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1 Introduction
1.1 Methods of transforming and storing Energy
Life depends on the ability to convert energy to locally decrease entropy [1]. Kinetic
potential and chemical energy is stored and converted in the form of hunting by
projectile acceleration, movement by building and releasing muscle tension, and
many more. ATP is produced by oxidative phosphorylation via the energy from
oxidation and subsequently used to drive processes in living cells.

Through technical development, humans are now able to exploit the thermal
storage capability of steam, electrical batteries, fuel oxidation and fission, with
fusion energy seemingly in reach. Fuel energy densities increased from around
10MJ/kg when burning coal [2] to over 108 MJ/kg for 235

92U (Uranium-235) fis-
sion and deuterium-tritium 2

1H, 3
1H fusion [3]. Current approaches for fission and

fusion both lead to nuclear waste, but for fusion reactors, waste would reduce
to only the reactor itself and stop radiating significantly in a few hundred years
[3], circumventing permanent underground storage. With the rising energy needs
of humanity, this incentivizes research in harnessing fusion reactions for energy
production.

Figure 1: Average binding energy per
nucleon plotted for different atomic
nuclei. Taken from [3].

The binding energy gives the energy
needed to separate a nucleus into its
nucleons. Every fission and fusion
reaction converts a number of nu-
clei into other nuclei. However, the
sum of resultant binding energies dif-
fers from the sum of the reactant
binding energies. If the binding en-
ergy sum increases during the reac-
tion, more energy will be needed to
separate each nucleon, so under con-
servation of total energy, it has to
be released by the reaction, normally
in the form of electromagnetic radia-
tion or kinetic energy of the products.
As such, energy outputs from fission
and fusion can be understood via the
binding energy difference of the prod-
ucts and reactants. Figure 1 shows the averaged binding energy for some relevant
nuclei. It decreases for big and small mass numbers, with a maximum average
binding energy at and around 56Fe and 62Ni. For heavy nuclei, the average bind-
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1 Introduction

(a) fusion reaction rates, from [3] (b) Impurity radiation, from [5]

Figure 2: Fusion reaction rates in a Maxwellian distributed plasma are depen-
dent on temperature and type of reaction, which is shown in figure 2a. In-
side the plasma, high-Z species radiate energy away, cooling the plasma (fig-
ure 2b). To maximize fusion output, the temperature needs to be optimized
with both effects in mind. (10MK =̂ 860 eV)

ing energy increases during fission into lighter nuclei, so more energy is needed to
separate all nucleons after the reaction. The extra energy was released during the
fission process. For nuclei in the mass range of iron, neither fusion nor fission can
extract further energy. Massive stars have iron cores for this reason [4].

1.2 Fusion Energy Utilization
1.2.1 Optimized Fusion Conditions

To utilize energy from fusion, correct conditions for exothermic fusion reactions
must be established. This is done by heating a confined ensemble region of the
educt nuclei to high pressures and temperatures, creating a plasma. During their
collision, the nuclei are now able to get close enough to have a significant proba-
bility of tunneling through the coulomb barrier of each other, thus fusing together.

In a thermalized plasma, the total fusion reaction rate Rtot depends on the densities
ρ1, ρ2 of both nuclei, plasma volume, temperature and type of reaction, with the
normalized rate R shown in figure 2a. Multiplying by released energy per reaction
Efusion then yields the total fusion power Pfusion = RtotEfusion = ρ1ρ2V R(T )Efusion.
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1.2 Fusion Energy Utilization

Multi-collision processes are possible, but the rates are insignificant at achievable
pressures. For low temperatures, tunneling probabilities vanish. For high tem-
peratures, with kinetic energies not negligible compared to the coulomb barriers,
interactions between the nuclei decrease.

Types of reactions considered are:
2D + 2D −−→ 3T (1.0MeV) + p+ (3.2MeV)
2D + 2D −−→ 3He (0.8MeV) + n (2.5MeV)

(1)

2D + 3T −−→ 4He (3.5MeV) + n (14.1MeV) (2)
2D + 3He −−→ 4He (3.6MeV) + p+ (14.7MeV) (3)
p+ + 11B −−→ 3 4He (Σ 8.7MeV) (4)

Their rate coefficient is shown in figure 2a. Deuterium-tritium fusion is the most
relevant reaction due to its high reaction rate at lower energies [6]. In confined
plasmas, the uncharged neutrons exit the plasma with most of the energy, while re-
actions with charged products only would further heat the plasma. Non-fusing ions
in the plasma are called impurities. For small enough atomic numbers, they may
be fully ionized at fusion temperatures (low-Z impurities). Low-Z impurities, such
as the fusion products, dilute the plasma, decreasing α-particle heating (see sub-
section 1.2.3) and converting some thermal energy to radiation via bremsstrahlung.
High-Z impurities do not fully ionize in the fusion plasma, radiating energy via
ionization and excitation processes as well [7]. At densities relevant for dilution,
they would extinguish the plasma. As shown in figure 2b, radiative losses from
high-Z impurity nuclei are much higher. For low-Z impurities, densities are high,
especially for fusion products like helium, which significantly dilute the plasma.
More detail about impurity radiation is given in section 3.3.

1.2.2 Magnetic Confinement Fusion and Stellarators

The fusion plasma needs to be confined to keep it at temperatures needed for
fusion, because interacting with non-plasma materials would extinguish it. Either
the timescales are small enough that physical distance to the environment in the
vacuum suffices, or the plasma particle trajectories are bent via electromagnetic
fields. In inertial confinement fusion (ICF), small volumes of high-density plasma
are created, leading to a large number of fusion reactions before the plasma can
reach the walls.

Penning traps are an example of the other approach, and confine plasmas radially
with a uniform magnetic field created by a solenoid, and axially in an electric
potential well.
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1 Introduction

Figure 3: Cutaway diagram of the W7X
coils and plasma. Non-planar coils in
silver, planar coils in brown and trim
coils in yellow. Taken from [8]

The plasma particles can only move
along the magnetic field lines, coiling
around them abiding by Lorentz’s
Law. To confine plasmas with mag-
netic fields only, called magnetic
confinement fusion (MCF), a vac-
uum volume with magnetic field
lines constrained to the inside of this
volume needs to be created. This
can be solved by bending the ends
of the solenoid together so it forms
a torus, like the brown coils in fig-
ure 3. Magnetic field lines inside
the toroid form circles (toroidal di-

rection), staying confined, with the plasma particles coiling around them (poloidal
direction).

A naively constructed torus field would have lower magnetic flux densities on
the outer than the inner field lines, leading to so-called ∇B-Drifts. In a section of
higher magnetic flux density, the Lorentz force is larger, tightening the bend of the
particle path around the field line. When moving along a field line perpendicular to
a magnetic flux density gradient, the curvature increases on only one side, causing
a vertical drift perpendicular to both B and ∇B, and opposite for electrons and
ions [3]. Over time ions and electrons separate vertically, creating an electric field.
The electric field in turn leads to higher velocities and greater radii of curvature
in electrical force direction and a E⃗-drift perpendicular to B and E, annihilating
the plasma by wall interactions. If the magnetic field lines loop poloidally as well,
the vertical drift effects along a magnetic field line cancel out and emergent drifts
are suppressed.

A poloidal component of the field lines can be generated by inducing a toroidal
current into the plasma via ramping poloidal field coils. Such an approach is used
by tokamaks. However, analogous to a transformer, the plasma current is propor-
tional to the derivative of the poloidal field coil current. To maintain a constant
plasma current, the coil current would need to increase indefinitely. Alternatively,
a poloidal field component can be introduced directly by adding helical coils of
alternating current direction around the torus [6]. At each crossing of a helical
and toroidal field coil, the coils can technically be rewired so the outgoing wires
are switched, introducing bends into the resulting coils. This procedure can be
used to eliminate toroidally wrapping coils, ending up at the silver coils in figure
3 for the case of W7X.
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1.2 Fusion Energy Utilization

1.2.3 The Lawson Criterion and the triple Product

Figure 4: Achieved triple products. Taken
from [6], edited with data from [3]

A fusion plasma is heated to fu-
sion temperatures externally. Af-
ter starting to fuse, it (partially)
heats itself (Pα) via the charged
fusion products like α-particles in
the case of D-T fusion. Some of
the total energy is lost to the envi-
ronment via impurity radiation or
transport of energetic particles.

Pheat, external + Pα = Ploss (5)

Terms for α-particle heating and
energy losses assuming constant
plasma temperature and density
are derived in [9, 6]. In the case of
plasma ignition, α-particle heating
suffices to keep the plasma at fu-
sion temperatures, and no external heating is needed. Including this into equation
5 yields an inequality necessary for a burning plasma, the Lawson burn criterion:

0
!

⩾ Pheat, external

V
=

3niT

τE
− ∆Ein

2
iR(T )

4
=⇒ niTτE ⩾ 12

∆Ei

T 2

R(T )
, (6)

using the averaged ion number density ni, temperature T , fusion reaction rate
R, kinetic energy ∆Ei of the charged fusion products (α-particle) of a single re-
action and energy confinement time τE = Eplasma/Ploss [6, 10]. The triple prod-
uct niTτE is shown for some experiment runs in figure 4 plotted against tem-
perature, with higher values getting closer to an ignited plasma. With impu-
rities diluting the plasma, α-particle heating at impurity density nz reduces to
Pα,nz = Pα · (1−Znz/ni)

2 due to the dilution of both deuterium and tritium in the
plasma [10]. Defining the fusion energy gain factor Q as the ratio of total fusion
energy to external heating energy, Q will go to infinity for an ignited plasma. For
an economical fusion reactor, Q needs to be much greater than 1, so electricity
used for heating the plasma can be compensated by electricity generated from the
excess heat. ITER aims to reach Q = 10 [6]. For comparable temperatures, higher
fusion products equate to higher gain factors, being good estimators of fusion
capabilities in MCF.
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1 Introduction

1.2.4 W7X Magnetic Field

In general, the closed magnetic field lines in W7X do not reconnect with themselves
after a finite number of toroidal rotations, but they will get arbitrarily close again.
The (approximated) ratio of poloidal rotations to toroidal rotations is called the
rotational transform ι, defined locally via the poloidal and toroidal fluxes [11, 6].

ι :=
dψθ

dψϕ

=
Number of poloidal turns
Number of toroidal turns ≈ RBθ

rBϕ

For irrational ι, field lines have infinite length and form a surface, called magnetic
flux surface. The surfaces are nested inside each other like layers of a toroidal
onion. The most central surface is called the magnetic axis. At rational ι surfaces,
magnetic islands (flux surfaces not containing the magnetic axis) can form from
disturbance field interactions. W7X intentionally introduces disturbance fields for
the 5/5 island chain. The main islands of W7X are shown in figure 9 and 10, with
higher order islands in [12].

