basics of STA is to reinterpret the Dirac
algebra together with the Dirac matrices. To do this, the Dirac matrices are
assumed to be a orthonormal basis of Minkowski space with the signature
(+,−,−,−) [19]. Any vector a can then be written as a = aµγµ.
The inner product

a · b = 1

2
(ab+ ba) (2.41)

and the outer product

a ∧ b = 1

2
(ab− ba) = −b ∧ a , (2.42)

which defines so-called bivetors, can then be defined for two vectors a and b.
Together, these result in the so-called ”geometric product”

ab = a · b+ a ∧ b . (2.43)

A frequently required relation for vectors a, b and c is:

a · (b ∧ c) = (a · b)c− (a · c)b . (2.44)

With this knowledge, the Dirac algebra can be expressed as follows:

γµ · γν =
1

2
(γµγν + γνγµ) = ηµν . (2.45)

Thereby ηµν is the usual Minkowski metric. It also follows from this relation
that the basis {γµ} is orthonormal. In addition, the unit pseudoscalar

i = γ0γ1γ2γ3 (2.46)
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must also be introduced. This can then be used to define the trivectors {iγµ}.
A general element M of the STA, which is called a multivector, can then be
written as follows:

M = α + a+ F + bi+ βi . (2.47)

Here, α and β are scalars, a and b are vectors, F is a bivector, bi is a trivector
and βi is a pseudoscalar. Multivectors of higher degree are not needed. The
reverse of a multivector is then defined als follows:

M̃ = α + a− F − bi+ βi . (2.48)

A simple multivector Ar of degree r can be constructed from a number of r
pairwise distinct vectors:

Ar = a1 ∧ a2 ∧ ... ∧ ar . (2.49)

The inner and outer product can now be generalised to any multivectors Ar

and Bs with the degrees r and s:

Ar ·Bs = (−1)r(s+1)Bs · Ar , (2.50)

Ar ∧Bs = (−1)rsBs ∧ Ar . (2.51)

As this will become relevant later on, the inner and outer product are now
written out for a vector a and a multivector Ar of degree r:

a · Ar =
1

2
(aAr − (−1)rAra) , (2.52)

a ∧ Ar =
1

2
(aAr + (−1)rAra) . (2.53)

The geometric product can then be written again as:

aAr = a · Ar + a ∧ Ar . (2.54)

For any two multivectors A and B, there is also the commutator product,
which should not be confused with the inner or outer product. It differs from
these two other products in that its definition is independent of the degree
of the multivectors under consideration:

A×B =
1

2
(AB −BA) . (2.55)

The so-called rotors will also become relevant. These are even multivectors
and are defined for any Lorentz rotation (proper, orthochronous Lorentz
transformation) R acting on the vector a as follows:

R(a) = RaR̃ . (2.56)
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Rotors fulfil the normalisation condition

RR̃ = 1 (2.57)

and, as spinors, represent the spinor equivalent of the underlying Lorentz
transformation. Therefore, the eigenrotor or eigenspinor of a particle corre-
sponds to the Lorentz transformation, which connects the rest frame of the
particle with the laboratory frame, thus it is describing the motion of the
particle. Hence the proper velocity of a particle v = v(τ) = vµ(τ)γµ can be
determined with the help of the rotor:

v = Rγ0R̃ . (2.58)

2.4 Formulation of the Dirac equation using STA

The below section is based on Ref. [4].
As already seen in section 2.3, the gamma matrices form an associative alge-
bra over the real numbers according to (2.45), which is called the Spacetime
Algebra (STA) by Hestenes [26, 27, 28]. The advantage of formulating the
Dirac equation using STA is that the Dirac spinor ψ is independent of the
representation of the gamma matrices. Thereby the αi are understood as
vectors relative to the intertial system defined by the time-like vector γ0 [4].
The Dirac spinor, which was previously a four-dimensional column vector, is
then expanded to a 4× 4 matrix spinor:

Ψ = r0 + s1α1 + s2α2 + s3α3 + i(s0 − r1α1 − r2α2 − r3α3)

=


ψ1 −ψ∗

2 ψ3 ψ∗
4

ψ2 ψ∗
1 ψ4 −ψ∗

3

ψ3 ψ∗
4 ψ1 −ψ∗

2

ψ4 −ψ∗
3 ψ2 ψ∗

1

 .
(2.59)

As can be clearly seen, the first column of the matrix spinor Ψ corresponds
to the original vector spinor ψ. It can therefore be recovered from the matrix
spinor Ψ:

ψ = Ψ


1
0
0
0

 . (2.60)

For the Hestenes-Dirac spinor Ψ, the Dirac equation can be reformulated as
the Hestenes-Dirac equation [28]:

ℏγµ∂µΨγ2γ1 − e /AΨ−mcΨγ0 = 0 . (2.61)
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There are two things to note here. First, the Hestenes-Dirac equation is com-
pletely equivalent to the Dirac equation, i.e. solutions of the two equations
can simply be reformulated into one another using (2.59) and (2.60). Second,
no matrix representation needs to be assigned to the matrices γ0, γ1 and γ2 a
priori, despite the fact that these matrices appear explicitly in the equation.
This means that these matrices are initially arbitrary orthonormal vectors
that only receive an explicit representation by selecting a coordinate system
[4]. The advantage of the Hestenes-Dirac equation is that the matrix spinor
Ψ is invertible and therefore the Hestenes-Dirac equation can be solved for
the vector potential /A for a given spinor Ψ, which is the main idea of the
RDI technique. A detailed derivation of the Hestenes-Dirac equation can be
found in Ref. [28].
Following Ref. [4] the matrix spinor Ψ can be brought into polar from:

Ψ =
√
ρ exp(iβ/2)R . (2.62)

In this context, ρ is a non-negative scalar function that represents the prob-
ability density, β is also a scalar function, the so-called Yvon-Takabayashi
angle [29, 30], and R is a matrix that is an element of the Lorentz group.
The Lorentz transformation R connects the rest frame of the electron with
the laboratory frame. The following applies: R = BU , where B is a Her-
mitian matrix that represents the boosts, while U is unitary and describes
the rotations. The polar form thus allows for a straightforward geometric
interpretation of the Hestenes-Dirac spinor Ψ [4]. Additionally, the proper
velocity vµ of the electron can be determined from the matrix spinor:

Ψγ0Ψ̃ = ρ/v ,

with : Ψ̃ = γ0Ψ
†γ0 .

(2.63)

2.4.1 Matrix spinor free particle solution

Using the general boost to a frame moving with constant velocity v in an
arbitrary direction as derived in Ref. [31]

Bg =

√
E +mc2

2mc2


1 0 pzc

E+mc2
p−c

E+mc2

0 1 p+c
E+mc2

−pzc
E+mc2

pzc
E+mc2

p−c
E+mc2

1 0
p+c

E+mc2
−pzc

E+mc2
0 1


with : p± = px ± ipy ,

(2.64)

the matrix spinor solution of the Hestenes-Dirac equation (2.61) for a free
electron (Aµ = 0, ∀µ ∈ {0, 1, 2, 3}) neglecting the normalisation can be
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written as:

Ψf = Bg exp

(
−γ2γ1p · x

ℏ

)
. (2.65)

Where ρ = 1, β = 0 and U = 1 apply. If one compares this matrix spinor with
the equations (2.24) and (2.25), it is apparent that the matrix spinor contains
all four solutions, i.e. spin up and spin down for positive and negative energy
respectively, and that each column of the matrix spinor corresponds to one
of these solutions. Apart from this, the structure of the matrix spinor is
identical to that of the vector spinors. It also becomes clear that the solution
(2.65) is constructed using a boost of the at rest solution (p = 0)

Ψrest = exp

(
−γ2γ1Et

ℏ

)
. (2.66)

2.4.2 Matrix spinor Volkov state

In addition, the Volkov state (2.29) for an electromagnetic plane wave trav-
elling in z-direction (kµ = k(1, 0, 0, 1)T and Aµ = (0, A1, A2, 0)T ) can also be
expressed as a matrix spinor:

Ψ =

(
1 +

e

2k · p
/k /A

)
Bg exp

(
−γ2γ1x · p+ Φ

ℏ

)
. (2.67)

If an additional Lorentz transformation Rr is now recognised in(
1 + e

2k·p/k /A
)
, the following identifications can be made ρ = 1, β = 0 and

R = RrBg exp
(
−γ2γ1 x·p+Φ

ℏ

)
.

In the next step, Rr should be divided into a rotation and a boostRr = UrBr.
To do this, the comparison of e

2k·p/k /A with equation (79) from Ref. [4] first

shows that /k∧ /A and e
2k·p/k /A have the same structure in the present case and

the following applies analogous to equations (80) to (89) in Ref. [4]:

Ur = exp

(
−θ
2
(cos(ϑ)γ1γ3 + sin(ϑ)γ2γ3)

)
,

Br = exp
(ω
2
(V1α

1 + V2α
2 + V3α

3)
)
.

(2.68)
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The following abbreviation were used here:

θ

2
= arctan

(
k

e

2k · p
√
(A1)2 + (A2)2

)
,

cos(ϑ) =
A1√

(A1)2 + (A2)2
,

sin(ϑ) =
A2√

(A1)2 + (A2)2
,

V1
2

= cos

(
θ

2

)
cos(ϑ) ,

V2
2

= cos

(
θ

2

)
sin(ϑ) ,

V3
2

= sin

(
θ

2

)
,

ω = arctanh

(
V3
2

)
.

(2.69)

Finally, it can now be checked whether Ur is unitary and Br is hermitian.
To do this, one must first remember that for a matrix A applies [exp(A)]† =
exp(A†). This applied to Ur results in:

U †
r =

[
exp

(
−θ
2
(cos(ϑ)γ1γ3 + sin(ϑ)γ2γ3)

)]†
= exp

(
−θ
2
(cos(ϑ)(γ1γ3)† + sin(ϑ)(γ2γ3)†)

)
= exp

(
−θ
2
(cos(ϑ)(γ3)†(γ1)† + sin(ϑ)(γ3)†(γ2)†)

)
= exp

(
−θ
2
(cos(ϑ)γ3γ1 + sin(ϑ)γ3γ2)

)
= exp

(
θ

2
(cos(ϑ)γ1γ3 + sin(ϑ)γ2γ3)

)
= U−1

r .

(2.70)
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Ur is therefore unitary as expected. For Br one obtains:

B†
r =

[
exp

(ω
2
(V1α

1 + V2α
2 + V3α

3)
)]†

= exp
(ω
2
(V1(α

1)† + V2(α
2)† + V3(α

3)†)
)

= exp
(ω
2
(V1(γ

1γ0)† + V2(γ
2γ0)† + V3(γ

3γ0)†)
)

= exp
(ω
2
(V1(γ

0)†(γ1)† + V2(γ
0)†(γ2)† + V3(γ

0)†(γ3)†)
)

= exp
(
−ω
2
(V1γ

0γ1 + V2γ
0γ2 + V3γ

0γ3)
)

= exp
(ω
2
(V1γ

1γ0 + V2γ
2γ0 + V3γ

3γ0)
)

= exp
(ω
2
(V1α

1 + V2α
2 + V3α

3)
)

= Br .

(2.71)

Br is therefore hermitian and thus also fulfils the expectations.
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3 The Dirac equation in curved spacetime

The subsequent section follows Refs. [32, 33].
Since this thesis primarily describes the behaviour of electrons interacting
with a gravitational plane wave, which by its nature deforms spacetime, a
brief introduction to how curved spacetime can be incorporated into the
Dirac equation follows. From now on Greek indices are used for the space-
time manifold and Latin indices for the corresponding tangent space to the
spacetime manifold at a point. This generalises (2.13) to

{γµ, γν} = 2gµν1 , (3.1)

where gµν is the general metric of curved spacetime. With the help of the
so-called tetrads eµa and eaµ, the spacetime manifold can be related to the
tangent space. The following applies to the relationship between the metrics
of the two:

ηabeµae
ν
b = gµν . (3.2)

In addition, the gamma matrices of curved spacetime can also be expressed
by those of flat Minkowski spacetime:

γµ = γaeµa . (3.3)

To be able to write the Dirac equation in curved spacetime, it must be formu-
lated covariantly. To do this, the derivative of a spinor must be considered
in more detail. If Λ is used to denote the spinor representation of a Lorentz
transformation, a spinor transforms as follows:

ψ̃ = Λψ . (3.4)

The derivative of a spinor, on the other hand, does not transform like a
spinor:

∂µψ̃ = Λ∂µψ + (∂µΛ)ψ . (3.5)

Thus the covariant derivative

Dµψ = ∂µψ +Ωµψ (3.6)

is now defined so that the derivative of a spinor also transforms like a spinor.
Here, Ωµ are the spinorial connections. The covariant derivative now trans-
forms like a spinor

D̃µψ̃ = ∂µψ̃ + Ω̃µψ̃ = ΛDµψ (3.7)

if
Ω̃µ = ΛΩµΛ

−1 − (∂µΛ)Λ−1 (3.8)
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is required as the transformation behaviour of the spinorial connections Ωµ

[33].
This allows the Dirac equation to be written in a covariant form, i.e. in a
form appropriate to curved spacetime, by replacing the partial derivatives
with the corresponding covariant derivatives:

(γµiℏDµ −mc)ψ = γµiℏ (∂µ +Ωµ)ψ −mcψ = 0 . (3.9)

According to Ref. [32], the spinorial connections are calculated as follows:

Ωµ =
1

2
Ωijµσ

ij ,

with : Ωi
jµ = eνj e

i
σ

(
Λσ

νµ − eσa∂µe
a
ν

)
,

Λσ
αν =

gσρ

2
(∂αgρν + ∂νgαρ − ∂ρgαν) ,

σij =
1

4
[γi, γj] .

