
Uniform-Cost Multi-Path Routing for
Reconfigurable Data Center Networks

Jialong Li
Max Planck Institute for Informatics

Haotian Gong∗
The University of British Columbia

Federico De Marchi
Max Planck Institute for Informatics

Aoyu Gong∗
EPFL

Yiming Lei
Max Planck Institute for Informatics

Wei Bai
NVIDIA

Yiting Xia
Max Planck Institute for Informatics

Abstract
Reconfigurable data center networks (RDCNs) are arising as a
promising data center network (DCN) design in the post-Moore’s
law era. However, the constantly reconfigured network topology
in RDCNs invalidates the assumption of using hop count as the
cost metric for routing, e.g., the status quo Equal-Cost Multi-Path
routing (ECMP) in traditional DCNs. Unfortunately, existing rout-
ing solutions in RDCNs stick to the old assumption and deliver
suboptimal performance either high in latency or low in bandwidth
efficiency. In this paper, we redefine the cost metric for RDCN rout-
ing with uniform cost to unify the effects of topology disruption
and hop count on latency and bandwidth efficiency. We propose
Uniform-Cost Multi-Path routing (UCMP), an ECMP equivalent
for RDCNs, where minimizing uniform cost leads flows of various
sizes to the right balance between latency and bandwidth efficiency.
Our simulation shows that UCMP achieves 53% to 98% lower flow
completion time (FCT) and 1.55× bandwidth efficiency compared
to the state-of-the-art RDCN routing strategy, and our testbed im-
plementation demonstrates sustainable switch resource usage of
UCMP as RDCNs scale.

CCS Concepts
• Networks→ Data center networks; Network protocols.

Keywords
Data center networks, optical networks, routing, multi-path routing

ACM Reference Format:
Jialong Li, Haotian Gong, Federico De Marchi, Aoyu Gong, Yiming Lei,
Wei Bai, and Yiting Xia. 2024. Uniform-Cost Multi-Path Routing for Recon-
figurable Data Center Networks. In ACM SIGCOMM 2024 Conference (ACM
SIGCOMM ’24), August 4–8, 2024, Sydney, NSW, Australia. ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3651890.3672245

∗Work done during the internship at Max Planck Institute for Informatics.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0614-1/24/08
https://doi.org/10.1145/3651890.3672245

1 Introduction
The success of cloud data center networks (DCNs) largely benefited
from multi-path routing. The Clos topology of most production
DCNs offers numerous equal-cost paths to scale up the network ca-
pacity [23, 40], enabling Equal-Cost Multi-Path routing (ECMP) [7]
and later extensions [5, 8, 21, 46] to utilize the rich bandwidth across
parallel paths. However, this classic approach has lost ground in
the emerging reconfigurable data center networks (RDCNs), as the
slowdown of Moore’s law shifts the realm of DCNs towards circuit
switching technologies [12–15, 18–20, 24, 27–30, 32, 39, 44].

RDCNs function in a fundamentally different manner than tradi-
tional DCNs. As illustrated in Fig. 1a, an RDCN creates reconfig-
urable circuits between Top-of-Rack switch (ToR) pairs through
circuit switches, e.g., optical circuit switches [12, 19, 30], crosspoint
switches [18, 27, 39], and free-space optics [20, 24], forming a direct-
connect topology on the ToR level. The network topology changes
throughout time as the circuit switches reconfigure the circuits.

Over the years, RDCNs have evolved from traffic-aware to traffic-
oblivious, driven by the low-latency and low-cost requirements
of DCNs. Intuitively, traffic-aware RDCNs construct circuits on-
demand to fit the DCN traffic. Yet, the global traffic collection and
topology optimization incur millisecond- to second-scale delays,
which either prolong traffic flows [13, 14, 20, 28, 32], or require a re-
dundant static DCN for always-on connectivity during circuit recon-
figuration [19, 44]. Thus, recent proposals feature traffic-oblivious
RDCNs, which rotate among a pre-determined set of topologies in
microseconds or sub-microseconds, agnostic to traffic [12, 29, 30].
They deliberately choose a sequence of well-connected graphs, e.g.,
expander graphs [29], as the topologies to ensure good network
connectivity throughout time.