1.2.5 Power Exhaust and Divertor

Figure 5: W7X Divertor. Taken
from [13] and edited.

In fusion reactors, plasma heat is conducted
outwards and must be removed, so the vessel
does not overheat. A last closed flux surface
exists, outside of which the innermost part of
the wall (limiter) is intersected by the adja-
cent flux surface. Because the heat conductiv-
ity in toroidal and poloidal direction is much
larger than between flux surfaces [14], most of
the heat flow into the adjacent flux surfaces is
consequently dissipated into the limiter inter-
secting it, instead of being conducted further
outwards. The energetic particles carrying
the heat collide with the limiter, sputtering
impurities back to the plasma core, increasing
radiation losses and cooling the plasma. With
heat flow on the order of MW, power densi-
ties on the limiter much higher than achiev-
able cooling rates would melt it. Thus, W7X
uses a 5/5 island chain with targets outside
the inner separatrix (divertors). Around the
separatrix, ι ≈ 1, and the iota relative to the island goes to zero. Therefore, connec-
tion lengths to the target increase and more heat can be conducted to neighboring
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flux surfaces, spreading out the power dissipated on the divertor. With islands,
impurities are kept outside of the core plasma and stay close to the targets. There,
the energetic plasma particles can transfer energy to the impurities, which gets ra-
diated away isotropically, reducing power densities on the targets even further to
manageable levels of a few MW/m2 [15]. The reduction of heat load via impurity
radiation is called detachment [13].

2 EMC3-Eirene
2.1 Modeling the Edge Plasma Behaviour
In the edge region, plasma interactions with other particles need to be considered.
This includes neutral hydrogen gas and atoms, and ions and atoms of all other
species injected and sputtered by the plasma. The non-hydrogen species in the
plasma are impurities, and together with the neutral hydrogen need to be modeled
when simulating an edge plasma.

“EMC3 is a 3D fluid code for both the background plasma and impu-
rities and solves the [Braginskii] fluid equations by applying a Monte
Carlo method on a locally field-aligned vector basis. EIRENE is a 3D
kinetic Monte Carlo Code for neutral particles, [and while not used
in W7X], radiation transfer and kinetic trace ion impurity transport.”
([16])

2.1.1 Plasma Transport Model

Microscopically, a plasma is described as an ensemble of electrons and ions, each
with a mass, charge position, and velocity vector. Particles interact with each
other and the external electromagnetic field, describing the plasma via their col-
lective behavior. The information about all particles of one species S can be
specified as a distribution function fS(t, r⃗, v⃗), which gives the density of particles
from that species at each position and velocity. The behavior of the plasma is
then described by integration of the Boltzmann equations (7), a system of kinetic
equations relating each distribution function [17, 18].

∂fα
∂t︸︷︷︸
(i)

+
∑
β

∂

∂xβ

(
vβfα

)
︸ ︷︷ ︸

(ii)

+
∑
β

∂

∂vβ

(
Fαβ

mα

fα

)
︸ ︷︷ ︸

(iii)

=
∂fα
∂t

+ v⃗ ·∇fα +
F⃗α

mα

∂fα
∂v⃗

= Cα (7)

with F⃗α,all = Zαe ·
(
E⃗ + v⃗× B⃗

)

7



2 EMC3-Eirene

Here α specifies the species concerned, and β the components of the position and
velocity vector x⃗, v⃗. The change in the density distribution (i) at some position
happens as a consequence of diffusion (ii) to or from that position and force-induced
movement of the particles. This force-induced movement is split into a macroscopic
force-induced movement (iii) from the global field as well as macroscopic charge
density differences, and into the collision term Cα that arises from the microscopic
particle-particle interactions of the species with itself and every other species. The
macroscopic Lorentz force F⃗α is defined such that it does not take small-scale
changes in E⃗ and B⃗ into account, which leaves Cα as an extra term.

Now taking zeroth, first and second-order moments of velocity of the kinetic equa-
tions yields three new equations. When simplified using the definitions of “mean
temperature” Tα, “mean velocity” u⃗α and “particle density” nα,

nα =

∫
ρα dv⃗ u⃗α =

1

nα

∫
v⃗fα dv⃗ Tα =

1

nα

∫
mα

3

(
v⃗ − u⃗α

)2
fα dv⃗ , (8)

they reduce to differential transport equations describing the behavior of those
quantities. They contain collision term integrals and higher-order velocity terms,
which are not described by the equations themselves and must be closed in some
other way, before the equations can be solved for nα(t), u⃗α(t) and Tα(t). Assum-
ing small distribution gradients and thus velocity relaxation to a near Maxwellian
distribution allows ad hoc closures to the transport equations [19, 18], yielding the
Braginskii equations. For use in EMC3, further simplifications (like ignoring paral-
lel diffusion due to much larger parallel transport) were made [20]. These resulted
in equations (9,10,11), governing particle transport (9), momentum transport (10)
and energy transport (11) shown for a model plasma with H+ as the only ion species
[18, 21, 22]. In that specific case ne is equal to ni, otherwise ne =

∑
α niαZα. The

heat conductivity and heat diffusivity κ, χ, fluid viscosity η and diffusion coeffi-
cient D in radial, poloidal and toroidal direction are transport parameters with
values either motivated by other models or to be chosen when running a simulation
(χi, χe, D⊥ = Drad = Dpol).

∇ ·
[
niu⃗i∥e∥ −D⊥I⊥∇ni

]
= Sp (9)

∇∥ ·
[
miniu⃗

2
i∥ − ηe∥∇u⃗i∥

]
−∇⊥ ·D⊥∇

(
miniu⃗i∥

)
= Sm − e∥ ·∇(neTe + niTi)

(10)

8



2.1 Modeling the Edge Plasma Behaviour

∇∥ ·
[
5

2
Teniu⃗i∥ − κee∥∇Te

]
−∇⊥ ·

[
χeni∇Te +

5

2
TeD⊥∇ni

]
= See −

3me

mi

ne

τei
(Te − Ti)− Se,cool

∇∥ ·
[
5

2
Tiniu⃗i∥ − κie∥∇Ti

]
−∇⊥ ·

[
χini∇Ti +

5

2
TiD⊥∇ni

]
= Sei +

3me

mi

ne

τei
(Te − Ti)

(11)

They are Fokker-Planck equations describing the evolution of their macroscopic
quantities driven by their distribution and possible sources or sinks on the right-
hand side: effects due to plasma neutral interactions (Sp, Sm, See, Sei), electron-ion
temperature coupling and a pressure drive in the momentum equation. Se,cool
describes the main contribution of impurity ions; their cooling effect is due to
radiation, which is described in the impurity model.

2.1.2 Impurity Model

The impurity model needs to solve the same three quantities nα(t), u⃗α(t) and
Tα(t), for each impurity ion, but simplifications to the equations of the different
moments are made [14, 22].

The particle transport equation contains parallel transport and diffusion in both
the parallel, as well as the perpendicular direction. Ionization and recombination
are included as source terms and calculated from atomic data (see section 2.1.3).

The momentum balance is modeled as the force balance for the impurities due to
thermal and pressure gradients and differences between ion and impurity velocity.
This provides the velocity for the parallel convection term u⃗Z∥ in the particle bal-
ance. The impurity temperature is set to be equal to the plasma ion temperature
Ti = TZ,imp as a further simplification. Impurity concentrations are assumed to
be small and are handled in the trace approximation with no effect on the main
plasma model, with the exception of heat losses due to radiation. So the impurities
need not be taken into account for the approximate behavior of the plasma, with
the exception of radiation.

2.1.3 Neutral Model & Eirene

Neutral particles get simulated kinetically by EMC3/Eirene. In each iteration, the
macroscopic plasma and impurity quantities get calculated and neutral particle
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2 EMC3-Eirene

ensemble movement is simulated by EMC3. Afterward, the local macroscopic
quantities are given to Eirene.

Eirene is a neutral transport code with a large database of atomic data. It solves
the kinetic Boltzmann equation for neutrals, taking into account plasma-neutral
interactions and plasma surface interactions like particle and energy reflection or
impurity sputtering. The results of those calculations then inform the next itera-
tion of the EMC3 simulation as they provide the source terms used in the plasma
and impurity models. The whole model eventually reaches a steady state whose
quality in modeling a physical plasma depends on the specific approximations
made in the code as stated above, as well as the quality of the grid given on which
the code operates. A full description of the Eirene capabilities is given in [23, 24].

Both EMC3 and Eirene are implemented as Monte-Carlo codes solving their spe-
cific Fokker-Planck equation numerically using the equivalence to a stochastic
process [21, 25].

2.2 Grid Generation and Optimization
EMC3 calculates its macroscopic quantities on a domain of 3D space numerically.
For the numerical simulation, the domain needs to be discretized, which is done by
generating a grid containing the inside of the plasma vessel. Drifts are ignored, so
magnetic field magnitude has no effect on plasma tracing. The grid used in EMC3
is field-aligned (inside the separatrix) and contains the direction of the magnetic
field along its field-aligned axis inside the plasma region. A simple grid for the W7X
structure is shown in figure 6. Due to the magnetic field topology of tokamaks
and stellarators, and EMC3 requirements, a mapping from a 3d interval into a
toroidal space is used as a grid by evaluating the mapping at the grid vertices. In
the simplest case, the grid mapping is a perfect torus:

gR : [r1, r2]× [0, 2π]× [0, 2π] → R3

( r , θ , φ ) 7→
(
(R + r cos θ) cosφ, (R + r cos θ) sinφ, r sin θ

)
,

or for discretely mapping the vertices directly,
gR : {1, . . . , Nr}× {1, . . . , Nθ}× {1, . . . , Nϕ} −→ R3.

For W7X, the deformations of the torus shape need to be considered as well.

Notice that the toroidal grid structure leads to a hole inside the toroidal structure,
(or a singularity at the toroidal center axis if r1 = 0). This is fine as EMC3 is not
concerned with modeling the plasma core. The continuous mappings can generate
ever-finer grids that show superior numerical accuracy to subdivision of grid cells
if gR is smooth [26].
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2.2 Grid Generation and Optimization

Figure 6: Minimal toroidal field line traced W7X grid, unwrapped toroidally.

Nonetheless, numerical characteristics of the discrete grids need to be quantified
to give accuracy estimates on the results obtained by simulating plasmas on them.
With gradient calculations depending on the shape of the grid cells, grid cell mea-
sures like skewness, non-orthogonality, and unevenness given in [26] can be defined
and investigated for effects on accuracy.

They were found to have an impact on gradient calculations by Jacobs as part of
his thesis work [27].