(3.10)

Here Λσ
αν denotes the Christoffel symbols.

Similarly, the Hestenes-Dirac equation can also be converted to covariant
form by replacing the partial derivatives with covariant derivatives:

ℏγµDµΨγ2γ1 −mcΨγ0 = ℏγµ (∂µ +Ωµ)Ψγ2γ1 −mcΨγ0 = 0 . (3.11)

All information about the curvature of spacetime is then contained in the
spinorial connectionsΩµ (3.10). Furthermore, the explicitly occurring gamma
matrices γ0, γ1 and γ2 are the untransformed gamma matrices of the flat
Minkowski spacetime.

3.1 The Dirac equation for a free particle in cylindrical

coordinates

The previously presented covariant form of the Dirac equation can be used
not only to formulate the Dirac equation in curved spacetime, but also to
use curvilinear coordinates such as cylindrical coordinates (t, r, φ, z). This
coordinate transformation will lead to a solution of the Dirac equation for
an electron vortex beam. An electron vortex beam is an electron beam pos-
sessing well defined orbital angular momentum (OAM) along its direction of
propagation. The metric tensor for a flat spacetime in cylindrical coordinates
is:

gµν = diag(1,−1,−r2,−1) . (3.12)
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The tetrads for this metric tensor can be calculated in the same way as the
Jacobian matrix, with

eµa =
∂xµ

∂xa
(3.13)

one obtains

eµa =


1 0 0 0
0 cos(φ) sin(φ) 0

0 − sin(φ)
r

cos(φ)
r

0
0 0 0 1

 . (3.14)

This results in the gamma matrices on the manifold according to (3.3):

γt = γ0 , γr = cos(φ)γ1 + sin(φ)γ2 ,

γz = γ3 , γφ =
1

r

(
cos(φ)γ2 − sin(φ)γ1

)
.

(3.15)

The Christoffel symbols can be calculated using equation (3.10). These all
vanish except for the following three:

Λr
φφ = −r , Λφ

φr = Λφ
rφ =

1

r
. (3.16)

Applying equation (3.10) again finally results in a zero spin connection Ωµ =
0, ∀µ ∈ {t, r, φ, z}.
The Dirac equation for a free electron can thus be formulated in the present
case:

iℏγµ∂µψ −mcψ = 0 . (3.17)

Where ∂µ ∈ {∂ct, ∂r, ∂φ, ∂z} and γµ ∈ {γt, γr, γφ, γz} apply. Using the
ansatz ψ = (ψ1, 0, 0, ψ4)

T results in the following four coupled differential
equations: (

iℏ
c
∂t −mc

)
ψ1 + iℏ e−iφ

(
−i∂φ
r

+ ∂r

)
ψ4 = 0 ,

−iℏ∂zψ4 = 0 ,

−iℏ∂zψ1 = 0 ,

−
(
iℏ
c
∂t +mc

)
ψ4 + iℏ eiφ

(
−i∂φ
r

+ ∂r

)
ψ1 = 0 .

(3.18)

If ψ1 = exp
(−iEt

ℏ

)
F1(φ)G1(r) and ψ4 = exp

(−iEt
ℏ

)
F4(φ)G4(r) is also as-

sumed with E being the inital energy of the electron, these equations are
further simplified:(

E

c
−mc

)
F1(φ)G1(r) + iℏ e−iφ

(
−i∂φ
r

+ ∂r

)
F4(φ)G4(r) = 0 ,

−
(
E

c
+mc

)
F4(φ)G4(r) + iℏ eiφ

(
−i∂φ
r

+ ∂r

)
F1(φ)G1(r) = 0 .

(3.19)
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The first of these two equations can be solved for F1(φ)G1(r):

F1(φ)G1(r) =
1

mc− E
c

iℏ e−iφ

(
−i∂φ
r

+ ∂r

)
F4(φ)G4(r) . (3.20)

This result can in turn be inserted into the second of the two equations in
(3.19):

0 =−
(
E

c
+mc

)
F4(φ)G4(r)

+ iℏ eiφ
(
−i∂φ
r

+ ∂r

)
1

mc− E
c

iℏ e−iφ

(
−i∂φ
r

+ ∂r

)
F4(φ)G4(r)

=−
(
E

c
+mc

)
F4(φ)G4(r)

− ℏ2

mc− E
c

(
−G4(r)F

′′
4 (φ)

r2
− F4(φ)G

′
4(r)

r
− F4(φ)G

′′
4(r)

)
.

(3.21)

With the additional ansatz F4(φ) = eiaφ, where the meaning of a is still to
be determined, this results in the following Bessel’s differential equation:

0 = r2G′′
4(r) + rG′

4(r) +

((
E
c

)2 − (mc)2

ℏ2
r2 − a2

)
G4(r) . (3.22)

For G4(r) one thus obtains

G4(r) = Ja

(
r
√
E2 −m2c4

ℏc

)
, (3.23)

where Ja(x) denotes the Bessel functions of the first kind. If one inserts
this result into (3.20) and uses the recurrence relation for Bessel functions
a
x
Ja(x) = Ja−1(x)− J ′

a(x), the following result is obtained:

F1(φ)G1(r) =
iℏ e−iφ

mc− E
c

[
a

r
eiaφJa

(
r
√
E2 −m2c4

ℏc

)
+ eiaφ

√
E2 −m2c4

ℏc
J ′
a

(
r
√
E2 −m2c4

ℏc

)]
=

iei(a−1)φ

mc2 − E

√
E2 −m2c4Ja−1

(
r
√
E2 −m2c4

ℏc

)
.

(3.24)
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Thus the spinor

ψ = exp

(
−iEt
ℏ

)
iei(a−1)φ

mc2−E

√
E2 −m2c4Ja−1

(
r
√
E2−m2c4

ℏc

)
0
0

eiaφJa

(
r
√
E2−m2c4

ℏc

)
 . (3.25)

solves the Dirac equation in cylindrical coordinates. Multiplying this result
by iN

B

√
E2 −m2c4 and substituting a = l + 1, one obtains the spinor from

equation (46) of Ref. [4]:

ψ = exp

(
−iEt
ℏ

)
N
B


eilφ(E +mc2)Jl

(
r
√
E2−m2c4

ℏc

)
0
0

iei(l+1)φ
√
E2 −m2c4Jl+1

(
r
√
E2−m2c4

ℏc

)
 (3.26)

Here M = 2l is the orbital angular momentum quantum number. Thus,
taking into account the substitutions made, a is also somewhat equivalent to
the orbital angular momentum quantum number. In addition, B is a positive
real-valued number with dimensions of energy, which essentially serves to
ensure that the solution is dimensionless. N is a normalisation constant.
As can be seen from Ref. [4], (3.26) can be written as a matrix spinor:

Ψ =
√
ρ B exp

(
−γ2γ1Et− Φ

ℏ

)
. (3.27)

Here the following abbreviations were used:

B = exp
(w
2
(γ0γ2 cos(φ)− γ0γ1 sin(φ))

)
,

Φ = ℏlφ ,
w

2
= arctanh

(
B

2(mc2 + E)

d ln(f(λ))

dλ

)
,

√
ρ =

N (mc2 + E)λlf(λ)

B cosh(w/2)
,

f(λ) = λ−lJl

(
r
√
E2 −m2c4

ℏc

)
,

λ =
Br

2ℏc
.

(3.28)
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This matrix spinor satisfies the Hestenes-Dirac equation in cylindrical coor-
dinates:

ℏγµ∂µΨγ2γ1 −mcΨγ0 = 0 . (3.29)

If the definitions r =
√
x2 + y2 and φ = arctan

(
y
x

)
are now inserted into

the spinors (3.26) or (3.27), these are transformed back to Cartesian coor-
dinates and the spinors obtained in this way are still a solution of the free
Dirac (2.11) or Hestenes-Dirac equation (2.61). This makes it clear that the
spinorial connections method is not only suitable for correctly incorporating
curved spacetime into the Dirac equation, but also for performing coordinate
transformations. This is important because coordinate transformations, as
seen here and again in section 4.1 below, often simplify the task of solving
the Dirac equation.
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4 Solutions of the Dirac equation for an elec-

tron in a gravitational plane wave

Now that all the necessary concepts have been introduced, the actual topic of
investigation, the dynamics of electrons in a gravitational plane wave, can be
addressed. An exact solution of Einstein’s field equations for a gravitational
plane wave was first found in Ref. [14]. As can be seen from Ref. [34], the line
element for an exact gravitational plane wave propagating in the z-direction
can be written as

ds2 = c2dt2−f 2(ϕ)dx2−g2(ϕ)dy2−dz2 = 2dvdu−f̃ 2(u)dx2−g̃2(u)dy2. (4.1)

Here, ϕ = kix
i = k(ct − z) applies with ki = k(1, 0, 0, 1)T being the wave

vector of the gravitational wave. In addition, the light cone coordinates
v = 1√

2
(ct + z) and u = 1√

2
(ct − z) are introduced and, in order to simplify

subsequent calculations, f(ϕ) = f̃(u) and g(ϕ) = g̃(u) is assumed.
The only remaining vacuum field equation is then:

f ′′(ϕ)

f(ϕ)
+
g′′(ϕ)

g(ϕ)
= 0 resp.

f̃ ′′(u)

f̃(u)
+
g̃′′(u)

g̃(u)
= 0 . (4.2)

Where primed functions denote derivatives with respect to ϕ resp. u.
If the light cone basis (v, x, y, u) is used, the metric tensor is therefore:

gµν =


0 0 0 1

0 −f̃ 2(u) 0 0
0 0 −g̃2(u) 0
1 0 0 0

 . (4.3)

The tetrads

eµa =


1√
2

0 0 1√
2

0 1
f̃(u)

0 0

0 0 1
g̃(u)

0
1√
2

0 0 − 1√
2

 (4.4)

lead to the new gamma matrices:

γv =
1√
2
(γ0 + γ3) , γx =

1

f̃(u)
γ1 ,

γu =
1√
2
(γ0 − γ3) , γy =

1

g̃(u)
γ2 .

(4.5)
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The Christoffel symbols in this case are:

Λx
xu = Λx

ux =
f̃ ′(u)

f̃(u)
, Λv

xx = f̃(u)f̃ ′(u) ,

Λy
yu = Λy

uy =
g̃′(u)

g̃(u)
, Λv

yy = g̃(u)g̃′(u) .

(4.6)

The spinorial connections can be calculated from this using equation (3.10):

Ω0
1x =

f̃ ′(u)√
2
, Ω1

0x =
f̃ ′(u)√

2
,

Ω1
3x = − f̃

′(u)√
2
, Ω3

1x =
f̃ ′(u)√

2
,

Ω0
2y =

g̃′(u)√
2
, Ω2

0y =
g̃′(u)√

2
,

Ω2
3y = − g̃

′(u)√
2
, Ω3

2y =
g̃′(u)√

2
.

(4.7)

This ultimately results in:

Ωv = 0 , Ωx =
f̃ ′(u)√

2
(σ01+σ13) , Ωy =

g̃′(u)√
2
(σ02+σ23) , Ωu = 0 , (4.8)

which means that the Dirac equation can be written in the form of equation
(3.9).

