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Abstract

We develop a multilingual version of the Wug
Test, an artificial word completion experiment
that is typically used to test the morphologi-
cal knowledge of children, and apply it to the
GPT family of large language models (LLMs).
LLMs’ performance on this test was evaluated
by native speakers of six different languages,
who judged whether the inflected and derived
forms generated by the models conform to the
morphological rules of their language. Our
results show that LLMs can generalize their
morphological knowledge to new, unfamiliar
words, but that their success in generating the
“correct” generalization (as judged by native hu-
man speakers) is predicted by a language’s mor-
phological complexity (specifically, integrative
complexity). We further find that the amount
of training data has surprisingly little on LLMs’
morphological generalization abilities within
the scope of the analyzed languages. These
findings highlight that “morphology matters”,
and have important implications for improving
low-resource language modeling.

1 Introduction

Large language models (LLMs) have been very suc-
cessful in learning and generating grammatically-
correct language as humans do (Brown et al., 2020;
OpenAI, 2023). This poses the question of whether
they actually have linguistic capability that would
allow them to generalize beyond the training dis-
tribution (Hupkes et al., 2023). In addition, does
this capability manifest differently in different lan-
guages that LLMs were trained on? Here, we
investigate whether LLMs’ linguistic knowledge

with respect to morphology differs between lan-
guages. Specifically, we test the ability of mul-
tilingual LLMs to generalize their morphological
knowledge to nonce words in six languages.

Testing cross-linguistic differences in the mor-
phosyntactic abilities of LLMs trained on large
amounts of human-generated text is particularly
interesting given recent findings on the behavioral
similarity between humans and language models
in a variety of language learning and processing
tasks (Galke et al., 2023; Webb et al., 2023; Srikant
et al., 2022) and syntactic structure in the models’
learned attention patterns (Manning et al., 2020;
Chen et al., 2023). One of the key concerns of
contemporary efforts in language modeling is to
improve the ability to generalize well across the
variety of human languages, especially regarding
low-resource languages (e.g., Schäfer et al., 2024;
Zheng et al., 2022; Hedderich et al., 2021; Lauscher
et al., 2020; Conneau et al., 2020).

Given the importance of the training data to
LLM’s abilities (Kandpal et al., 2023), conven-
tional wisdom would suggest that the amount of ex-
posure to a given language would be the dominant
factor in determining the models’ ability to learn
the language’s morphological patterns. Here, we ar-
gue that factors beyond the amount of training data
play an important role for LLMs’ generalization
abilities, and in particular suggest that languages’
morphological complexity needs to be taken into
account. Notably, languages vary in their degree of
morphological complexity (Dryer and Haspelmath,
2013; Evans and Levinson, 2009; Hengeveld and
Leufkens, 2018; Ackerman and Malouf, 2013), for
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Figure 1: Overview of our experimental procedure with exemplary data and the employed prompt pattern

example in the number of morphological inflection
paradigms and their degree of irregularity.

A recent study has shown that LLMs, like hu-
mans, are particularly sensitive to the degree of
compositional linguistic structure in their input
when generating novel forms to new meanings in
a matched experiment using a miniature artificial
language, with higher degrees of compositionality
leading to more systematic generalizations and to a
higher agreement with humans (Galke et al., 2023).
This finding implies that the morphological learn-
ing ability of LLMs across different human lan-
guages should similarly be affected by languages’
degree of systematic morphological structure, as
quantified by measures from typological linguis-
tics (Bentz et al., 2016; Baerman et al., 2015). In
the current paper, we test to what extent languages
with more systematic structures are indeed learned
better by LLMs using an established morphological
knowledge test used in the field of child language
acquisition: the Wug-test (Berko, 1958).

