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Weak momentum dissipation in ultra-clean metals gives rise to novel non-Ohmic current flow,
including ballistic and hydrodynamic regimes. Recently, hydrodynamic flow has attracted intense
interest because it presents a valuable window into the electronic correlations and the longest lived
collective modes of quantum materials. However, diagnosing viscous flow is difficult as the macroscopic
observables of ballistic and hydrodynamic transport such as the average current distribution can be
deceptively similar, even if their respective microscopics deviate notably. Based on kinetic Boltzmann
theory, here we propose to address this issue via the transverse channel voltage at zero magnetic
field, which can efficiently detect hydrodynamic flow in a number of materials. To this end, we show
that the transverse voltage is sensitive to the interplay between anisotropic fermiology and boundary
scattering, resulting in a non-trivial behavior in narrow channels along crystalline low-symmetry
directions. We discuss several materials where the channel-size dependent stress of the quantum fluid
leads to a characteristic sign change of the transverse voltage as a new hallmark of the cross-over
from the ballistic to the hydrodynamic regime.

Introduction.— Hydrodynamic electron flow is a spe-
cial transport regime which onsets when a rapid electron-
electron scattering rate exceeds all other relaxation mech-
anisms. In recent years, its fundamental importance be-
came apparent in understanding the longest lived collec-
tive modes of correlated electrons [1–4]. For example,
viscous (hydrodynamic) correlations can shed light on
electronic collective behavior, on the interacting phase
diagram, and reveal unusual characteristics in the electron
dynamics [5–7]. Hydrodynamic electron flow has also been
discussed in connection to THz electromagnetic radiation
in transistors [8–10], ambipolar transports in semiconduc-
tors/semimetals [11–13] and fluid spintronics [14–17]. The
current conceptual frontiers of interacting Fermi liquids
are found in understanding correlations on the nanoscale,
either due to extreme scattering rates in strongly corre-
lated electron systems such as high-Tc superconductors,
or due to nanoconfinement in heterostructures such as
the nanoscopic channel sizes of current transistors. Ad-
vancing these goals necessitates experimental approaches
sensing momentum diffusion in confined conductors. The
last few years saw tremendous experimental progress in
the imaging [18–23] and characterization [4, 24–26] of the
crossover regime between hydrodynamic and ballistic flow.
At the same time, these efforts have also revealed that
the actual flow profile of a quantum fluid in thin chan-
nels is rather ambiguous with respect to the dominant
relaxation mechanism [27]. While it is possible to alle-
viate this issue by choosing other geometries [21, 28–30]
or measure at finite magnetic field [31, 32], identifying
more easily accessible characteristics which are sensitive
to the ballistic-hydrodynamic crossover is highly sought
after. The key point of this paper is to establish the
transverse channel voltage in anisotropic conductors as
such an accessible characteristic.

Electron transport in mesoscopic conductors is char-

acterized by three characteristic length scales [33]: The
system size W , the momentum-relaxing (MR) mean-free
path ℓmr, and the momentum-conserving (MC) mean-free
path ℓmc. In very clean systems it holds that W ≪ ℓmr

and Ohm’s law no longer describes the local relationship
between electric field and current. The system therefore
becomes ballistic if W ≪ ℓmr ≪ ℓmc or hydrodynamic if
ℓmc ≪ W ≪ ℓmr (Fig. 1a).

In previous studies, the crossover regime (Gurzhi
regime) when all three length scales are comparable
(W ≈ ℓmr ≈ ℓmc) has been studied theoretically by a
Boltzmann kinetic approach with a Callaway two-rate
ansatz for isotropic Fermi surfaces [32–35]. The implicit
assumption for this starting point is that the simplified
isotropic description ought to capture the qualitative fea-
tures of the ballistic-hydrodynamic crossover. However,
this is far from obvious: From the point of view of the-
ory, the limited attention to anisotropic effects means
that essential parts of the kinetic approach have never
been developed to take into account viscous correlations
in an anisotropic system. Experimentally, it is impor-
tant to investigate the sensitivity of observables such as
flow profiles against inevitable misalignments between
the channel and the crystal axes. Since several candidate
materials with hydrodynamic electronic transport are in
fact metals with anisotropic Fermi surfaces [19, 24, 36],
it is critical to investigate the effect of symmetry break-
ing through the channel walls on the often subtle sig-
natures of hydrodynamic flow. One might even ask if
the Fermi surface shape can provide valuable insight for
the ballistic-hydrodynamic crossover of a quantum fluid.
Theoretical efforts to explore anisotropic effects in hy-
drodynamic conductors include broadband microwave
spectroscopy [37, 38], a non-monotonic temperature and
width dependence of the channel conductance [39], and
viscous flow profiles on a Corbino disk [40].
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Figure 1. (a) Ballistic and hydrodynamic transport regimes. The red star represents scattering events with the boundary, while
a yellow one represents the MC two-body scattering between electrons. (b) Representative Fermi surfaces with continuous
rotational symmetry and with anisotropy. ρv̂ denotes the distribution of Fermi velocity directions, shown in a polar histogram.
(c) A four point geometry for measurements of transverse voltages with misalignment angle φ between the crystal principle axis
and the channel direction. (d) Schematics of the transverse voltage as a function of misalignment angle in different regimes for a
Fermi surface with C4 symmetry.