Furthermore, the EMC3 grid requires convex cells to allow for a unique bilinear
interpolation along the field line. A grid generator for the W7X structure was de-
veloped and extended by various routines in this work to optimize the generated
grids for convexity and the grid quality measures given. The intent is to provide
a grid generation tool that allows generating grids needed for nonstandard mag-
netic configurations and full torus simulations (∆ϕ = 360°). This makes studying
toroidal and radial asymmetries due to localized puffs or error fields possible.

2.2.1 Half-module Optimization via Grid Quality Measures

To accurately simulate the plasma, the EMC3 grid needs to be field line traced
inside the region of closed flux surfaces (inner cell ring in figure 6). In the neutral
region with diverging field lines, grid cells must be mapped by some other way to

11



2 EMC3-Eirene

A B C D

A B C D

Figure 7: Optimized subsampled grid cross sections: naïve radial projection (A),
equal spaced points on inner flux surfaces and density function distributed
points on the vessel (B), equal spaced points on inner flux surfaces and sur-
face normal vessel projection (C), optimized tracing starting angle, grid line
Zoidberg smoothing and optimization in C (D).

cover the space to the plasma vessel surface (outer cell ring in figure 6). Multiple
approaches have been considered and implemented, shown together with the effort
of minimizing the grid distortion inside the closed flux surface in figure 7.

Naïvely projecting outwards from the magnetic axis leads to problems with grid
convexity at the bean cross section (top row in figure 6), and large cell density
distortions after tracing the projected cross-section to other toroidal angles. To
combat this, the grid vertices poloidally along a flux surface at the starting cross
section can be spaced equally. Equal vertex spacing along the plasma vessel is
difficult, as the vessel shape differs significantly from the flux surface shapes, again
leading to concave or overlapping cells along bends. This can be addressed by
manually defining a vertex density distribution over the vessel surface, like in
figure 7b.

Another approach to generating the Grid between the last closed flux surface and
the vessel surface can be taken by calculating the surface normal of each grid
vertex and interpolating the grid via the projection along the normal vector to
the intersection with the vessel. Concave surfaces can lead to an overlap of such
normal projections. However, by nearest-neighbor smoothing the normal vectors,
the distribution of the vessel vertices increases in uniformity as the normal vectors
get more parallel, which has the effect of undoing such overlaps. See figure 7c.

Finally, the cross-section to start the field line tracing can be varied, as can the
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2.2 Grid Generation and Optimization
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Figure 8: Grid quality measure plot to investigate the effects of the implemented
grid optimization routines for all convex testing grids generated. Shown in
the rows are the distributions of the volume and grid measures as defined in
[26] over all of the cells of the grid. Each column is associated with one grid,
generated by the parameters specified in the labels.

interpolation vertices between to fitted flux surfaces at the starting cross-sections
to try to soften kinks in the iso-radial and iso-poloidal grid lines, as shown in figure
7D. Tracing forward and backward toroidally from the middle of the module has
a large effect, as cell distortion inside the closed flux surfaces inevitably increases
along the field line because their distances and angles change from the optimized
shape at the starting surface.

The effects of those optimization routines can now be quantified by calculating the
convexity, volume, and grid measures for each cell of a grid, which is depicted for
every convex grid in figure 8, with all grids shown in the appendix (figure 36). A
grid can have equally spaced vertices on the flux surfaces (in.eq. = 1), and the grid
lines can be smoothed by the Zoidberg algorithm (zoidb. = 1). Furthermore, the
angle α ∈ [0°, 36°] of the tracing surface can be varied over the whole half module
(tr. ∠ = α). Lastly, the projection type from the last closed flux surface to the
vessel surface was also varied over radial projection (P), normal projection (N),
equal vessel spacing (e), and vessel spacing via a density function (E). The last
projection is not given for each parameter combination and is also less relevant
for the quantification due to being manually defined, but is still given as a rough
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estimation of what to expect from such an approach.

A good grid would be convex, have small grid quality measures, and uniformly
sized cells. In the set of tested grids, every grid generated from equal vessel spacing
and radial projection is not convex for the reasons given before. Ignoring those,
convex grids can predictably be generated by ensuring no such cells via the density
function defined vessel spacing, but with drastically higher non-orthogonality than
the surface normal projection while not improving any other measure.

Equal flux surface vertex spacing decreases unevenness and satisfies convexity to
the cost of skewness. Extreme tracing surface angle values lead to more uneven
grids while tracing angles closer to the triangular cross-section have better cell
volume distributions, seemingly because the cell distortion in the bean shape coin-
cides with the large poloidal radius distortion at the right poloidal angles, partially
canceling the effects. Using the Zoidberg smoothing worsens the grid’s uneven-
ness and skewness, if only slightly, but offers no advantages and is therefore not
considered further.

2.2.2 Stochastic Flux Surfaces

Figure 9: Chaotic FTM poincaré
map and solution to surface
creation problem.

To define Flux surfaces, Poincaré maps of
a simulated particle traced along the mag-
netic field lines are used. In practice, this
works well inside of the separatrix at ι < 1,
as shown by the inner three red surface cross
sections in figure 9. Outside of it, the reso-
nant modes at rational ι and specifically the
dominant one for the configuration keeps the
flux surfaces from surrounding the magnetic
axis until another range of ι without sim-
ple rational values is reached, where closed
flux surfaces either reoccur, or the magnetic
field stops being toroidal and field lines be-
come open ended1. Between these two re-
gions, a stochastic region may exist caused
by the interaction of island chains fulfilling
the Chirikov criterion [28], as shown by the
black markers in figure 9. The local behavior

1The field lines themselves are always closed. In magnetic confinement, however, field lines
heading outside of the plasma volume are considered open as the path of a particle following the
field line ends at the vessel surface.
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is still well-defined as all particles follow the magnetic field which changes slowly
in space. But a traced particle stops to generate a surface. Instead, it varies inside
of a volume. In the shown FTM grid, no closed flux surface exists outside of the
stochastic region, but an outer surface surrounding the islands is still required to
simulate the plasma correctly within EMC3. It does not need to be a flux surface
as long as it surrounds the islands and stays inside the field line traceable region
to extend it to other cross-sections for the grid generation. Such a surface was
generated by generating an alpha shape, eroding it by removing parts of the shape
close to the surface and adding parts close to the shape surface back in, resulting
in removing the fingers spreading outwards, and smoothing the resulting shape to
get rid of high-frequency oscillations complicating the grid-vessel extension.

2.2.3 Flux Surface Asymmetry from Magnetic Fields

Figure 10: Island structure on
perturbed EIM field on
13° (QRB) cross-section.

When investigating plasma behavior without
a toroidally periodic and symmetric magnetic
field, e.g. to examine the effects of combined
islands shown in figure 10, field line tracing
in the first half module only is not enough to
generate a grid applicable to the whole torus.
Due to a change in iota of 0.1 to 0.3 radially
outwards [29], after one Orbit the outer flux
surfaces will be twisted against the magnetic
axis by the iota difference as a fraction of a
turn. More importantly, the islands also ro-
tate, so two radially ordered (with respect to
the main magnetic axis) points on the same is-
land switch their order when traced for a long
enough distance. As vertices in EMC3 grids
keep their radial and poloidal parameteriza-
tion when traced toroidally, this invalidates
grids with a large toroidal extent. Because of
that, field line tracing over the whole torus is
also not applicable to the magnetic fields used.
Instead, each module is traced independently
of the other grids and the grids are stitched
together via mapping surfaces which would be
needed in all approaches to map the 360° cross-
section back to the first one at 0°.
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3 Radiation
3.1 Plasma Radiation Sources
Radiation is the consequence of photon emission from plasma particles due to a
number of effects. The most important ones are bremsstrahlung and line radiation
from deexcitation and recombination.

Bremsstrahlung In high-temperature plasmas, energies of the charged plasma
particles are high, facilitating collisions with small minimum particle distances.
During these collisions, both particles emit bremsstrahlung. However, only the
collisions between particles of different specific charge (q/m) emit dipole radia-
tion, with higher order radiation from particles of the same specific charge be-
ing insignificant [30, 31]. In the W7X hydrogen plasma with impurities, this
leaves (e−, p+), (e−,Ximp), (p+,Ximp) and (Yimp,Ximp) collisions. The amount
of bremsstrahlung scales with the sum of the specific charges [31], so (e−, p+) col-
lisions decrease in importance in areas of high impurity concentrations like the
plasma edge. Bremsstrahlung is relevant at high ne, Te in a future reactor, but
less so in present-day devices.

Recombination Radiation As a significant fraction of the atoms in a plasma are
ionized, recombination can occur, if only for a short time before reionization. The
energy of the continuum electron that recombines is partially radiated directly as
a photon, with the rest remaining in the form of an excited state.

Deexcitation Radiation Ions are excited by electron impact collisions after a
recombination event. These exited ions undergo deexcitation into less energetic
states over time and emit a line radiation photon in the process. No excited state
exists for fully ionized particles, so they only emit bremsstrahlung. At densities of
1020/m3, for temperatures above 2 eV, less than 1‱ of the hydrogen atoms in the
plasma are not ionized in steady state isotropic (no transport) conditions. Below
2 eV, the excitation cross sections diminish. Carbon impurities stay only partially
ionized up to hundreds of eV (figure 11). Thus, plasma deexcitation radiation is
dominated by impurity radiation

Synchrotron Radiation Besides collision acceleration, electrons and ions in a
magnetic field get accelerated via the Lorentz force on their helical paths along
the magnetic field, emitting synchrotron radiation. Synchrotron radiation scales

16



3.2 Adas

strongly with increasing speed, and therefore decreasing mass, so only electrons
need to be considered. With plasma core temperatures below 10 keV, only a
minuscule fraction of the electrons reach relativistic speed, so the radiation can
be calculated roughly with some approximations in the non-relativistic cyclotron
limit.

Pcycl, e =
σeB

2v2e
cµ0

=
2σeB

2Te
cmeµ0

≈ 8 · 10−16 W

Pcycl, tot = Pcycl, e · neV ≈ 1MW
(12)

where the Thomson cross section σe of the electron, the speed of light c and
the vacuum permeability µ0 are physical constants and B = 2.5T, V = 30m3,
ne = 4 · 1019/cm3 and Te = 2 keV are chosen as rough averaged representative
values for W7X during operation. Most of this radiation is absorbed again via
photon absorption of surrounding electrons. However, the residual radiation can
still lead to considerable losses, e.g. in ITER [32, 33].