Even though morphology is heavily studied in
the field of computational linguistics (e.g. Bat-
suren et al., 2022; Wu et al., 2019; Wilson and
Li, 2021; Liu and Mao, 2016), and despite its im-
portance to human language learning (Kempe and
Brooks, 2008; DeKeyser, 2005; Dressler, 2003,
2010; Slobin, 1985; Raviv et al., 2021), there is
little work on the cross-linguistic morphological
knowledge of LLMs, especially with respect to
the potential effect of languages’ morpho-syntactic
structure (Weissweiler et al., 2023). Rather, it has
been found that LLMs often fail to generate the
correct inflected forms of words that were not a

part of their training data, regardless of the size of
the training set (Liu and Hulden, 2022). Given that
only one study to date has probed LLMs’ morpho-
logical generalization abilities with a multilingual
variant of the Wug test (Weissweiler et al., 2023),
it is currently unclear to what extent can LLMs
generalize their morphological knowledge to new
contexts, and to what extent their generalization
capabilities are affected by the morphological com-
plexity of language compared to its representation
in the training data. Here, we take one step fur-
ther in this line of work and test the relationship
between languages’ morphological structure and
the generalization ability of multilingual LLMs.

Specifically, as shown in Figure 1, we develop
a multilingual version of the Wug Test, an artifi-
cial word completion test that is typically used to
probe the morphological knowledge of children
with respect to inflectional and derivational mor-
phology (Berko, 1958), and apply it to the GPT
family of large language models (Brown et al.,
2020; Ouyang et al., 2022). We consider six differ-
ent languages, namely German, Vietnamese, Por-
tuguese, Spanish, French, and Romanian, which
vary in their degree of morphological complex-
ity based on several established measures (Lupyan
and Dale, 2010; Bentz et al., 2015). For each lan-
guage, we first employed GPT-4 to translate 23
questions with nonce words from the original Wug
Test. The translations were then evaluated and cor-
rected by linguistically-trained native speakers, and
the nonce words were adapted to fit each language’s
phonotactic rules. LLMs were then provided with
the translations as prompts (e.g., “This is a Wug.
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Now there are two of them. There are two __”), and
were prompted to generate the missing inflected
form (e.g,. “wugs”).

Since the nonce words are new, unfamiliar words,
the models need to generalize their morpholog-
ical knowledge beyond their training data. The
model responses were then evaluated by native
speakers, who judged whether the inflected and
derived forms generated by the LLMs conform to
their native language’s morphological rules. We
then tested LLMs’ generalization success across
languages against two measures of morphological
complexity, namely, the richness of the morpholog-
ical system and how irregular it is.

In sum, our contributions are

• A multilingual version of the Wug Test for 6
languages

• A human evaluation of GPT-3.5 and GPT-4
responses on this multilingual Wug Test

• A cross-linguistic analysis linking LLM per-
formance to morphological complexity

• An error analysis revealing new patterns of
failure modes in morphological generalization

2 Related Work

Morphological capabilities of LLMs Probing
machine learning models for linguistic informa-
tion is a long-standing endeavour (e.g., Conneau
et al., 2018; Jawahar et al., 2019; Manning et al.,
2020; Warstadt et al., 2020; Rogers et al., 2021;
Zhang et al., 2022; Irwin et al., 2023). In terms of
morphological capabilities, Liu and Hulden (2022)
conducted a Wug-like test with Transformer mod-
els (Vaswani et al., 2017), such as the ones under-
lying LLMs (but trained from scratch), using the
SIGMORPHON 2018 shared task (Cotterell et al.,
2018a), and found that models struggled to gener-
alize morphological knowledge to new words.

However, to date, there is only one study that as-
sessed the morphological generalization of LLMs
to nonce words: Weissweiler et al. (2023), who
also took inspiration from the Wug test (Berko,
1958) and prompted ChatGPT with morphological
tasks in 4 different languages. The authors cre-
ated a new dataset by modifying and re-annotating
UniMorph 4.0 (Batsuren et al., 2022), and LLMs
were prompted to fill in the blank in example sen-
tences. While instructing LLMs to only emit the
inflected form, the first word of the generated

response was then compared against human re-
sponses and supervised morphology models: the
affix rule learner (Liu and Mao, 2016) and the min-
imal generalization learner (Wilson and Li, 2021).
Their results showed that GPT-3.5 is not yet on
par with humans regarding its generalization per-
formance on nonce words and also underperforms
supervised morphology models.

Our work complements this endeavour in sev-
eral aspects: First, we opt to manually evaluate
every response from the LLMs instead of an auto-
mated evaluation strategy (which took on the first
word of the model response). Second, we analyze a
different set of languages, with only German over-
lapping across studies. And third, we test the im-
pact of other important factors such as languages’
morphological complexity scores.