Here, we address this question by examining the trans-
verse voltage in the absence of magnetic field. Our main
focus is anisotropic systems (Fig. 1b) lacking mirror
symmetry due to a directional mismatch between the
high symmetry axis of the Fermi surface and the geo-
metric axis of the channel (Fig. 1c). To describe these
systems, we generalise the Callaway ansatz to any two-
dimensional anisotropic system, finding that a transverse
voltage emerges at zero magnetic field which is strongly
sensitive to the microscopic scattering mechanism. In
particular, we show that the sign of the transverse voltage
depends both on the Fermi surface shape and also the MC
scattering rate. Under certain conditions, a sign reversal
can indicate that the system crosses over from ballistic
to hydrodynamic flow (Fig. 1d), which can serve as a
sensitive observable for the crossover. We explain these
subtle changes as the result of a competition of the trans-
verse stress induced by the boundaries against the stress
resulting from the bulk MR scattering. Using the sign to
identify the onset of hydrodynamic regimes offers several
advantages. Firstly, it only requires a non-spatially re-
solved transport measurement of a single device. Secondly,
the sign change of the transverse voltage is uncommon
outside the hydrodynamic context, as in other regimes, it
typically only relates to the carrier type of the material.
Although the sign change strongly suggests a crossover,
it does not mark a precise boundary between the ballistic
and hydrodynamic regimes, as this is not a phase transi-
tion. In short, we suggest the signature of the transverse
voltage as a relatively straightforward experimental ob-
servable for detecting non-local hydrodynamic transport.
Additionally, our work establishes a general framework to
treat anisotropic ballistic and hydrodynamic transport in
systems with C4 rotational symmetry or higher.

Collisional invariants for anisotropic Fermi surfaces.—

We aim to describe the ballistic-hydrodynamic crossover
using semiclassical kinetics. The starting point is the
Boltzmann transport equation (BTE) for the distribution
function f , given by (∂t + vk · ∇r + F · ∇k)f(r,p, t) =
C[f(r,p, t)], where C is the collision integral and F is the
perturbation. It is common to parametrize the deviation
from the equilibrium state by writing f(r,p, t)−f0(εp) =
−EF∂εf

0(ϵ)h(r,p, t), where EF is the Fermi energy and
h is dimensionless non-equilibrium distribution function.
In the following, we consider the low temperature limit
where ∂εf

0(ε) ≈ −δ(ϵ−EF ). This is a good assumption
for materials with a large carrier density since the actual
temperature is significantly lower than the Fermi temper-
ature. In experiment, variations in temperature usually
have a greater impact on the scattering rate than on the
thermal broadening of the distribution function. For the
sake of simplicity, we consider a Fermi surface for which
a bijection between angular variable θ and Fermi wave
vector pF exits. This allows to integrate out the radial
momentum dependence of p, leaving only an angular mo-
mentum variable θ. In more general scenarios, the Fermi
surface arclength should be employed instead.

We begin by defining a bra-ket notation for the BTE [37,
39, 41]. Let g(r, θ, t) be a state function on the Fermi
surface. Then the corresponding ket and inner product
in two-dimension are defined by

|g(r, t)⟩ =

∫
dθ

√
p2F (θ)EF

(2πℏ)2|vF (θ) · pF (θ)|
g(r, θ, t) |θ⟩(1)

where ⟨θ|θ′⟩ = δ(θ− θ′). With this definition , ⟨g(r, t)⟩ =
⟨h(r, t)|g(r, t)⟩.
For convenience, we abbreviate the metric in phase

space as A(θ) = p2F (θ)EF /(2πℏ)2|vF (θ) · pF (θ)| and de-
fine the following modes with unit length: A particle
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Figure 2. (a)Transverse voltage at 22.5◦ normalized by the ballistic value, shown as a function of both Fermi surface anisotropy
α and dimensionless MC rate. Green dotted line: interpolated boundary line when transverse voltage is vanishing. Yellow
arrow: Fermi surface transition happens at α ≈ 0.3, corresponding to a sign-change of ballistic transverse voltage, black arrow:
a line-cut for a fixed Fermi surface, where transverse voltage changes sign with increase MC rate. (b) Ballistic transverse voltage
as a function of α. Yellow dot: non-trivial zero of the ballistic transverse voltage signifying the Fermi surface transition. (c)
Transverse volatge as a function of misalignment angle φ, parameters are taken as indicated by the black line cut in (a). From
ballistic to hydrodynamic region, the transverse voltage flips its sign. (d) Decomposition of the transverse volatge. As MC rate
increases, MR contribution is decreasing to zero and the stress component is dominant.

mode called |c⟩ ∝
∫
dθ
√

A(θ) |θ⟩, corresponding to the
particle number, and a momentum mode called |pµ⟩ ∝∫
dθ
√

A(θ)pµ(θ) |θ⟩, which will be relevant for contrac-
tions which preserve momentum [24, 33, 37, 39, 41, 42].

