Glycemic Control Contributes to the Neuroprotective Effects of Mediterranean and Green-Mediterranean Diets on Brain Age; The DIRECT PLUS Brain-MRI Randomized Controlled Trial

Dafna Pachter, Alon Kaplan, Gal Tsaban, Hila Zelicha, Anat Yaskolka Meir, Ehud Rinott, Gidon Levakov, Moti Salti, Yoram Yovell, Sebastian Huhn, Frauke Beyer, Veronica Witte, Peter Kovacs, Martin von Bergen, Uta Ceglarek, Matthias Blüher, Michael Stumvoll, Frank B. Hu, Meir J. Stampfer, Alon Friedman, Ilan Shelef, Galia Avidan, Iris Shai

PII: S0002-9165(24)00745-7

DOI: https://doi.org/10.1016/j.ajcnut.2024.09.013

Reference: AJCNUT 676

To appear in: The American Journal of Clinical Nutrition

Received Date: 25 January 2024

Revised Date: 11 September 2024

Accepted Date: 12 September 2024

Please cite this article as: D. Pachter, A. Kaplan, G. Tsaban, H. Zelicha, A.Y. Meir, E. Rinott, G. Levakov, M. Salti, Y. Yovell, S. Huhn, F. Beyer, V. Witte, P. Kovacs, M. von Bergen, U. Ceglarek, M. Blüher, M. Stumvoll, F.B Hu, M.J Stampfer, A. Friedman, I. Shelef, G. Avidan, I. Shai, Glycemic Control Contributes to the Neuroprotective Effects of Mediterranean and Green-Mediterranean Diets on Brain Age; The DIRECT PLUS Brain-MRI Randomized Controlled Trial, *The American Journal of Clinical Nutrition*, https://doi.org/10.1016/j.ajcnut.2024.09.013.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier Inc. on behalf of American Society for Nutrition.

Glycemic Control Contributes to the Neuroprotective Effects of Mediterranean and Green-Mediterranean Diets on Brain Age; The DIRECT PLUS Brain-MRI Randomized Controlled Trial

Dafna Pachter*,1 Alon Kaplan*,1 Gal Tsaban*,1,2 Hila Zelicha,1 Anat Yaskolka Meir,1 Ehud Rinott,1 Gidon Levakov,3,4 Moti Salti,4 Yoram Yovell,5 Sebastian Huhn,6 Frauke Beyer,7 Veronica Witte,7 Peter Kovacs,8 Martin von Bergen,9 Uta Ceglarek,10 Matthias Blüher,11 Michael Stumvoll,10 Frank B Hu,12,13 Meir J Stampfer,12,13 Alon Friedman,4,14 Ilan Shelef,1,2 Galia Avidan,3,4 and Iris Shai1,11,12

 ¹ Faculty of Health Sciences, The Health & Nutrition Innovative International Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel;
 ² Soroka University Medical Center, Beer-Sheva, Israel;

³ Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel;

⁴ Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel;

⁵ Department of Medical Neurobiology, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel;

⁶ Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany;

⁷ Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, and Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany;

⁸ Medical Department III – Endocrinology, Nephrology, Rheumatology;

⁹ Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany;

¹⁰ Department of Medicine, University of Leipzig, Germany;

¹¹ Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of

the Helmholtz Zentrum München at the University of Leipzig and University

Hospital Leipzig, Leipzig, Germany;

¹² Department of Nutrition, Harvard THChan School of Public Health, Boston, MA, USA;

¹³ Department of Medicine, Harvard Channing Division of Network Medicine,

Brigham and Women's Hospital, Boston, MA, USA; and

¹⁴ Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University,

Halifax, Nova Scotia, Canada

*These authors contributed equally to this work.

Corresponding author:

Dr. Iris Shai

The Health & Nutrition Innovative International Research Center, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva

84105, Israel.

E-Mail: irish@bgu.ac.il

Tel: +972 8 647-7443

Trial-Registration-Clinical-trials-identifier: NCT03020186

URL of registration: https://clinicaltrials.gov/study/NCT03020186

Glycemic Control Contributes to the Neuroprotective Effects of Mediterranean and

Green-Mediterranean Diets on Brain Age; The DIRECT PLUS Brain-MRI

Randomized Controlled Trial

Journal Prevention

1 Abstract

2	Background: We recently reported that Mediterranean (MED) and green-MED diets
3	significantly attenuated age-related brain atrophy by \sim 50% within 18 months.
4	Objective: To explore the contribution of specific diet-induced parameters to brain
5	volume deviation from chronological age.
6	Methods: A post-hoc analysis of the 18-month DIRECT-PLUS trial, where
7	participants were randomly assigned to: (1)-healthy-dietary-guidelines (HDG); (2)-
8	MED diet; or (3)-green-MED diet, high in polyphenols and low in red meat. Both
9	MED groups consumed 28g walnuts/day (+440mg/day polyphenols). The green-
10	MED group further consumed green-tea (3-4 cups/day) and Mankai green shake
11	(Wolffia-globosa aquatic plant) (+800mg/day polyphenols). We collected blood
12	samples through the intervention and followed brain structure volumes by magnetic-
13	resonance-imaging (MRI). We used hippocampal-occupancy (HOC) score
14	(hippocampal and inferior-lateral-ventricle volumes ratio) as a neurodegeneration
15	marker and brain age proxy. We applied multivariate-linear-regression models.
16	Results: Of 284 participants (88% male; age=51.1years; BMI=31.2kg/m ² ;
17	HbA1c=5.48%; APOE-ɛ4 genotype=15.7%), 224 completed the trial with eligible
18	whole-brain MRIs. Individuals with higher HOC-deviations (i.e., younger brain age)
19	presented lower body weight (r=-0.204;95%CI[-0.298,-0.101]), waist-circumference
20	(r=-0.207;95%CI[-0.310,-0.103]), diastolic (r=-0.186;95%CI[-0.304,-0.072]), and
21	systolic blood pressure (r=-0.189;95%CI[-0.308,-0.061]), insulin (r=-0.099;95%CI[-
22	0.194,-0.004]) and HbA1c (r=-0.164;95%CI[-0.337,-0.006]) levels. After 18 months,
23	greater changes in HOC-deviations (i.e., brain-age decline attenuation) were
24	independently associated with improved HbA1c (β =-0.254;95%CI[-0.392,-0.117]),

25	HOMA-IR (β =-0.200;95%CI[-0.346,-0.055]) fasting glucose (β =-0.155;95%[CI -
26	0.293,-0.016]), and s-CRP (β=-0.153;95% [CI -0.296,-0.010]). Improvement in
27	diabetes status was associated with greater HOC-deviation changes compared to
28	either no change in diabetes status (0.010;95% CI[0.002,0.019]) or with an
29	unfavorable change (0.012;95%CI[0.002,0.023]). A decline in HbA1c is further
30	associated with greater deviation changes in the Thalamus, Caudate nucleus, and
31	Cerebellum (p<0.05). Greater consumption of Mankai and green-tea (green-MED diet
32	components) were associated with greater HOC-deviation changes beyond weight
33	loss.
34	Conclusions: Glycemic control contributes to the neuroprotective effects of the MED
35	and green-MED diets on brain age. Polyphenols-rich diet components as Mankai and
36	green-tea may contribute to a more youthful brain age.
37	