With these time-varying topologies, RDCNs challenge the com-
mon beliefs for multi-path routing from the ECMP era. Here, we
revisit the design decisions for multi-path routing in traditional
DCNs to shed light on new principles needed for multi-path routing
in RDCNs.

First, we consider what is the right cost metric for multi-path rout-
ing in RDCNs.The cost in ECMP, andmany other routing algorithms,
is typically the path hop count, because it serves as a reliable proxy
metric for routing latency in static networks. In RDCNs, though,
the discrete nature of circuits invalidates this assumption. When
circuits are reconfigured, packets may wait at intermediate hops for
the next circuit to appear. Consequently, paths with the same hop
count in an RDCN may exhibit different overall latencies due to

433

This work is licensed under a Creative Commons Attribution‐ShareAlike International 4.0 License.

https://doi.org/10.1145/3651890.3672245
https://doi.org/10.1145/3651890.3672245
https://creativecommons.org/licenses/by-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3651890.3672245&domain=pdf&date_stamp=2024-08-04

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Li et al.

varying circuit-waiting times. Routing latency in RDCNs thus needs
to be redefined, and RDCNs require a new cost metric for multi-path
routing.

Next, we ask how many multi-paths are appropriate for RDCNs.
We claim that the days of “the more paths, the merrier” are long
gone, which assumes the use of ECMP on Clos networks so all
paths have the same length. In contrast, the RDCN topologies such
as expander graphs lack such parallel paths. Blindly applying multi-
path routing, e.g., :-shortest path routing (KSP), would produce
long paths with many joint edges that cause load imbalance and
congestion [41, 43]. A higher : indicates more but longer paths, and
5 KSP paths (: = 5) has been reported to underperform a single path
in RDCNs [29]! On the other hand, RDCNs have the natural effect
of diversifying paths as they get updated with topology changes,
which can be leveraged in the multi-path design. So, we conclude
RDCNs need a small set of carefully selected paths with respect to the
reconfigured topologies.

Finally, we rethink the norm of routing flows indiscriminately
across the multi-paths in ECMP. Unlike in static networks, short and
long flows in RDCNs thrive with paths of different natures, also due
to circuit waiting. Short flows, being latency-sensitive, favor paths
with immediately available circuits to avoid high circuit-waiting
delays, even if such paths are inherently long. Conversely, long
flows significantly impact bandwidth efficiency, measured as the
reciprocal of the average hop count over all the traffic, since they
generate heavy loads for every extra hop encountered. Thus, they
favor short paths, despite the longer latency waiting for the circuits
to appear. These distinct routing behaviors of short and long flows
should be respected in the design of multi-paths.

In this paper, we set the first step towards a principled methodol-
ogy for multi-path routing in RDCNs regarding the above require-
ments. We present Uniform-Cost Multi-Path routing (UCMP), an
ECMP equivalent for RDCNs. In the design, we redefine routing la-
tency for RDCNs taking the circuit-waiting delay into consideration,
and propose uniform cost as the cost metric to unify the effects of
latency and hop count on short and long flows, optimizing both
FCT and bandwidth efficiency. Minimizing uniform cost guides us
to choose a small set of efficient UCMP paths that have high path
diversity and coverage as the network reconfigures over time. Flows
of various sizes are each assigned to the most appropriate UCMP
path with the minimum uniform cost, using our flow bucketing
scheme based on flow aging [11] without prior knowledge of the
flow size information.

Our principled approach is a giant leap from previous makeshift
solutions that simply adapt established routing methods in static
networks to RDCNs. Specifically, valiant load balancing (VLB) was
repurposed from handling arbitrary traffic in static networks to
handling arbitrary topologies in RDCNs [12, 30]. Known as two-
phase routing, it first sends packets to random intermediate ToRs
and then forwards them to their final destinations. The random
choice of intermediate hops causes unpredictable circuit-waiting
delay and jeopardizes FCT for short flows. KSP, commonly used for
multi-path routing on static expander graphs, has been shown above
to have worse performance than single-path routing in RDCNs. To
mimic static networks, Opera adopts a topology-routing co-design
that reconfigures a subset of circuits at a time and routes traffic
on the remaining stable circuits [29]. As detailed in §2.2, Opera’s

rigid constraint to fully preserve the properties of static networks
leads to a considerable percentage of unusable circuits, e.g., 1/6 on
average in the simulated setting of the Opera paper [29].