4.1 At rest solution

If now ψ = (ψ1, 0, 0, 0)
T is assumed, the Dirac equation simplifies to the

following three coupled partial differential equations:[
iℏ

(
∂u√
2
+

∂v√
2
+

f̃ ′(u)

2
√
2f̃(u)

+
g̃′(u)

2
√
2g̃(u)

)
−mc

]
ψ1 = 0 ,

iℏ

(
∂u√
2
− ∂v√

2
+

f̃ ′(u)

2
√
2f̃(u)

+
g̃′(u)

2
√
2g̃(u)

)
ψ1 = 0 ,

−iℏ
(

∂x

f̃(u)
+ i

∂y
g̃(u)

)
ψ1 = 0 .

(4.9)

If one then makes the ansatz ψ1 = F (v)G(u) and adds or subtracts the first
two equations, two even more simplified and decoupled equations can be
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obtained:[
iℏ

(
√
2∂u +

1√
2

{
f̃ ′(u)

f̃(u)
+
g̃′(u)

g̃(u)

})
−mc

]
F (v)G(u) = 0 ,(

iℏ
√
2∂v −mc

)
F (v)G(u) = 0 .

(4.10)

In the next step, the second of these two equations is solved first, assuming
that the solutions are non-trivial, i.e. F (v) ̸= 0 and G(u) ̸= 0.(

iℏ
√
2∂v −mc

)
F (v)G(u) = 0

⇒G(u)
(
iℏ
√
2∂v −mc

)
F (v) = 0

⇒
(
iℏ
√
2∂v −mc

)
F (v) = 0

⇒ F ′(v) =
−imc
ℏ
√
2
F (v)

⇒ F (v) = A exp

(
− imc

ℏ
√
2
v

)
(4.11)

A similar procedure can be used for the first of the two equations from (4.10).[
iℏ

(
√
2∂u +

1√
2

{
f̃ ′(u)

f̃(u)
+
g̃′(u)

g̃(u)

})
−mc

]
F (v)G(u) = 0

⇒ F (v)

[
iℏ

(
√
2∂u +

1√
2

{
f̃ ′(u)

f̃(u)
+
g̃′(u)

g̃(u)

})
−mc

]
G(u) = 0

⇒

[
iℏ

(
√
2∂u +

1√
2

{
f̃ ′(u)

f̃(u)
+
g̃′(u)

g̃(u)

})
−mc

]
G(u) = 0

⇒G′(u) =
i
[
iℏ 1√

2

(
f̃ ′(u)

f̃(u)
+ g̃′(u)

g̃(u)

)
−mc

]
ℏ
√
2

G(u)

⇒G(u) = B
exp

(
− imc

ℏ
√
2
u
)

√
f̃(u)g̃(u)

(4.12)

A final solution for ψ1 = F (v)G(u) was thus found:

ψ1 = C
1√

f̃(u)g̃(u)
exp

(
− imc

ℏ
√
2
(u+ v)

)
. (4.13)
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Here C = AB is a constant.
Similarly, solutions can also be found for cases where ψ = (0, ψ2, 0, 0)

T ,
ψ = (0, 0, ψ3, 0)

T or ψ = (0, 0, 0, ψ4)
T are initially assumed. To summarise,

the solutions found can be written as follows:

ψ1 =


C 1√

f̃(u)g̃(u)
exp

(
− imc

ℏ
√
2
(u+ v)

)
0
0
0

 ,

ψ2 =


0

C 1√
f̃(u)g̃(u)

exp
(
− imc

ℏ
√
2
(u+ v)

)
0
0

 ,

ψ3 =


0
0

C 1√
f̃(u)g̃(u)

exp
(

imc
ℏ
√
2
(u+ v)

)
0

 ,

ψ4 =


0
0
0

C 1√
f̃(u)g̃(u)

exp
(

imc
ℏ
√
2
(u+ v)

)
 .

(4.14)

It now seems natural to convert these solutions into Cartesian coordinates
by explicitly inserting the definition of v and u into the solutions. However,
this must first be prepared. To do this, f̃(u) and g̃(u) are replaced with f(ϕ)
and g(ϕ). In addition, the metric tensor

gµν =


1 0 0 0
0 −f 2(ϕ) 0 0
0 0 −g2(ϕ) 0
0 0 0 −1

 , (4.15)

the tetrads

eµa =


1 0 0 0
0 1

f(ϕ)
0 0

0 0 1
g(ϕ)

0

0 0 0 1

 , (4.16)

29



the gamma matrices

γt = γ0 , γx =
1

f(ϕ)
γ1 ,

γz = γ3 , γy =
1

g(ϕ)
γ2 .

(4.17)

and the spinorial connections

Ωt = 0, Ωx = kf ′(ϕ)(σ01+σ13), Ωy = kg′(ϕ)(σ02+σ23), Ωz = 0. (4.18)

must also be converted to Cartesian coordinates. If the initial energy E =
mc2 is now also introduced, the solutions (4.14) can be written in Cartesian
coordinates as follows:

ψ1 =


C 1√

f(ϕ)g(ϕ)
exp

(
− iE

ℏ t
)

0
0
0

 ,

ψ2 =


0

C 1√
f(ϕ)g(ϕ)

exp
(
− iE

ℏ t
)

0
0

 ,

ψ3 =


0
0

C 1√
f(ϕ)g(ϕ)

exp
(
iE
ℏ t
)

0

 ,

ψ4 =


0
0
0

C 1√
f(ϕ)g(ϕ)

exp
(
iE
ℏ t
)
 .

(4.19)

Using the above to Cartesian coordinates adapted gamma matrices and
spinorial connections, it is easy to show by simple insertion that these solu-
tions satisfy the Dirac equation for an electron in a gravitational plane wave
in Cartesian coordinates.
By now taking a closer look at the solutions in (4.19), it also becomes clear
why the supposed detour via the light cone coordinates was taken. This
was done, because in Cartesian coordinates, in contrast to the light cone
coordinates, the solutions are no longer separable, which means solving the
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Dirac equation in light cone coordinates is considerably easier. Furthermore,
it also becomes clear why the solutions found here can be called “at rest”
solutions, because only the zero component of the initial kinetic momentum
p0 = E

c
is non zero. Thus the presented solutions are given in a reference

frame comoving with the electron. In the next section, the goal will be to
boost these solutions to an arbitrary initial kinetic momentum pi, which has
an arbitrary direction.
The vector spinor solution ψ1 from (4.19) can also be easily converted into a
matrix spinor solution of the Hestenes-Dirac equation (3.11):

Ψ1 =
1√

f(ϕ)g(ϕ)
exp

(
−γ2γ1E

ℏ
t

)
. (4.20)

Here
√
ρ = 1√

f(ϕ)g(ϕ)
, β = 0 and R = U = exp

(
−γ2γ1Eℏ t

)
applies.

4.2 Solution with arbitrary initial kinetic momentum

The solution presented below was first found in Ref. [16]. In the unpublished
Ref. [17], this solution was then converted into a modern notation. In the
derivation of the plane wave solution, this section follows the modern notation
of Ref. [17] and therefore uses Cartesian coordinates, as well as the metric,
the tetrads, the gamma matrices and the spinorial connections from the
equations (4.15) to (4.18).
The first step is now, analogue to Ref. [35], to boost the at rest solutions
(4.19) found. For this purpose, the exponential expression is first expressed
in covariant form:

exp

(
−iE

ℏ
t

)
= exp

(
−ix

ipi
ℏ

)
= exp

(
−
ix′jp′j
ℏ

)
= exp

(
−i(E

′t′ − p′x
′
x′ − p′y

′
y′ − pz

′
z′)

ℏ

)
.

(4.21)

In addition, the spinors from the equation (4.19) are multiplied by the boost
from Ref. [31]:

Bg =

√
E +mc2

2mc2


1 0 pzc

E+mc2
p−c

E+mc2

0 1 p+c
E+mc2

−pzc
E+mc2

pzc
E+mc2

p−c
E+mc2

1 0
p+c

E+mc2
−pzc

E+mc2
0 1

 ,

with : p± = px ± ipy .

(4.22)
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Of course, it is important to note that the sign of the momentum vector pi

of the solutions with negative energies (ψ3 and ψ4 in equation (4.19)) must
be changed in equations (4.21) and (4.22).
While it is sufficient to boost the at rest solutions of the free Dirac equation in
order to get a solution with non-zero velocity, it is found here that the spinors
constructed in this way do not solve the Dirac equation in the presence of a
plane gravitational wave. It turns out that an extra Lorentz transformation is
needed, which corresponds to an active transformation describing the motion
of the electron in the gravitational plane wave. If the constant parts of the
spinors from equation (4.19) and the boost from equation (4.22) are now
combined to form the constant spinor up, for which (piγ

i−mc)up = 0 applies,
the following ansatz can be made in the present case [17]:

ψ =
1√

f(ϕ)g(ϕ)
G(ϕ) exp

(
−ix

mpm
ℏ

)
up . (4.23)

To determine G(ϕ) from this, the Dirac equation is first reformulated as
follows [17]:

[iℏ (γµ∂µ + χ/k)−mc]ψ = 0 ,

with : χ =
1

2

(
f ′(ϕ)

f(ϕ)
+
g′(ϕ)

g(ϕ)

)
and /k = kiγ

i .
(4.24)

This is possible, since explicit calculations show γxΩx + γyΩy = χ/k. If one
also defines, following Ref. [17], eµa = δµa +H µ

a , so that

γx = γ1 +H x
a γ

a ,

γy = γ2 +H y
a γ

a (4.25)

with

H µ
a =


0 0 0 0
0 1

f(ϕ)
− 1 0 0

0 0 1
g(ϕ)

− 1 0

0 0 0 0

 , (4.26)

then the Dirac equation can be reformulated further[
iℏ
(
γi∂i +H µ

a γ
a∂µ + χ/k

)
−mc

]
ψ = 0 . (4.27)

With γiγj = ηij + 2σij, ki = k(1, 0, 0, 1)T , ϕ = kix
i and knowing the total

contraction of a symmetric quantity with an antisymmetric quantity is zero,
e.g. pipjσ

ij = 0, one then gets:(
γi∂i +H µ

a γ
a∂µ + χ/k

)2
= ∂i∂

i + 2H iµ∂i∂µ +H µ
l H

lν∂µ∂ν + 2χki∂i +H ′ µ
i /kγ

i∂µ .
(4.28)
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Here H ′ µ
i = ∂ϕH

µ
i was used as an abbreviation.

This means that the square of the Dirac equation (4.27) is

0 =
[
ℏ2
(
γi∂i +H µ

a γ
a∂µ + χ/k

)2
+m2c2

]
ψ

=
[
ℏ2
(
∂i∂

i + 2H iµ∂i∂µ +H µ
l H

lν∂µ∂ν + 2χki∂i +H ′ µ
i /kγ

i∂µ
)
+ (mc)2

]
ψ ,

(4.29)

as can be also seen in Ref. [17]. Noticing ∂ϕ
1√

f(ϕ)g(ϕ)
= −χ 1√

f(ϕ)g(ϕ)
and

keeping p2 = pip
i = (mc)2 as well as k2 = kik

i = 0 in mind, the individual
expressions can be calculated:

∂i∂iψ = ∂i

([
−kiχ− ipi

ℏ

]
ψ + kiG

′(ϕ) exp

(
−ix

mpm
ℏ

)
up√

f(ϕ)g(ϕ)

)

=

(
kik

iχ2 + 2
i

ℏ
pik

iχ− p2

ℏ2

)
ψ

+

(
−kikiχ− 2

i

ℏ
pik

i

)
G′(ϕ) exp

(
−ix

mpm
ℏ

)
up√

f(ϕ)g(ϕ)

=

(
2i

ℏ
pik

iχ− (mc)2

ℏ

)
ψ − 2i

ℏ
pik

iG′(ϕ) exp

(
−ix

mpm
ℏ

)
up√

f(ϕ)g(ϕ)
,

(4.30)

2H iµ∂i∂µψ = − 2

ℏ2
H iµpipµψ , (4.31)

H µ
l H

lν∂µ∂νψ = − 1

ℏ2
H µ

l H
lνpµpνψ , (4.32)

2χki∂iψ = 2χki

([
−kiχ− i

ℏ
pi

]
ψ − kiG

′(ϕ) exp

(
−ix

mpm
ℏ

)
up√

f(ϕ)g(ϕ)

)
= −2i

ℏ
χkipiψ ,

(4.33)

H ′ µ
i /kγ

i∂µψ = − i

ℏ
H ′ µ

i /kγ
ipµψ . (4.34)

Here, pµ = (E
c
,−px,−py,−pz) = pi applies, since pµ results from ∂µ exp

(
−xipi

ℏ

)
and ∂µx

ipi = δiµpi = pµ.
Inserting the ansatz (4.23) in above squared Dirac equation (4.29) therefore
results in the following differential equation for G(ϕ):

0 =
[
−2H iµpipµ −H µ

l H
lνpµpν − iℏH ′ µ

i /kγ
ipµ
]
G(ϕ)− 2iℏpikiG′(ϕ) . (4.35)
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This differential equation can be solved simply by integration:

G(ϕ) = exp

(
i

ℏ

∫
dϕ

2pmkm
[
2H iµpipµ +H µ

l H
lνpµpν + iℏH ′ µ

i /kγ
ipµ
])

= exp

(
i

ℏ

∫
dϕ

2pmkm
[
2H iµpipµ +H µ

l H
lνpµpν

])
exp

(
−H µ

i /kγ
ipµ

2kjpj

)
.