Abbreviations: AD, Alzheimer disease; ADE, Average direct effect; BBB, Blood-38 brain barrier; BP, Blood pressure; CRP, C-reactive protein; HOMA-IR, Homeostatic 39 40 model assessment of insulin resistance; ECG, Epicatechin gallate; EGC, Epigallocatechin; EGCG, Epigallocatechin gallate; green-MED diet, Mediterranean 41 42 diet higher in polyphenols and lower in red/processed meat; HbA1c, Hemoglobin 43 A1c; HDG, Healthy dietary guidelines; HDL-c, High-density lipoprotein cholesterol; HOC, Hippocampal occupancy score; LDL-c, Low-density lipoprotein cholesterol; 44 45 MCI, Mild cognitive impairment; MED, Mediterranean diet; PA, Physical activity; 46 RSFC, Resting-state functional connectivity; TG, Triglyceride; WC, Waist circumference. 47

- 48 Keywords: aging, brain age, dietary intervention, glycemic control, green-
- 49 Mediterranean, hippocampal occupancy score, polyphenols

Journal Prevention

50 Introduction

51	Age-related brain atrophy, a natural aging process, is characterized by a reduction in
52	brain volume and has been identified as an early biomarker for cognitive decline and
53	brain aging (1, 2). While age-related brain atrophy is an unavoidable process, type 2
54	diabetes, inflammation, hypertension, high cholesterol, and accumulation of β
55	amyloid and tau markers have all found to be associated with accelerated brain
56	atrophy and cognitive impairment (3-8). People with type 2 diabetes have been found
57	to be characterized by greater structural brain abnormalities (9), such as atrophy (10-
58	13), particularly in the hippocampus (14, 15). A longer duration of type 2 diabetes is
59	also a significant risk factor for brain atrophy regions (16), such as ventricular
60	enlargement (17). Hippocampal atrophy is a morphological feature of a mild
61	cognitive impairment (MCI) and of Alzheimer's disease (AD) (1). The hippocampal
62	occupancy (HOC) score, which measures the degree of hippocampal atrophy in
63	relation to inferior lateral-ventricle expansion, is considered as an effective tool for
64	assessing the undesirable progression from MCI to AD (18). Recently, as part of the
65	18-month DIRECT PLUS trial (a dietary intervention randomized controlled trial
66	study), we explored the effects of a caloric-restricted Mediterranean (MED) diet, and
67	of a further enriched high polyphenol green-MED diet, on age-related brain atrophy
68	(19), using magnetic resonance imaging (MRI). In participants aged \geq 50 years, both
69	the MED and the green-MED diet groups experienced a 50% attenuation of HOC
70	decline compared to the healthy dietary guidelines (HDG) control group. We also
71	found that successful weight loss following the lifestyle intervention might have a
72	beneficial effect on the trajectory of brain aging, based on MRI-assessed resting-state
73	functional connectivity (RSFC) (20).

74	Based on these findings, the current study aims to explore specific diet-induced
75	parameters that may contribute to brain-volume deviation compared to chronological
76	age – using the hippocampal occupancy (HOC) score (i.e., the ratio of the
77	hippocampal volume and the inferior lateral ventricle volume) as a neurodegeneration
78	marker and a proxy for brain age. We hypothesized that improved glycemic control
79	contributes to the neuroprotective effects of diet on brain age and may play a key role
80	in promoting a younger brain age.
81	Methods
82	Study design
83	The 18-month DIRECT PLUS trial included 294 participants and was conducted in
84	an isolated workplace (Nuclear Research Center Negev, Dimona, Israel).
85	The inclusion criteria were age ≥ 30 years with abdominal obesity (waist
86	circumference (WC): men>102 cm, women >88 cm) or dyslipidemia
87	(triglycerides>150 mg/dL; HDL cholesterol \leq 40mg/dL for men, \leq 50mg/dL for
88	women). (Exclusion criteria are detailed in Supplementary Methods 1.). The study
89	was approved by the Institutional Review Board at the Soroka University Medical
90	Center. The participants provided their written informed consent and did not receive
91	any compensation for participating in the study.
92	Randomization and interventions
93	At a 1:1:1 ratio, the participants were randomly assigned to one of the following three
94	intervention groups: 1) HDG, an active control group; 2) a traditional calorie-

restricted MED diet, low in simple carbohydrates; or 3) the green-MED diet. We

- 96 conducted the randomization in a single phase, with a parallel assignment
- 97 intervention model, and participants were aware of their assigned intervention (open-

98	label protocol). The first participant was enrolled on January 28, 2017, and the last
99	participant was enrolled on April 30, 2017. The trial was initiated and conducted in a
100	single phase between May 2017 and November 2018. (For randomization rules,
101	please see Supplementary Methods 2).
102	Each intervention group received distinctive nutritional guidance in addition to the
103	physical activity (PA) instruction. For the HDG, the participants received basic
104	health-promoting guidelines for maintaining a healthy diet. For the MED diet, the
105	participants received guidelines for maintaining a calorie-restricted traditional MED
106	diet, low in simple carbohydrates, as described in our previous papers (21, 22). The
107	MED diet was rich in vegetables, with beef and lamb being replaced by poultry and
108	fish.
109	Both MED diets included 28gr walnuts per day. In addition to 28 gr walnuts/day
110	provided, the green-MED was lower in processed and red meat than the MED diet,
111	and richer in plants and polyphenols – consumed via 3–4 cups/day of green tea and
112	500ml of a Mankai-based (cultivated duckweed product) (23-25), green shake at

dinner. Both MED diets were equally calorie-restricted (1500–1800 kcal/day for

114 males and 1200–1400 kcal/day for females).

All participants received a free gym membership and PA guidelines; additional

116 lifestyle interventions included periodical 90-min nutritional and PA sessions in the

117 workplace, provided by a multidisciplinary team of physicians, clinical dietitians, and

118 fitness instructors (Lifestyle sessions are detailed in Supplementary Methods 3.)

119 Clinical measurement outcomes

120 Clinical and anthropometric biomarkers were measured at the baseline and 18 months

121 later. Height was measured to the nearest millimeter using a standard wall-mounted

122	stadiometer. Body weight was measured without shoes and rounded to the nearest
123	0.1kg. WC was measured halfway between the lowest rib and the iliac crest, to the
124	nearest millimeter, using standard procedures and an anthropo-metric measuring tape.
125	Two blood pressure (BP) measurements and heart rate measurements were recorded
126	after resting using an automatic BP monitor. BP was calculated as the mean of the
127	two measurements. Blood samples were taken at 8 am, following a 12-hour fast.
128	(Further laboratory methods are detailed in Supplementary Methods 4.)
129	MRI and image analysis outcomes
130	Brain MRI was assessed at the baseline (n=284 participants) and then again, 18
131	months later (n=224 participants) using a 3.0T magnetic resonance scanner (Philips
132	Ingenia, Best, The Netherlands). Retention rates during the DIRECT PLUS trial were
133	98% at six months into the intervention and 90% at the end of the 18-month
134	intervention; eligible brain MRIs at the 18-month timepoint were achieved for 224
135	participants (79%). Reasons for dropout were limited to a lack of motivation and
136	medical issues not related to the study. The attrition rate was similar across the
137	intervention groups (HDG: 16%, MED: 25%, Green-MED: 23%, p= 0.24 between
138	groups).
139	Brain MRI-derived data were quantified and segmented in a fully automated manner,
140	using the NeuroQuant (FDA-approved software), to yield hippocampal and lateral-
141	ventricle volume measurements. Our a priori primary assessment addressed
142	differences in changes to brain volumes: the hippocampal occupancy score (HOC),
143	calculated as the average between hippocampal volume to [hippocampal volume +

144 inferior lateral ventricle volume] for each hemisphere separately (18).