In W7X, hydrogen plasma is used and no fusion takes place, so nuclear deexcita-
tion radiation can be ignored. In the case of CRM models for W7X introduced
below, recombination and bremsstrahlung of H+ are not taken into account. In
EMC3 simulations, a Maxwellian energy distribution of the free electrons is as-
sumed, determined from the simulated electron temperature. This is then used
to model radiation from excitation. Finally, for the synthetic bolometer measure-
ments for whom the radiation data will be used later on, nuclear deexcitation and
microwave synchrotron radiation can always be ignored, because high-frequency
gamma radiation transmits through the bolometer [34], while microwave radiation
gets shielded by a mesh in front of the bolometer [35]. For synthetic W7X bolome-
ter measurements, bremsstrahlung, recombination and line radiation of impurity
ions interacting with electrons modeled in EMC3 is thus even sufficient for plasmas
with relevant amounts of fusion.

3.2 Adas
The rate of these reactions for the impurities and therefore the power that they
radiate depends linearly on the plasma volume V and density ne, n

z
imp of both

the electrons and the impurity ions. For each reaction, the radiated power then
depends on the reaction rate and transition energy, with the total radiated power
as the total of each excitation and ionization transition plus bremsstrahlung. The
population distribution along the excitation states is equilibrating on timescales
faster than transport processes and hence assumed to be in an electron temperature
and density-defined equilibrium. Effects of long-lived metastable excitation states
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in delaying the equilibration process are ignored in this work. The radiated power
can then be described by excitation state independent radiation power coefficients
Rz only. Without any transport, the population distribution would equilibrate
over ionization states as well giving a total radiative power, dependent only on
electron temperature and density (shown density normalized in figure 13 as Ltot).

dErad

dt = Prad =
∑
z

V nen
z
imp ·

(
Rz

transition(ne, Te) + Rz
bremsstrahlung(ne, Te)

)
(13)

To obtain the radiation power coefficients, the ADAS database2 is used.

“The Atomic Data and Analysis Structure (ADAS) is an interconnected
set of computer codes and data collections for modeling the radiating
properties of ions and atoms in plasmas. It can address plasmas rang-
ing from the interstellar medium through the solar atmosphere and
laboratory thermonuclear fusion devices to technological plasmas. ”
([36])

The ADAS iso-nuclear master files provide a metastable unresolved set of coeffi-
cients.

Rz
line rad. =PLTz for line radiation driven by excitation and

Rz+1
recomb. +Rz+1

bremsstr. =PRBz for recombination radiation and bremsstrahlung.

Prad = V ne

Zimp−1∑
z=0

nz
imp PLTz(ne, Te) + nz+1

imp PRBz(ne, Te) (14)

with PRBz indicating the recombination from Xz+1 to Xz as well as the brems-
strahlung of Xz+1. Thus, PRBz,PLTz are defined for 0 ⩽ z < Zimp, where Zimp is
indicating the highest ionization level of the impurity.

The ADAS database also contains the effective rates for ionization and recombi-
nation of hydrogen and impurities. With this data, the evolution of the impurity
species in terms of charge state given the plasma parameters of Te, ne, and neutral
hydrogen density nH for the impurity hydrogen charge exchange can be simulated.

SCDz for ionization from Xz to Xz+1

ACDz for recombination from Xz+1 to Xz

CCDz for charge exchange: Xz+1 + H −−→ Xz + p+

2https://open.adas.ac.uk/adf11
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3.3 Impurity Ionization Models

3.3 Impurity Ionization Models
The radiation power coefficients are calculated by multiplying the effective rates
for ionization and recombination with their transition energy and the density of
the excited state. The effective rates and transition energies were found experi-
mentally, and added to the ADAS database, but the density distribution must be
calculated for the conditions found in the plasma by impurity ionization models.

3.3.1 Coronal and Collisional-Radiative Model

For small enough electron and hydrogen densities, interactions with the impurity
ions (as well as between impurity ions) happen on a larger time scale than the
relaxation of an excited impurity ion to its ground state. In that case, electron
impact collisions that excite or ionize the ion are considered with ground-state
impurity ions only. The change in density of an ionization level can be described
as dnz

imp

dt = nen
z−1
imp · SCDz−1 + nen

z+1
imp · ACDz + nHn

z+1
imp · CCDz

− nen
z
imp · SCDz − nen

z
imp · ACDz−1 .

(15)

for the intermediate ionization stages and without ionization or recombination
and charge exchange for both fully- and unionized impurities. When equilibrated
∂nz

imp
/
∂t = 0 for all ionization stages. Using a constant electron and hydrogen

density, the resulting system of linear first-order ODE can then be solved by pro-
viding one of the densities or solving for fractional abundance fz := nz

imp
/∑

z n
z
imp

with
∑

z fz = 1. In the model of EMC3, charge exchange (CCD) contributions are
ignored.

At higher electron densities the above assumption of excitation from the ground-
state only can not be held up, as electron impact excitations become more frequent.
Excited states then interact in multi-excitation processes. This leads to notable
changes in the population density of the ground state ions, as well as large densities
of metastable excited states. The total fractional abundances inside one ionization
state yield unresolved fractional abundances, shown in figure 11. Equivalently,
the unresolved PLTz is given by the sum of every normalized transition radiation
power fX · rateX→Y · ∆EX→Y from an exited state X to a less excited state Y ,
both with an ionization level z. Finally, the unresolved PRBz is given by the total
of normalized transition radiation powers from ionization level z + 1 to level z.

This approach to calculating the rate coefficients is called the Collisional-Radiative
Model (CRM). It also allows modeling non-equilibrium conditions. Total state
population by excitation and deexcitation, as well as ionization, state depopula-
tion, and charge exchange and recombination from other states are in detailed
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equilibrium in steady-state conditions. The simpler low-pressure limit with states
excited from ground states only is called the Coronal Model (CM), because of its
application in modeling the sun’s low-pressure coronal plasma.

3.3.2 CRM-based zero-dimensional Transport
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Figure 11: CRM fractional abundances
of carbon ionization states in a
hydrogen plasma depending on
hydrogen n0 and electron ne den-
sity, plotted over electron temper-
ature Te. The top plot shows the
result for typical densities in the
plasma, with n0 ≈ 1017/m3 be-
low 10 eV, dropping to 1012/m3 at
1 keV.

In the above form, the CRM is a lo-
cal model which is not able to de-
scribe any transport in the plasma
without further modifications. Includ-
ing transport can be done by building
a list or a grid out of CRM and intro-
ducing interaction terms with neigh-
boring cells. EMC3 assumes excita-
tion state equilibration on timescales
shorter than transport, but models
the evolution of overall ionization
stage densities like this. For each
stage, EMC3 convects and diffuses the
density in the cell to neighboring cells
according to the simplified impurity
model version of equations 9 to 11,
implemented as sink/source terms for
the densities. It also updates ioniza-
tion stage densities in each cell using
the ACDz and SCDz coefficients [21].
Radiation can then be calculated as in
equation 14.

A less precise but simpler approach is
to model the effect on transport on the
ionization equilibrium in a global way
with free parameters that can subse-
quently be optimized to fit more real-
istic models such as EMC3. The spe-
cific model optimized in the following
subsection introduces τa and τs pa-
rameters acting as timescales for de-
cay into more and less ionized states.
For nZimp+1

imp and n−1
imp defined as 0, it
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3.4 Radiation Calculation from EMC3 data

can be written as

dnz
imp

dt =
nz+1

imp

τa
+
nz−1

imp

τs
−
nz

imp

τa
−
nz

imp

τs
± SCD, ACD & CCD terms .

Often, a simple decay time τ with nz
imp

/
τ as an additional loss is used as well.
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Figure 12: CRM fractional abundances
of carbon ionization states in a hy-
drogen plasma as in figure 11, with
n0 = 0/m3, ne = 1020/m3 and var-
ied τ parameters. τ = ∞ indicates
no transport.

The higher the density, the higher
the rate of change into neighbor-
ing states. With a positive τa and
only one populated ionized state,
the state density would exponen-
tially decay as e−t/τa . Consequently,
for a given temperature, increasing
τa leads to an equilibrium with less
density in highly ionized states, be-
cause total ionization is decreased.
This is what is also expected from
plasmas with transport from colder
to hotter regions, as some less ion-
ized impurities from their equilib-
rium at the lower temperature are
always moved into the hotter plasma
and did not have the time to reach
the ionization equilibrium yet, de-
creasing the average ionization at
that temperature. Equivalently, τs
has the opposite effect, modeling
transport from higher to lower tem-
peratures.

3.4 Radiation Calculation from EMC3 data
For each simulated plasma, EMC3 provides the total radiation, electron and ion
temperature, and the densities of all simulated species for every grid cell. In the
cases without a given neutral impurity density n0

imp, n0
imp = 0 is used. Given these

quantities, emissivities Ez and radiation loss functions Lz can be calculated for
each ionization stage z.
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L′z = PLTz(ne, Te) + PRBz−1(ne, Te) (16)
Ez = nen

z
impL

′z Lz = f z
AL

′z (17)

Etot = Prad =

Zimp∑
z=0

Ez Ltot =
Etot

nen
tot
imp

=

Zimp∑
z=0

f z
AL

′z (18)
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Figure 13: The top plot shows the PLTz

and PRBz coefficients together with
their sum, L′z, for each carbon ion-
ization state. At higher temper-
atures, line excitation radiation
(PLT) dominates for each not fully
ionized state (z < 6). Lz values
with the densities from the first
plot of figure 11 are shown in the
bottom plot, together with Ltot.
Ez has the same shape as Lz, as
Ez = nen

tot
impL

z.

Emissivities Ez give radiated power
per volume, so by integrating the
emissivity over the plasma, the to-
tal radiated power can be obtained.
However, emissivities scale linearly
with ne and nz

imp (see equation
13). Thus, L′z is introduced as an
electron- and impurity ion normal-
ized quantity useful for comparison
of radiation potential independent
from the specific situation and reac-
tor, still depending on electron den-
sity, but only for the shift in exci-
tation state fractional abundances,
not for the additional linear increase
in radiation from increasing electron
densities due to the increase in col-
lisions. For a specific situation, the
fractional abundances depending on
temperature can be calculated and
multiplied with L′z to get the radia-
tion loss functions Lz. They describe
the radiation of each ionization stage
per volume, electron and total im-
purity density and sum together to
give the total radiation loss function
Ltot at each Te and ne. L′z is purely
atomic data, while Ez and Lz are
dependent on fractional abundances,

and thus transport. Even though PRB increases for smaller temperatures at each
ionization state, fractional abundances decrease for highly ionized states. Thus,
PRB coefficients can be neglected for equilibrated plasmas, except at very high
temperatures, where most impurities are fully ionized (Te ≳ 300 eV in figure 13).
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3.5 Transport τ -Model Comparison to EMC3 Simulations

Figure 14: Total radiation loss function calculated via transport CRM model
plotted against temperature, with varying τ -parameters. The densities in
Te, Ltot space for three representative EMC3 simulations for W7X plasmas
are superimposed (adjusted for better visibility), varying in frad and D.