The effect of morphological complexity on lan-
guage modeling Some studies have explored the
relationship between morphological complexity
and the learnability of languages by LLMs, but
show mixed results. Cotterell et al. (2018b) esti-
mated the predictability of text in a parallel cor-
pora of 21 languages, and found that text in lan-
guages with rich inflectional morphology (and thus
higher word entropy) was more difficult to predict
by n-gram language models and LSTM-based lan-
guage models. However, when Mielke et al. (2019)
use a similar approach with three times more lan-
guages and more diverse language families, they
did not find a correlation between prediction dif-
ficulty and the number of inflectional distinctions
that languages have.

Gerz et al. (2018) further showed a positive corre-
lation between multilingual language models’ per-
plexity (how well a language model is able to pre-
dict the next work) and type/token ratios (i.e., the ra-
tio between the number of word types and the total
number of tokens in the text). More recently, Park
et al. (2021) used an even larger parallel corpus
of 92 languages, and incorporated more measures
of morphological complexity – including corpus-
based measures and features from the World At-
las of Languages Structure (WALS) (Dryer and
Haspelmath, 2013). Using surprisal as an esti-
mate for difficulty, they found that models’ per-
formance was correlated with several complexity
measures, and that this correlation was stronger for
language models whose tokenizer relied on byte-
pair-encoding (Sennrich et al., 2015).
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Together, these studies imply that language learn-
ability by LLMs is potentially affected by at least
some of the specific morphological features of lan-
guages, though which features (and which metrics
can capture them) is largely unknown – a question
on which we aim to shed new light here.

3 Background on measuring
morphological complexity

Languages vary in the degree of morphological
complexity, which can be measured using a variety
of tools (Dryer and Haspelmath, 2013) and dimen-
sions (Ackerman and Malouf, 2013). Morpholog-
ical complexity measures can be categorized into
integrative complexity (I-complexity) and enumer-
ative complexity (E-complexity) (Ackerman and
Malouf, 2013). E-complexity refers to the number
of cases and inflectional paradigms that exist in a
language’s grammar. The more inflected forms a
language can have (e.g., for gender, number, tense,
case, mood etc.), the higher its E-complexity score
is. I-complexity refers to the predictability of in-
flected form from its context. The more irregular
a morphological paradigm is (e.g., many verbs in
English show an irregular past tense inflection), i. e.
how often irregular forms are used, the higher the
I-complexity score.

A well-known example of an E-complexity mea-
sure is Lupyan and Dale (2010)’s measure for mor-
phological complexity, which was based on 28 mor-
phological features extracted from the World Atlas
of Language Structure (WALS, Dryer and Haspel-
math, 2013), such as the number of inflectional dis-
tinctions. For I-complexity, Wu et al. (2019) intro-
duced an information-theoretic measure to quantify
the frequency of irregular forms, and Bentz et al.
(2015) proposed three measures to capture the the
variety of word types used to encode identical in-
formation (“lexical diversity”). These measures
include type-token ratio and Shannon entropy (H),
which measures the degree of uncertainty of words.
The last measure is the Zipf-Mandelbrot parameter
(α), based on the Zipf’s law of word distribution.
Languages with higher TTR and Shannon entropy
are more lexically diverse, and languages with a
higher Zipf parameter are less lexically diverse.

For our study, we chose one representative mea-
sure for E-complexity and one for I-complexity,
relying on previous comparative work that showed
that different measures are highly correlated (Cöl-
tekin and Rama, 2023; Bentz et al., 2016). For E-

complexity, we use Lupyan and Dale (2010)’s com-
plexity measure based on WALS features (Dryer
and Haspelmath, 2013). For I-complexity, we use
Bentz et al. (2015)’s entropy-based measure H .

4 Methodology

4.1 Input Languages

Bloomfield (1933) distinguished between four
types of languages with respect to morphologi-
cal structure. In our study, we consider two of
them: inflected languages and isolating languages.
While Spanish, German, French, Romanian, and
Portuguese are highly inflected languages, Viet-
namese is an isolating language which does not
have explicit grammatical markers within word
boundaries. We briefly describe the considered
languages below.

Vietnamese is an isolating language and thus
there are no bound morphemes in the form of suf-
fixes and affixes. As such, there are no inflectional
or derivational processes. Instead, semantic and
grammatical information is expressed using free
morphemes (i.e., standalone words). For instance,
Vietnamese does not have plural word forms, but in-
stead expresses plurality by adding a number word
before the noun.