145 Statistical analysis

146	Our primary endpoint was a change in the HOC. (Supplementary Methods 5 details
147	the sample-size calculations.) Continuous variables are presented as mean \pm SD
148	and n (%) for categorical variables. To determine normal distribution, the dependent
149	variables were analyzed using the Shapiro-Wilk test and histogram interrogation.
150	Baseline characteristics of the study population were analyzed across sex-specific
151	tertiles of the HOC deviation, measured by the residuals (deviation of HOC volume)
152	from the predicted chronological age values (19) (For more details, please see
153	Supplementary Methods 6). The Kendall τ correlation was used to examine the P-
154	trend in variable changes across groups. Associations between HOC deviation and
155	baseline characteristics were explored via partial linear correlations, adjusted for age.
156	Multivariate linear regression models were used to identify changes to metabolic
157	markers associated with the 18-month HOC deviation changes. Three stepwise
158	models were also performed: Model 1, crude; Model 2, Model 1 + age (years) and sex
159	(male/female); Model 3, model 2 + weight change (kg) and intervention group
160	(HDG/MED/green-MED). A chi-square test is used in statistics to determine if there
161	is a significant association between two categorical variables. Changes in outcomes
162	were assessed using ANOVA tests, adjusted to the values of the parameter of interest.
163	HOC change and HOC deviation change across three diabetes status change groups
164	are adjusted for age, sex, weight change, and lifestyle intervention. The 18-month
165	HOC deviation changes across two levels 'green' dietary components consumption
166	comparison is adjusted for age, sex, and weight change. Finally, mediation analyses
167	were performed to assess whether glycemic biomarkers mediated the relationship
168	between the levels of 'green' dietary components and the 18-month changes in HOC
169	deviations. Significance was set at p<0.05. Statistical analyses were performed using

\sim		D	re-				
U			10-		U	U	

170 SPSS software, version 28.0 (IBM, Armonk, NY, USA), and using R, Version 4.2.0

171 (R Foundation for Statistical Computing, Vienna, Austria).

172 **Results**

- **Table 1** presents the baseline characteristics of the DIRECT PLUS trial participants
- across sex-specific tertiles of brain aging (n=284). At the baseline, the participants'
- mean measures were as follows: weight=94kg, BMI=31.2kg/m², WC=110cm,
- 176 BP=130/81 mmHg, insulin levels=15mg/dL, and hemoglobin A1c (HbA1c)=5.5%.
- 177 Higher than expected HOC deviations by chronological age (i.e., younger brain than
- anticipated for the given age) were significantly associated with lower body weight
- 179 (r=-0.204, 95% CI [-0.298, -0.101]), BMI (r=-0.229, 95% CI [-0.337, -0.118]), WC
- 180 (r=-0.207, 95% CI [-0.310, -0.103]), systolic BP (r=-0.189, 95% CI [-0.308, -0.061]),
- 181 diastolic BP (r=-0.186, 95% CI [-0.304, -0.072]), Insulin (r=-0.099, 95% CI [-0.194, -
- 182 0.004]) and HbA1c (r=-0.164, 95% CI [-0.337, -0.006]) age-adjusted for all. The
- 183 means of significant baseline characteristics for each tertile with the absolute HOC
- score scale distribution between HOC deviation tertiles and the correlation between
- the HOC deviation and the baseline characteristics is presented in Supplementary
- 186 Figure 1. For more details on obesity status and HOC deviation, please refer to
- 187 Supplementary Figure 2.
- 188 HOC deviation: dynamics during the intervention

Table 2 presents the 18-month changes in HOC deviations from the expected scores

by chronological age, based on changes in anthropometric measures and in

- biomarkers. In the multiple linear regression models (adjusted for age, sex, weight
- 192 change, and intervention group), greater HOC 18-months change deviations (i.e., less
- aging than expected for the given intervention time period) were significantly

194	associated with reduced fasting glucose (β =-0.155, 95% CI [-0.293, -0.016]), HbA1c
195	(β=-0.254, 95% CI [-0.392, -0.117]), HOMA-IR (β=-0.200, 95% CI [-0.346, -0.055]),
196	and C-reactive protein (CRP) (β =-0.153, 95% CI [-0.296, -0.010]). In addition, we
197	also found that glycemic control improvement, adjusted for age, sex, intervention
198	groups, and weight change, was associated with greater changes in other brain region
199	deviations following the interventions. A reduction in HbA1c was significantly
200	associated with greater changes in the Thalamus, Caudate nucleus, and cerebellum
201	with β = -0.145; 95% CI [-0.285, -0.006], β = -0.176; 95% CI [-0.314, -0.039], and β
202	= -0.159; 95% CI [-0.3, -0.018], respectively. For more details on the improvement in
203	glycemic control parameters and other brain regions, please see Supplementary Table
204	1. Favorable changes to diabetes status (26, 27) during the intervention were directly
205	associated with HOC deviation changes (adjusted for sex, weight change, and
206	intervention group, p=0.009 between groups; Figure 1A). Such favorable diabetes
207	status changes were defined as a decrease from HbA1c(mmol/mol)≥38.8 (5.7%) pre-
208	diabetes/diabetes to HbA1c(mmol/mol)<38.8 (5.7%) normal levels status.
209	Participants who exhibited a favorable change in their diabetes status also presented
210	greater mean HOC deviation changes compared to their counterparts with either no
211	change to their diabetes status (0.010, 95% CI [0.002, 0.019]) or with an unfavorable
212	change (from normal to pre-diabetes/diabetes: 0.012, 95% CI [0.002, 0.023]).
213	Significance values were corrected for multiple comparisons using Bonferroni's
214	method. Similarly, this favorable diabetes status change was also associated with
215	greater HOC changes (between groups, p=0.005; Figure 1B). A favorable change in
216	diabetes status was associated with greater mean HOC changes compared to their
217	counterparts with either no change in diabetes status (1.248, 95% CI [0.272, 2.224])
218	or with an unfavorable change (from normal to pre-diabetes/diabetes, 1.541, 95% CI