3.5 Transport τ -Model Comparison to EMC3 Simulations
Using representative EMC3 simulations for W7X plasmas described in more detail
in the bolometry section (see figure 18), the CRM transport model can be inves-
tigated on how well it can model the radiation loss functions of the simulation
plasma. Ltot is dependent on the fractional abundances, which in turn depend
choice of τ -parameters, Te, and to a much lesser extent ne.

Figure 15: Ltot contributions
for each cell in the sim-
ulation. Split by Z < 4
and Z ⩾ 4.

The simulation cells and CRM-data were binned
along Te only, and τa, τs were varied to fit the
simulation data. Overall including a τs wors-
ens the fit to the simulation data. Larger τa
decrease the total deviation from the simulated
values, but do not fit the shape better. Two
bands of high cell number form for each simula-
tion, shaped by the carbon impurity ions with
Z < 4 and Z ⩾ 4. The low temperature band is
fitted very well by the simple transport model,
even with τa = τs = ∞, so transport is not
relevant for Te < 10 eV. The high-temperature
band on the other hand is not well fitted by any
τ -parameter optimization, with τa, τs < ∞ to-
gether also only flattening the Ltot curve. ne is
almost constant for the high-temperature band,
and even variations over the whole range of val-
ues also found in EMC3 cells only have a small
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effect on the curve shape. The strong variability is not the effect of neutrals, as
their effect on the impurity ionization distribution via charge exchange (CCD)
is not modeled in EMC3. The stronger gradients in temperature further inside
the plasma may be hypothesized to change the transport magnitude, so a vari-
able τa increasing with higher temperatures would be needed. Between 8 eV to
60 eV, the bands connect. However, the connection is broad and the cell num-
ber is low, with the ends of the bands having much higher cell numbers. Here,
cells with a large fraction of thrice ionized carbon impurities form the connection,
with only once or twice ionized impurities extending the low-temperature band to
above 102 eV. Thus, transport in W7X is strongly location dependent, with large
differences of fractional abundances at similar temperatures at different positions
in the plasma depending on the position in or outside the high emissivity bands.
Optimizing radiated power when using the CRM calculated radiative loss func-
tion for each cell depending on temperature yields an optimum at τa ≈ 5 · 10−3

for simulations at representative W7X diffusion coefficients (D ≈ 0.2m2/s). For
larger normal and binormal diffusion coefficients D ⩾ 0.5m2/s, the optimum τa
decreases (τa ≈ 2 · 10−3 at D = 1m2/s). Further work is needed to gain insight
into the possibility of using local models to improve fit quality for the high and
low-temperature bands.

Alternatively, future work can extend the τ -model to an extra parameter dimen-
sion: Te. The τ -parameters can then simulate transport between temperature bins
instead of imitating transport in one bin without any effect of distribution changes
at other temperatures.
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Figure 16: QSB and QRB cross-section bolometer sightlines. The QRB cross sec-
tion is flipped vertically in W7X, but maps into the EMC3 grid like shown.

4 Bolometry

4.1 Concept and Use in W7X
Bolometers are measurement devices for radiation energy. A material is exposed
to radiation and heats up from its absorption while being cooled by conduction
to a heat sink. The absorbed energy can then be inferred from the value and rate
of change in temperature. Normally, thin foils are used because they have a low
heat capacity and consequently high sensitivity, causing large temperature changes
from relatively little energy. This allows bolometer fans made from multiple foils
with small cone volume of the lines of sight. Together, they can detect anisotropic
radiative patterns. The foils are plated with meandering conductive traces, whose
resistance increases together with the foil temperature, allowing radiation calcula-
tions from electrical resistance measurements. Such bolometers are used in W7X
[37, 38]. Other concepts exist (like larger foils that resolve the radiation pattern
via their temperature distribution, emitting infrared radiation able to be measured
with infrared cameras), but will not be considered further in this thesis.

W7X possesses multiple bolometer fans in the up-down-symmetric triangle QSB
cross-section or the QRB cross section 94° further in toroidal angle. Their central
lines of sight are shown in figure 16. In operation, each foil provides a sightline
integrated radiated power value, from which the full emissivity distribution can be
reconstructed using tomographic methods. However, with less than 90 sightlines,
even solving for a coarse 10 × 10 grid is a severely underconstrained problem.
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Figure 17: Bolometry data flowchart.

For the intended grids on the order of 140 × 512 (r × θ) cells, prior information
about the expected emissivity distribution needs to be provided to constrain the
possibility space and drive convergence to a realistic solution.

One aim of this section is to develop such restrictions on the shape of the emissivity
distribution to be used in the tomographic reconstruction by investigating the
properties of emissivity distributions in EMC3-simulated plasmas. Assuming a
sufficiently good model, the restrictions will help in reconstructing faster and better
emissivity distributions, and therefore better understanding of plasma behavior in
W7X overall. The other aim is to perform synthetic bolometer measurements on
the simulated data and investigate whether it allows inferring plasma properties
directly.

4.2 Calculating absorbed Foil Power from Simulation Data
EMC3 simulates the plasma behavior and provides ne and Te to calculate emis-
sivities Ez for each cell in the toroidal grid it is run on. However, the bolometer
cones of vision get samples in a cylindrical grid (P. rtc Grid) by the Cherab python
library [39]. Cherab is able to stochastically sample the cone of vision of a bolome-
ter using Raysect, which was done by Gabriele Partesotti. In this thesis, QRB and
QSB bolometers are investigated, with their sightlines around a toroidal angle of
202° (close to bean cross-section) and 108° (triangle cross-section). The stochastic
sampling provides the bolometer sensitivity S for each cell, which is the volume it
is taking up inside the bolometers code of vision, normalized via the foils etendue.
This gives an effective volume that, multiplied by the radiation power per volume,
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yields the total power P = Ez · S absorbed from the cell by the bolometer. For
all cells c in the grid used for calculation, S ∝ VcEtot,c/(r⃗Bol.→ c)

2 . Either Ez or
S needs to be mapped from one to the other grid (EMC3 vs. P. rtc) to calculate
the total power absorbed by an elementwise cumulative product. This was done
in both directions to get a sense of the variations introduced by the interpolation
mapping method used. Differences were insignificant (see subsection 4.4).

With a small cone of vision, the single line of sight Ω → 0 limit may be used to
approximate and simplify the calculation of the absorbed power. Instead of a 3d
integration over the cone, the emissivity needs to be integrated over the central
ray only, and multiplied by the foil etendue. Given the location and direction of
the bolometer sightline, the absorbed power can then also be calculated directly
from the EMC3 grid. For all bolometer foils B with sightlines Bs, foil etendue
dGB and the length LBs,c of the sightline Bs in the cell c,

Pabsorbed,Bs = dGB ·
∑

c∈EMC3 cells

Ez
cLBs,c .

The three approaches are shown conceptually in figure 17, with the mapping and
line integration plots given in the appendix (section 6.2). The methods are com-
pared in subsection 4.4 about synthetic measurements (figure 35).

4.3 Investigating simulated Plasmas
4.3.1 Restrictions on Cross Section Emissivity Distributions

Figure 18 shows all simulations investigated, and already demonstrates consis-
tent radiation distributions with overall larger changes in emissivity perpendicular
to the flux surfaces (radially, normal) than parallel to them in the cross-section
(poloidally, binormal). This is reasonable because binormal transport dominates
against normal transport, smoothing out distributions poloidally. Flux surfaces in
the maximum emissivity regions form islands.

The emissivity structure, however, seems not to be influenced by the island struc-
ture. For the EIM magnetic configuration used in the investigated simulations, a
flux surface enclosing all islands exists. Interpolating between the separatrix and
the enclosing surface, and from the enclosing surface to the plasma vessel yields
intermediate surfaces mimicking flux surfaces ignoring islands, subsequently called
effective flux surfaces. The emissivity structure follows the effective flux surfaces.

Averaging emissivities on the effective flux surfaces and plotting radially yields
figure 19. Inside the separatrix, temperatures are high (see figure 23), so carbon
impurities are highly ionized and their radiation loss function is smaller (figure 13)
then for the colder impurities further out. Inside the islands, temperature decreases
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4.3 Investigating simulated Plasmas

Figure 19: Total emissivities Etot averaged over the flux surfaces and plotted
outwards from the magnetic axis to the end of the simulation domain.
Emissivities reach their maximum close to the targets.

and emissivities increase, getting smaller further out when the first targets get
intersected by the flux surfaces and densities drop in the target shadows.

Higher diffusion coefficients in normal and binormal directions increase radial
transport and smooth out the radial emissivity distribution as stated above, while
larger radiation fractions increase the peak size due to the rise in radiation. How-
ever, larger radiation fractions also shift the target-undisturbed part of the peak
inwards, shown in more detail in figure 20. This can be understood as more of the
plasma energy being radiated away instead of being transported further outwards
for higher frad. The FHWM may be capped by the distance to the target, as
the target stops emissions at its surface, but the FWHM also decreases for high
radiation fractions (not investigated). The emissivity drift inwards is also shown
in figure 21, with the outer island flux surfaces (green) and the effective radius
of maximum emission (blue) superimposed. For the sake of detail and clarity in
visualization, some of the cross-section plots will focus on islands 4 and 5 as a
stand-in for all of them. They are particularly interesting because they cross a
target in the QRB cross-section.

Continuing with the poloidal pattern, gradients seem to be connected to the island
and target positions. Figure 21 gives the impression that radial and poloidal
behavior are roughly separable around the maximum emissivity effective cross-
section with a periodic poloidal pattern, changing amplitude depending on the
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Figure 20: Radial emissivity maximum and its full width half maximum
(FWHM) plotted against the simulation frad. In simulations with higher
radiative fractions, the maximum moves inwards, closer to the separatrix.