(4.36)

Due to (H µ
i /kγ

ipµ)
2
= 0, the matrix exponential, which is therefore also

referred to as a null rotation, can be written as

exp

(
−H µ

i /kγ
ipµ

2kjpj

)
= 1− H µ

i /kγ
ipµ

2kjpj
. (4.37)

In addition, the argument of the integral can be expanded by explicitly in-
serting H µ

i :

2H iµpipµ +H µ
l H

lνpµpν =

(
1− 1

f 2(ϕ)

)
(px)2 +

(
1− 1

g2(ϕ)

)
(py)2 [17] .

(4.38)
If S =

∫
dϕ

2kjpj

[
2H iµpipµ +H µ

l H
lνpµpν

]
is defined, the solution of the Dirac

equation with arbitrary initial kinetic momentum reads as follows:

ψ =
1√

f(ϕ)g(ϕ)

(
1− H µ

i /kγ
ipµ

2kjpj

)
exp

(
−ix

mpm
ℏ

+
iS

ℏ

)
up . (4.39)

This exact solution can also be found in Ref. [17].

4.2.1 Test of the solution

While a test of the solution can already be found in Ref. [17], this test will
be formulated in more detail below. To do this, the above solution must first
be converted into the following form:

ψ =

(
1− H µ

i /kγ
ipµ

2kjpj

)
exp

(
−ix

mpm
ℏ

+
iF (ϕ)

ℏ

)
up ,

with :

F (ϕ) =

∫
dϕ

2kmpm

[
2H iµpipµ +H µ

l H
lνpµpν + 2iℏkipiχ

]
.

(4.40)

If this is now inserted into the Dirac equation, the result is:[
iℏ
(
γi∂i +H µ

a γ
a∂µ + χ/k

)
−mc

]
ψ

=
[
/p+ /k(iℏχ− F ′(ϕ)) +Hµ

a γ
apµ −mc

]
ψ .

(4.41)
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Dividing this result by exp
(
− ixmpm

ℏ + iF (ϕ)
ℏ

)
yields:

[
/p+ /k(iℏχ− F ′(ϕ)) +H µ

a γ
apµ −mc

](
1− H µ

i /kγ
ipµ

2kjpj

)
up

=

[
/p+ /k

(
iℏχ− 1

2kmpm

[
2H iµpipµ +H µ

l H
lνpµpν + 2iℏkipiχ

])
+H µ

a γ
apµ −mc

](
1− H µ

i /kγ
ipµ

2kjpj

)
up

=

[
/p−

/k

2kmpm

(
2H iµpipµ +H µ

l H
lνpµpν

)
+H µ

a γ
apµ −mc

](
1− H µ

i /kγ
ipµ

2kjpj

)
up .

(4.42)

Since (/p − mc)up = 0 and /k/k = kiki = 0, this can be further simplified as
follows:[

/p−
/k

2kmpm

(
2H iµpipµ +H µ

l H
lνpµpν

)
+H µ

a γ
apµ −mc

](
1− H µ

i /kγ
ipµ

2kjpj

)
up

=

[
−

/k

2kjpj

(
2H iµpipµ +H µ

l H
lνpµpν

)
+H µ

a γ
apµ

− (/p+H µ
a γ

apµ −mc)
H ν

i /kγ
ipν

2kjpj

]
up

=

[
−

/k

2kjpj

(
2H iµpipµ +H µ

l H
lνpµpν

)
+H µ

a γ
apµ

+ (mc−H µ
a γ

apµ)
H ν

i /kγ
ipν

2kjpj
−
H ν

i /p/kγ
ipν

2kjpj

]
up

=

[
−

/k

2kjpj

(
2H iµpipµ +H µ

l H
lνpµpν

)
+H µ

a γ
apµ

+ (mc−H µ
a γ

apµ)
H ν

i /kγ
ipν

2kjpj
− H ν

i pakbγ
aγbγipν

2kjpj

]
up .

(4.43)
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Using the identity (2.36) twice, gives:[
−

/k

2kjpj

(
2H iµpipµ +H µ

l H
lνpµpν

)
+H µ

a γ
apµ

+ (mc−H µ
a γ

apµ)
H ν

i /kγ
ipν

2kjpj
− H ν

i pakbγ
aγbγipν

2kjpj

]
up

=

[
−

/k

2kjpj

(
2H iµpipµ +H µ

l H
lνpµpν

)
+H µ

a γ
apµ + (mc−H µ

a γ
apµ)

H ν
i /kγ

ipν
2kjpj

− H ν
i pakbpν
2kjpj

(ηabγi + ηbiγa − ηaiγb + γbγiγa − ηbiγa − ηiaγb + ηabγi)

]
up

=

[
−

/k

2kjpj

(
2H iµpipµ +H µ

l H
lνpµpν

)
+H µ

a γ
apµ

+ (mc−H µ
a γ

apµ)
H ν

i /kγ
ipν

2kjpj
− H ν

i pakbpν
2kjpj

(2ηabγi + γbγiγa − 2ηaiγb)

]
up

=

[
−

/k

2kjpj

(
2H iµpipµ +H µ

l H
lνpµpν

)
+H µ

a γ
apµ

+ (mc−H µ
a γ

apµ)
H ν

i /kγ
ipν

2kjpj
−H ν

i γ
ipν −

H ν
i /kγ

i/ppν

2kjpj
+
/kHaνpapν
kjpj

]
up

=

[
−

/k

2kjpj
H µ

l H
lνpµpν + (mc−H µ

a γ
apµ)

H ν
i /kγ

ipν
2kjpj

−
H ν

i /kγ
i/ppν

2kjpj

]
up .

(4.44)

If one uses (/p−mc)up = 0 again, this can be simplified further:[
−

/k

2kjpj
H µ

l H
lνpµpν + (mc−H µ

a γ
apµ)

H ν
i /kγ

ipν
2kjpj

−
H ν

i /kγ
i/ppν

2kjpj

]
up

=

[
−

/k

2kjpj
H µ

l H
lνpµpν −H µ

a γ
apµ

H ν
i /kγ

ipν
2kjpj

]
up .

(4.45)
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If now the fact that a ∈ {1, 2} and /k = k(γ0 − γ3) is used, then γa/k = −/kγa
and it follows:[

−
/k

2kjpj
H µ

l H
lνpµpν −H µ

a γ
apµ

H ν
i /kγ

ipν
2kjpj

]
up

=

[
−

/k

2kjpj
H µ

l H
lνpµpν +

/k

2kjpj
H µ

a H
ν
i γ

aγipµpν

]
up

=

[
−

/k

2kjpj
H µ

l H
lνpµpν +

/k

2kjpj
H µ

a H
ν
i (η

ai + 2σai)pµpν

]
up

=

[
−

/k

2kjpj
H µ

l H
lνpµpν +

/k

2kjpj
H µ

a H
aνpµpν

]
up

= 0 .

(4.46)

It was used that due to the asymmetry of σai, the contraction of σai with a
symmetrical quantity is zero.
The solution (4.39) presented above therefore satisfies the Driac equation, as
expected.

4.2.2 Matrix spinor form

This result can now be easily written as a matrix spinor that satisfies the
Hestenes-Dirac equation (3.11). The construction chosen here using the boost
is particularly advantageous, as up can simply be replaced by Bg from equa-
tion (4.22). In addition, i must be replaced with γ2γ1, as is usual for the
construction of the matrix spinors:

Ψ =
1√

f(ϕ)g(ϕ)

(
1− H µ

i /kγ
ipµ

2kjpj

)
Bg exp

(
−γ2γ1x

mpm − S

ℏ

)
. (4.47)

The comparison with equation (4.20) makes it clear that this solution emerges
from the at rest solution by applying the boost Bg and a further Lorentz

transformation Rr = 1 − H µ
i
/kγipµ

2kjpj
, which also results in an additional phase

S =
∫

dϕ
2kjpj

[
2H iµpipµ +H µ

l H
lνpµpν

]
. Now one can make the following iden-

tifications
√
ρ = 1√

f(ϕ)g(ϕ)
, β = 0 and R = RrBg exp

(
−γ2γ1 xmpm−S

ℏ

)
.

The aim in the next step is to separate Rr into a rotation and a boost

Rr = UrBr. To do this,
H µ

i
/kγipµ

2kjpj
must first be considered a little more closely
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by explicitly using H µ
i :

H µ
i /kγ

ipµ
2kjpj

= − 1

2kjpj

[(
1

f(ϕ)
− 1

)
pxk(γ0 − γ3)γ1 +

(
1

g(ϕ)
− 1

)
pyk(γ0 − γ3)γ2

]
= − 1

2kjpj

[(
1

f(ϕ)
− 1

)
pxk(γ1γ0 − γ3γ1) +

(
1

g(ϕ)
− 1

)
pyk(γ2γ0 − γ3γ2)

]
= − 1

2kjpj

[(
1

f(ϕ)
− 1

)
pxk(α1 − γ3γ1) +

(
1

g(ϕ)
− 1

)
pyk(α2 + γ2γ3)

]
.

(4.48)

If this result is now compared with equation (79) from Ref. [4], a comparable
structure of the two matrices can be recognised. Therefore, equations (80)
to (89) from Ref. [4] are adapted below for the case analysed here:

Ur = exp

(
−θ
2
(cos(ϑ)γ1γ3 + sin(ϑ)γ2γ3)

)
,

Br = exp
(ω
2
(V1α

1 + V2α
2 + V3α

3)
)
.

(4.49)

The abbreviations used are as follows:

θ

2
= arctan

(
k

1

2kjpj

√
(A1)2 + (A2)2

)
,

cos(ϑ) =
A1√

(A1)2 + (A2)2 ,

sin(ϑ) =
A2√

(A1)2 + (A2)2
,

V1
2

= cos

(
θ

2

)
cos(ϑ) ,

V2
2

= cos

(
θ

2

)
sin(ϑ) ,

V3
2

= sin

(
θ

2

)
,

ω = arctanh

(
V3
2

)
,

A1 = −
(

1

f(ϕ)
− 1

)
px ,

A2 = −
(

1

g(ϕ)
− 1

)
py .