To proceed, we need to make some assumptions about
the collision integral C. Here, we take the Callaway two-
rate ansatz [34] to construct phenomenological collision
terms. The idea is to restrict C to an universal subset
of eigenmodes which are longest lived. For electron flow
in a channel, these long-lived modes derive from particle
number which is conserved exactly and momentum, which
relaxes with a small scattering rate γmr. Assuming that
all other excitations relax at least as fast as these quasi-
conserved quantities with rate γ = γmc+γmr [37, 39], one
obtains two collisional integrals,

Cmr = −γmr(1− |c⟩ ⟨c|),

Cmc = −γmc

(
1− |c⟩ ⟨c| −

∑

µ

|pµ⟩ ⟨pµ|
)
. (2)

Importantly, as long as W ≪ vF /γmr, this construc-
tion guarantees both particle number and (approximate)
momentum conservation since ⟨c|Cmr/mc |h⟩ = 0 and
⟨pµ|Cmc |h⟩ = 0.

Let us consider the transverse transport in a long nar-
row channel geometry (Fig. 1) at zero magnetic field and
zero temperature. This geometry is assumed to be trans-
lationally invariant in the longitudinal direction (denoted
x), thus the the distribution function only has a spatial
dependence in y direction. As a function of the remaining
two parameters (y, θ),

the Boltzmann equation becomes,

D[h] = (Cmr + Cmc) |h⟩ , (3)

where the drift terms are

D[h] = ∂y |vyh⟩ − Ex |vx⟩ − Ey |vy⟩ . (4)

Here, Ex, Ey are electric fields normalized by the Fermi
energy, having the same unit as a wave vector. We assume
a fixed longitudinal electric field Ex and view Ey(y) as a
response to the input field Ex.
Rearranging terms, one obtains

C0 |h⟩ =
∑

µ

Eµ |vµ⟩

+

[
γ |c⟩ ⟨c|+ γmc

∑

ν

|pν⟩ ⟨pν |
]
|h⟩ , (5)

where C0 |h⟩ = ∂y |vyh⟩ + γ |h⟩. A proper diffusive
boundary condition is imposed as h±(∓W/2, θ) = 0 and
Jy(y) ≡ ⟨vy|h⟩ = 0. Here, h±(y, θ) are h(y, θ) restricted to
the the domain Θ± = {θ|sign[vy(θ)] = ±1} respectively.
In this form, we can solve the BTE self-consistently

and obtain the transverse electric field as Ey(y) =

⟨py|vy⟩−1
(⟨py|C0 |h⟩−γmc

∑
µ ⟨h|pµ⟩ ⟨pµ|vy⟩). The trans-

verse voltage is the integral Φy =
∫
dy Ey(y). We can

clearly identify two different components in Φy, which
read explicitly Φy = Φstress

y +Φmr
y , where

Φstress
y = ⟨py|vy⟩−1 ⟨py|vyh⟩

∣∣∣∣
W/2

−W/2

Φmr
y = ⟨py|vy⟩−1

γmr

∫ W/2

−W/2

dy ⟨py|h⟩ (6)

Here, Φstress
y is related to the yy component of the stress

tensor Πµν ≡ ⟨pµ|vνh⟩ of the quantum fluid, whereas Φmr
y

is proportional to the MR rate γmr.
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Figure 3. (a) Decomposition of the transverse voltage of different models. Left to right: C4 model with a energy dispersion ε(k)
with γmrW/vF = 0.1 [42], TB model for PdCoO2 [43] with γmrW/vF = 0.08, TB square model with γmrW/vF = 0.49 [42],TB
model for over-doped cuprate Bi2212 [44] with γmrW/vF = 0.49. (b) Fermi velocity direction distribution plotted as a polar
histogram plot.

Ballistic-hydrodynamic crossover.— In order to demon-
strate the anisotropy effect of Fermi surface in a tractable
manner, we use the following parameterization for the
Fermi wave vector kF for a Cn Fermi surface kF (θ;α,φ) =
k0F {1 + α cos[n(θ − φ)]}, where θ is the angle between kF

and the crystal kx-axis, φ is the angle between the crystal
and channel axes as shown in Fig.2a. α is the controlling
parameter for the Fermi surface shape. With varying α,
the Fermi surface goes from circular to cross-shaped, and
finally flower-shaped, as shown in Fig.2a for n = 4.

We mainly focus on non-Ohmic region, so we fix the
MR rate γmr within the limit γmrW/vF ≲ 1 and change
the MC rate γmc to investigate the ballistic-hydrodynamic
crossover. The transverse voltage at the misalignment
angle φ = 22.5◦ which marks the maximal transverse
voltage in the ballistic case as a function of both Fermi
surface shape andMC scattering rate is studied in Fig.2(a).
In order to show the sign change of the transverse voltage,
it is best to look at the normalized quantity Φy/ΦB where
ΦB is the ballistic voltage (γmc = 0). We observe that
for a fixed small α < αc, the transverse voltage remains
of the same sign irrespective of the value of γmc. At
the critical value αc ≈ 0.3, the increasingly anisotropic
Fermi surface leads to a sign change of the ballistic voltage
(yellow arrow). We should emphasize that the sign reverses
when changing the Fermi surface shape is not due to the
hydrodynamic nature, it is a direct consequence of the
Fermi velocity distribution of different Fermi surfaces. In

the supplemental material [42], we show that this latter
sign change is determined by the quantity ⟨vxsign(vy)⟩.
The physical picture is that for a given driven electric field
Ex, the response to it is proportional to vx, and sign(vy)
indicates the electrons moving to the top or bottom in
the transverse direction of the channel.