Figure 21: Field line averaged emissivities shown in the QRB cross section for
the frad = 0.5 (left) and frad = 0.9 (right) simulation with D = 0.2m2/s.
Island contours and the contour of the maximum emissivity effective radius
are overlaid.
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Figure 22: Poloidal distribution of field line averaged emissivities at and around
the effective radius of maximum emissivity. The poloidal position is param-
eterized as the normalized distance around the flux surface at the QRB
cross-section, with an arbitrary constant starting point. Distances with
maximum emissivity effective flux surface field lines partially in the tar-
get shadow for frad = 0.9 are shaded in grey.
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4 Bolometry

Figure 23: Electron temperatures in the QRB cross-section for multiple simu-
lations. Regions of high radiation are shown as a cyan contour and follow
closely along the 10 eV edge. Islands 4 and 5 are superimposed in green.

effective radius. The main poloidal emissivity pattern shown in figure 22a consists
of a pattern repeating in and around every island. Close to the edge of the island,
peaks in emissivity form and trail off exponentially toward the island center. In
the direction out of the islands, emissivity drops almost immediately to the noise
floor. Looking at figure 22c, it can be seen that the shape does change for different
radii. Closer to the target, the drop-off in the center is more severe as more field
lines are intersected. Further away from the target, the effect reverses. However,
poloidal peak positions mostly do stay the same, with one exception being the
outer edge of island 4, where the maximum moves toward island 3 when increasing
the effective radius (see figure 21 right plot).

As an aside, the radiation region and radiation peak position are restricted by the
temperature distribution via the ionization equilibria, and conversely, the temper-
ature distribution is also constrained by the radiation, transferring heat energy
away and preventing further heat transport outwards. This leads to the close
relationship between temperature and radiation shown in figure 23.

The peak behavior is potentially also explained by the target interaction and inner
island flux surface shapes. Radiation occurs before the particle interaction with
the targets, with the field lines between the peaks hitting the target and passing
through the space toroidally between targets (target shadow). The target shadow
has lower electron and impurity densities, resulting in decreased emissivities. And
while the maximum emissivity effective flux surface, is almost parallel to the is-
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4.3 Investigating simulated Plasmas

land flux surface at some point the inner island flux surfaces bend back. Figure 24
shows how the max. Etot surfaces in grey are parallel to the green island surfaces in
the middle of the islands and perpendicular near the ends. At this point transport
along the effective field line switches from parallel to normal transport, leading
to the immense emissivity drop-off. Higher normal and binormal diffusion coun-
teracts target shadow effects and smooths gradients again as shown in figure 22b.
For D = 0.2m2/s, radiation on the field line in the middle of the island passing
through the target shadow is below 10−1 MW/m3. At higher diffusion coefficients,
the emissivity of this field line increases, and emissivity differences in the island
decrease.

Figure 24: Movement of the emissivity
peaks depending on frad.

Looking at the movement of the
emissivity peaks at the edge of
the islands in figure 24, where
the radiation zone changes align-
ment from effective flux surface
to island flux surfaces reiterates
the points made above. Emis-
sions move further inward for
higher radiation fractions, in-
creasing the parallel surface part
in the island (as long as it does
not move too far) and moving
the two island peaks further away
from each other. For low ra-
diation fractions, the maximum
emissivity peak would move into
the target, and is necessarily pushed outwards.

For the reconstruction of a W7X plasma cross-section, and specifically the QRB
cross-section, a procedure can now be defined. First, a radial distribution with one
significant peak and variable position, width, and behavior in the target shadow
can be fitted from the bolometer data. Then, high gradient poloidal sections are
already roughly given, with the areas of maximum emissivity right next to them
(see figure 24). This starting information, together with the constraints about
the rough scale of normal and binormal gradients may finally be optimized by the
tomographic methods to converge to a realistic emissivity distribution.

33



4 Bolometry

(a)
frad

=
0
.9,

D
=

0
.2m

2/s
(b)

frad
=

0
.5
,
D

=
0
.2m

2/s
(c)

frad
=

0
.5,

D
=

1
.0m

2/s

Figure
25:M

aps
between

the
Q

SB
and

Q
R

B
cross

sections
along

the
field

lines,show
n

in
the

Q
R

B
cross-section.

T
he

top
plots

visualize
the

em
issivities

in
both

cross
sections.

Because
the

Q
SB

cross-section
is

not
ob-

structed
by

targets,values
exist

for
field

lines
that

lie
outside

the
plasm

a
in

the
Q

R
B

cross-section.
T

hese
stillget

m
apped

but
are

shaded
in

gray.
T

he
bottom

plots
quantitatively

com
pare

the
Q

R
B

and
Q

SB
cross-

sections,show
ing

the
fraction

and
differences

between
them

.
R

ed
shaded

cells
signify

larger
em

issivities
in

the
Q

R
B

cross
sections

and
blue

larger
em

issivities
in

the
Q

SB
cross-section.

M
ean

em
issivities

below
1kW

are
not

show
n,as

their
contribution

is
insignificant

(see
figure

27).
Som

e
relevant

(island)
flux

surfaces
are

overlaid
in

green.

34



4.3 Investigating simulated Plasmas

Figure 26: Logarithmic scatter plot of
QSB and QRB emissivity of every
effective field line. Density con-
tours in the logarithmic space are
superimposed.

Figure 27: Integrated radiation power
over cell emissivity. Cells with
Etot ⩽ 1 kW/m3 contribute less
than 0.01% of the total power and
can be ignored.

4.3.2 Mapping between Cross Sections

With the cross-section facing bolometers in the QSB and QRB cross-sections,
a perfect mapping between them along field lines could potentially double the
amount of data the topographic methods can use to reconstruct the emissivity
distribution in any of those two cross-sections. However, the assumption of a
perfect mapping can not be held up after the analysis done in figure 25. As can be
seen from the top plots, emissivity does spread into the target shadows, flattening
the emissivity peaks depending on their diffusion coefficient. At D = 1.0m2/s, the
effect is clearly visible, forming a band next to the QRB target, where the QRB
radiation is much higher, with the adjacent areas on both sides showing higher QSB
radiation. The target side is not shown in figure 25, but is trivial, as no radiation
occurs outside of the target in QRB. For a lower normal and binormal diffusion
coefficient, the decrease in radiation directly at the target still occurs. However,
the simulation noise masks any other behaviors, except that total radiation seems
to decrease when going from QRB to QSB, discussed further in subsection 4.3.3.

Disregarding the physical location of the effective field lines and solely focusing on
their QSB and QRB emissivity values gives a relation depicted in figure 26, easier
to quantify, and in which non-local effects may be seen more clearly. Scaling the
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4 Bolometry

Figure 28: Logarithmic scatter plot of QSB and QRB emissivity of every effec-
tive field line for three simulations. Density contours in the logarithmic
space are superimposed. Effective field lines undefined in any of the cross
sections are ignored.

emissivities linearly puts too much focus on a few high-emissivity cells, with most
cells pushed into the corner around 0, while in log scaling, the simulation noise
for cells with Etot ≈ 0 has the opposite effect. But as low emissivity cells do not
contribute much to the overall radiated power, they may be ignored.

For that reason, the amount that cells with Etot smaller than a reference value
Etot, max contribute was calculated and is shown in figure 27. Radiation power
contributions increase roughly linearly with Etot, max, before plateauing above
1MW/m3 because the number of cells at that level diminishes. Cells with Etot ⩽
1 kW/m3 contribute less than 0.01% of the total radiated power in each simulation
and were thus chosen as a low emissivity cutoff. With this constraint, the QSB
QRB relation is shown for the high and low radiation fraction, and high diffusion
case in figure 28.

Higher radiative fractions pull the whole distribution upwards, while a higher dif-
fusion coefficient pulls everything towards the middle, again with the effect of less-
ening emissivity differences. Somewhat surprisingly, it does not decrease the width
of the scatter, although that can be explained by the QSB and QRB differences, ig-
noring the target intersecting field lines, being constrained mainly by the parallel,
instead of the increasing normal and binormal diffusion when increasing D. From
the slant in the distribution, greater variability in QSB is implied, consistent with
the considerations above and the analysis of the total power ratio between the QSB
and QRB cross sections in figure 29. Furthermore, in the investigated simulations,
the power ratio decreases for higher radiative fractions, possibly because of fewer
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Figure 30: Correlation coefficient behaviour
from figure 31 for selected cross-section
comparisons.

target interactions in the QRB cross-sections. After enough calibration shots with
external data about the radiation fraction, the sightline integrated radiation ratio
between the QSB and QRB bolometer may be used as a fast phenomenological
radiation diagnostic.

4.3.3 Toroidal Behaviour

Breaking away from specifically looking at QSB and QRB, a simple measure of
likeness between to cross sections would be useful, and the log space scatter cor-
relation ignoring emissivities less than 1 kW/m3 in either cross-section, i.e for the
points in figure 28, seems suitable for the same reasons the scatter plot was used in
the first place. With either a few high emissivity or noise-dominated low emissivity
cells dominating the correlation otherwise.

In the simulations, the toroidal resolution was chosen much coarser (1 cell/6°)
than the poloidal and radial ones because the high parallel transport along field
lines limits the gradients, and therefore toroidal changes in emissivity over small
distances. For the 6 resulting cross sections, pairwise correlations were calculated
and are shown in figure 31.

Only the difference in toroidal angle between two cross sections shows an effect
on correlation, with the specific cross sections seemingly irrelevant. Concerning
simulation parameters, changing radiation fractions do not significantly decrease
correlation, while increasing normal and binormal diffusion does. Both effects
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Figure 31: Correlation between any two cross sections for simulations with de-
creasing Frad and increasing D. Calculated is the Pearson correlation coeffi-
cient between the log10

(
Etot(cell)

)
data-sets of each cross-section.

are illustrated in figure 30 for the three relevant cross-section comparisons. This
reiterates the conclusion that increased diffusion decreases cross-sectional similar-
ity. The decrease in correlation is not linear nor consistent between cross-section
comparisons, but this is also not expected with the somewhat ad hoc correlation
restrictions.

Further analysis is needed to quantify the relationship between toroidal cross-
section similarity and diffusion. However, assuming again the low diffusion coeffi-
cient of D = 0.2m2/s for W7X, close cross sections in normal circumstances may
already reasonably be mapped onto each other to increase tomography accuracy
independently of the radiation fraction.

Looking at the toroidal power distribution in figure 32, the much higher radiation
between 0° and 18° is immediately noticeable. This is the toroidal region, where
the targets get closest to the separatrix and induce radiation. Between the highest
and lowest radiation cross sections, total radiated power differs by up to a factor
of 2 which can not be ignored when mapping. Focussing on the QSB and QRB
cross sections and their ratios gives figure 29 already discussed above. Finally, The
variation in emissivity along effective field lines was investigated without averaging
over the cross sections first. The relevant high emissivity field lines mainly follow
the cross-section averaged emissivity from figure 32 as a whole, but with immense
changes between single effective field lines. No information could be gained with

38



4.3 Investigating simulated Plasmas

Bean 6 QRB 18 24 30 QSB
0.05

0.1

0.15

0.2

0.25

0.3
m

ea
n 

cr
os

s s
ec

tio
n 

em
iss

iv
ity

 E
to

t [
M

W
/m

3 ]
   

frad = 0.9, D = 0.2
frad = 0.7, D = 0.2
frad = 0.5, D = 0.2
frad = 0.5, D = 1.0

separatrix
end of dom

ain

first target

Bean 6 QRB 18 24 30 QSB

6

8

10

12

14

16

ra
di

at
ed

 c
ro

ss
 se

ct
io

n 
po

we
r P

ra
d [

kW
/1

]  
   

   
 

frad = 0.9, D = 0.2
frad = 0.7, D = 0.2
frad = 0.5, D = 0.2
frad = 0.5, D = 0.5
frad = 0.5, D = 1.0

separatrix
end of dom

ain

first target

Figure 32: Mean cross-section emissivity (left) and total radiated power in the 1°
wide cross-section (right), plotted against the toroidal angle.

that approach because the highest emissivity lines again dominate and inflate
standard deviations between lines.
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Figure 33: Coefficient of variation along ef-
fective field lines, binned and averaged
along mean emissivities.