We have implemented UCMP using Intel Tofino2 switches and
Mellanox ConnectX-5 NICs, and have conducted extensive evalua-
tions of UCMP with both simulations and testbed experiments. In
our setting of a 108-ToR RDCN, a small set of 3.2 UCMP paths on av-
erage achieves high coverage, exposing each ToR pair to an average
of 47.9 paths over time, and 93.2% of the UCMP paths are edge-
disjoint. Under production DCN traffic, UCMP achieves 53% to 98%
reduction in FCT and 1.55× bandwidth efficiency compared to the
state-of-the-art RDCN routing solution. The advantages of UCMP
have been confirmed on the testbed, and the resource consumption
of UCMP on switches is within the capacity limit of commercial
switch ASICs.

[This work does not raise any ethical issues.]

2 Background
In this section, we provide background information on traffic-
oblivious RDCNs (§2.1)—the primary focus of this paper—and dis-
cuss routing strategies in traffic-oblivious RDCNs (§2.2).

2.1 Traffic-Oblivious RDCNs
Asmentioned in §1, traffic-oblivious RDCNs have gained popularity
due to their latency and cost advantages compared to traffic-aware
RDCNs. Throughout the rest of the paper, we use the term RD-
CNs to refer to traffic-oblivious RDCNs unless explicitly specified
otherwise.

Fig. 1a illustrates an example (traffic-oblivious) RDCN, where
the Top-of-Rack switches (ToRs) are interconnected through a num-
ber of circuit switches (2 in the figure). These circuit switches are
controlled by an RDCN controller to reconfigure the circuits once a
fixed duration of time, called a time slice. The sequence of ToR-wise
circuit connections together with their time slices constitutes a cir-
cuit schedule. The circuit schedule is pre-determined irrespective of
the traffic and repeats every circuit cycle. The latest RDCN designs
feature microsecond-scale time slices, enabled by modern circuit
switching technologies that reconfigure circuits in microseconds
or even nanoseconds [12, 29, 30, 32]. A typical circuit cycle con-
tains tens of time slices, resulting in a cycle duration ranging from
microseconds to milliseconds.

To maximize the network connectivity, the circuits per time
slice form a small-diameter graph, e.g., expander graph, and every
ToR pair is guaranteed to have direct circuits at least once per
cycle [29, 30]. Thus, RDCNs function as a sequence of cyclically
repeating time-varying graphs. Fig. 1b shows the RDCN topology
of Fig. 1a, where the time-varying graphs can be presented by a
complete graph with the time slices of the circuits annotated on the
edges. Hence, a path in an RDCN is specified by ? (BA2, 3BC, CBC0AC)
from source ToR BA2 to destination ToR 3BC with the starting time
slice CBC0AC for an instance of the time-varying graphs, as opposed
to simply ? (BA2, 3BC) in traditional DCNs with static topologies.

;0C4=2~ (?) = (C4=3 − CBC0AC + 1) × D (1)
The routing latency in RDCNs is also defined differently. Static

networks use hop count as a reliable proxy metric for latency. In

434

Uniform-Cost Multi-Path Routing for Reconfigurable Data Center Networks ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

1

(a) RDCN

A → C → B
2

A

B E

C D

1

2

A

B E

C D

B

A

1

2

E

C D 2

A

B E

C D

1

A → C → D → BA → B

(b) Topology (c) Direct path (e) KSP

E

C D

1

2

A

B

(d) VLB (f) Opera

Circuit switches

A B C D E

ToR

✗✗

Time slice of the circuit (src ToR, dst ToR) = (A, B)

A → D → B D → B

→A → C → E → B

Figure 1: Illustration of the RDCN structure and routing. (a) An example RDCN, (b) the time-varying topology of (a) with the circuit time slices
annotated on the edges, (c)-(f) different routing strategies in the RDCN from A to B in time slice CBC0AC = 1.