More interestingly, for a fixed large α > αc, with in-
creasing MC scattering rate γmc, the voltage exhibits an
additional sign change between the ballistic region and
the hydrodynamic region (cf. green dotted line in Fig.
2a). This latter sign change persists for basically all mis-
alignment angles, as is shown in Fig. 2c. We can conclude
that during the ballistic-hydrodynamic crossover, some
anisotropic Fermi surfaces will cause the modulus of the
transverse voltage to first decrease, cross zero smoothly
and then increase with opposite sign. We further observe
that Φy(φ) can have a quite asymmetric shape, which
changes noticeably as a function of γmc. As mentioned
above Eq. (6), we want to understand the underlying
mechanism for the transverse voltage by decomposing the
voltage as an internal stress contribution and MR contri-
bution. The two contributions to the stress are shown in
Fig. 2d for the anisotropy parameter α = 0.55. Φy here is
taken as the peak voltage in the whole range of φ rotation
at a fixed γmr and varying with γmc. In essence, in the
hydrodynamic regime such that γmcW/vF ≫ 1, the MR
component is vanishing so that the the internal stress of
the quantum fluid becomes the dominant contribution to
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the transverse voltage. Conversely, the dissipative stress
dominates at small γmc, therefore there exists a critical
γc
mc where the two contributions cancel and the sign of

transverse voltage Φy reverses.

Material examples.— Here we present some instructive
examples of anisotropic Fermi surfaces which additionally
contain anisotropic Fermi velocities. We find that both
a continuum model and tight-binding(TB) examples can
exhibit a behavior very similar to the one discussed for
the simplified scenario, thus confirming the robustness
of our diagnosis. Namely, we focus on the ultra clean
material PdCoO2 [24], and the overdoped strongly corre-
lated cuprate Bi2Sr2CaCu2O8+δ(Bi2212) [36], as in both
non-Ohmic transport has been observed. For comparison,
we also include a square lattice with nearest-neighbor hop-
ping. The model details can be found in the supplemental
material [42], the results of these calculations are shown
in Fig. 3. Not surprisingly, in all cases the MR component
is diminishing when approaching the hydrodynamic limit.
Thus in the hydrodynamic region, the only contribution
to transverse voltage is the yy component of the stress
tensor Πµν . For the anisotropic C4 model [42], our cal-
culation reveals a sign change of the transverse voltage
with increasing MC scattering rate, serving as a direct
indicator of hydrodynamic transport. The location of this
crossover, however, depends on the Fermi surface shape,
the channel width, and the el-el scattering rate. For the
Fermi surfaces of the square and Bi2212, for example,
such a sign change would occur at extreme scattering
rates inaccessible to our numerical implementation. Thus
in a real material, these parameters may render the sign
change inaccessible for realistic channel sizes.

This diagnostic methodology can be extended to treat
those situations, thus greatly expanding its range of appli-
cability. The transverse voltage results from a competition
between Φstress

y and Φmr
y , which in general scale differently

with the channel misalignment angle φ (see asymmetry
evolution in Fig. 2c). Hence the transverse voltage dif-
ference between two channels symmetrically misaligned
by an angle ±δφ to mutually adjacent mirror planes is a
sensitive probe of emergent hydrodynamics (Fig 4). Its
asymmetry is actually most pronounced in the weakly
hydrodynamic sector of small γmcW/vF and a channel
width dependence allows a straightforward estimation of
γmc through a transport experiment. The required sim-
ple geometry of two canted bars is sketched in Fig. 4a.
Varying the channel width by a factor of 10 is straightfor-
ward lithographically, which will provide enough range to
extract γmc even when the sign change itself cannot be
accessed.

Conclusion.— By employing a Callaway two-rate
ansatz, we have identified a non-vanishing transverse
voltage for a wide range of low-symmetry transport con-
figurations. We find that in a C4-symmetric system, a
sufficiently anisotropic Fermi surface can lead to a sign
change in the transverse voltage as the electron fluid

(a) (b)

Figure 4. (a) Sketch for measurement of the difference of
transverse voltage Φa

y − Φb
y at misalignment angle φa = δφ

and φb = 30◦ − δφ for PdCoO2. (b) Difference of transverse
voltage as function of MC scattering rate. Inset: Φa

y and Φb
y

as a function of MC scattering rate.

crosses over from ballistic to hydrodynamic transport. We
therefore propose that measuring the transverse voltage
at zero magnetic field can be a viable way to distinguish
different types of non-Ohmic transport. The prescribed
phenomenology offers an alternative probe for the experi-
mental investigation of unconventional charge transport
beyond the analysis of the current flow pattern. We reit-
erate that the measurement of transverse voltage seems
particularly attractive because it does not require an ex-
ternal magnetic field or a local imaging of the current
profile. We believe that the sign change is observable
with current devices as a function of either gate voltage or
temperature using the geometry depicted in Fig. 4. For
example, in Ref. [24], the estimated range of γmr/γmc is
0.05 ∼ 0.2, based on fits of the conductivity to an isotropic
model.