(4.50)

38



A rotation Ur and a boost Br were thus found, so that Rr = UrBr holds.
This means that the matrix spinor can be written as follows:

Ψ =
1√

f(ϕ)g(ϕ)
UrBrBg exp

(
−γ2γ1x

mpm − S

ℏ

)
. (4.51)

4.2.3 Comparison with the electromagnetic case and interpreta-

tion

In order to compare the case of the gravitational wave with that of the electro-
magnetic wave, the corresponding Dirac and Hestenes Dirac equations must
first be compared. For the case of an electromagnetic plane wave propagating
in the z-direction (kµ = k(1, 0, 0, 1)T , Aµ = (0, A1, A2, 0)T ) this reads:

ℏγi∂iΨγ2γ1 − eγiAiΨ−mcΨγ0 = 0 . (4.52)

In the case of the gravitational wave, however, the following applies in
adapted notation:

ℏ(γi∂i +H µ
i γ

i∂µ + χγiki)Ψγ2γ1 −mcΨγ0 = 0 . (4.53)

At first glance, when comparing the two equations, it becomes obvious that
the Hestenes-Dirac equation has an additional term χγikiΨγ2γ1 in the case of
the gravitational wave. This follows directly from the spinorial connections
and means that

√
ρ = 1√

f(ϕ)g(ϕ)
applies to all solutions, since γi∂i

1√
f(ϕ)g(ϕ)

=

−χγiki 1√
f(ϕ)g(ϕ)

, while
√
ρ = 1 applies in the case of the electromagnetic

wave, as the comparison of the equations (4.51) and (2.67) also shows. Here
it should also be noted that

√
ρ = 1√

f(ϕ)g(ϕ)
= 1

4
√

|det(gµν)|
applies. This at

least suggest that this expression reflects the deformation of spacetime as a
result of the gravitational wave.
Apart from this, however, the two Hestnes-Dirac equations have a similar
structure, although there are still three minor differences. In the gravita-
tional wave case, the term ℏH µ

i γ
i∂µΨγ2γ1 contains partial derivatives, while

in the electromagnetic case the term of the vector potential −eγiAiΨ does
not contain any derivatives. Due to the chosen ansatz Ψ = 1√

f(ϕ)g(ϕ)
G(ϕ)Bg

exp
(
−−γ2γ1xmpm

ℏ

)
, the derivative in the case of the gravitational wave can

be replaced by pµ, as will be explained in more detail below. Further-
more the expression ℏH µ

i γ
i∂µΨγ2γ1, in contrast to −eγiAiΨ, contains the

gamma matrices γ2 and γ1, which in combination and applied from the right
to Ψ correspond to the imaginary unit i in the ”normal” Dirac equation.
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This is due to the fact that the term ℏH µ
i γ

i∂µΨγ2γ1 is part of the covari-
ant derivative in the case of the gravitational wave. This product γ2γ1 is

cancelled by the expression exp
(
−−γ2γ1xmpm

ℏ

)
, since the derivative of this

exponential term ∂µ exp
(
−−γ2γ1xmpm

ℏ

)
= −pµ

ℏ exp
(
−−γ2γ1xmpm

ℏ

)
γ2γ1 and

−γ2γ1γ2γ1 = −γ2γ1γ2γ1 = 1 applies. Thus, based on the chosen ansatz,
the expression ℏH µ

i γ
i∂µΨγ2γ1 simplifies to pµH

µ
i γ

iΨ, which is analogous to
the term −eγiAiΨ in the electromagnetic case. In addition, the signs of the
terms ℏH µ

i γ
i∂µΨγ2γ1 and −eγiAiΨ differ, which leads to differences in the

signs of the solutions, which will become clearer later on when the solutions
are considered in more detail.
However, since the two Hestenes-Dirac equations are identical apart from
this, it is clear from a purely mathematical point of view that the solutions
to these two equations must be very similar and have a comparable structure.
Now that the comparison of the two Hestenes-Dirac equations has been com-
pleted, the next step is to compare the matrix spinors (4.51) and (2.67). To
do this, the two Lorentz transformations Rr are first compared in the form
before they were split into a boost and a rotation. For the electromagnetic
wave, this Lorentz transformation is as follows:

Rr =

(
1 +

e

2k · p
/k /A

)
. (4.54)

While for the gravitational wave

Rr =

(
1− H µ

i /kγ
ipµ

2k · p

)
(4.55)

applies. At first glance, it can be seen that these two matrices have the same
structure, apart from the sign between the unit matrix and the remainder of
the Lorentz transformation. This difference in sign is due to the fact that
the sign of the ℏH µ

i γ
i∂µΨγ2γ1 = pµH

µ
i γ

iΨ and −eγiAiΨ terms in the two
Hestenes-Dirac equations is different. If one now identifies −eAi with pµH

µ
i ,

not only do the two expressions in the Hestenes Dirac equations coincide, but
the two Lorentz transformations (4.54) and (4.55) are now also completely
identical. As a result, the rotation Ur and the boost Br are also the same
for both the electromagnetic wave and the gravitational wave, see equations
(2.68) and (2.69) compared to (4.49) and (4.50).
However, not only are the two Lorentz transformations to be regarded as
identical due to this identification, but the additional phases as a result of
the gauge freedom are now also equivalent. This is because, taking into
account the fact that eA · p =̂ −H iµpipµ and e2A2 =̂H µ

l H
lνpµpν apply with

40



the previously made identification,

−Φ = −
∫ (

eA · p
k · p

− e2A2

2k · p

)
dϕ (4.56)

becomes

S =

∫
dϕ

2k · p
[
2H iµpipµ +H µ

l H
lνpµpν

]
. (4.57)

Thus, considering the identification −eAi =̂ pµH
µ
i , apart from the additional

scaling
√
ρ = 1√

f(ϕ)g(ϕ)
as a result of the spinorial connections, not only the

Hestenes-Dirac equations for the case of the electromagnetic wave and the
gravitational wave coincide, but also the corresponding spinors that solve
them.
In conclusion, it can be stated that −H µ

i is the generalised ”vector potential”
of the gravitational wave, so to speak, and the initial kinetic momentum pµ
is the quantity to which this ”vector potential” couples, analogous to the the
charge e in the electromagnetic case. Note that this is a physical observation,
which, at first, is non-trivial. One would naively expect that the coupling is
with the mass. Rather, it is directly with the momentum and indirectly with
the mass (on-shell constraint). But, with the same thought one concludes
that this should be the case since light also is affected by gravity. Thus
momentum is more fundamental here.

4.3 Solution for an electron vortex beam with OAM

The next step in the discussion of electron dynamics in a gravitational plane
wave is to find a solution to the Dirac equation for an electron vortex beam
with orbital angular momentum (OAM) along its axis of propagation in the
presence of a gravitational plane wave. To achieve this, one might be tempted
to generalise the solution with OAM for an electron in an electromagnetic
plane wave from Eq. (96) of Ref. [4]. However, due to the differences between
the Dirac respectively Hestenes-Dirac equations described in section 4.2.3 for
the case of an electromagnetic and a gravitational wave, this turns out to be
more difficult than expected. This is due in particular to the fact that the
term iℏH µ

i γ
i∂µψ contains an additional partial derivative in the case of the

gravitational wave, which does not occur in the corresponding term −eγiAiψ
for the case of the electromagnetic wave.
So instead a superposition in momentum space of the plane wave solutions
(4.39) is considered to find the desired solution for an electron vortex beam,
which is a very similar procedure compared to Ref. [18]. In momentum
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space, cylindrical coordinates are used and pz = 0 is assumed, i.e. p =
(px, py, pz)T = p (cos(θ), sin(θ), 0)T . Here p is the constant absolute value of
the momentum. It should also be pointed out that E2 = p2c2 +m2c4 applies
here for the magnitude p of the momentum. The spinor up takes then the
form

up =


1
0
0

cp eiθ

E+mc2

 (4.58)

and the solution (4.39) can be written as follows:

ψp =
exp (iΦ)√
f(ϕ)g(ϕ)

Rrup

=
exp (iΦ)√
f(ϕ)g(ϕ)

[
1 +

/kpc

2kE

{(
1

f(ϕ)
− 1

)
cos(θ)γ1

+

(
1

g(ϕ)
− 1

)
sin(θ)γ2

}]
1
0
0

cp eiθ

E+mc2

 .

(4.59)

Here the phase Φ is:

Φ = −1

ℏ
[Et− p{x cos(θ) + y sin(θ)}] +

[
a cos2(θ) + b sin2(θ)

]
,

a =
p2c

ℏ

∫
dϕ

2kE

(
1− 1

f 2(ϕ)

)
,

b =
p2c

ℏ

∫
dϕ

2kE

(
1− 1

g2(ϕ)

)
.

(4.60)

The desired wave packet, which is, as already mentioned, obtained through
a superposition, then looks as follows:

ψ =
1

2π

∫ 2π

0

ψp dθ . (4.61)

In order to solve this integral and thus determine the superposition, the
product of the Lorentz transformation Rr and the constant spinor up in
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equation (4.61) is first calculated explicitly:

Rrup =


1 +

p2c2eiθ[cos(θ)( 1
f(ϕ)

−1)−i sin(θ)( 1
g(ϕ)

−1)]
2E(E+mc2)

−
pc[cos(θ)( 1

f(ϕ)
−1)+i sin(θ)( 1

g(ϕ)
−1)]

2E
p2c2eiθ[cos(θ)( 1

f(ϕ)
−1)−i sin(θ)( 1

g(ϕ)
−1)]

2E(E+mc2)

pc eiθ

E+mc2
+

pc[cos(θ)( 1
f(ϕ)

−1)+i sin(θ)( 1
g(ϕ)

−1)]
2E



=


1 +

p2c2eiθ[(eiθ+e−iθ)A−(eiθ−e−iθ)B]
4E(E+mc2)

−pc[(eiθ+e−iθ)A+(eiθ−e−iθ)B]
4E

p2c2eiθ[(eiθ+e−iθ))A−(eiθ−e−iθ)B]
4E(E+mc2)

pc eiθ

E+mc2
+

pc[(eiθ+e−iθ)A+(eiθ−e−iθ)B]
4E

 .

(4.62)

The abbreviations

A =
1

f(ϕ)
− 1 ,

B =
1

g(ϕ)
− 1

(4.63)

were introduced here. The spinor ψp can then be written as follows:

ψp =
exp (iΦ)√
f(ϕ)g(ϕ)


1 +

p2c2eiθ[(eiθ+e−iθ)A−(eiθ−e−iθ)B]
4E(E+mc2)

−pc[(eiθ+e−iθ)A+(eiθ−e−iθ)B]
4E

p2c2eiθ[(eiθ+e−iθ))A−(eiθ−e−iθ)B]
4E(E+mc2)

pc eiθ

E+mc2
+

pc[(eiθ+e−iθ)A+(eiθ−e−iθ)B]
4E

 . (4.64)

To further transform ψp so that the integral (4.61) can be solved, the Jacobi-
Anger expansion (see e.g. Ref. [36]) is now required:

eiz cos(θ) =
∞∑

n=−∞

inJn(z)e
inθ . (4.65)

Here z is any complex-valued function that does not depend on θ and Jn(z)
is the n-th Bessel function of the first kind.
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Considering the term exp
(
i [a cos2(θ) + b sin2(θ)]

)
in more detail, gives

exp
(
i [a cos2(θ) + b sin2(θ)]

)
= exp

(
i

[
a

2
(1 + cos(2θ)) +

b

2
(1− cos(2θ))

])
= exp

(
i
a+ b

2

)
exp

(
i
a− b

2
cos(2θ)

)
= exp

(
i
a+ b

2

) ∞∑
n=−∞

inJn

(
a− b

2

)
ei2nθ ,

(4.66)

where the Jacobi-Anger expansion (4.65) was used in the last step.
If this is applied to ψp, the result is:

ψp =
exp

(
iΦ̃
)

√
f(ϕ)g(ϕ)

exp

(
i
a+ b

2

) ∞∑
n=−∞

inJn

(
a− b

2

)
ei2nθ

1 +
p2c2eiθ[(eiθ+e−iθ)A−(eiθ−e−iθ)B]

4E(E+mc2)

−pc[(eiθ+e−iθ)A+(eiθ−e−iθ)B]
4E

p2c2eiθ[(eiθ+e−iθ))A−(eiθ−e−iθ)B]
4E(E+mc2)

pc eiθ

E+mc2
+

pc[(eiθ+e−iθ)A+(eiθ−e−iθ)B]
4E

 .

(4.67)

The above spinor has the new phase

Φ̃ = −1

ℏ
[Et− p{x cos(θ) + y sin(θ)}]

= −1

ℏ
[Et− p r cos(θ − φ)] .

(4.68)

Here the spatial coordinates were also converted into cylindrical coordinates,
i.e. r =

√
x2 + y2 and φ = arctan

(
y
x

)
.

In the last step of the transformation of ψ (4.61), the integral over θ is now
to be interchanged with the sum of the Jacobi-Anger expansion (4.65) of ψp,
this is possible because the Jacobi-Anger expansion converges uniformly [37].
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This results in integrals of the following form:∫ 2π

0

exp
(
i
p

ℏ
r cos(θ − φ) + imθ

)
dθ

=

∫ 2π−φ

−φ

exp
(
i
p

ℏ
r cos(α) + im(α + φ)

)
dα

= exp(imφ)

∫ 2π−φ

−φ

exp
(
i
p

ℏ
r cos(α) + imα

)
dα

= 2π im exp(imφ)Jm

(p
ℏ
r
)
.