French is an inflected language in the Romance
branch. Verbal inflection is used to indicate tense,
person, number, mood, and aspect. Verbs are in-
flected such that they agree with the subject in
terms of person and number. For example, the
past tense formation process in French includes
combining the correct conjugated form of the aux-
iliary verbs and the participle form of the main
verb, which is formed by adding the correct ending
morpheme to it. Nouns carry number and gram-
matical gender, with number being governed by the
endings of the nous.

Spanish is also inflected language belonging
to the Romance language family, which also in-
cludes French, Portuguese and Romanian. The
choice of morphemes is governed by grammatical
gender when inflecting nouns, pronouns, and adjec-
tives. Verbs are conjugated differently depending
on whether the endings of the infinitive forms are
-ar, -er, or -ir. They also include inflectional agree-
ment with the person and number of the subject.
Another characteristic of Spanish and other Ro-
mance languages is that it has fusional morphology,
such that a single word form can expresses various
grammatical features.
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Romanian, as another member of the Romance
family, is also highly inflected language with both
nominal and verbal inflection, indicating a wide
range of grammatical features. The inflected forms
of nouns and adjectives are determined by the gram-
matical gender of the nouns as well as their endings.
For verbss, there are 4 conjugation classes, depend-
ing on the endings of the infinitive forms.

Portuguese is an Indo-European language in
the Romance branch, Portuguese is also an in-
flectional language that bears similarity to Span-
ish, although the exact number of possible distinc-
tions/inflections and the degree of irregularity is
different. For certain word endings (e.g., -s or -z),
plural and singular Portuguese forms are the same.

German is an inflected and fusional language
where affixes are added to the stem to convey gram-
matical information. such as number, case, as-
pect, and gender. There can be several affixes that
encode the same grammatical information. The
choice of affixes usually depends on the gender
of the noun. If it is masculine, plurality is often
expressed by adding -e. Feminine nouns often end
with -en. However, there are many additional rules
in German, often involving changing the vowel to
an umlaut (e.g., plural of “Zug” is “Züge”).

4.2 The Wug Test in Different Languages

The Wug test (Berko, 1958) was originally de-
signed to test the morphological knowledge of
children. It tests knowledge of both inflectional
morphology and derivational morphology in En-
glish. In 23 out of 28 questions, children hear
a nonce word embedded in the context of an ut-
terance, and need to complete the utterance with
the nonce word’s inflected form. The questions
test knowledge of a wide range of morphological
features, including numbers, tenses, diminutive,
possessive, and derivation inflections.

We first used GPT-4 to translate the original
Wug-test questions from English into the consid-
ered 6 different languages (see Figure 1). Then, to
ensure the translation is correct, we had language
experts (linguistically-trained native speakers) eval-
uate the machine-translated questions and correct
the translation if necessary. In addition, we ad-
justed the nonce words to fit the phonotactic rules
of the language, according to feedback from the
language experts. That is, in many languages word
have certain rules regarding the combination of dif-
ferent sounds. For example, French verbs must end

with -er or -ir, while a consonant cluster like zmrzl
would be unacceptable in English but fine in Czech.
Thus, we also asked native speakers to modify the
original nonce words so that they become phono-
tactically valid in the corresponding language. If
there were any words that already existed in the
language, we also removed those from the test.

After checking all translations, we prompted the
LLMs to complete the Wug test in each of the 6 lan-
guages. Specifically, we consider GPT-4 (OpenAI,
2023) (version: gpt4-0613 and GPT-3.5 (Ouyang
et al., 2022) (version: gpt-3.5-turbo-0613).
Since these models are fine-tuned on instruction-
following, they can deal with prompts that are
phrased as an instruction (Ouyang et al., 2022),
we opted to prompt the language models in a zero-
shot way, i. e., without supplying similar examples.
We did not provide an explicit instruction about
which word form that should be generated (e.g.,
past or plural) such that the LLMs have to infer
that information from the context, yet instruct the
model to assume that the nonce word is a word of
the respective language.