As a limitation of our results, let us mention that the
simplifications to the collision integral used here cannot
capture the intermediate tomographic transport regime
[41, 45–47]. Further refinements in the treatment of the
full collision integral seem needed to treat these and sim-
ilar effects in anisotropic materials. On the other hand,
the methodology developed here can be extended straight-
forwardly to investigate hydrodynamic crossovers in three-
dimensional systems.
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Appendix A: Dirac notation in phase space and collision operators

It is convenient to work with Dirac notations in Boltzmann transport equations to simplify things and avoid
ambiguities [1, 2]. In the main text of the paper, we are considering two-dimensional Fermi liquids at zero temperature.
Suppose the distribution function f(r,p, t) is known. Then, for an arbitrary function g(r,p, t) (here, g can denote for
example velocity, energy, displacement,...), the expectation value of g is

⟨g⟩ =
∫

drdp

(2πℏ)2
g(r,p, t)f(r,p, t). (A1)

We can define the density of the above quantity by

⟨g(r)⟩ =
∫

dp

(2πℏ)2
g(r,p, t)f(r,p, t). (A2)

Within a linearized ansatz for the Boltzmann equation, the distribution function is usually parametrized as

f(r,p, t) = f0(ϵ(p))− EF∂ϵf
0h(r,p, t), (A3)

where h(r,p, t) is a continuous and differentiable function. In a channel geometry, due to the translational invariance
in the channel direction (direction x), the only remaining spatial variable is y. At zero temperaure, the Fermi function
derivative is ∂ϵf

0 = −δ(ϵp − EF ). Putting these simplifications together, the density becomes (ℏ = 1),

⟨g(y)⟩ =
∫

dpdθ

4π2
pf(y,p)g(y,p) =

∫
dpdθ

4π2
pf (0)(p)g(y,p) + EF

∫
dpdθ

4π2
pδ(ϵp − µ)h(y, θ)g(y,p)

= EF

∫
dθ

4π2

pF (θ)

|∂pϵ(θ)|
h(y, θ)g(y, θ)

= EF

∫
dθ

4π2

p2F (θ)

|vF (θ) · pF (θ)|
h(y, θ)g(y, θ) (A4)
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where in the second line we assumed that g is a non-equilibrium quantity which vanishes at equilibrium, while in the
third line we use the fact that

∂pϵ = ∂px
ϵ · ∂ppx + ∂py

ϵ · ∂ppy =
vxpx + vypy

p
. (A5)

From Eq. (A4), we identify the measure in phase space as

A(θ) =
p2FEF

4π2|vF (θ) · pF (θ)|
. (A6)

In this way we can define bra-kets, thereby writing Eq. (A4) as an inner product. Namely, for any function g(y, θ), the
corresponding ket and inner product are defined as

|g(y)⟩ ≡
∫ 2π

0

dθ
√

A(θ)g(θ, y) |θ⟩

⟨θ′|θ⟩ = δ(θ − θ′). (A7)

which leads to the very compact form ⟨h|g⟩ for Eq. (A4). Likewise, for any linear operator Q̂ one can write

Q(y, y′) =

∫
dθdθ′

√
A(θ)Q(y, y′, θ, θ′)

1√
A(θ′)

|θ⟩ ⟨θ′| (A8)

Taking this convention, the distribution function and important modes like particle number c momentum pi and
velocity vi are given by

|h(y)⟩ =

∫
dydθ

√
A(θ)h(y, θ) |θ⟩ , (A9)

|c⟩ ≡ 1√
N

∫
dθ
√

A(θ) |θ⟩ , (A10)

|pi⟩ ≡ 1√
⟨p2i ⟩

∫
dθ
√
A(θ)pi(θ) |θ⟩ , (A11)

|vi⟩ ≡
∫

dθ
√

A(θ)vi(θ) |θ⟩ . (A12)

where i = 1, 2 denotes x and y. Furthermore,

pi(θ) = pF (θ) · x̂i, vi(θ) = vF (θ) · x̂i,
〈
p2i
〉

≡
∫

dθA(θ)p2i (θ),

N ≡
∫

dθA(θ). (A13)

The current therefore becomes

⟨Ji⟩ =
∫

dy ⟨vi⟩(y) |y⟩ = ⟨vi|h⟩ . (A14)

In order to construct the collision operator, it is necessary to first prove the orthogonality of the modes Eq. (A11)
and (A12) for a Fermi surface possessing Cn≥4 symmetry. To this end, we will use the fact that εk = ε−k ⇒ pF (θ) =
pF (θ ± π),vF (θ) = −vF (θ ± π), A(θ) = A(θ ± π).