To make variations in emissiv-
ity comparable between for effec-
tive field lines with large ranges
of emissivity, the coefficient of
variation (σ/µ) was calculated
for each effective field line, and
then averaged together with the
lines of similar mean emissiv-
ity to yield figure 33. For the
few highest emissivity effective
field lines, the statistics break
down, while for low emissivity
lines, simulation noise artificially
increases the coefficient of vari-
ation. Quantization of the sim-
ulation noise was not possible,
with neither normalization with
the cross-section mean for each
point, nor removal of the linear
component of each line yielding
differently shaped curves indicat-
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ing the noise limit. However, simulation noise should increase for smaller emissiv-
ities, so the local increase around 10−1 MW/m3 can not be a noise artifact.

The region inside the separatrix is in the emissivity range of around 10−1 MW/m3.
Its radiation comes mostly from the C4+, C5+ and C6+ carbon impurities with high
radiation loss functions, and higher temperature, but lower electron and impurity
density. However, it is stable toroidally due to effectively no target interactions
and pulls down the coefficient of variation. Therefore the high coefficient comes
from the island adjacent effective field lines and further analysis in the future is
needed to understand why lines in the 1MW/m3 range are less affected.

4.4 Synthetic Measurements
With knowledge about sightline and emissivity behavior for changing radiation
fractions and diffusion coefficients, the sensitivity of the bolometers to the changing
behavior can be investigated. The main aim of this subsection is to check if the
inwards movement of the maximum radiation areas can be detected directly via
the sightlines close to and parallel to the plasma edges.

First, the type of synthetic measurement needs to be chosen. Figure 35 com-
pares the infinitesimal sightline integration with the mappings of emissivity from
the EMC3 to the P. rtc grid and sensitivity from the P. rtc to the EMC3 grid.
Both mapping approaches agree to within 10−9% for each examined simulation, so
mapping inaccuracies are insignificant. The sightline approximation can decrease
computational effort but disregards the cross-sectional area of the cone of vision.
It deviates from the geometry matrix approach in the cases where it closely misses
or hits an area of high radiation or gradients perpendicular to the line of sight are
significant in the cone of vision. As the effective radial distribution of the high
emission areas is small (see figure 19 and 38), a sightline only passing shallowly
through the edge plasma will have the highest deviations. Only taking more cen-
tral sightlines into account, errors decrease but stay at up to 50%. When using
the sightline approximation for precise calculations, care needs to be taken when
using it for sightlines out of areas of low gradient perpendicular to the sightlines.

Problematically, this is exactly the use case that is supposed to be investigated.
Thus, the infinitesimal sightline data may not agree with physical measurements
of the same plasma, and the geometry-matrix-emissivity mapping product data is
used. However, the cross-sectional area of the foils may result in smoothing out
changes between foils, so the infinitesimal sightline data is still calculated to test if
the inwards movement be seen without these interfering effects and if redesigned
bolometers with thinner cones of vision would be useful. As the outer (high in-
dex) QRB AEJDIV and QSB HBCm foils narrowly pass through the plasma and
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4.4 Synthetic Measurements

intersect one island along the binormal direction, their sightline integrated power
was calculated and is presented in figure 34.

For the AEJDIV foils 24 and 25 there are hints of the maximum emissivity region
moving inwards, because the absorbed power for foil 24 increases for higher radia-
tion fractions, while the foil 25 power decreases. However, especially for the HBCM
foils, the movement seems to be too small to detect with the current foil resolu-
tion. For confident frad predictions, higher resolutions are needed for the sightlines
crossing islands, especially for the infinitesimal sightline approach, where the max-
ima aren’t even intersected by the two foil for some simulations (i.e. frad = 0.7).
Smaller cones of vision would decrease averaging effects from integration over the
area of vision localizing the maximum emissivity effective radius further. On the
other hand, higher diffusion coefficients can definitely be detected by the outermost
foils although without any confidence in the exact value. Especially since at such
low total absorbed powers, emc3 model and experiment quantities disagreements
have larger effects.
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Figure 34: Synthetically measured absorbed power for the high index QSB
HBCm and QRB AEJDIV foils. The data in the top plots was calculated
by the geometry mapping approach, while the lower plots shows the ab-
sorbed power calculated by the infinitesimal sightline approach. The outer
foil cones of vision do not cross the high emissivity regions anymore and
drop off in value, bounded on the inside by the foil with maximum ab-
sorbed power crossing the emissivity peak.
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5 Conclusion
To allow modeling non-rotationally symmetric W7X plasmas with EMC3/Eirene,
a python EMC3-grid generation tool was adapted to handle full module and full
torus grids. For plasmas with stochastic outer regions (FTM configuration), the
tool was also extended to fit concave hulls around magnetic field line sets in the
absence of closed flux surfaces. Methods to optimize EMC3-grids for numerical
accuracy were developed and implemented as well. Optimized grids were generated
for both use cases. A workflow for such grid generations and optimizations exists
now and will be used in future work to investigate behavior in asymmetric W7X
plasmas.

The applicability of ad hoc sink/source terms in the ionization balance of local
CRM-based models to emulate radiation changes due to transport processes were
investigated. Better agreements with EMC3 simulated plasmas in emissivity distri-
bution and total emitted power was achieved than with a local model not including
transport. Areas indiscernible with the τ -model but with strongly different behav-
ior exist. Only separation of these areas in future work will make the τ -model able
to approximate real plasmas to a useful degree.

Restrictions on possible emissivity distributions in W7X cross-sections were de-
veloped. The investigated plasmas show distributions localized around one reff,
dependent on plasma parameters. The maximum emissivity band seems to follow
an “effective flux surface”. The surface moves inward when intersecting a target
and outwards between island flux surfaces, giving a plasma parameter-dependent
shape at the maximum emissivity region. Poloidal distribution of the high emissiv-
ity band are constrained by island flux surfaces, targets, and plasma parameters.
The observed restrictions allow a strongly simplified approach to emissivity to-
mography, solving for the radial distribution first and optimizing the distribution
to follow along a maximum emissivity “suggestion shape” afterward. Application
of the approach to the tomography of experimental data is currently evaluated in
other works of the W7X-team.

Finally, synthetic bolometry measurements on EMC3 plasmas were implemented
to investigate if changes in plasma emissivities are able to be measured directly.
Higher radiative fractions decrease the maximum emissivity reff, moving emissivity
peaks inwards and decreasing absorbed power for bolometer foils with lines of sight
tangential to the plasma edge while increasing absorbed power for neighboring foils
on the inside. Changes are barely detectable in specific cases of low diffusion. With
a higher bolometer resolution at the edges of the plasma, bolometers will be able
to directly localize the radiation front.

43



6 Appendix

6 Appendix
6.1 EMC3 Grid Comparison
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6.2 Bolometry Data Conversion and Integration

6.2 Bolometry Data Conversion and Integration

Figure 37: Sensitivity value S cell mapping from the cylindrical to the toroidal
grid. The N03.00_P05.00_D05_R02.00-C simulation QSB data for VBCr
foil 9 at ϕ = 1.87 with an arbitrary colormap scale is shown as an example.
Notice that the cylindrical grid is defined for the full cone of vision, while
the toroidal grid ends at the triangular cross-section. Because of this, a
part of the cone has been remapped into the toroidal grid and flipped for
symmetry reasons.

Figure 38: Emissivity value Ez cell mapping from the toroidal to the cylindrical
grid. The N03.00_P05.00_D05_R02.00-C simulation E3(C3+) data at ϕ =
1.87 with an arbitrary colormap scale is shown as an example. The white
boundary in the cylindrical grid is an effect of the NaNs in the toroidal
grid. But because no cell in the toroidal grid maps to the outermost parts
of the cylindrical grid, far-out cells have the value 0 again.
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6 Appendix

Figure 39: 1D line integration along a bolometer foil sightline. The QSB VBCr
foil 2 is used for the top plot, and the QRB AEJCOR foil 7 for the bottom
one. Both use the N03.00_P05.00_D05_R02.00-C simulation with an arbi-
trary colormap scale for the total emissivity.
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6.3 Grid Measure Implementation

6.3 Grid Measure Implementation
For a generated EMC3 grid g in the form of a #r̃ × #θ̃ × #ϕ̃ × 3 array with
(R, z, ϕ) cylindrical coordinates for each grid vertex, the following code calculates
the grid measures from section 2.2 for every cell. The coordinates of a vertex with
grid indices (r̃, θ̃, ϕ̃) are given by gr̃,θ̃,ϕ̃.
# g[minor radius index][poloidal index][toroidal index]
# = [major radius, vertical height, toroidal angle] (in meter)
# = cylindrical coordinate of given indices

# not whole loop, only tenth of torus -> phi doesn't loop
def yield_grid_cells(g, r_lahead=1, tht_lahead=1, phi_lahead=0):

g = g[:,:-1] # remove double tht=0,2pi values
# implement general looping edges g[r,tht,phi,c]; tht loops, r, phi not
ors, othts, ophis, _ = g.shape # original g size
g = np.pad(g, [(0,0), (0,tht_lahead), (0,0), (0,0)], mode='wrap')

# create smaller output array
h = np.zeros((ors-r_lahead, othts, ophis-phi_lahead,

1+r_lahead, tht_lahead+1, phi_lahead+1, 3))