Specifically, we employed the following English-
language prompt prefix “Assuming that “{word}”
is a {language} word, read the following paragraph
and replace the underscores with a suitable word
form of “{word}”” to each question (see Figure 1).
We repeat this procedure to have the two LLMs
complete the Wug Test across the six languages.
Below we show an example for one question of the
Vietnamese Wug test.

Vietnamese Wug Test: Assuming that “bing” is
a Vietnamese word, read the paragraph and replace
the underscores with a suitable form of “bing”.
Người đàn ông đứng trên trần nhà. “Đây là một
người biết cách bing. Anh ta đang bing. Anh ta đã
làm điều tương tự ngày hôm qua. Anh ta đã làm gì
hôm qua? Hôm qua anh ta __. ( bing/đã bing)”

In this example, a word should be filled in to
indicate past tense of the nonce word “bing”. Past
tense in Vietnamese does not require changing the
word form. The correct form should be the same
nonce word. The word “đã” can be optionally added
to further clarify that the action is in the past.

Notably, the original Wug test had a pre-defined
ground truth response for each question, which
were not available for our newly translated lan-
guages. Therefore, we asked the language experts
to judge whether the model’s responses conform
to the morphological rules of their language, eval-
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uating the correctness of each answer on a scale
of 1 (fully disagree) to 5 (fully agree). Finally, we
asked these speakers to provide their own preferred
completion of the task.

5 Results

5.1 Accuracy

To calculate accuracy, we binarized the ratings
from native speakers into correct and wrong. We
consider responses with human ratings of score 4
and 5 to be correct, and those responses rated as
1 and 2 to be wrong. For responses rated with 3,
we assign “correct” if the human response matches
exactly with the model’s response, and “wrong”
otherwise.

Language T E I Model Acc.

Vietnamese 0.03% -16 -1.2099 GPT-3.5 87%
GPT-4 91%

French 1.78% -11 0.0469 GPT-3.5 52%
GPT-4 87%

Spanish 0.79% -11 0.0470 GPT-3.5 78%
GPT-4 70%

Romanian 0.17% -8 0.1106 GPT-3.5 56%
GPT-4 65%

Portuguese 0.54% -6 0.2948 GPT-3.5 56%
GPT-4 74%

German 1.68% -12 0.4648 GPT-3.5 66%
GPT-4 62%

Table 1: Results from the Human Evaluation of LLM’s
completions on the Multilingual Wug Test. Column
T lists the representation of each language GPT-3’s
training data. E-complexity (column E) is the Lupyan
and Dale (2010)’s morphological complexity score. I-
complexity (I) is Bentz et al. (2015)’s entropy-based
measure for lexical diversity.

Table 1 shows the results for the six tested lan-
guages, as judged by native speakers. Descriptive
statistics reveals that both GPT-4 and GPT-3.5 are
generally able to generate correct morphemes for
the nonce words. The mean accuracy is 0.69 (SD =
.46). GPT-4 scores slightly higher than GPT-3.5 (M
= .74, SD = .44 versus M = .64, SD = .48), but this
difference is not significant under a t-test, t(2,274)
= -1.69, p = .09. We cannot conclude that GPT-4 is
more capable than GPT-3.5.

5.2 Effect of Morphological Complexity

To connect our results per with the languages’ mor-
phological complexity, we quantify to what extent
accuracy is affected by a language’s E-complexity

using a measure from Lupyan and Dale (2010) and
I-complexity using a measure from Bentz et al.
(2015), as well as the percentage of GPT-3’s train-
ing data per language, for which we take the dataset
statistics from GPT-31 as estimates.

To test whether morphological complexity
scores predict LLMs’ performance on the Wug test,
we fitted mixed-effect logistic regression models
to predict accuracy from morphological complex-
ity values, potentially modulated by the amount of
training data. The analysis is conducted in R us-
ing the lme4 package. All variables were centered
and scaled before the analysis. We consider the
question number as a random effect because it is
expected that the difficulty varies per question. We
have experience with adding more random effects
(e.g., type of GPT model, evaluator, language), yet
those did not yield a better fit as tested via ANOVA.
Due to high co-linearity (VIF>10 for I-complexity
and VIF>5 for E-complexity), we split the model
into Model 1 with I-complexity and Model 2 with
E-complexity – with the language’s representation
in the training data being present in both.