⟨c|c⟩ =
1

N

∫ 2π

0

A(θ)dθ = 1,

⟨c|pi⟩ ∼
∫ 2π

0

dθ A(θ)pθpi(θ) =

∫ π

0

dθ A(θ)pθ[pi(θ) + pi(θ − π)] = 0,

⟨pi|pi⟩ = 1. (A15)
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These considerations would actually also apply for the less symmetric case C2 rotational symmetry. However, in order
to prove the relation ⟨pi|pj⟩ = δij , we do need C2m(m ≥ 2) symmetry, which allows use to employ that

pF (θ) = pF
(
θ +

π

m

)
. (A16)

The C2m symmetry for Fermi velocity therefore leads to

vi(Rk) =
ϵ(Rk+ δkx̂i)− ϵ(Rk)

δk
,

=
ϵ(R(k+ δkR−1x̂i))− ϵ(Rk)

δk
,

=
ϵ(k+ [R−1x̂i]δk)− ϵ(k)

δk

= v(k) · [R−1x̂i]. (A17)

where R is an arbitrary two-dimension rotation matrix. Generally for any Cn(n ≥ 3) symmetry,

vx

(
θ +

2π

n
j

)
= cos

(
2π

n
j

)
vx(θ)− sin

(
2π

n
j

)
vy(θ),

vy

(
θ +

2π

n
j

)
= sin

(
2π

n
j

)
vx(θ) + cos

(
2π

n
j

)
vy(θ),

px

(
θ +

2π

n
j

)
= px cos

(
2π

n
j

)
− py sin

(
2π

n
j

)
,

py

(
θ +

2π

n
j

)
= py cos

(
2π

n
j

)
+ px sin

(
2π

n
j

)
(A18)

which means in particular that

A

(
θ +

2π

n
j

)
= A(θ). (A19)

We can insert this in the measure to obtain

⟨vx|vy⟩ =

∫ 2π

0

dθ A(θ;µ)vx(θ)vy(θ),

=

∫ 2π
n

0

A(θ;µ)
n−1∑

j=0

v2x(θ)− v2y(θ)

2
sin

(
4π

n
j

)
+ vx(θ)vy(θ) cos

(
4π

n
j

)
,

= 0. (A20)

In the final line, as explained we use

n−1∑

j=0

exp

[
i
4π

n
j

]
= 0 (n ≥ 3) (A21)

Similarly identity also holds for the orthogonality relation to particle density modes. In summary, for C2m≥4 system,
the orthogonal conditions are

⟨c|c⟩ = ⟨pi|pi⟩ = 1

⟨c|pi⟩ = ⟨c|vi⟩ = 0

⟨pi|pk⟩ = ⟨pi|vk⟩ = ⟨vi|pk⟩ = ⟨vi|vk⟩ = 0 (j ̸= k). (A22)

The collision operators can therefore be constructed as

Cmc |h⟩ = −γmc|h⟩+ γmc ⟨c|h⟩ |c⟩+
∑

i

γmc ⟨pi|h⟩ |pi⟩ ,

Cmr |h⟩ = −γmr|h⟩+ γmr ⟨c|h⟩ |c⟩ , (A23)
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which obey

⟨c|Cfull |h⟩ = 0 Particle number conservation,

⟨pi|Cmc |h⟩ = 0 Momentum conservation. (A24)

This establishes an explicit construction of the collision terms in the Boltzmann equations which obeys the necessary
conservation laws.

Appendix B: Boltzmann equation and numeical solution

The Boltzmann equation is
[
∂t + ṗ · ∇p + ẋ · ∇r

]
f(x,p, t) = C[f ]. (B1)

For a single band topologically trivial system, the stationary solution satisfies
[
F · ∇p + v(p) · ∇r

]
f(x,p) = C[f ], (B2)

where v(p) = ∂pϵ(p) and in the presence of electric field, F = −eE. In our calculation, we fix the longitudinal
electric field Ex and view Ey(y) as a response to the input field Ex. Taking the linearized ansatz in Eq. (A3) and only
considering linear response to the external field Ex, the Boltzmann equation for h(y, θ) reduces to the form mentioned
in Eq. (3) in the main text,

∂y |vyh⟩ − Ex |vx⟩ − Ey(y) |vy⟩ = Cfull |h⟩ . (B3)

In order to solve the above equation numerically, we write

∂y |vµh⟩+ γ |h⟩ = Ex |vx⟩+ Ey(y) |vy⟩+ γ ⟨c|h⟩ |c⟩+
∑

i=1,2

γmc ⟨pi|h⟩ |pi⟩
︸ ︷︷ ︸

S[h]

(B4)

In the absence of magnetic field, the BTE thus becomes

(
vy∂y + γ

)
h(y, θ) = [Exvx(θ) + Ey(y)vy(θ) + γh0(y)Y0(θ) + γmc

2∑

i=1

hi(y)Yi(θ)] ≡ S(y, θ). (B5)

Using a variable change to the characteristics,

∂sy = vy, y(0) = sgn(vθ · ŷ)
w

2
∂sθ = 0, θ(0) = ξ, (B6)

the BTE simplifies to

(∂s + γ)h(s, ξ) = S(s, ξ) (B7)

By choosing a fully diffusive boundary condition,

h(0, ξ) = 0. (B8)

the formal solution of the BTE reads

h(s, ξ) =

∫ ∞

0

ds′ Θ(s− s′)e−γ(s−s′)S[h(s′, ξ)]. (B9)

The solution Eq. (B9) can be expressed in the original variables h(y, θ) via the transformation

ξ = θ,

s =
y + sgn(vθ · ŷ)w2

vθ · ŷ
. (B10)
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Input parameters
γmr, γmc, B,Ex

Input initial guess/last epoch result
hlast(y, τ)/S(y, τ)

Interpolation of h(y, τ)
h(y, τ) ⇒ h(y(s, ξ), τ(s, ξ))

Inversion of C0 and projection
ĥ(s, ξ) = P̂C−1

0 [S(s, ξ)]

||ĥ(y, θ)− h(y, θ)|| < ϵ? h(y, θ) = (1− η)h(y, θ) + ηĥ(y, τ)

Calculation of source terms from h(y, θ)
h(y, θ) ⇒ S(y, θ)

Output result and start new loop
hout = h(y, θ)

No

Yes

Figure 1. Flow chart of the numerical routine used to solve the BTE.