219	[0.334, 2.748]). Significance values were corrected for multiple comparisons using
220	Bonferroni's method. Participants' glycemic parameter responses in the lower tertile
221	(insulin mean \pm SD=-7.85 \pm 4.78, glucose=-11.51 \pm 12.82, and HOMA-IR=-2.26 \pm 1.78)
222	were directly associated with greater HOC deviation changes (means of 0.003, 0.002,
223	and 0.002 compared to -0.002, -0.002, and -0.002 for insulin, glucose and HOMA-IR,
224	respectively) – adjusted for age, sex, weight change, and intervention group (p< 0.05
225	for all). (For further details, please see Supplementary Figure 3.)
226	We also examined the improvement in glycemic status following the study, which
227	refers to a transition from HbA1c (mmol/mol)≥38.8 (5.7%) – indicating pre-diabetes
228	or diabetes, to HbA1c (mmol/mol)<38.8 (5.7%) – indicating normal glycemic levels.
229	The greatest glycemic improvement was seen among the MED-diet groups, especially
230	the green-MED diet one, where 58.33% of the participants show such an
231	improvement, compared to 31.62% and 28.57% of the participants on the MED-diet
232	and HDG, respectively (p=0.04, 95% CI [0.037, 0.044] between the green-MED and
233	the HDG group; p=0.03, 95% CI [0.029, 0.036] between the two MED-diet groups
234	and the HDG group).
235	Finally, participants from the green-MED diet group tended to exhibit greater HOC
236	deviation changes (i.e., attenuation of brain-age decline) compared to those in the
237	MED and HDG groups (mean=0.002 compared to mean=-0.001; p=0.082, 0.003,
238	95% CI [-0.0004, 0.006]). Higher consumption of Mankai and green tea, the specific
239	green-MED dietary components (Figure 2), was directly linked to greater HOC
240	deviation changes adjusted for age, sex, and weight change. Specifically,

consumption of the Mankai shake more than three times/week was found to be

associated with greater mean HOC deviation changes compared to lower

consumption (0.006, p=0.046, 95% CI [0.0001, 0.0115]). Participants who consumed

 \geq two cups/day green tea tended to exhibit greater HOC deviation changes (0.007,

245 p=0.069, 95% CI [-0.001, 0.015]).

In another set of mediation analyses, when the treatment is the intake levels of

247 Mankai, adjusted for age, sex, and weight change, we found significant differences in

the Average direct effect (ADE) for HOMA-IR and insulin (p = 0.026 and 0.032,

respectively), with a tendency for HbA1c and glucose (p = 0.08 and 0.056,

respectively). There was also a tendency in the total effect for glucose, insulin, and

HOMA-IR (p = 0.06, 0.056, and 0.076, respectively). No significant effects were

found for the green tea treatment in this model (for further details of the mediation

analyses, please refer to Supplementary Result 1.)

254 Discussion

In this ancillary study of the 18-month DIRECT PLUS brain-MRI trial, that included 255 284 participants with abdominal obesity or dyslipidemia, we found that improved 256 glycemic control following weight-loss interventions may have an independent 257 258 beneficial effect on MRI-assessed brain age. Following the 18-month lifestyle intervention, we observed a significant greater change in HOC residuals (i.e., 259 attenuation of brain-age decline), mainly in participants with improved glycemic-260 control markers. Younger brain age was driven by greater consumption of high 261 polyphenols: green tea and Mankai. Our findings suggest a potential mechanistic 262 pathway for driving the favorable impact of high polyphenol diets. Moreover, the 263 consumption of polyphenol-rich foods, such as green tea and Mankai, may enrich the 264 blood-brain barrier (BBB), reduce BP, and attenuate age-related brain atrophy (28). 265 266 (For further details, please see Supplementary Discussion 1.)

267	We also found that lower weight, blood pressure, WC, insulin, and HbA1c at the
268	baseline were linked to younger HOC than expected for the given chronological age.
269	The hippocampus plays a major role in learning and memory (29), and accumulating
270	evidence suggests that age-related hippocampal atrophy may serve as an early
271	biomarker for cognitive decline. At the same time, we previously showed that
272	ventricular volume increase with age (19). Hence, the HOC score, as the ratio of the
273	hippocampal volume to the sum of the hippocampal volume and the ventricular
274	volume, is serves as a sensitive predictive measurement of cognitive decline and of
275	the progression from MCI to AD (30). Disturbed metabolic parameters (such as BMI,
276	cholesterol, and glycemic parameters) are known to be correlated with accelerated
277	brain atrophy and a cognitive decline (31, 32). This atrophy acceleration of brain
278	aging can be assessed by the brain age gap (33), which is calculated as the difference
279	between the anatomical brain age and the chronological age.
280	In this study, we observed a correlation between the baseline HOC, age, and BMI – in
281	line with a previous study in which high BMI was found to serve as a biomarker of
282	older brain age (34). However, it should be noted that in contrast to the observed
283	associations between the BMI and HOC residuals at the baseline, the participants'
284	weight changes did not significantly contribute to the prediction of HOC residual
285	changes. This suggests that such changes may take longer to manifest, compared to
286	changes in glycemic levels. Supporting this hypothesis, we recently reported that
287	successful weight loss following a lifestyle intervention might have a beneficial effect
288	on the trajectory of brain aging, as assessed by MRI-assessed RSFC (20). However,
289	further studies are needed to fully explore this effect.

290 The fact that greater changes to HOC residuals were observed in participants with291 improved glycemic control and inflammation markers beyond weight loss supports

292	our hypothesis that reduction in glycemic biomarkers have an independent effect on
293	the neuroprotective benefits of diet and may play a major role in attenuating
294	neurodegeneration. Few studies have examined the relationship between biomarker
295	changes and brain atrophy following a lifestyle intervention (35). Our results indicate
296	that improvements in simple-to-measure biomarkers, through lifestyle interventions,
297	improve brain aging. Similarly, we demonstrated that lifestyle-induced improvements
298	in diabetes status (pre-diabetes to normal status, assessed by routine clinical
299	measurements) were directly associated with a greater HOC deviation changes.
300	Moreover, improved (i.e., reduced) levels of the CRP inflammatory marker, which is
301	associated with diabetes (36), was also found to be linked to HOC improvements.
302	In a previous study, we reported that Mankai (as a study-case green plant) could
303	ameliorate the occurrence of postprandial glucose spikes (37), possibly explaining the
304	apparent beneficial effect of Mankai on HOC. Several processes have been suggested
305	regarding the effect of glucose metabolism disruption in the brain, such as tau protein
306	degradation, neuroinflammatory responses, and amyloidogenesis (4). Impaired
307	glucose metabolism is known to increase oxidative stress, resulting in an
308	accumulation of amyloid β -protein and brain neurodegeneration. Furthermore, high
309	brain insulin levels may increase amyloid β -protein secretion and inhibit its
310	degradation, by competing for insulin-degrading enzymes. Given the selective
311	distribution of insulin receptors in the hippocampus, insulin resistance, and
312	hyperinsulinemia may particularly contribute to atrophy in these areas (13).
313	In addition, there is evidence that subjects with a midlife glycemic dysfunction
314	exhibit higher hippocampal atrophy than those with late-life glycemic dysfunction
315	(13, 16). It also has been shown regarding the cognitive aspect that AD or MCI
316	patients with type 2 diabetes had similar amyloid β deposition but were associated