The results of Model 1 (see Table 2) show that
I-complexity scores have a significant weak nega-
tive effect on accuracy scores (β = -.67, p = .0187).
The results of Model 2 (see Table 3) show that
E-complexity scores do not predict LLMs’ perfor-
mance on the Wug test (β = .10, p = .7463). The
amount of training data was found not predictive
of Wug test performance in both models (β = .10,
p = .5853 and β = -.02, p = .9137, respectively).
Further, there is no interaction effect between I and
the amount of training data. The interaction effect
between E-complexity and training data is, how-
ever, nearly significant. These results suggest that
it is the irregularity of the morphological system
rather than the number of inflectional categories
that predicts the morphological capabilities of the
investigated LLMs. Notably, the amount of train-
ing data does not seem to affect the morphological
knowledge learned by LLMs. Figure 2 visualizes
the relationship between binary accuracy and each
of the predictors (E-complexity, I-complexity, and
training data percentage).

5.3 Error Analysis
We also analyzed the models’ incorrect responses
(rated 2 or lower, or 3 with mismatching responses)

1https://github.com/openai/gpt-3/blob/master/
dataset_statistics/languages_by_character_count.
csv
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Figure 2: Binary accuracy based on human ratings of LLM responses (y-axis, added jitter) with respect to I-
complexity (Left) and E-complexity (Center), with higher being more complex, as well as training data percentage
(Right). Regression lines are logistic regression with the factor of the (scaled) x-axis as sole predictor and question
number as random effect. Results show a trend that LLM responses to the Wug Test in languages that are more
complex under these measures receive lower ratings from native speakers.

Var Estimate SE z value p-value

T 0.1036 0.1898 0.546 0.5853
I -0.6744 0.2869 -2.351 *0.0187
T:I -0.0461 0.2389 -0.193 0.8468

Table 2: Results of mixed effect logistic regression with
binary accuracy as dependent variable and question number
as random effect. Fixed effects are training data (T) and I-
complexity (I) and their interaction (T:I).

Var Estimate SE z value p-value

T -0.0207 0.1914 -0.108 0.9137
E 0.1049 0.3243 0.324 0.7463
T:E 0.7331 0.3857 1.901 0.0574

Table 3: Results of mixed effect logistic regression with
binary accuracy as dependent variable and question number
as random effect. Fixed effects are training data (T) and E-
complexity (E) and their interaction (T:E).

with the goal of detecting any systematic patterns in
LLMs’ morphological knowledge (or lack thereof).
When zooming in on the incorrect responses only,
we detected four types of errors:

One type of error is that the models do not inflect
the nonce word at all, when it should be inflected,
e.g., using an affix (inflection ignorance). For ex-
ample, the correct plural form for the nonce word
“tass” in Spanish would be “tasses”. However, GPT-
3.5 did not add the suffix -es, and simply produced
the uninflected singular form.

A second type of error was that models occasion-
ally failed to choose the correct affixes (inflection
mismatch). For example, in German the model
generated accusative plural “Lunen”, instead of
nominative plural “Lune” for the word “Lun”.

A third type of error was that the models some-
times applies English morphological rules to nonce
words in other languages (English fall-back). For
example, in Vietnamese, “dã” should be added be-
fore the verb to create the past form. In the case
of the nonce verb “bing”, the models should have
responded with “dã bing”. However, the model’s
response was “binged” – which wrongfully follows
the grammatical rule of English. We attribute this
kind of error to the dominance of English and pos-
sibly due to the English Wug test being present
in the models’ training data. Although “bing” is
a phonotactically valid in Vietnamese, the models
mistakenly considered it as an English nonce word,
as in the original Wug test, and thus completed the
sentence with the English past form.

As a fourth type of error, we also observe the
real-word bias, as reported by Weissweiler et al.
(2023), whereby the models sometimes treated the
nonce word as if it was a similar existing word in
the language, and provide an inflected form for that
word. For example, the nonce word “tass” was
wrongly pluralized to “Tassen”, which is the plural
of the very similar existing German word “Tasse”.

6 Discussion

Our goal was to investigate how well multilingual
LLMs learn the underlying morphosyntactic struc-
ture of different languages and how this is influ-
enced by languages’ degree of morphosyntactic
complexity. We did this by applying a Wug test
in 6 different languages, and evaluating the mod-
els’ responses as a function of two measures of
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complexity, as well as the representation of the
language in the training data.