RDCNs, however, paths with the same hop count may exhibit dif-
ferent latencies due to varying waiting times for upcoming circuits.
We model latency for a routing path ? in an RDCN by the number
of elapsed time slices during routing, as shown in Eqn. 1, from the
starting time slice CBC0AC when the packet arrives at the source ToR
to the ending time slice C4=3 when the packet is delivered to the
destination ToR, multiplied by the time slice duration D.

The ending time slice, C4=3 , is essentially the time slice of the last-
hop circuit on the path, because regardless of the trajectory taken,
the delivery time is ultimately determined by the availability of the
circuit at the last hop. For example, to route from ToR A to ToR B
in time slice CBC0AC = 1, the latency of path A→B in Fig. 1c is 5 time
slices, with C4=3 = 5; and the latencies of A→D→B and A→C→B
in Fig. 1d, both with 2 hops, are 2 and 4 time slices, respectively.

2.2 Routing in Traffic-Oblivious RDCNs
The most intuitive way of routing is through direct circuits, as
shown in Fig. 1c, but the long latency waiting for the circuit, as
discussed above, has motivated alternative routing approaches to
use more readily available multi-hop paths.
VLB. Valiant Load Balancing (VLB), also known as two-phase
routing, has been applied to RDCNs to maximize the throughput,
especially for long flows [12, 30]. In phase 1, the source ToR dis-
tributes packets across randomly selected intermediate ToRs that
are connected to the source ToR, e.g., C and D in Fig. 1d. This action
achieves a similar effect as packet spraying. In phase 2, the inter-
mediate ToRs forward the packets to the destination ToR when
direct circuits are available. Despite the optimal throughput har-
nessing all available circuits, the long circuit-waiting time in phase
2 jeopardizes FCT of short flows. In Fig. 1d, for instance, the FCT is
bottlenecked by the high-latency path A→C→B. In the worst case,
the latency of a VLB path can be a full circuit cycle, which is as bad
as using direct circuits.
KSP. K-shortest path routing (KSP) [6, 41, 43] is widely used
for static topologies. When applied to the time-varying graphs in
RDCNs, it computes the top : shortest paths for the graph instance
in each time slice. In other words, a packet dispatched in time slice
CBC0AC follows the path determined by the graph corresponding to
CBC0AC . If the network is reconfigured while the packet is in-flight,
it will be rerouted onto a path over the new graph. For example, in
Fig. 1e where : = 1, the packet following A→C→E→B planned for
CBC0AC = 1 encounters reconfiguration of E→B by the end of time
slice 1. It is rerouted at ToR E along E→D→B, which is available in

time slice 2. KSP in RDCNs suffers from high hop counts when :

is large. This is because small-diameter graphs, such as expanders,
lack equal-cost paths, necessitating the use of longer paths when a
large number of parallel paths are required. Rerouting caused by
circuit reconfiguration exacerbates the problem.
Opera. Opera adopts a topology-routing co-design for RDCNs [29].
It reconfigures a subset of circuits at a time while routing traffic
on the remaining stable circuits, treating them as a static topology.
Opera ensures that no packets are in-flight during circuit reconfig-
uration by bounding the ToR buffer size and selecting paths with
durations longer than the maximum one-way delay, assuming full
ToR buffers in the worst case.

Opera handles short and long flows separately. It classifies flows
under 15MB as short flows and routes them using KSP on the
stable circuits. Flows over 15MB are considered long flows and are
routed using VLB. Fig. 1f illustrates the case for short flows. Opera
anticipates the upcoming reconfiguration of E→B and excludes the
vanilla KSP (: = 1) path A→C→E→B due to the one-way delay
exceeding the path duration. Instead, it selects the KSP path on the
residual graph, excluding the infeasible paths.

Opera aims to fulfill different requirements of short and long
flows. However, the hard cutoff of 15MB is inadaptive to vary-
ing traffic workloads and network utilizations. Additionally, Opera
avoids rerouting in-flight packets during circuit reconfigurations by
imposing overly aggressive constraints that consider the worst-case
buffer size. This approach results in unnecessary circuit waste. In
the simulated network described in the Opera paper [29], on aver-
age, 1/6 of the circuits become unusable. This inefficiency further
increases the hop count for KSP on the residual graphs.