317	with greater CSF total tau and phosphorylated tau concentrations than those without
318	type 2 diabetes (38). In addition, in human post-mortem brain tissue, insulin mRNA
319	transcripts have been identified, especially in the hippocampus and hypothalamus,
320	with low levels in AD individuals. Insulin receptors are expressed on all cell types in
321	the brain, with the highest density in several regions, such as the hippocampus (39).
322	The variance of insulin receptor distribution in the brain can indicate that insulin
323	signaling has essential and diverse roles in the brain.
324	In the current analysis, beyond weight change, higher consumption of green-MED
325	components such as Mankai and green tea was directly associated with greater HOC
326	deviation changes; participants from the green-MED diet group also tended to exhibit
327	greater HOC deviation changes compared to the MED and HDG diet groups. A
328	previous clinical trial provides evidence that a MED diet, that is rich in polyphenols,
329	may attenuate age-related cognitive decline (40). The potential underlying mechanism
330	of such a favorable association between MED diets and age-related
331	neurodegeneration could be partially attributed to the high content of polyphenols that
332	are present in plant-based food sources (41). The Mankai plant includes over 200
333	polyphenols and phenolic metabolites (24), and has high phenolic and antioxidant
334	content, with a high concentration of the flavonoid-class polyphenols luteolin and
335	apigenin derivatives. Green tea contains catechins, specifically epigallocatechin
336	(EGC), epicatechin gallate (ECG), and epigallocatechin gallate (EGCG) polyphenols
337	(42). Consuming green tea, as either a beverage or an extract, has numerous reported
338	health benefits, including improvements in cardiometabolic health (43), weight
339	management (42), and cognitive function (44). Polyphenols are known to be able to
340	cross the BBB, reduce neuroinflammation, and induce cell proliferation and adult-
341	onset neurogenesis in the hippocampus (45). However, limited intervention-trial data

342 exists regarding the potential for reducing age-related atrophy in response to

343 polyphenol consumption (46).

344 Limitations and future research

Despite the important contribution of this study to the literature, a number of research 345 limitations should be addressed. First, although HOC and other structural changes are 346 predictors of cognitive impairments (47), this study lacks data about the participants' 347 educational or cognitive status. Moreover, the high proportion of male participants in 348 this trial (88%) may limit the generalizability of our findings to females. In addition, 349 the change in diabetes status was assessed based on HbA1c values following the 350 intervention, although it could also be determined using other biomarkers, such as 351 glucose levels. At the same time, the HbA1c test is the primary tool for assessing 352 glycemic status in both clinical practice and clinical trials, and it is strongly linked to 353 diabetes complications (48). Also, we cannot attribute the effect solely to 354 355 polyphenols; it is possible that the lower consumption of red meat also had an impact. 356 However, under the same reduced consumption of red meat, a high intake of green components was associated with changes in HOC deviation throughout the 357 intervention. Finally, HOC is only our primary outcome and is used as a proxy for 358 brain age, but additional brain regions were evaluated in this analysis. We found that 359 changes in glycemic biomarkers following the intervention play a major role in other 360 brain regions as well (For further details regarding the improvement in glycemic 361 control parameters and other brain regions please see Supplementary Table 1.) 362 363 Future studies could benefit from assessing additional brain regions and from expanding the population groups in the study. The study's strengths include MRI 364 brain scans, considered the state of the art in imaging techniques, large sample size, 365 366 and the use of accurate imaging techniques with validated brain-volumetric methods.

In addition, this trial is characterized by its long duration and high adherence. Another
strength of the study is the recruitment of participants from a closed workplace
environment, thereby providing a unique opportunity for closely monitoring the
participants' dietary intake. The workplace also offered on-site access to a medical
clinic, ongoing dietary guidance, and regular group meetings with a multidisciplinary
team. Finally, the participants in the green-MED diet group were provided with
polyphenol-rich food sources, free of charge.

374 Conclusion

The secondary analysis of the DIRECT-PLUS trial presented in this study suggests

that improved glycemic control contributes to the neuroprotective benefit of MED

and green-MED diets on brain age. The study also indicates that polyphenols-rich diet

378 components as Mankai and green-tea may contribute to a more youthful brain age. If

379 confirmed by additional studies, this finding may indicate an accessible, low-risk, and

380 practical approach to attenuating age-related neurodegeneration, which could hold

381 potential clinical significance for future applications in cognitive health.

382 Acknowledgments:

We would like to thank Dr. Assaf Rudich from the Ben-Gurion University of the
Negev, as well as Efrat Puplin, Eyal Goshen, Avi Ben Shabat, and Benjamin Sarusi
from the Nuclear Research Center Negev, for their invaluable contribution to this
study.

387

The authors' responsibilities were as follows: DP, AK, GT, and I Shai designed the research, wrote the paper, and had primary responsibility for the final content; AK,

390 GT, HZ, AYM, ER, and GL conducted the research; DP, AK, SH, FB, PK, MvB, and

391	UC analyzed the data; MS, YY, VW, MB, MS, FBH, MJS, AF, I Shelef, and GA
392	reviewed and edited the manuscript; and finally, all authors read and approved the
393	submitted manuscript.
394	Data availability: All data described in the article, code book, and analytic code will
395	be made available upon request, pending the approval of the principal
396	investigator (<u>irish@bgu.ac.il</u>).
397	Funding: This study was supported by the German Research Foundation (DFG)
398	project number 209933838 (SFB 1052; B11) (to I Shai); the Israel Ministry of Health
399	grant 87472511 (to I Shai); the Israel Ministry of Science and Technology grant 3-
400	13604 (to I Shai); and the California Walnut Commission (to I Shai). DP is a
401	recipient of the Kreitman Doctoral Fellowship at the Ben-Gurion University of the
402	Negev. None of the funding providers were involved in any stages of the design,
403	conducting, or analysis of the study, nor did they have access to the study results prior
404	to publication.
405	MB received honoraria for lectures and consultancy from Amgen, Astra Zeneca,
406	Bayer, Boehringer-Ingelheim, Lilly, Novartis, Novo Nordisk, and Sanofi. All other
407	authors report no conflicts of interest.
408	
409	
410	
411	
412	
413	
414	