However, since the function S depends explicitly on h, additional constraints need to be fulfilled to select a physical
solution. The most important constraint is of course charge conservation,

∂tρ+∇ · J = 0 (B11)

We furthermore enforce the constraint Jy(±W/2) = 0 to ensure that no current can leak outside of the channel. For
stationary states and zero magnetic field, this combines with Eq.(B11) to give a vanishing Jy for all values of y.
Numerically, the solution to the BTE is constructed by iterating (B9) and imposing a projection of current Jy to

eliminate the transverse current as follows,

∣∣hNew
〉
= (1 − |vy⟩ ⟨vy|)

∣∣hOld
〉
. (B12)

A good starting point is to assume S(y, θ) = Exvx(θ). Then

h0(y, θ) =
Ex(vθ · x̂)

γ

[
1− exp

(
−γ

2 sgn(vθ · ŷ)y + w

2|vθ · ŷ|

)]
. (B13)

The numerical flow chart is summarized in Fig. 1. As a benchmark, we compare our calculation result to Ref. [3] in
Fig. 2. The agreement is excellent in the Gurzhi region, but we note that the solver was not optimized for the deep
hydrodynamic limit, where it converges very slowly.

Appendix C: Transverse voltage decomposition

In order to obtain transverse voltage, we can either act with the bra ⟨vy| or alternatively with ⟨py| from the left in
Eq. (B4). Utilizing Eq. (A22) one can then immediately solve for Ey.

By contracting with ⟨py|, we obtain

Ey =
∂y ⟨pyvy⟩+ γmr ⟨py⟩

⟨py|vy⟩
(C1)

≡ ∂yΠyy + γmr py(y)

⟨py|vy⟩
, (C2)
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Figure 2. Comparision between our BTE solver to the previous results in Ref. [3].

where Π is the stress tensor of a quantum fluid [4, 5] and py(y) is the momentum density. Integrating over y, we yield
the transverse voltage

Φy =
1

⟨py|vy⟩

(
Πyy

∣∣∣∣
W/2

−W/2

+ γmrPy

)
. (C3)

This result clearly shows that in the hydrodynamic limit only the internal stress contributes to the transverse voltage,
i. e. (γmr/γmc → 0),

Φhydro
y =

1

⟨py|vy⟩
Πyy

∣∣∣∣
W/2

−W/2

. (C4)

Interestingly, the alternative way of decomposing Φy gives rise to the ballistic limit: By contracting with ⟨vy|, one
obtains

Ey =
∂y ⟨vyvy⟩ − γmc ⟨py⟩

⟨vy|vy⟩
(C5)

≡ ∂yΣyy − γmc py(y)

⟨vy|vy⟩
, (C6)
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where Σyy = ⟨vyvy⟩ is the velocity-velocity correlator. Integrating over y, this becomes

Φy =
1

⟨vy|vy⟩

(
Σyy

∣∣∣∣
W/2

−W/2

− γmcPy

)
(C7)

As promised, in the ballistic limit (γmc = 0), the transverse voltage is given by

Φball
y =

1

⟨vy|vy⟩
Σyy

∣∣∣∣
W/2

−W/2

. (C8)

In the main text, we opted for the decomposition according to Eq. (C3) rather than Eq. (C7). The reason is
straightforward, compared to the correlator Σ, whose properties are not well documented, the stress tensor Π has a
clear physical interpretation. In particular, Π allows us to formulate a continuity equation for momentum py(y), which
reads

∂py
∂t

= −∂Πij

∂xj
− γmrpy + eEy (C9)

In the steady state, the temporal derivative in (C9) vanishes, so that

eEy = γmrpy(y) + ∂yΠyy(y) (C10)

which leads us immediately to (C2) once the proper normalization is imposed.

Appendix D: Symmetric and anti-symmetric component of transverse voltage

For Fermi surface with C2m symmetry, the irreducible misalignment angle domain is φ ∈ [0, π/2m] since Φy(φ+
π/2m) = −Φy(φ+ π/2m). The anisotropic nature of Fermi surface results in the Φy v.s. φ profile asymmetric, i.e. the
maximum value of Φy does not coincide with φ = π/4m(cf. main text Fig.2(c)). We then further look into the the
symmetric and anti-symmetric component of Φy w.r.t. φ in [0, π/2m]. They are defined as follows:

Φa
y(φ) =

1

2
[Φy(φ)− Φy(π/2m− φ)]

Φs
y(φ) =

1

2
[Φy(φ) + Φy(π/2m− φ)] (D1)

In Fig. 3(a), we showed that for PdCoO2, the anti-symmetric component is more susceptible to MC scattering and
changes sign with smaller γmcvF /W ≈ 0.2. In Fig. 3(b) and (c), we clearly see that for γmcvF /W < 0.2, the symmetric
part is dominant and the whole transverse voltage does not change sign.