3 UCMP Overview
We give an overview of UCMP in this section, where we define
uniform cost (§3.1), present our design intuitions (§3.2), and show
the path space of UCMP and prior solutions (§3.3).

3.1 Uniform Cost
Intuitively, the goal of routing is to deliver traffic at low latency.
In RDCNs, however, the presence of circuit-waiting time means
that solely minimizing latency (Eqn. 1) would lead traffic towards
immediately available paths, often characterized by high hop counts,
thereby compromising bandwidth efficiency. Short flows are latency-
sensitive but incur minimal network load even across many hops,
whereas long flows exhibit the opposite behavior. Therefore, we

435

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Li et al.

Figure 2: UCMP overview.

define uniform cost to unify the effects of latency and hop count
on path selection, to achieve low FCT for short flows and high
bandwidth efficiency for long flows.

� (?, 5) = ;0C4=2~ (?) + U × ℎ>? (?) × B8I4 (5)/� (2)

The above equation presents the uniform cost � (?, 5) for flow 5

on path ? , where ;0C4=2~ (?) is as defined in Eqn. 1 and ℎ>? (?) is
the hop count of the path. As discussed above, we should penalize
high hop counts for the reduction of bandwidth efficiency, and
the penalty function should be linear with respect to the flow size
B8I4 (5), as G bytes sent over = hops consume =G bytes of network
capacity. We divide ℎ>? (?) × B8I4 (5) by the link bandwidth � to
convert it into a time quantity that is additive to ;0C4=2~ (?). We
use a weight factor U to determine the relative importance between
the latency and hop count terms. As we will explain in §5.2, U is
tunable regarding the network utilization.

With this definition, minimizing uniform cost would guide short
flows towards low-latency paths, often with more hops though, and
guide long flows towards short paths, albeit with higher latency.
Note that uniform cost is specific to both paths and flows, driven by
different behaviors of short and long flows in RDCNs, in contrast
to the traditional cost metric of hop count in ECMP that is only
specific to paths.

3.2 Design Intuitions
In RDCNs, the microsecond-scale time slices require routing de-
cisions to be done rapidly, and the fixed RDCN topologies enable
pre-computation of routing paths. Thus, in UCMP, we opt for offline
path calculation, i.e., generating UCMP groups with a collection of
paths, and online path assignment, i.e., mapping flows to different
paths in a UCMP group.

However, our uniform cost in Eqn. 2 cannot be used directly for
offline path calculation due to the runtime factor of flow size. To
address this challenge, we loosely define UCMP groups as sets of
candidate paths that, without knowing the flow size information,
potentially have the minimum uniform cost. Given all the candidate
paths, online path assignment can then map each flow to its desired
path with the minimum uniform cost for its specific flow size.

A candidate path must satisfy two conditions. (1) It must have the
lowest latency among all the paths with the same hop count because
the hop count term in Eqn. 2 is fixed for a prospective flow of a
particular (unknown) size, making the uniform cost determined by
the latency. (2) It must have lower latency than all other candidate
paths with fewer hop counts; otherwise, there would exist a path

with both lower hop count and lower latency for a prospective flow,
resulting in a lower uniform cost.

Following these insights, as the UCMP path space shows in Fig. 2,
we calculate the =-hop minimum-latency path for every hop count
=, and among these paths, we select the ones with increasing hop
count having lower latency. The calculation can stop at ℎ<0G hops,
where the global minimum-latency path is located. There exists
no candidate path beyond ℎ<0G , as any path to its right would
have both a higher hop count and higher latency than the global
minimum-latency path.

We assign each flow a single path in the UCMP group at runtime
to avoid packet reordering. This path, as aforementioned, has the
minimum uniform cost for its given flow size, to achieve the desir-
able tradeoff between latency and hop count. Recall from §3.1 that
minimizing uniform cost directs short flows to long paths and long
flows to short ones. To make UCMP general to cases where flow
size information is unattainable, we devise a flow bucketing scheme
based on flow aging [11] to enable path assignment without prior
knowledge of flow sizes.