(4.69)

In the last step of the calculation, the integral representation of the Bessel
functions of the first kind was used (see for instance Ref. [38]). It should
also be noted that m is an integer in this case.
Integration can now be performed in equation (4.61) and the result obtained
is:

ψ =
exp

(
−iEt

ℏ

)√
f(ϕ)g(ϕ)

exp

(
i
a+ b

2

) ∞∑
n=−∞

inJn

(
a− b

2

)
i2nei2nφ

J2n(λ) +
p2c2[i2ei2φJ2n+2(λ)(A−B)+J2n(λ)(A+B)]

4E(E+mc2)

−pc[ieiφJ2n+1(λ)(A+B)+i−1e−iφJ2n−1(λ)(A−B)]
4E

p2c2[i2ei2φJ2n+2(λ)(A−B)+J2n(λ)(A+B)]
4E(E+mc2)

pc ieiφJ2n+1(λ)
E+mc2

+
pc[ieiφJ2n+1(λ)(A+B)+i−1e−iφJ2n−1(λ)(A−B)]

4E


=

exp
(
−iEt

ℏ

)√
f(ϕ)g(ϕ)

exp

(
i
a+ b

2

) ∞∑
n=−∞

(−i)nJn
(
a− b

2

)
ei2nφ

J2n(λ) +
p2c2[−ei2φJ2n+2(λ)(A−B)+J2n(λ)(A+B)]

4E(E+mc2)

−pc[ieiφJ2n+1(λ)(A+B)−ie−iφJ2n−1(λ)(A−B)]
4E

p2c2[−ei2φJ2n+2(λ)(A−B)+J2n(λ)(A+B)]
4E(E+mc2)

pc ieiφJ2n+1(λ)
E+mc2

+
pc[ieiφJ2n+1(λ)(A+B)−ie−iφJ2n−1(λ)(A−B)]

4E

 ,

(4.70)

where λ = p
ℏr.

By slightly adapting the calculation, however, the case can also be treated
in which the electron vortex beam initially has an OAM with the quantum
number l. The procedure is again similar to that in Ref. [18]. In this case,
a superposition of the form

ψl =
1

2πil

∫ 2π

0

eilθψp dθ (4.71)
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is considered. If the above procedure is repeated, the additional term eilθ only
influences the integer m in the integrals of the form (4.69) and the following
result is finally obtained:

ψl =
exp

(
−iEt

ℏ

)√
f(ϕ)g(ϕ)

exp

(
i
a+ b

2

) ∞∑
n=−∞

(−i)nJn
(
a− b

2

)
ei(2n+l)φ


J2n+l(λ) +

p2c2[−ei2φJ2n+2+l(λ)(A−B)+J2n+l(λ)(A+B)]
4E(E+mc2)

−pc[ieiφJ2n+1+l(λ)(A+B)−ie−iφJ2n−1+l(λ)(A−B)]
4E

p2c2[−ei2φJ2n+2+l(λ)(A−B)+J2n+l(λ)(A+B)]
4E(E+mc2)

pc ieiφJ2n+1+l(λ)

E+mc2
+

pc[ieiφJ2n+1+l(λ)(A+B)−ie−iφJ2n−1+l(λ)(A−B)]
4E

 .

(4.72)
There are two things to note. First, the result (4.72) can also be generalised
relatively easily to the case pz = const. ̸= 0. To do this, the term Et in the
phase is replaced by Et− pzz and k · p = k

(
E
c
− pz

)
is used. In addition, the

spinor up then changes to

up =


1
0
pz

E+mc2

cp eiθ

E+mc2

 , (4.73)

which results in additional terms proportional to pz in the final result. The
general procedure remains the same.
Second, only one of the four constant spinors up, which solve the equation
(/p−mc)up = 0 (see equations (2.24) and (2.25)), was used here. Using one
of the other three spinors up would result in similar solutions for an electron
vortex beam with OAM.

4.3.1 Comparison with the free and the electromagnetic case

When comparing the result (4.72) with the solution of the free Dirac equation
for an electron vortex beam (3.26), it becomes immediately apparent that
both solutions are rotationally symmetric. In the case of the free electron
vortex beam, the symmetry axis corresponds to the propagation direction
of the electron beam, whereas, in the case of the electron vortex beam in-
teracting with the gravitational wave, the symmetry axis is the propagation
direction of the gravitational wave. According to Noether’s theorem [39],
every symmetry leads to a conserved quantity, thus the cylindrical coordi-
nates, which reflect the rotational symmetry, are directly associated with the
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conservation of angular momentum and thus OAM.
On closer comparison of the two solutions, equation (3.26) can also be rec-
ognized in the first summands of the 1st and 4th components of the vector
part of equation (4.72), apart from the additional terms that are added as a
result of the gravitational wave, since these two summands have the OAM
quantum number l and l + 1 respectively. The reason for this is that the
two solutions (4.72) and (3.26) are based on the same constant spinor up
(4.58). In fact, although the solution (3.26) was found by transforming the
free Dirac equation to cylindrical coordinates, this solution could also have
been found using a procedure analogous to that in section 4.3. This has the
direct consequence that the free electron vortex beam (3.26) can be recovered
from the result (4.72) by ”switching off” the gravitational wave, i.e. setting
f(ϕ) = g(ϕ) = 1 or A = B = a = b = 0.
Comparing the solution (4.72) with the solution for an electron vortex beam
interacting with an electromagnetic plane wave in equations (6) and (7) of
Ref. [18], more differences can be recognised in the general structure of the
two solutions, apart from the series representation, which is similar in both
cases, than one might have expected due to the fact that the procedure for
obtaining these solutions is almost identical. First, it is noticeable that in
the case of the gravitational wave, the Lorentz transformation Rr cannot be
extracted from the integral of the superposition and thus also not from the
series, as is the case in Ref. [18]. The reason for this is found when comparing
the two Lorentz transformations Rr in equations (4.54) and (4.55). This is
because while the Lorentz transformation in the case of the electromagnetic
wave is independent of the momenta px and py, the Lorentz transformation
in the case of the gravitational wave depends directly on these two momenta,
which means that the Lorentz transformation must be taken into account in
the integral (4.61). This dependence of the Lorentz transformation on the
two momenta is, as already described in section 4.2.3, a direct consequence
of the fact that the term ℏH µ

i γ
i∂µΨγ2γ1 depends on the partial derivatives

∂x and ∂y. Alternatively, this could also have been realised with the identi-
fication −eAi =̂ pµH

µ
i made in section 4.2.3.

It is noticeable that in the solution (4.72), compared to Ref. [18], all n of
the series representation, apart from those in (−i)nJn

(
a−b
2

)
, which is the

term corresponding to inJn(f0) in Ref. [18], have been replaced by 2n. The
reason for this can also be found in the identification −eAi =̂ pµH

µ
i , which is

equivalent to generalised ”vector potential” −H µ
i coupling to initial kinetic

momentum pµ. As a result, the phase S of the plane wave solution of the
Dirac equation in the presence of a gravitational wave depends on (px)2 and
(py)2 and not only on px and py as in the case of the Volkov state (2.29).
This results in double angle functions when applying the Jacobi Anger ex-
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pansion to the phase S (see equation (4.66)), while the application of the
Jacobi Anger expansion to the phase of the Volkov state does not result in
double angle functions (see ref. [18]).
In conclusion, it can be stated that within the framework of the Dirac equa-
tion, the dynamics of electron vortex beams in an electromagnetic plane wave
differ from that in a gravitational plane wave, while in the case of plane wave
solutions of the two Dirac equations, the dynamics are under the identifica-
tion −eAi =̂ pµH

µ
i identical. The reason for this is that the gravitational

wave does not simply exert a force on the electron vortex beam like the elec-
tromagnetic wave, but deforms spacetime. The deformation of spacetime
mainly results in the coupling of the generalised ”vector potential” −H µ

i to
the initial kinetic momentum pµ, which is expressed through the additional
partial derivatives in the term iℏH µ

i γ
i∂µψ and has an additional influence

on the electron vortex beam. Furthermore, it must also be noted at this
point that the deformation of spacetime is again additionally expressed in
the solution (4.72) by the density

√
ρ = 1√

f(ϕ)g(ϕ)
.

48



5 Classical Spinor solution for an electron in

a gravitational plane wave

The final step to complete this discussion of the electron dynamics in a grav-
itational plane wave is to present a classical equivalent to the Dirac spinor
(4.51) described above, i.e. one that is not based on quantum mechanics.
Doing so will indicate that the RDI technique can also be applied to classical
systems, further emphasizing the versatility of the method for solving dynam-
ical problems. Spacetime Algebra (STA) as formulated by David Hestenes is
used for this purpose, which is explained in section 2.3.

5.1 STA in curved spacetime

The subsequent additions to STA taking curved spacetime into account are
based on Refs. [19, 40, 41].
The equations of motion in curved spacetime are the so-called geodesic equa-
tions [42]:

0 =
d2xµ

dτ 2
+ Λµ

αβ

dxα

dτ

dxβ

dτ
=

dvµ

dτ
+ Λµ

αβv
αvβ . (5.1)

Here τ is the proper time, Λµ
αβ are the Christoffel symbols and vµ is the

proper velocity.
In equation (185) of Ref. [19], these are translated into a rotor equation,
which reads as follows:

dR

dτ
= −1

2
ω(v)R . (5.2)

ω(v) is a bivector that describes the surrounding geometry of spacetime. In
comparison to equation (185) of Ref. [19], Ω = 0 was set, which is possible,
because Ω is a bivector describing the electromagnetic fields in which the
electron moves, but here only the interaction with a gravitational wave is
to be considered. The complete derivation of this equation can be found in
sections 5.4 and 5.5 of Ref. [19].
The aim is now to solve this equation for an electron in a gravitational plane
wave. To do this, however, one must first describe how the bivector ω(v) can
be determined, which requires reformulating STA in curved spacetime.
Using Ref. [40], it becomes clear that the metric gµν of curved spacetime can
be written as follows:

gµν = gµ · gν . (5.3)

A comparison with equation (3.1) shows that the so-called coordinate frame
{gµ} corresponds to the transformed gamma matrices {γµ} in the case of the
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Dirac equation. This also makes it clear that a distinction between Latin
and Greek indices to distinguish the manifold from the tangent space is not
necessary. In the case of STA, the transformation between {γµ} and {gµ} is
carried out using the so-called fiducial tensor hµν according to:

gµ = hνµγν . (5.4)

In this case, a comparison with equation (3.3) shows that hµν corresponds to
the tetrads eaµ from before. If one uses orthogonal coordinates, which will be
the case in the following in the form of Cartesian coordinates, one can also
define a tensor hµ from hµν as

hµν = hνδ
µ
ν , (5.5)

which in the end simply corresponds to the diagonal elements of hµν . Here δ
µ
ν

is the usual Kronecker delta. This defines the most important quantities that
are subsequently required to determine ω(v); for a more detailed explanation
of STA in curved spacetime, please refer to Refs. [19, 40].
According to equation (35) of Ref. [41],

ω(v) = vµωµ (5.6)

now applies. Here, vµ is the proper velocity, which is calculated using the
geodesic equations. The ωµ, on the other hand, is a bivector that is defined
as follows according to equation (30) of Ref. [40]:

ωµ = γµ ∧ γah−1
a ∂ahµ . (5.7)

It should be noted that ωµ corresponds to the spinorial connections Ωµ from
equation (3.10). This is because, as can be seen from equations (119) and
(120) of Ref. [40], the covariant derivative of a spinor ψ or a multivector M
is:

Dµψ =

(
∂µ +

1

2
ωµ

)
ψ ,

DµM = ∂µM + ωµ ×M .

(5.8)

Therefore, one can make the identification Ωµ = 1
2
ωµ.

5.1.1 Equivalence between the Rotor equation and the geodesic

equations

In the following, it will be shown that the rotor equation (5.2) is actually
equivalent to the geodesic equations (5.1). Although the notation introduced
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in the previous section 5.1 is very compact and, as will be shown later,
helpful, only in this section the original notation will be used once again, as
the following calculation is based on a great deal of index calculation, which
is clearer in the original notation. This means that in this section, Latin
indices again refer to the tangent space and Greek indices to the spacetime
manifold. Thus the {gµ} from the previous section are replaced with the
{γµ} and the basis of the tangent space is now {γa}. The transformation
between the tangent space and the manifold is therefore carried out using
the tetrads eaµ according to equation (3.3).
Starting with equation (2.58) and differentiating it with respect to the proper
time, the result is:

v̇ =
d

dτ

(
Rγ0R̃

)
= Ṙγ0R̃ +Rγ0

˙̃R . (5.9)

If the rotor equation (5.2) is now inserted into this result and the fact that
ω(v) is a bivector is taken into account, from which ω̃(v) = −ω(v) follows
according to equation (2.48), this simplifies to:

v̇ = −1

2
ω(v)Rγ0R̃− 1

2
Rγ0R̃ω̃(v)

= −1

2
[ω(v) v + v ω̃(v)]

= −1

2
[ω(v) v − v ω(v)]

= −ω(v) · v ,

(5.10)

⇒ v̇ + ω(v) · v = 0 . (5.11)

Both the definition of the proper velocity through the rotor (2.58) and the
definition of the inner product for a vector and a bivector (2.52) were used.
This already shows that the rotor equation is equivalent to equation (5.11).
The second step is to show that equation (5.11) is equivalent to the geodesic
equations. For this purpose, the definition of ω(v) (5.6), the relationship
Ωµ = 1

2
ωµ, the definition of Ωµ according to equation (3.10), the relation

(2.44) and the definition of the Dirac algebra (2.45) are used below. In
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addition, ηij denotes the Minkowski metric as usual.