415	References							
416	1. Mufson EJ, Mahady L, Waters D, Counts SE, Perez SE, DeKosky S, et al. Hippocampal							
417	plasticity during the progression of Alzheimer's disease. Neuroscience. 2015;309:51-67.							
418	2. Ekman U, Ferreira D, Westman E. The A/T/N biomarker scheme and patterns of							
419	brain atrophy assessed in mild cognitive impairment. Scientific reports. 2018;8(1):8431.							
420	3. Kivipelto M, Ngandu T, Fratiglioni L, Viitanen M, Kåreholt I, Winblad B, et al. Obesity							
421	and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Archives							
422	of neurology. 2005;62(10):1556-60.							
423	4. Roberts RO, Knopman DS, Przybelski SA, Mielke MM, Kantarci K, Preboske GM, et al.							
424	Association of type 2 diabetes with brain atrophy and cognitive impairment. Neurology.							
425	2014;82(13):1132-41.							
426	5. Chételat G, Villemagne VL, Bourgeat P, Pike KE, Jones G, Ames D, et al. Relationship							
427	between atrophy and β -amyloid deposition in Alzheimer disease. Annals of neurology.							
428	2010;67(3):317-24.							
429	6. Yaffe K, Kanaya A, Lindquist K, Simonsick EM, Harris T, Shorr RI, et al. The metabolic							
430	syndrome, inflammation, and risk of cognitive decline. Jama. 2004;292(18):2237-42.							
431	7. Berr C, Balansard B, Arnaud J, Roussel AM, Alperovitch A, Group ES. Cognitive							
432	decline is associated with systemic oxidative stress: the EVA study. Journal of the American							
433	Geriatrics Society. 2000;48(10):1285-91.							
434	8. Callisaya ML, Beare R, Moran C, Phan T, Wang W, Srikanth VK. Type 2 diabetes							
435	Dishetelegia, 2010;62(2):448,58							
430	Didbelologid. 2019;02(3):446-58.							
457	9. Vali Gennip AC, Stellouwer CD, Vali Boxtel MP, Verley FR, Rostel A, Riboli AA, et al.							
430	with structural brain abnormalities, cognitive performance, and risk of dementia. Diabetes							
435	care 2021-44(11)-2493-502							
441	10. Last D. Alson DC. Abdulialil AM. Marquis RP. De Bazelaire C. Hu K. et al. Global and							
442	regional effects of type 2 diabetes on brain tissue volumes and cerebral vasoreactivity.							
443	Diabetes care, 2007:30(5):1193-9.							
444	11. Tiehuis AM, Van der Graaf Y, Visseren FL, Vincken KL, Biessels GJ, Appelman AP, et							
445	al. Diabetes increases atrophy and vascular lesions on brain MRI in patients with							
446	symptomatic arterial disease. Stroke. 2008;39(5):1600-3.							
447	12. Espeland MA, Bryan RN, Goveas JS, Robinson JG, Siddiqui MS, Liu S, et al. Influence							
448	of type 2 diabetes on brain volumes and changes in brain volumes: results from the							
449	Women's Health Initiative Magnetic Resonance Imaging studies. Diabetes care.							
450	2013;36(1):90-7.							
451	13. Hirabayashi N, Hata J, Ohara T, Mukai N, Nagata M, Shibata M, et al. Association							
452	between diabetes and hippocampal atrophy in elderly Japanese: the Hisayama study.							
453	Diabetes care. 2016;39(9):1543-9.							
454	14. Garfield V, Farmaki AE, Eastwood SV, Mathur R, Rentsch CT, Bhaskaran K, et al.							
455	HbA1c and brain health across the entire glycaemic spectrum. Diabetes, Obesity and							
456	Metabolism. 2021;23(5):1140-9.							
457	15. Gold S, Dziobek I, Sweat V, Tirsi A, Rogers K, Bruehl H, et al. Hippocampal damage							
458	and memory impairments as possible early brain complications of type 2 diabetes.							
459	Diabetologia. 2007;50:711-9.							
460	16. Hirabayashi N, Hata J, Furuta Y, Ohara T, Shibata M, Hirakawa Y, et al. Association							
461	between diabetes and gray matter atrophy patterns in a general older Japanese population:							
462	the Hisayama Study. Diabetes care. 2022;45(6):1364-71.							

463 17. De Bresser J, Tiehuis AM, Van Den Berg E, Reijmer YD, Jongen C, Kappelle LJ, et al. 464 Progression of cerebral atrophy and white matter hyperintensities in patients with type 2 465 diabetes. Diabetes care. 2010;33(6):1309-14. 466 18. Heister D, Brewer JB, Magda S, Blennow K, McEvoy LK, Initiative AsDN. Predicting 467 MCI outcome with clinically available MRI and CSF biomarkers. Neurology. 468 2011;77(17):1619-28. 469 19. Kaplan A, Zelicha H, Yaskolka Meir A, Rinott E, Tsaban G, Levakov G, et al. The effect 470 of a high-polyphenol Mediterranean diet (Green-MED) combined with physical activity on 471 age-related brain atrophy: The Dietary Intervention Randomized Controlled Trial 472 Polyphenols Unprocessed Study (DIRECT PLUS). The American Journal of Clinical Nutrition. 473 2022;115(5):1270-81. 474 Levakov G, Kaplan A, Yaskolka Meir A, Rinott E, Tsaban G, Zelicha H, et al. The effect 20. 475 of weight loss following 18 months of lifestyle intervention on brain age assessed with 476 resting-state functional connectivity. Elife. 2023;12:e83604. 477 21. Shai I, Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S, Greenberg I, et al. Weight 478 loss with a low-carbohydrate, Mediterranean, or low-fat diet. New England Journal of 479 Medicine. 2008;359(3):229-41. 480 22. Gepner Y, Golan R, Harman-Boehm I, Henkin Y, Schwarzfuchs D, Shelef I, et al. 481 Effects of initiating moderate alcohol intake on cardiometabolic risk in adults with type 2 482 diabetes: a 2-year randomized, controlled trial. Annals of internal medicine. 483 2015;163(8):569-79. 484 Kaplan A, Zelicha H, Tsaban G, Meir AY, Rinott E, Kovsan J, et al. Protein 23. 485 bioavailability of Wolffia globosa duckweed, a novel aquatic plant-A randomized controlled 486 trial. Clinical Nutrition. 2019;38(6):2576-82. 487 24. Yaskolka Meir A, Tuohy K, von Bergen M, Krajmalnik-Brown R, Heinig U, Zelicha H, et 488 al. The metabolomic-gut-clinical axis of Mankai plant-derived dietary polyphenols. Nutrients. 489 2021;13(6):1866. 490 25. Sela I, Yaskolka Meir A, Brandis A, Krajmalnik-Brown R, Zeibich L, Chang D, et al. 491 Wolffia globosa–mankai plant-based protein contains bioactive vitamin B12 and is well 492 absorbed in humans. Nutrients. 2020;12(10):3067. 493 26. Association AD. Diagnosis and classification of diabetes mellitus. Diabetes care. 494 2014;37(Supplement 1):S81-S90. 495 27. Bansal N. Prediabetes diagnosis and treatment: A review. World J Diabetes 2015; 6 496 (2): 296-303. Go to original source Go to PubMed. 2020. 497 28. Figueira I, Tavares L, Jardim C, Costa I, Terrasso AP, Almeida AF, et al. Blood-brain 498 barrier transport and neuroprotective potential of blackberry-digested polyphenols: an in 499 vitro study. European journal of nutrition. 2019;58:113-30. 500 Deng W, Aimone JB, Gage FH. New neurons and new memories: how does adult 29. 501 hippocampal neurogenesis affect learning and memory? Nature reviews neuroscience. 502 2010;11(5):339-50. 503 30. McEvoy LK, Brewer JB. Biomarkers for the clinical evaluation of the cognitively 504 impaired elderly: amyloid is not enough. Imaging in medicine. 2012;4(3):343. 505 31. Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. Dementia 506 prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet. 507 2020;396(10248):413-46. 508 32. Taki Y, Kinomura S, Sato K, Inoue K, Goto R, Okada K, et al. Relationship between 509 body mass index and gray matter volume in 1,428 healthy individuals. Obesity. 510 2008;16(1):119-24. 511 33. Baecker L, Garcia-Dias R, Vieira S, Scarpazza C, Mechelli A. Machine learning for 512 brain age prediction: Introduction to methods and clinical applications. EBioMedicine. 513 2021;72:103600.