(c)(a) (b)

Figure 3. Transverse voltage plots for PdCoO2 with same parameters as in Fig.4(b) in main text. (a)Anti-symmetric component
of transverse voltage. (b)Symmetric component of transverse voltage. (c)Full transverse voltage decomposition. Black dash line
is an eye guide to γmcvF /W = 0.2.
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This observation helps to identify a weaker hydrodynamic signature in real materials. The sign change of the
anti-symmetric component of the transverse voltage could serve as an effective detector for broader experimental
materials due to its earlier onset with the MC scattering rate.

Appendix E: Extreme ballistic limit

Here we show the results of a pure ballistic case and further explain Fig.2(b) in the main text. For ballistic case,
γ = γmr, and the source term S is constituted only from electric field and particle number modes. As it turns out, we
find that already for not too small γmr, solution (B13) is a good approximation to the full solution of distribution
function. According to Eq. (C8), the transverse voltage can be written explicitly as

Φ(0)
y =

2Ex

γ

∫
dθA(θ)v2y(θ)vx(θ)e

−γw/2|vy| sinh
(

γW
2vy

)

∫
dθA(θ)v2y(θ)

. (E1)

As shown in Fig. 4, this approximation and the numerical solution show the same qualitative behavior, meaning that
Eq. (E1) can successfully capture the sign of the voltage.

Figure 4. Comparison between a full solution and approximated analytic result,α = 0.4.

For very small γ, Eq. (E1) reduces to

Φ(0)
y = −γ

2
ExW

2

∫
dθA(θ)vxsign(vy)∫

dθA(θ)v2y(θ)
, (E2)

which allows us to read off what decides the sign of transverse voltage in the extreme ballistic limit, which is the
average ⟨sign(vy)vx⟩. The physical content in this average is as follows: For a given electric field Ex, the response to it
is trivially proportional to vx, while sign(vy) counts whether the electrons move to the top/bottom in the transverse
direction of the channel. The resulting voltage plot as a function of α is shown in Fig. 5, where the sign change is
at αc ≈ 0.3, very similar to the sign change shown in Fig.2(b) of the main text, which was obtained from the full
calculation.
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Figure 5. Transverse voltage according to Eq. (E2) based on the quantity sign(vy)vx. Parameters are the same as in main text
Fig. 2(b).

Appendix F: Channel current profile and longitudinal conductance for C4 model

Here we show the longitudinal conductance G for our C4 model with different Fermi surface anisotropy α in Fig. 6.
The conductance G is defined as

G =

∫
dyJx(y)/Ex. (F1)

Figure 6. Conductance G as a function of different misalignment angles φ and MC scattering rate γmc for different α. Here, all
γmrW/vF = 1.

Firstly, the conductance is varied with changing misalignment angles, showing its extreme values at high symmetry
positions (φ = 0◦, 45◦). We observed quite different behavior of the conductance with varying Fermi surface anisotropy.
Looking at α = 0.4, 0.8, from the ballistic to the hydrodynamic limit, the conductance at a fixed misalignment angle
decreases consistently. On the other hand, α = 0.2 leads to crossings between different lines, meaning different
misaligned configuration lead to different relationships with respect to γmc. It is evident that the anisotropy of the
Fermi surface leads to different scaling behaviors (at least scaling with ℓmc) for different Fermi surfaces. This finding
further supports the conclusions drawn in the main text that anistropic Fermi surfaces can lead to qualitatively different
flow behavior, and it calls into question how generally applicable some of the results for an isotropic model are when
compared to real materials.
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Appendix G: Continuous and tight-binding models for realistic systems

The models used in main text Fig.4 of realistic systems are presented here.
a. The continuous C4 model is a real band dispersion for the geometrical C4 model discussed in Fig.(2) of main

text. The energy dispersion is ϵ(k) = k2/2m− 2t(k4x + k4y − 6k2xk
2
y)/k

4 − µ with parameters m = 0.5, t = 1, µ = 1.
b. The Square model is a simple tight-binding model at nearly half-filled. The energy dispersion is ϵ(k) =

−2t(cos kx + cos ky)− µ with parameters t = 1, µ = −0.1.
c. The PdCoO2 model describes the in-plane dispersion of PdCoO2, ignoring the small corrugation along kz

direction [6]. The energy dispersion is

ϵ(k) = −2t1{cos(k · a) + cos(k · b) + cos[k · (a+ b)]} − 2t2
{
cos2(k · a) + cos2(k · b) + cos2[k · (a+ b)]

}
, (G1)

with parameters a = x̂,b = 1
2 (x̂+

√
3ŷ), t1 = 1, t2 = 0.14.

d. The Bi2212 model describes the in-plane dispersion of overdoped cuprate Bi2Sr2CaCu2O8 , ignoring the
small corrugation along kz direction [7]. For convenience, define ci(αa) = cos(αkia). The energy dispersion is
ϵ(k) = −2t1 [cx(a) + cy(a)] − 4t2cx(a)cy(a) − 2t3 [cx(2a) +cy(2a)] − 2t4 [cx(2a)cy(a) + cy(2a)cx(a)] with parameters
a = 1, t1 = 1, t2 = −0.135, t3 = 0.061, t4 = −0.017.
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