# iterate over all parameter coordinates
for cr in range(ors-r_lahead):

for ctht in range(othts): #tht loops
for cphi in range(ophis-phi_lahead):

h[cr, ctht, cphi] = g[cr:cr+r_lahead+1,
ctht:ctht+tht_lahead+1, cphi:cphi+phi_lahead+1]

return h

# convert the direction dependent functions to one that
# returns the results of both directions as a tuple
def r_tht_direction_tuple(f):

return lambda g: (f(g, 'r'), f(g, 'tht'))

def _cell_centers(g, x, direction):
mid = np.mean(x[0:2,0:2], axis=(0,1))[0]
if direction == "r":

mid_af = np.mean(x[1:3,0:2], axis=(0,1))[0]
else:

mid_af = np.mean(x[0:2,1:3], axis=(0,1))[0]
return mid, mid_af

def _facemid(g, x, direction):
if direction == "r":

facemid_af = np.mean(x[1,0:2], axis=0)[0]
else:

facemid_af = np.mean(x[0:2,1], axis=0)[0]
return facemid_af
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@r_tht_direction_tuple
def non_orthogonality(g, direction):

assert direction == "r" or direction == "tht"
ws = (2,1,0) if direction=="r" else (1,2,0) # window size
wv = yield_grid_cells(g, *ws) # window view
# the two directions of cell edges, along r and along tht
rs, thts, phis = wv.shape[:3]
# angles on faces
af = np.empty((rs, thts, phis))

# using numpy vector functions is fast, but takes ages to code. will loop
for r in range(rs):

for tht in range(thts):
for phi in range(phis):

x = wv[r,tht,phi]
# cell centers
mid, mid_af = _cell_centers(g, x, direction)
# direction of cell midpoint connections
v_af = (mid_af - mid)/np.linalg.norm(mid_af - mid)
# direction of edges
t_af = x[1,1]-x[1,0] if direction == "r" else x[1,1]-x[0,1]
tn_af = t_af/np.linalg.norm(t_af) # don't need normal
# angle between edge direction and midpoint direction
# angle(v,n) = arcsin abs (v.t)/(||v||*||t||)
# with t tangential and n corresponding normal vector
af[r,tht,phi] = np.arcsin(np.abs(np.dot(tn_af, v_af)))

return af

@r_tht_direction_tuple
def unevenness(g, direction):

assert direction == "r" or direction == "tht"
ws = (2,1,0) if direction=="r" else (1,2,0) # window size
wv = yield_grid_cells(g, *ws) # window view
# the two directions of cell edges, along r and along tht
rs, thts, phis = wv.shape[:3]
# unevenness on faces, also named a
af = np.empty((rs, thts, phis))

# using numpy vector functions is fast, but takes ages to code. will loop
for r in range(rs):

for tht in range(thts):
for phi in range(phis):

x = wv[r,tht,phi,...,:2]
# cell centers
mid, mid_af = _cell_centers(g, x, direction)
# direction of cell midpoint connections
v_af = (mid_af - mid)/np.linalg.norm(mid_af - mid)
# cell midpoint line midpoint m_f
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6.3 Grid Measure Implementation

linemid_af = np.mean([mid, mid_af], axis=0)
# cell corner connection line (edge) midpoint c_f
facemid_af = _facemid(g, x, direction)
# line distance to point
ld_af = np.linalg.norm(np.cross(v_af, facemid_af-mid_af))
# rotated cell mitpoint dir by 90 deg
n_af = np.array([-v_af[1], v_af[0]])
# check if needed to add or remove
f_af = np.sign(np.dot(n_af, facemid_af-mid_af))
# move corner connection line (edge) midpoint on line c_f'
proj_facemid_af = facemid_af - f_af*ld_af*n_af
# distance of c_f' and m_f
num_dist_af = np.linalg.norm(proj_facemid_af-linemid_af)
# distance between two cell midpoints
den_dist_af= np.linalg.norm(mid_af - mid)
# measure of unevenness
af[r,tht,phi] = num_dist_af/den_dist_af

return af

@r_tht_direction_tuple
def skewness(g, direction):

assert direction == "r" or direction == "tht"
ws = (2,1,0) if direction=="r" else (1,2,0) # window size
wv = yield_grid_cells(g, *ws) # window view
# the two directions of cell edges, along r and along tht
rs, thts, phis = wv.shape[:3]
# unevenness on faces, also named a
af = np.empty((rs, thts, phis))

# using numpy vector functions is fast, but takes ages to code. will loop
for r in range(rs):

for tht in range(thts):
for phi in range(phis):

x = wv[r,tht,phi,...,:2]
# cell centers
mid, mid_af = _cell_centers(g, x, direction)
# direction of cell midpoint connections
v_af = (mid_af - mid)/np.linalg.norm(mid_af - mid)
# cell corner connection line (edge) midpoint c_f
facemid_af = _facemid(g, x, direction)
# line distance to point == ||c_f' - c_f||
ld_af = np.abs(np.cross(v_af, facemid_af-mid_af))
# distance between two cell midpoints
den_dist_af = np.linalg.norm(mid_af - mid)
# measure of skewness
af[r,tht,phi] = ld_af/den_dist_af

return af

def fast_convex(g):
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wv = yield_grid_cells(g, 1, 1, 0) # window view
wv = wv[...,0,:2] # ignore phi component in cell and coord
# the two directions of cell edges, along r and along tht
rs, thts, phis = wv.shape[:3]
# the check works in the way, that the cell has 4 edges and for
# each edge (going counterclockwise), the other cell corners
# need to be on the left side of the edge for the cell to be convex
# cell edge directions along parameterisation in r and tht
dir_r, dir_tht = np.diff(wv, axis=3), np.diff(wv, axis=4)
# we need to invert half the edge- (2nd in r and 1st in tht)
# direction vectors so they point counterclockwise
# views into dir_r, d_tht for easy access
dir_r0, dir_r1 = dir_r[...,0,0,:], dir_r[...,0,1,:]
dir_tht0, dir_tht1 = dir_tht[...,0,0,:], dir_tht[...,1,0,:]
dir_r1 *= -1; dir_tht0 *= -1
# now we need to check if the vectors in order of
# r[0], tht[1], (-)r[1], (-)tht[0] are always turning left
# from the last vector (between 0° and 180°).
# cell convex IFF above true for all four edges
cross_values = np.empty((rs, thts, phis, 4))
cross_values[...,0] = np.cross(dir_r0, dir_tht1)
cross_values[...,1] = np.cross(dir_tht1, dir_r1)
cross_values[...,2] = np.cross(dir_r1, dir_tht0)
cross_values[...,3] = np.cross(dir_tht0, dir_r0)
# we can take the min > 0 to see if all of them are > 0
is_convex = cross_values.min(axis=-1) > 0
return is_convex

# calculate the cell volume of each cell.
# the surfaces with normals in r or tht directions are in general curved
# so we approximate the curved quad by two planar triangles.
# the line inside of the cell surface
# between the triangles either goes (0,1) @-------------@ (1,1)
# from vertex[0,0] to vertex[1,1] or / \. ./'/
# from vertex[1,0] to vertex[0,1]. This / \. ./' / \. = 01->10
# coice is specified in triangle_cut / ./'\. / ./' = 00->11
# (dict) with either "00->11" or / ./' \. /
# "01->10" as the value correspond. @-------------@ (r=1, tht=0)
# to the "r" & "tht" key. (0,0)
def triangulated_volume(g, triangle_cut={"r":"00->11", "tht":"00->11"}):

# we can fill the whole cell volume via 6 tetrahedrons
xyz_g = np.empty_like(g)
xyz_g[...,0] = g[...,0] * np.cos(g[...,2]) # x = r cos phi
xyz_g[...,1] = g[...,0] * np.sin(g[...,2]) # y = r sin phi
xyz_g[...,2] = g[...,1] # z = z
wv = yield_grid_cells(xyz_g, 1, 1, 1)
rs, thts, phis = wv.shape[:3]
vols = np.empty((rs, thts, phis))
subvols = np.empty(6)
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6.3 Grid Measure Implementation

if triangle_cut["r"]=="00->11" and triangle_cut["tht"]=="00->11":
prism_tetra = _tri_antiprism_tetrahedrons([

(0,0,0), (0,1,1), (1,1,0), (0,0,1), (1,1,1), (1,0,0)])
tetrahedrons = [[(0,0,0), (0,1,1), (1,1,0), (0,1,0)],

[(0,0,1), (1,1,1), (1,0,0), (1,0,1)], *prism_tetra]
elif triangle_cut["r"]=="01->10" and triangle_cut["tht"]=="00->11":

prism_tetra = _tri_antiprism_tetrahedrons([
(1,0,0), (0,0,1), (0,1,0), (1,0,1), (0,1,1), (1,1,0)])

tetrahedrons = [[(1,0,0), (0,0,1), (0,1,0), (0,0,0)],
[(1,0,1), (0,1,1), (1,1,0), (1,1,1)], *prism_tetra]

elif triangle_cut["r"]=="00->11" and triangle_cut["tht"]=="01->10":
prism_tetra = _tri_antiprism_tetrahedrons([

(0,0,0), (1,0,1), (0,1,1), (1,0,0), (1,1,1), (0,1,0)])
tetrahedrons = [[(0,0,0), (1,0,1), (0,1,1), (0,0,1)],

[(1,0,0), (1,1,1), (0,1,0), (1,1,0)], *prism_tetra]
else: # triangle_cut["r"]=="01->10" and triangle_cut["tht"]=="01->10"

prism_tetra = _tri_antiprism_tetrahedrons([
(0,1,0), (1,1,1), (0,0,1), (1,1,0), (1,0,1), (0,0,0)])

tetrahedrons = [[(0,1,0), (1,1,1), (0,0,1), (0,1,1)],
[(1,1,0), (1,0,1), (0,0,0), (1,0,0)], *prism_tetra]

for r in range(rs):
for tht in range(thts):

for phi in range(phis):
for i in range(6):

subvols[i] = _tetrahedron_volume(wv[r,tht,phi],
tetrahedrons[i])

vols[r, tht, phi] = np.abs(subvols).sum()
return vols

# https://en.wikipedia.org/wiki/Tetrahedron#Irregular_tetrahedra
def _tetrahedron_volume(cell, indices):

det_mat = np.empty((3,3))
det_mat[0] = cell[indices[0]] - cell[indices[3]]
det_mat[1] = cell[indices[1]] - cell[indices[3]]
det_mat[2] = cell[indices[2]] - cell[indices[3]]
return np.linalg.det(det_mat)/6

# converts antiprism to 4 tetrahedron indices
# indices are given as upper1, upper2 upper3, lower1 lower2 lower3 with
# lower1 being the index connecting to upper1 and upper2
# and lower2 to upper2 and upper3
def _tri_antiprism_tetrahedrons(indices):

u1, u2, u3, l1, l2, l3 = indices
# cut into two parts along u1, u3, l2, l1 with crease edge as l1, u3
# and then into two tetrahedrons
return [[u1, u3, l1, l3], [l3, l1, u3, l2],

[l1, u1, u3, u2], [l1, l2, u3, u2]]
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