514 34. Hofmann SM, Beyer F, Lapuschkin S, Goltermann O, Loeffler M, Müller K-R, et al. 515 Towards the Interpretability of Deep Learning Models for Multi-modal Neuroimaging: 516 Finding Structural Changes of the Ageing Brain. bioRxiv. 2022:2021.06. 25.449906. 517 35. Radd-Vagenas S, Duffy SL, Naismith SL, Brew BJ, Flood VM, Fiatarone Singh MA. 518 Effect of the Mediterranean diet on cognition and brain morphology and function: a 519 systematic review of randomized controlled trials. The American journal of clinical nutrition. 520 2018;107(3):389-404. 521 Muriach M, Flores-Bellver M, Romero FJ, Barcia JM. Diabetes and the brain: 36. 522 oxidative stress, inflammation, and autophagy. Oxidative medicine and cellular longevity. 523 2014;2014. 524 37. Zelicha H, Kaplan A, Yaskolka Meir A, Tsaban G, Rinott E, Shelef I, et al. The effect of 525 Wolffia globosa Mankai, a green aquatic plant, on postprandial glycemic response: a 526 randomized crossover controlled trial. Diabetes Care. 2019;42(7):1162-9. 527 38. Biessels GJ, Nobili F, Teunissen CE, Simó R, Scheltens P. Understanding multifactorial 528 brain changes in type 2 diabetes: a biomarker perspective. The Lancet Neurology. 529 2020;19(8):699-710. 530 39. Arnold SE, Arvanitakis Z, Macauley-Rambach SL, Koenig AM, Wang H-Y, Ahima RS, et 531 al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and 532 conundrums. Nature Reviews Neurology. 2018;14(3):168-81. 533 Valls-Pedret C, Sala-Vila A, Serra-Mir M, Corella D, De la Torre R, Martínez-González 40. 534 MÁ, et al. Mediterranean diet and age-related cognitive decline: a randomized clinical trial. 535 JAMA internal medicine. 2015;175(7):1094-103. 536 41. Billingsley HE, Carbone S. The antioxidant potential of the Mediterranean diet in 537 patients at high cardiovascular risk: an in-depth review of the PREDIMED. Nutrition & 538 Diabetes. 2018;8(1):13. 539 Huang J, Wang Y, Xie Z, Zhou Y, Zhang Y, Wan X. The anti-obesity effects of green tea 42. 540 in human intervention and basic molecular studies. European journal of clinical nutrition. 541 2014;68(10):1075-87. 542 43. Hooper L, Kroon PA, Rimm EB, Cohn JS, Harvey I, Le Cornu KA, et al. Flavonoids, 543 flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. 544 The American journal of clinical nutrition. 2008;88(1):38-50. 545 Park S-K, Jung I-C, Lee WK, Lee YS, Park HK, Go HJ, et al. A combination of green tea 44. 546 extract and I-theanine improves memory and attention in subjects with mild cognitive 547 impairment: a double-blind placebo-controlled study. Journal of medicinal food. 548 2011;14(4):334-43. 549 45. Dias GP, Cavegn N, Nix A, do Nascimento Bevilaqua MC, Stangl D, Zainuddin MSA, et 550 al. The role of dietary polyphenols on adult hippocampal neurogenesis: molecular 551 mechanisms and behavioural effects on depression and anxiety. Oxidative medicine and 552 cellular longevity. 2012;2012. 553 46. Ammar A, Trabelsi K, Boukhris O, Bouaziz B, Mueller P, M Glenn J, et al. Effects of 554 polyphenol-rich interventions on cognition and brain health in healthy young and middle-555 aged adults: systematic review and meta-analysis. Journal of clinical medicine. 556 2020;9(5):1598. 557 47. Smith C, Chebrolu H, Wekstein D, Schmitt F, Jicha G, Cooper G, et al. Brain structural 558 alterations before mild cognitive impairment. Neurology. 2007;68(16):1268-73. 559 6. Glycemic goals and hypoglycemia: Standards of Care in Diabetes - 2024. Diabetes 48. 560 care. 2024;47(Supplement_1):S111-S25. 561

563 <u>Table 1</u>: Baseline characteristics of the DIRECT-PLUS trial participants across

564 sex-specific tertiles of brain aging: MRI-assessed HOC deviation from expected

565 for age

	Lower tertile:	Median tertile:	Higher tertile:		
	HOC lower	HOC expected	HOC higher	Entire	Correlation with
	than expected	for age	than expected	(n=284)	HOC deviation ³
	for age		for age		
	(older)		(younger)		
Mean HOC deviation male (n=251)	-0.04±0.03	0.00±00	0.04±0.04	-0.002±0.39	
Mean HOC deviation female (n=33)	-0.01±0.01	0.00±00	0.04±0.001	0.0134±0.22	
Age, years	50.48 ± 10.85	50.25 ± 9.77	52.41±11.31	51.1±10.5	-
Weight, kg	96.48 ± 14.86	93.73 ±14.00	90.65 ±13.96	93.63±14.4	-0.204
BMI kg/m^2	32 37+ 6 34	31 03+ 3 82	30 31+ 3 39	31 2+3 9	_0 229
Divit, Ke/iii	52.57± 0.54	51.05± 5.02	50.512 5.57	51.2±5.7	CI [-0.337, -0.118]
WC, cm	111.61±10.43	109.44 ±8.59	108.01 ± 9.27	109.7±9.5	-0.207
	00 (0 . 11 47	01.42.0.46	70.24 0.02	01 14 10 24	CI [-0.310, -0.103]
DBP, mm Hg	82.03±11.47	81.43±9.46	/9.34± 9.83	81.14±10.34	-0.186 CI [-0.304, -0.072]
SBP, mm Hg	131.90±14.74	130.03±13.86	129.33±13.61	130.4±14.07	-0.189
					CI [-0.308, -0.061]
Glucose mg/dL	101.82±17.69	101.77±18.59	102.61±15.69	102.0±17.32	-0.028
					CI [-0.136, 0.102]
Insulin μU/mL	15.24 ±7.65	14.82 ± 8.86	13.68 ±6.46	14.58 ± 7.7	-0.099
					CI [-0.194, -0.004]
HOMA-IR	3.85 ± 2.11	3.81 ±2.72	3.57 ± 1.97	3.74 ± 2.29	-0.064
					CI [-0.166, 0.040]
HbA1c, %	5.55 ± 0.82	5.48 ±0.57	5.44 ±0.53	5.48 ± 0.64	-0.164
HbA1c, mmol/mol	37.2	36.4	36	36.4	CI [-0.337, -0.006]
HDL-c, mg/dL	45.37 ± 10.44	46.16 ± 11.94	46.59 ±12.67	46.04±11.69	0.070
					CI [-0.072, 0.193]
LDL-c, mg/dL	122.27±31.79	129.00±29.79	125.89±31.76	125.7 ± 31.1	0.040
					CI [-0.074, 0.144]
CRP	3.22±2.17	3.07±1.85	2.88±2.15	3.05 ± 2.06	-0.021
					CI [-0.142, 0.096]
TG ¹	4.86 ± 0.36	4.9 ±0.42	4.92 ±0.5	4.90 ±0.43	0.060
					CI [-0.055, 0.167]
APOE-ε4 allele, %	15.1	12.6	19.6	15.71	0.039 ²
					CI [-0.039, 0.116]