0 = v̇ + ω(v) · v
= v̇ + vµvνωµ · γν

= v̇ + vµvν
1

2
(ωµγν − γνωµ)

= v̇ + vµvν (Ωµγν − γνΩµ)

= v̇ + vµvν
1

2
Ωijµ

(
σijγν − γνσ

ij
)

= v̇ + vµvν
1

4
Ωijµ

(
(γi ∧ γj)γν − γν(γ

i ∧ γj)
)

= v̇ + vµvν
1

4
Ωa

jµη
jb ((γa ∧ γb)γν − γν(γa ∧ γb))

= v̇ + vµvν
1

4
Ωa

jµη
jbecν ((γa ∧ γb)γc − γc(γa ∧ γb))

= v̇ − vµvν
1

2
Ωa

jµη
jbecνγc · (γa ∧ γb)

= v̇ − vµvν
1

2
Ωa

jµη
jbecν [(γc · γa)γb − (γc · γb)γa]

= v̇ − vµvν
1

2
Ωa

jµη
jbecν [ηcaγb − ηcbγa]

(5.12)

The next step is to take a closer look at the term 1
2
Ωa

jµη
jbecν [ηcaγb − ηcbγa].

It is required to know that according to equation (3.10)

Ωi
jµe

j
ν = eiσΛ

σ
νµ − ∂µe

i
ν (5.13)

holds. In addition, the following calculation uses the fact that Ωijµ = −Ωjiµ

applies. This then leads to:

1

2
Ωa

jµη
jbecν [ηcaγb − ηcbγa]

=
1

2

(
Ωa

jµη
jbecνηcaγb − Ωa

jµη
jbecνηcbγa

)
=

1

2

(
Ωcjµe

c
νγ

j − Ωa
jµe

c
νδ

j
cγa
)

=
1

2

(
−Ωj

cµe
c
νγj − Ωa

cµe
c
νγa
)

= −Ωj
cµe

c
νγj

= −
(
Λβ

µνe
j
β − ∂µe

j
ν

)
γj

= −
(
Λβ

µνγβ − ∂µγν
)
.

(5.14)
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Inserting this back into equation (5.12), writing out the product rule for v̇
and noticing vµ∂µ = dxµ

dτ
d

dxµ = d
dτ
, results in:

0 = v̇ − vµvν
1

2
Ωa

jµη
jbecν [ηcaγb − ηcbγa]

=
d

dτ
(vµγµ) + vµvν

(
Λβ

µνγβ − ∂µγν
)

=
d

dτ
(vµ) γµ + vµ

d

dτ
(γµ) + vµvνΛβ

µνγβ − vν
d

dτ
(γν)

=
d

dτ
(vµ) γµ + vαvβΛµ

αβγµ .

(5.15)

However, since the {γµ} are generally not equal to zero, one gets:

0 =
dvµ

dτ
+ Λµ

αβv
αvβ . (5.16)

These, though, are exactly the geodesic equations (5.1), which finally proves
the equivalence between the rotor equation (5.2) and the geodesic equations
(5.1).

5.2 Solution of the Rotor equation for an electron in

a gravitational plane wave

The notation from section 5.1 is now used in this paragraph, which deals with
solving the rotor equation (5.2) in presence of a gravitational plane wave.
Using (4.15), the line element of the gravitational wave is:

ds2 = c2dt2 − f 2(ϕ)dx2 − g2(ϕ)dy2 − dz2 . (5.17)

If this is now compared with equation (33) of Ref. [40], the result is:

ht = 1 , hx = f(ϕ) , hy = g(ϕ) , hz = 1 . (5.18)

Alternatively, this could have been determined using the tetrads (4.16) as
well. Equation (5.18) can now be used to determine the bivectors from
equation (5.7):

ωt = 0 ,

ωx = kf ′(ϕ)γ1 ∧ (γ0 − γ3) = kf ′(ϕ)γ1 ∧ (γ0 + γ3) = kf ′(ϕ)γ1(γ0 + γ3) ,

ωy = kg′(ϕ)γ2 ∧ (γ0 − γ3) = kg′(ϕ)γ2 ∧ (γ0 + γ3) = kg′(ϕ)γ2(γ0 + γ3) ,

ωz = 0 .

(5.19)
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Once again primed functions denote derivatives with respect to ϕ. It should
also be noted that the outer product can be omitted in the last transfor-
mation step, as the {γµ} are orthonormal. The comparison with equation
(4.18), in fact, shows that Ωµ = 1

2
ωµ.

This means that ω(v) = vxωx + vyωy is already half determined. However,
before vx and vy can be determined using the geodesic equations, a relation-
ship between ϕ and τ must first be established. To do so, a similar argument
as in section 3 of Ref. [43] or in Ref. [44] is applied. ω(v) is inserted into the
rotor equation in the above general form:

dR

dτ
= −1

2
(vxωx + vyωy)R

= −k
2
(vxf ′(ϕ)γ1(γ0 + γ3) + vyg′(ϕ)γ2(γ0 + γ3))R .

(5.20)

This is now multiplied by the wave vector k̄ = kµγµ = k(γ0 + γ3) = k(γ0 −
γ3), the bar notation is used here to distinguish the wave vector from its
magnitude, which results in:

dk̄R

dτ
=

dRk̄

dτ
= 0 . (5.21)

This result is obtained because:

(γ0 + γ3)(γ0 + γ3) = (γ0 + γ3) · (γ0 + γ3) + (γ0 + γ3) ∧ (γ0 + γ3) = 0 . (5.22)

Here the inner product evaluates to zero because the {γµ} are orthonormal
and outer product evaluates to zero because of the asymmetry of the outer
product. Thus, the wave vector k̄rest = Rk̄R̃ is constant in the rest frame,
since:

dk̄rest
dτ

= Ṙk̄R̃ +Rk̄ ˙̃R = 0 . (5.23)

However, it follows from this that the rest frame frequency ωrest is also con-
stant, which, taking into account the fact that Lorentz transformations pre-
serve the scalar product (here inner product), establishes the desired rela-
tionship between ϕ and τ :

dϕ

dτ
= ϕ̇ =

dk̄rest · xrest
dτ

=
dkrestcτ

dτ
= krestc = ωrest = const. ,

⇒ ϕ = ωrestτ .

(5.24)
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The geodesic equations (5.1) can now be solved in the present case. First the
required Christoffel symbols are calculated:

Λx
xt = Λx

tx = k
f ′(ϕ)

f(ϕ)
, Λt

xx = kf ′(ϕ)f(ϕ) ,

Λx
xz = Λx

zx = −kf
′(ϕ)

f(ϕ)
, Λz

xx = kf ′(ϕ)f(ϕ) ,

Λy
yt = Λx

ty = k
g′(ϕ)

g(ϕ)
, Λt

yy = kg′(ϕ)g(ϕ) ,

Λy
yz = Λy

zy = −kg
′(ϕ)

g(ϕ)
, Λz

yy = kg′(ϕ)g(ϕ) .

(5.25)

The gesodesic equations (5.1) are therefore as follows, where dotted functions
are derivatives with respect to the proper time τ and primed functions are
derivatives with respect to ϕ:

(I) 0 = v̇t + kf ′(ϕ)f(ϕ)(vx)2 + kg′(ϕ)g(ϕ)(vy)2 ,

(II) 0 = v̇x + vx2k
f ′(ϕ)

f(ϕ)
(vt − vz) ,

(III) 0 = v̇y + vy2k
g′(ϕ)

g(ϕ)
(vt − vz) ,

(IV) 0 = v̇z + kf ′(ϕ)f(ϕ)(vx)2 + kg′(ϕ)g(ϕ)(vy)2 .

(5.26)

At first glance, it becomes clear that v̇t = v̇z, from which follows vt =
vz + const. = vz + b. If one now inserts this into equation (II), the result is:

(II′) 0 = v̇x + vx2k
f ′(ϕ)

f(ϕ)
b = ωrestv

′x + vx2k
f ′(ϕ)

f(ϕ)
b . (5.27)

If the initial conditions are now chosen such that b = ωrest

k
, the result for the

proper velocity in x-direction is:

vx =
vx(ϕ0)f

2(ϕ0)

f 2(ϕ)
=

vx0
f 2(ϕ)

. (5.28)

And analogously for vy:

vy =
vy(ϕ0)g

2(ϕ0)

g2(ϕ)
=

vy0
g2(ϕ)

. (5.29)

Although vt and vz are no longer needed for determining ω(v), the differential
equations for these should also be solved for the sake of completeness. If the
expressions for vx and vy are inserted into (IV), the following results:

(IV′) 0 = ωrestv
′z + k

f ′(ϕ)

f 3(ϕ)
(vx0 )

2 + k
g′(ϕ)

g3(ϕ)
(vy0)

2 . (5.30)
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Again this can be integrated immediately:

vz =
k

2ωrest

(
(vx0 )

2

f 2(ϕ)
+

(vy0)
2

g2(ϕ)

)
+ vz0 . (5.31)

Here vz0 is the constant of integration.
From the relationship between vt and vz then follows:

vt =
k

2ωrest

(
(vx0 )

2

f 2(ϕ)
+

(vy0)
2

g2(ϕ)

)
+ vz0 +

ωrest

k
. (5.32)

Finally, it can now be checked whether the choice b = ωrest

k
was correct by

checking whether v2 = vµv
µ = gµνv

µvν = c2 applies. Here, gµν is the metric
of the gravitational plane wave (4.15). It holds:

v2 = vµv
µ = gµνv

µvν

= (vt)2 − f 2(ϕ)(vx)2 − g2(ϕ)(vy)2 − (vz)2

= (vz)2 + 2
ωrest

k
vz +

ω2
rest

k2
− f 2(ϕ)(vx)2 − g2(ϕ)(vy)2 − (vz)2

=
(vx0 )

2

f 2(ϕ)
+

(vy0)
2

g2(ϕ)
+ 2vz0

ωrest

k
+
ω2
rest

k2
− (vx0 )

2

f 2(ϕ)
− (vy0)

2

g2(ϕ)

= 2vz0
ωrest

k
+
ω2
rest

k2
.

(5.33)

With vz0 = c2k
2ωrest

− ωrest

2k
, v2 = c2 then applies. This not only shows that the

choice b = ωrest

k
was correct, but also that this choice was mandatory for v2

to be generally constant in the first place. If b had been chosen differently,
vx and vy would depend on different powers of the functions f(ϕ) and g(ϕ)
and v2 would therefore not be constant in general.
Overall, this results in the following expression for ω(v):

ω(v) = k

(
vx0
f ′(ϕ)

f 2(ϕ)
γ1 ∧ (γ0 + γ3) + vy0

g′(ϕ)

g2(ϕ)
γ2 ∧ (γ0 + γ3)

)
= k

(
vx0
f ′(ϕ)

f 2(ϕ)
γ1(γ0 + γ3) + vy0

g′(ϕ)

g2(ϕ)
γ2(γ0 + γ3)

)
= k

(
vx0
f ′(ϕ)

f 2(ϕ)
(γ0 − γ3)γ1 + vy0

g′(ϕ)

g2(ϕ)
(γ0 − γ3)γ2

)
.

(5.34)

It is possible to transform the outer product into the geometric product, as
the {γµ} are orthonormal. If this expression for ω(v) is now inserted into
the rotor equation (5.2), the following differential equation for the rotor R is
obtained, taking into account the chain rule:

dR

dϕ
= − k

2ωrest

(
vx0
f ′(ϕ)

f 2(ϕ)
(γ0 − γ3)γ1 + vy0

g′(ϕ)

g2(ϕ)
(γ0 − γ3)γ2

)
R . (5.35)
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The differential equation (5.35) can be solved using an exponential ansatz
and the result is:

R = exp

[
/k

2ωrest

(
vx0

{
1

f(ϕ)
− 1

f(ϕ0)

}
γ1 + vy0

{
1

g(ϕ)
− 1

g(ϕ0)

}
γ2
)]

R(ϕ0) .