This method applies to arbitrary circuit schedules, which, as
explained in §2.1, are pre-determined and usually generated in a
round-robin manner. UCMP takes the circuit schedule as input and
by this means functions as a generic routing solution for traffic-
oblivious RDCNs.

3.3 Path Space
In Fig. 2, we compare UCMP’s path space with that of prior routing
schemes in §2.2. As discussed in §3.2, UCMP’s path space includes
the =-hop minimum-latency paths, = from 1 to ℎ<0G , and these
paths have decreasing latency as = grows. The ℎ<0G -hop UCMP
path with global minimum latency is essentially the continuous
path without circuit waiting.

The 1-hop UCMP path is the naive direct path, as shown in
Fig. 1c. VLB uses randomly-chosen 2-hop paths and includes the 1-
hop paths if direct circuits exist. The VLB path space thus contains
the 1- and 2-hop UCMP paths, though it has many other 2-hop
paths with higher (random) latency (than the minimum-latency
2-hop UCMP path).

KSP computes :-shortest paths on the topology instance per
time slice. It assumes continuous paths on the static topologies,
so its space contains the ℎ<0G -hop UCMP path. It also includes
other rerouted paths with longer latency and hop counts. Opera
directs flows over 15MB to VLB paths, and flows under 15MB to
KSP paths. Note that Opera’s paths may present higher hop count
than KSP’s since it avoids using circuits being reconfigured.

In this figure, lower latency and lower hop count indicate better
performance. UCMP exhibits the best tradeoff between latency and
hop count among all the solutions.

4 Offline Path Calculation
Here, we introduce offline path calculation in detail following the
intuitions in §3.2. We present our path computing algorithm (§4.1),
show how to obtain ℎ<0G for the algorithm (§4.2), and give princi-
ples for forming UCMP groups (§4.3).

436

Uniform-Cost Multi-Path Routing for Reconfigurable Data Center Networks ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

(a) Topology
A → E → B ✗

2

A

B E

C D

1 1

2

A

B E

C D

B

A

1

2

E

C D

A → C → B ✓
2

A

B E

C D

1

A → C → E → B ✗

1

2

A

B E

C D

A → C → D → B ✓A → B ✓
(b) 1-hop minimum-latency path (c) 2-hop minimum-latency path (d) 3-hop minimum-latency path

E

C D

1

2

A

B

Path: last intermediate ToR → dst ToR (sp2)

Time slice of the circuit C/D/E: Last intermediate ToRs

Minimum-latency path: src ToR → last intermediate ToR (sp1)

(src ToR, dst ToR) = (A, B)

Figure 3: Illustration of computing =-hop minimum-latency paths. (a) RDCN ToR-level topology, time slice of each circuit denoted on edges. (b)
1-hop, (c) 2-hop, (d) 3-hop minimum-latency paths from A to B starting at time slice CBC0AC = 1.

4.1 =-Hop Minimum-Latency Paths
For simplicity, we explain the offline UCMP path calculation al-
gorithm with an example RDCN illustrated in Fig. 3. The specific
algorithm Alg. 1 is left to Appx. A.

Recall from §2.1 that an RDCN path ? (BA2, 3BC, CBC0AC) is specific
to the BA2-3BC ToR pair and the time slice CBC0AC when routing starts.
According to Eqn. 1, for a specific CBC0AC , the latency of the path is
solely determined by C4=3 — the time slice of the last-hop circuit.
Following this intuition, we divide an =-hop path ?= (BA2, 3BC, CBC0AC)
into two sub-paths: B?1 = ?=−1 (BA2, ;0BC, CBC0AC) for the first = − 1
hops from the BA2 ToR to the ;0BC intermediate ToR and B?2 =

?1 (;0BC, 3BC, CBC0AC) for the last hop from the ;0BC intermediate ToR
to the 3BC ToR. We have ;0C4=2~ (?=) = ;0C4=2~ (B?2).