Morphology matters We found that integra-
tive morphological complexity (I-complexity) is
more predictive of LLMs’ out-of-distribution per-
formance than the language’s representation in
the pre-training data – a surprising finding given
that the amount of training data is usually consid-
ered the main driving factor for language model-
ing performance. For example, despite having the
least amount of training data (0.03%), the mod-
els’ performance was much better on Vietnamese
compared to other languages (average accuracy of
85%), which has the lowest E- and I-complexity
scores. Notably, all of the observed failures on the
Vietnamese Wug test belong to the first error cate-
gory: the misuse of English morphological rules.

Our results also show that different dimensions
of morphological complexity affect LLMs’ perfor-
mance to different degrees. Specifically, we found
that only I-complexity (which corresponds to pre-
dictability of word forms from context) predicts
Wug test accuracy, but not E-complexity. Thus,
while languages with a lot of word forms are more
challenging for LLMs to learn, the predictability of
these word forms given appears to have a greater
impact on LLM performance.

Lastly, our results show that the amount of train-
ing data seems to be less important than morpholog-
ical complexity. Specifically, we did not find that
the language’s representation in the model’s train-
ing data is not predictive of its morphological capa-
bilities. With this finding, we further support Liu
and Hulden (2022), who found that Transformer-
based models fail to inflect unknown words despite
them being trained on a large amount of data.

Error types Our error analysis shows that LLM’s
occasionally make mistakes in inflecting the nonce
words. Besides the real word bias revealed by Weis-
sweiler et al. (2023), our error analysis revealed
three more types of errors beyond real-world bias:
inflection ignorance, inflection mismatch, and En-
glish fall-back. We attribute the English fall-back
to the high prominence of English in the model’s
training data (90%+).

Comparison with previous studies Previous
studies found the effect of E-complexity on LLMs’
performance (Cotterell et al., 2018b; Park et al.,
2021; Gerz et al., 2018). However, we do not find
any effect of E-complexity on LLMs’ Wug test ac-

curacy. Rather, we found that I-complexity predicts
morphological capability of LLMs. It should be
noted that these studies measure the relationship
between morphological complexity and different
metrics of LLMs. While we attempt to use behav-
ioral probing to measure morphological knowledge
of LLMs, other work uses modeling difficulty (Cot-
terell et al., 2018b), perplexity (Gerz et al., 2018),
and surprisal (Park et al., 2021; Mielke et al., 2019).
Furthermore, the high correlation between the an-
alyzed morphological complexity measures con-
firms the findings of Cöltekin and Rama (2023).

Comparing our results with Weissweiler et al.
(2023), we can confirm that LLM’s accuracy on the
morphological completion of nonce words is not
perfect. A particularly interesting case is German:
Among the languages studied here, German has a
relatively low E-complexity score, but the highest
I-complexity score. Weissweiler et al. (2023) found
German to be the best-performing language, with
86.49% accuracy, taking into account the five most
probable completions for each stimulus k = 5.
However, comparing German on a k = 1 setup
with long prompts (most similar to ours), the other
study reports 62.18% accuracy, which is indeed
comparable with our results for German: 62%
(GPT-4) and 66% (GPT-3.5). Therefore, we assume
that this drastic drop in accuracy (86% to 62%) can
be attributed to the number of possible generation
attempts that are taken into account (k = 5 vs.
k = 1). For future studies, it is therefore impor-
tant to take into account the number of generation
attempts.

In the context of comparing large language mod-
els to humans, our results suggest that what is more
complex for us is also more complex for LLMs.
Specifically, work on first and second language
acquisition suggests that languages with more
complex morphosyntactic structures are harder to
learn (Kempe and Brooks, 2008; DeKeyser, 2005;
Dressler, 2003, 2010; Slobin, 1985). Our study
is in line with this conclusion, and extend it to
LLMs. It also confirms recent insights from artifi-
cial language learning experiments, which found
that artificial miniature languages with more sys-
tematic structures are easier to learn and generalize
across adult humans, small recurrent neural net-
works trained from scratch, and large language
models (Galke et al., 2023; Raviv et al., 2021).