(5.36)
Here, as before, /k = kµγµ. Furthermore, R(ϕ0) is an arbitrary constant rotor.
If one again uses the fact that (γ0−γ3)2 = 0, the exponential can be written
out as follows:

R =

[
1 +

/k

2ωrest

(
vx0

{
1

f(ϕ)
− 1

f(ϕ0)

}
γ1

+vy0

{
1

g(ϕ)
− 1

g(ϕ0)

}
γ2
)]
R(ϕ0) .

(5.37)

This is the final result for the rotor of a point particle in a gravitational
plane wave. If the first part is now identified as the Lorentz transformation

Rr =
[
1 + /k

2ωrest

(
vx0

{
1

f(ϕ)
− 1

f(ϕ0)

}
γ1 + vy0

{
1

g(ϕ)
− 1

g(ϕ0)

}
γ2
)]

acting on the

constant spinor R(ϕ0), this result can also be written as follows:

R = RrR(ϕ0) (5.38)

To get back the solutions of the geodesic equations ((5.28), (5.29), (5.32),
(5.31)) via equation (2.58), the constant spinor R(ϕ0) takes the form

R(ϕ0) =
√
c exp

[
/k

2ωrest

(
vx0

1

f(ϕ0)
γ1 + vy0

1

g(ϕ0)
γ2
)]

(5.39)

and in this case ωrest

k
= c and vz0 = 0 holds. Equation (5.37) then takes the

form:

R =
√
c

[
1 +

/k

2ωrest

(
vx0

1

f(ϕ)
γ1 + vy0

1

g(ϕ)
γ2
)]

. (5.40)

It is important to note that a renormalization of the rotors has occurred, such
that the relation RR̃ = c now applies instead of RR̃ = 1. This adjustment
is due to the fact that the calculations are not being performed in natural
units, where c = 1.

5.2.1 Comparison with the Quantum case

In the next step, the rotor from equation (5.37) shall now be compared with
the Hestenes-Dirac spinor from equation (4.47). Equation (4.48) is particu-
larly helpful here.
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First of all, it is noticeable that the rotor (5.37) has the same structure as
the matrix spinor (4.47), consisting of a free solution that undergoes an ad-
ditional Lorentz transformation due to the gravitational wave. Furthermore,
the comparison of Rr with Rr also shows strong similarities. However, two
decisive differences can also be recognised. First, the Lorentz transformation
of the Rotor Rr contains the proper velocity and the rest frame frequency
ωrest instead of the momentum pµ and the scalar product k · p in the case of
Rr and second, for the Lorentz transformation of the Hestenes-Dirac spinor
Rr applies f(ϕ0) = g(ϕ0) = 1.
If one now takes a closer look at the first of these two differences, one realises
that there is actually no real difference. This is because pµ = mvµ(ϕ0) and
ωrest = kµv

µ(ϕ0) follows from equation (5.24). Here pµ denotes the initial
kinetic momentum of the electron, as it also occurs in the Lorentz transfor-
mation Rr (4.55). From this one can obtain directly:

vµ(ϕ0)

ωrest

=
m vµ(ϕ0)

m ωrest

=
pµ

kµpµ
=

pµ

k · p
. (5.41)

The Lorentz transformation of the rotor Rr can therefore also be written like
this:

Rr =

[
1 +

/k

2k · p

(
px
{
f 2(ϕ0)

f(ϕ)
− f 2(ϕ0)

f(ϕ0)

}
γ1 + py

{
g2(ϕ0)

g(ϕ)
− g2(ϕ0)

g(ϕ0)

}
γ2
)]

=

[
1 +

/k

2k · p

(
px
{
f 2(ϕ0)

f(ϕ)
− f(ϕ0)

}
γ1 + py

{
g2(ϕ0)

g(ϕ)
− g(ϕ0)

}
γ2
)]

.

(5.42)

The second difference, on the other hand, cannot be eliminated so easily and
it is generally true that the Lorentz transformations of the Hestenes-Dirac
spinor and the rotor differ by the spinor

/k

2k · p

(
px
{
1− f 2(ϕ0)

f(ϕ)
+ f(ϕ0)− 1

}
γ1 + py

{
1− g2(ϕ0)

g(ϕ)
+ g(ϕ0)− 1

}
γ2
)
.

(5.43)
However, if one generally sets f(ϕ0) = g(ϕ0) = 1, this difference also dis-
appears, and the equality Rr = Rr holds. The case Rr = Rr means that
the particle dynamics of the electron are almost identical in the classical and
quantum mechanical cases, since Rr respectively Rr are the Lorentz trans-
formations that connect the rest frame of the electron with the laboratory
frame.
Overall, it can therefore be stated that the classical solution in the form
of the rotor (5.37) corresponds, under the constraint f(ϕ0) = g(ϕ0) = 1,
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to the quantum mechanical solution in the form of the matrix Dirac spinor
(4.47), apart from the additional phase S =

∫
dϕ

2pjkj

[
2H iµpipµ +H µ

l H
lνpµpν

]
and the scaling 1√

f(ϕ)g(ϕ)
of the matrix Dirac spinor. This correspondence

is striking, since it means that an electron in a gravitational wave behaves
almost identically in classical and quantum mechanical terms, where it is im-
portant to note that the same correspondence can be observed between the
rotor and the Hestens-Dirac spinor in the case of an electromagnetic plane
wave [44]. Furthermore, it is also possible to understand why the classical
solution does not have a phase compared to the Dirac spinor. To do this, it
is necessary to take a closer look at the two underlying equations of motion.
The rotor equation (5.2) is invariant under gauge transformations, since in
this equation only one derivative occurs with respect to the invariant proper
time, whereby the entire equation is gauge invariant. This in turn means
that the solution to the rotor equation, the classical eigenspinor or rotor, is
also gauge invariant.
The Dirac equation (4.27) or Hestenes-Dirac equation (4.53), on the other
hand, is covariant, as previously noted, but not invariant under gauge trans-
formations. The gauge freedom lies in the choice of tetrads (4.16), as these
are not unique, which makes it immediately clear why these equations are not
gauge invariant, when considering the transformation of the gamma matri-
ces (3.3). In order to satisfy this gauge freedom, the Dirac or Hestenes-Dirac
spinors contain the additional phase S =

∫
dϕ

2pjkj

[
2H iµpipµ +H µ

l H
lνpµpν

]
.

In addition to this rather mathematical justification for the additional phase
in the quantum mechanical case, this can also be justified with a rather sim-
ple physical argument. The rotor equation is the spinor equivalent of the
geodesic equations, which was shown in Section 5.1.1. Therefore the rotor
equation describes classical rigid point particles, which have, at least in La-
grangian and Hamiltonian mechanics, no wave properties and therefore no
phase.
It is noteworthy that classical mechanics can also be described by a wave
function on a Hilbert space in the so-called Koopman-von Neumann (KvN)
formalism. The KvN mechanics is therefore a form of classical statistical me-
chanics and makes probability statements that are equivalent to Liouville’s
theorem. A short and very understandable introduction to the KvN formal-
ism can be found, for example, in Ref. [45]. Section 5.1 of Ref. [45] also
makes it clear why the absence of the phase in the case of the classical spinor
(respectively rotor) is also plausible in the context of the KvN formalism.
This is because while in quantum mechanics the phase and amplitude of the
wave function are coupled (see equations (77) and (78) of Ref. [45]), phase
and amplitude in KvN mechanics are separate from each other (see equa-
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tions (79) and (80) of Ref. [45]). Thus, the phase in KvN formalism does
not influence the particle dynamics.
The Dirac equation or Hestenes-Dirac equation, on the other hand, is a quan-
tum mechanical equation that describes quantum systems, in this case elec-
trons, which have both particle and wave properties and thus also a phase.
Overall, it can be stated that the result found here is in agreement with Ref.
[20], because there it was shown in a general way that in the case of elec-
tromagnetic interaction the rotor, apart from an additional phase, coincides
with the Dirac or Hestenes-Dirac spinor. This statement can therefore be
extended to the interaction with gravitational plane waves. Moreover, this
suggests that the RDI technique may also be applicable to classical systems.
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6 Conclusion

In this thesis the dynamics of electrons in a gravitational plane wave were
investigated. First, in analogy to Ref. [17], a plane wave solution of the
Dirac equation for an electron moving in a gravitational plane wave was
constructed (see equation (4.39)). A comparison of this solution with the
so-called ”Volkov state” (2.29) revealed striking similarities between the be-
haviour of an electron in a electromagnetic and a gravitational plane wave.
With the identification −eAi =̂ pµH

µ
i , the two solutions are even exactly

identical, apart from the probability density
√
ρ = 1√

f(ϕ)g(ϕ)
in the gravita-

tional case. As a result, the dynamics of the electron, i.e. the Dirac current
density or respectively the classical proper velocity vµ, is identical in both
cases, apart from the aforementioned density

√
ρ = 1√

f(ϕ)g(ϕ)
, which influ-

ences the Dirac current density but not the classical proper velocity. Thus,
the gravitational wave can also be assigned a generalised ”vector potential”
in the form of −H µ

i . However, this now does not couple to the electric charge
e, but to the initial kinetic momentum pµ. In fact, this physical observation
contradicts the naive expectation one might have at first glance that the
generalised ”vector potential” couples to the mass. However, upon closer ex-
amination, it becomes evident that the coupling should indeed apply to the
initial kinetic momentum pµ, as gravity, for instance, also affects massless
photons.
A reformulation of the plane wave solution into a matrix spinor (4.51) then al-
lowed a more precise analysis of the dynamics and a geometric interpretation.
It was found that the solution essentially consists of a general Lorentz boost
in arbitrary direction and with arbitrary initial kinetic momentum (4.22) and
an additional active Lorentz transformation as a result of the gravitational
wave (4.55). A closer look at this additional Lorentz transformation then
revealed that it can again be divided into a boost and a rotation (4.49). This
means that the solution of the Dirac equation in the presence of a gravita-
tional plane wave is boosted and rotated compared to the solution of the
free Dirac equation. Furthermore, as a result of the gauge freedom of the
tetrads, an additional phase occurs and the density

√
ρ = 1√

f(ϕ)g(ϕ)
describes

the deformation of spacetime. Moreover, this supports the idea that the RDI
technique is a general framework to construct solutions for dynamical prob-
lems based on their underlying symmetries.
Additionally, a solution to the Dirac equation was constructed for an electron
vortex beam interacting with a gravitational plane wave (4.72), i.e. a solu-
tion with OAM. It was found that in the case of the electron vortex beam,
the dynamics for interaction with the electromagnetic plane wave and the
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gravitational plane wave are not identical, as is the case for the plane wave
solutions. The reason for this is that the previously identified generalised
”vector potential” −H µ

i of the gravitational wave does not couple to the
electric charge e, but to the initial kinetic momentum pµ. As a result, not
only does the Lorentz transformation Rr become dependent on the momenta
px and py, but these momenta now also enter the phase of the plane wave
solution quadratically instead of linearly. This significantly changes the re-
sult of the superposition (4.71) compared to the electromagnetic case. At
this point, it would be interesting for future work to convert the solution
(4.72) into a form that is analogous to that in equation (96) of Ref. [4], i.e.
to replace the series representation of the solution (4.72) with an explicit
representation by means of a suitable change of coordinates (x, y) → (x′, y′).
This would allow for a better understanding of how the deformation of space-
time induced by the gravitational plane wave influences the dynamics of the
electron vortex beam, compared to the force exerted by the electromagnetic
plane wave.
Finally solving the rotor equation revealed that the spinor (5.37), which de-
scribes an electron in a gravitational plane wave within the framework of
classical mechanics, i.e. based on the geodesic equations, is almost identical
to the solution of the Dirac equation. Only an additional phase is missing in
the classical case, when the Lorentz transformations Rr andRr are compared
and f(ϕ0) = g(ϕ0) = 1 is imposed. The missing phase in the classical spinor
results from the fact that the rotor equation is gauge invariant, whereas the
Dirac equation is only covariant. This in turn means that the dynamics of
an electron can also be described correctly within the framework of classical
mechanics. The rotor and the Dirac spinors being almost identical is there-
fore a result that agrees with Ref. [20], since it has already been described
there that, for electromagnetic interactions, the Hestenes-Dirac spinor, apart
from an additional phase, corresponds to the spinor that solves the classical
rotor equation. The similarities between the rotor and the Hestenes-Dirac
spinor further indicate that the RDI technique is also applicable to classical
systems.
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