For example, as the right sub-figure of Fig. 3c shows, the 2-hop
path ?2 = A→C→B from A to B in time slice CBC0AC = 1 can be
split into B?1 = A→C and B?2 = C→B. We have ;0C4=2~ (?2) =
;0C4=2~ (B?2) = 4 time slices because the latency of the entire path
A→C→B is determined by the last hop C→B, as packets may wait
at intermediate ToRs, i.e., C in this case. The left sub-figure, on the
other hand, shows an infeasible split B?1 =A→E and B?2 = E→B for
?2 = A→E→B. Here, ;0C4=2~ (B?1) (2 time slices) > ;0C4=2~ (B?2)
(1 time slice), meaning by the time packets reach E in time slice 2,
the circuit E→B would have been gone.

Following the above idea, we can break down the search for
the =-hop minimum-latency path ?=

<8=
(BA2, 3BC, CBC0AC) into three

steps. (1) Find the B?2 with the minimum latency, which deter-
mines the latency of ?=

<8=
. (2) Get the corresponding B?1, which

can be computed as the minimum-latency path for = − 1 hops
?=−1
<8=
(BA2, ;0BC, CBC0AC). (3) Ensure the split is feasiblewith ;0C4=2~ (B?1)

≤ ;0C4=2~ (B?2). We thus design a recursive algorithm where the
=-hop path depends on the paths with = − 1 hops, based on step (2).

As Fig. 3b depicts, the 1-hop minimum-latency path is simply the
direct circuit A→B, i.e., the only 1-hop path. For 2 hops in Fig. 3c, we
first try B?2 = E→B as it has the minimum latency, but it leads to an
infeasible split as explained above. Then we move on to B?2 = D→B
with the next lowest latency of 3 time slices, but the corresponding
B?1 = A→D is still infeasible with a latency of 4 time slices until we
finally find B?2 = C→B that makes the path A→C→B. Similarly,
for 3 hops in Fig. 3d, we start from the minimum-latency B?2 =

E→B shown in the left sub-figure, and the B?1 = A→C→E has been
computed as the 2-hop minimum-latency path from A to E. Seeing
this split infeasible, we continue the process until getting the path
A→C→D→B in the right sub-figure.

4.2 Upper Bound of ℎ<0G

The algorithm stops computing at ℎ<0G hops where the global
minimum-latency path is, as shown in Fig. 2. It is challenging to cal-
culate the exact value of ℎ<0G given the diverse RDCN settings, so
we develop a probabilistic approach to get its upper bound Ω(ℎ<0G).
We outline the general idea here and leave the detailed method to
Appx. B.

We first compute the network diameter, i.e., the hop count of
the longest path, for each topology instance of the RDCN. Among
them, we choose the maximum value and label it ℎBC0C82 . Next,
we calculate ℎB;824 , the maximum number of hops a packet can
traverse within a single time slice, using the propagation delay and
transmission delay. The calculation of Ω(ℎ<0G) can be divided into
two cases.

Case I: ℎB;824 ≥ ℎBC0C82 . In this case, the global minimum-latency
path can be completed within a single slice. Thus, ℎ<0G ≤ ℎBC0C82
and we take ℎBC0C82 for Ω(ℎ<0G).

Case II:ℎB;824 < ℎBC0C82 . In this case, the global minimum-latency
path may cross different time slices. We define (as the maximum
number of time slices the global minimum-latency path spans.Then,
ℎ<0G ≤ ℎB;824 × (, and (can be calculated by solving the Balls into
Bins problem [36], where a packet traversing ℎB;824 × (hops has
high probability to reach the destination eventually. So, we set
Ω(ℎ<0G) to be ℎB;824 × (.

Our analysis in Appx. B shows that Ω(ℎ<0G) is at most 15 hops
under a wide range of RDCN settings up to 4320 ToRs. The com-
putation of Ω(ℎ<0G) has $ (# 3) time complexity, where # is the
number of ToRs. As reasoned in Appx. A, with Ω(ℎ<0G), the UCMP
path calculation algorithm has $ (# 3) time complexity and $ (# 2)
space complexity.