566 Mean \pm SD for continuous variables and n (%) for categorical variables. ²Kendall's tau-b test between

567 APOE-ε4 allele groups and HOC deviation. Sex-specific tertiles: 1: male: <=-0.136 cm^{∧3}; female:

568 <=0.007 cm^{3}; 2: male: -0.136 cm^{3} to 0.018 cm^{3}, female: 0.007 cm^{3} to 0.024 cm^{3}; 3: male: >0.018

569 cm^{3} ; female: >0.024 cm³. BMI = body mass index, WC = Waist circumference, DBP = Diastolic

570 blood pressure, SBP = Systolic blood pressure, HOMA-IR = homeostatic model assessment of insulin

- 571 resistance, HbA1c = hemoglobin A1c, HDL-c = high-density lipoprotein cholesterol, LDL-c = low-
- 572 density lipoprotein cholesterol, TG = Triglycerides. ApoE-ɛ4 was considered positive if there was 1
- 573 APOE-c4 allele. ¹Ln transformed values (normally distributed) were used. ³Partial correlation between
- baseline HOC deviation and other parameters adjusted for age and 95% confidence intervals are
- 575 presented.

576 <u>Table 2</u>: Multivariate models for changes in HOC deviation with changes in

577 anthropometric parameters and biomarkers

	Entire group, n=224							
	months crude			Model 2-		Model 3-		
18 months			adj	justed for age, sex	adjusted for age, sex, weight			
changes					change, a	change, and intervention groups		
	β	95%CI	β	95%CI	β	95%CI		
ΔWeight	-0.021	[-0.153, 0.112]	-0.028	[-0.164, 0.109]	-	-		
Δ₩С	0.006	[-0.126, 0.139]	0.000	[-0.136, 0.136]	*	*		
ΔDBP	-0.096	[-0.229, 0.037]	-0.095	[-0.229,0.039]	-0.097	[-0.237, 0.043]		
ΔSBP	-0.093	[-0.226, 0.04]	-0.089	[-0.223,0.044]	-0.085	[-0.221, 0.052]		
ΔGlucose	-0.126	[-0.259,0.007]	-0.146	[-0.282, -0.010]	-0.155	[-0.293, -0.016]		
AHbA1c	-0.225	[-0.355, -0.095]	-0.235	[-0.366, -0.105]	-0.254	[-0.392, -0.117]		
ΔInsulin	-0.101	[-0.234, 0.031]	-0.109	[-0.244, 0.025]	-0.127	[-0.274, 0.021]		
ΔHOMA-IR	-0.158	[-0.290, -0.026]	-0.173	[-0.308, -0.038]	-0.200	[-0.346, -0.055]		
ΔCRP	-0.147	[-0.287, -0.007]	-0.151	[-0.291, -0.010]	-0.153	[-0.296, -0.010]		
ΔHDL-c	-0.066	[-0.199 ,0.067]	-0.073	[-0.211, 0.066]	-0.091	[-0.247, 0.065]		
ALDL-c	-0.085	[-0.217, 0.048]	-0.083	[-0.215, 0.050]	-0.076	[-0.210, 0.059]		
ΔTG	-0.014	[-0.147, 0.119]	-0.024	[-0.16, 0.112]	-0.018	[-0.173, 0.137]		

578

579 Multivariable linear regressions were conducted to assess the association between HOC deviation

580 change and 18-month parameters change. * Cannot be tested in a multivariate model due to collinearity

581 of weight with WC. Model 1: crude analysis, Model 2: adjusted for age and sex, and Model 3 adjusted

582 for age and sex, weight change and intervention group. Coefficients (β) and 95% confidence intervals

583 are reported for each model. Abbreviations: WC, Waist circumference; DBP, Diastolic blood pressure;

584 SBP, Systolic blood pressure; HOMA-IR, Homeostatic Model Assessment of Insulin Resistance;

	D -			
\mathbf{A}		m	()	()

585 HbA1c, Hemoglobin A1c; CRP, C-Reactive Protein; HDL-c, High-Density Lipoprotein Cholesterol;

- 586 LDL-c, Low-Density Lipoprotein Cholesterol; TG, Triglyceride.
- 587 **Figure Captions:**
- 588 **Figure 1:**

A. HOC *Deviation* Change Across Diabetes Status Change Following 18 Months of Intervention B. HOC Change Across Diabetes Status Change Following 18 Months of Intervention

- 591 A+B: MRI-assessed hippocampal occupancy score (HOC) 18-month change deviation from expected
- 592 for chronological age (A), and MRI-assessed HOC 18-month related change (B) with 18-month
- 593 diabetes status change during the intervention. Three groups based on diabetes status change: 1.
- 594 Improved status, 2. Same status, 3. Worsened status (Healthy participant- HbA1c (mmol/mol) < 38.8
- 595 (5.7%), Pre-diabetes and diabetes participants- HbA1c (mmol/mol) \geq 38.8 (5.7%)). A. Mean
- differences between groups: Group 1 vs. Group 2: 0.010 [CI: 0.002, 0.019], Group 1 vs. Group 3:
- 597 0.012 [CI: 0.002, 0.023], Group 2 vs. Group 3: 0.002 [CI: -0.004, 0.009]. B. Mean differences between
- 598 groups: Group 1 vs. Group 2: 1.248 [CI: 0.272, 2.224], Group 1 vs. Group 3: 1.541 [CI: 0.334, 2.748],
- 599 Group 2 vs. Group 3: 0.293 [CI: -0.480, 1.066]. Adjusted for age, sex, weight change, and lifestyle
- 600 intervention, after Bonferroni correction. Density plots represent the HOC/HOC deviation distribution
- 601 according to the three diabetes status groups.
- 602

603 Figure 2: 18-month HOC deviation changes based on the specific Mankai Plant

- and Green Tea; 'green' dietary components
- 605 A+B: HOC deviation change according to specific "green" dietary components. (A) Weekly Mankai
- 606 consumption: low was defined as ≤ 3 /week (n=37), and high as >3/week (n=35). (B) Daily green tea
- 607 consumption: low was defined as $\leq 2/day$ (n=12), and high as $\geq 2/day$ (n=56). Mean differences
- between groups: A. Low compared to high Mankai consumption: -0.006 [CI: -0.0115, -0.0001]. B.
- 609 Low compared to high daily Green-Tea consumption: -0.007 [CI: -0.0152, 0.0006]. Adjusted for age,
- 610 sex, and weight change.
- 611

Declaration of interests

□ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

☑ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Iris Shai reports financial support was provided by German Research Foundation (DFG). Iris Shai reports financial support was provided by The Israel Ministry of Health grant. Iris Shai reports financial support was provided by The Israel Ministry of Science and Technology grant. Iris Shai reports equipment, drugs, or supplies was provided by California Walnut Commission. MB received honoraria for lectures and consultancy from Amgen, Astra Zeneca, Bayer, Boehringer-Ingelheim, Lilly, Novartis, Novo Nordisk, and Sanofi. All other authors report no conflicts of interest. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.