Implications Our findings have important im-
plications for low-resource language processing.
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Specifically, it is worth paying attention to lan-
guages’ morphological complexity. When aiming
for equal capabilities across languages in multi-
lingual LLMs, the classic approach would be to
counterbalance the representation of low-resource
languages in the training data. However, our re-
sults suggest that this is not sufficient: we found
no significant effect of training data representation
on Wug test accuracy (within the frame of the ana-
lyzed data). Potentially, other tokenization strate-
gies, such as single-byte tokenization (Xue et al.,
2022) or morphology-guided tokenization (Creutz
and Lagus, 2007) could help improve LLM’s per-
formance on low-resource language processing.

7 Conclusion

We tested whether languages’ morphological com-
plexity affected the performance of multilingual
large language models on a classic language task.
We ran the Wug test in 6 languages and ana-
lyzed how task performance was affected by the
degree of morphological complexity in each lan-
guage. Our results show that languages’ morpho-
logical complexity (specifically, integrative com-
plexity), is more important than its relative rep-
resentation in the training data of large language
models – a finding that challenges conventional
wisdom and comes with important implications for
low-resource language modeling. We have further
identified additional error types beyond real-world
bias such as English fall-back and inflection igno-
rance, whose cause we will explore in future work
by investigating the role of tokenization.

Data Availability

The translations of the Wug test into the six
considered languages, the script for query-
ing the language models, and the script
for our statistical analysis is available un-
der https://github.com/dangthithaoanh/
multilingual-wug-test-on-LLMs.

Limitations

We have limited ourselves to comparing only two
large language models because we prioritized hav-
ing an expert judgement for each individual model
response. The share of each language in the LLM’s
pre-training data is taken from the original GPT-
3 repository as estimates for GPT-3.5 and GPT-4.
Another limitation is that the nonce words could
appear more irregular in some languages than in

others. Moreover, for most languages, we only
had one language expert providing the ratings of
grammatical correctness. However, we have quali-
tatively checked the interrater agreement on Viet-
namese and found high agreement. Lastly, we have
only considered one language (Vietnamese) for the
category of isolating morphology.

Ethical Considerations

We emphasize that morphological complexity of
languages bears no implication on their quality –
having more complexity does not make one lan-
guage better than another (see Raviv et al., 2022).
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Daniela Gerz, Ivan Vulić, Edoardo Maria Ponti, Roi
Reichart, and Anna Korhonen. 2018. On the rela-
tion between linguistic typology and (limitations of)
multilingual language modeling. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 316–327, Brussels,
Belgium. Association for Computational Linguistics.

Michael A. Hedderich, Lukas Lange, Heike Adel, Jan-
nik Strötgen, and Dietrich Klakow. 2021. A survey
on recent approaches for natural language process-
ing in low-resource scenarios. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2545–2568,
Online. Association for Computational Linguistics.

Kees Hengeveld and Sterre Leufkens. 2018. Transpar-
ent and non-transparent languages. Folia Linguistica,
52(1):139–175.

Dieuwke Hupkes, Mario Giulianelli, Verna Dankers,
Mikel Artetxe, Yanai Elazar, Tiago Pimentel, Chris-
tos Christodoulopoulos, Karim Lasri, Naomi Saphra,
Arabella Sinclair, Dennis Ulmer, Florian Schottmann,
Khuyagbaatar Batsuren, Kaiser Sun, Koustuv Sinha,
Leila Khalatbari, Maria Ryskina, Rita Frieske, Ryan
Cotterell, and Zhijing Jin. 2023. A taxonomy and
review of generalization research in NLP. Nature
Machine Intelligence, 5(10):1161–1174.

Tovah Irwin, Kyra Wilson, and Alec Marantz. 2023.
BERT Shows Garden Path Effects. In Proceedings
of the 17th Conference of the European Chapter
of the Association for Computational Linguistics,
pages 3220–3232, Dubrovnik, Croatia. Association
for Computational Linguistics.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3651–3657, Florence, Italy. Association for
Computational Linguistics.

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric
Wallace, and Colin Raffel. 2023. Large language
models struggle to learn long-tail knowledge. In
Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pages 15696–15707.
PMLR.

Vera Kempe and Patricia J Brooks. 2008. Second lan-
guage learning of complex inflectional systems. Lan-
guage Learning, 58(4):703–746.

Anne Lauscher, Vinit Ravishankar, Ivan Vulić, and
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