4.3 UCMP Groups
A UCMP group % (BA2, 3BC, CBC0AC) is also defined per BA2-3BC ToR
pair per time slice CBC0AC like the paths. As overviewed in §3.2, paths
in a UCMP group have the properties below.
Property 1: ∀ ?1 ∈ % and ∀ ?2 ∉ % , if ℎ>? (?1) = ℎ>? (?2), then
;0C4=2~ (?1) < ;0C4=2~ (?2).
Property 2: ∀ ?1, ?2 ∈ % , if ℎ>? (?1) = ℎ>? (?2), then
;0C4=2~ (?1) = ;0C4=2~ (?2).
Property 3: ∀ ?1, ?2 ∈ % , if ℎ>? (?1) > ℎ>? (?2), then
;0C4=2~ (?1) < ;0C4=2~ (?2).

437

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Li et al.

Table 1: A case of calculating uniform cost. Underlined numbers
denote the minimum uniform cost in each column.

hop(?) latency(?) C(? ,51=1MB) C(? ,52=100 KB) C(? ,53=10 KB)

1-hop 60 µs 140 68 60.8
2-hop 15 µs 175 31 16.6
3-hop 10 µs 250 34 12.4
4-hop 5 µs 325 37 8.2

The path calculation algorithm in §4.1 ensures property 1, in that
UCMP paths have the minimum latency for each hop count, and
property 2 includes parallel solutions in the algorithm. Property
3 regulates UCMP paths with different hop counts: the latency
decreases as the hop count grows. So, given the =-hop minimum
path for each =, we filter out the ones that violate property 3 and
obtain the UCMP group.

The paths thus selected exhibit the path space in Fig. 2. A UCMP
group contains one minimum-latency path per hop count or a few if
parallel solutions exist. In Fig. 5, we demonstrate high path diversity
and coverage achieved by this modest set of paths, benefiting from
the high percentage of edge-disjoint paths and the reconfiguring
topologies that update UCMP groups per time slice.

A potential problem, though, is the limited path options for long
flows to reach high throughput. We enable latency relaxation in this
case. For long flows that initially resolve to 1- or 2-hop paths, we
extend their choice to more 2-hop paths with relaxed latencies, as
long as the hop count term in uniform cost (Eqn. 2) still dominates.
These extended paths bear the same essence as VLB paths but
have lower (though relaxed) uniform costs. For example, they allow
waiting at the source for lower overall latency, contrary to VLB
paths that enforce immediate forwarding in ?ℎ0B41.

5 Online Path Assignment
In this section, we introduce the online stage of UCMP, where we
assign flows to paths without knowing flow sizes (§5.1), tune the
weight factor U (§5.2), and address failures (§5.3).

5.1 Flow Size Buckets
For an upcoming flow, with its flow size, we can calculate straight-
forwardly the uniform cost of each path in the UCMP group and
assign it the path with the minimum uniform cost.

Table 1 shows an example where U = 1 in Eqn. 2 and each row
presents a path in the UCMP group. The chosen paths with the
minimum uniform cost for each flow size are underscored. The
results align with our design objective: uniform cost directs long
flows to short paths, optimizing bandwidth efficiency (e.g., the 1MB
flow on the 1-hop path), routes short flows on long paths with
low latency (e.g., the 10KB flow on the 4-hop path), and places
middle-sized flows in between to strike a balance between latency
and bandwidth efficiency (e.g., the 100KB flow on the 2-hop path).

We design a flow bucketing scheme for path assignment without
prior knowledge of the flow size, as flow size information is often-
times unattainable [11, 42]. Suppose ?1 and ?2 are two paths in a
UCMP group with = and = + 1 hops, respectively. To get the bound-
ary flow size B8I4 (5) of a flow 5 as the turning point from taking
?1 to ?2, we make their uniform costs identical � (?1, 5) = � (?2, 5)
and solve the following equation.

� (?1, 5) = ;0C4=2~ (?1) + U × = × B8I4 (5)/� =

� (?2, 5) = ;0C4=2~ (?2) + U × (= + 1) × B8I4 (5)/�
B8I4 (5) = � × (;0C4=2~ (?1) − ;0C4=2~ (?2))/U

(3)

Similarly, we calculate the boundary flow size for every pair of
UCMP paths with adjacent hop counts and define flow size buckets
with these boundary values. Then we apply flow aging [11] by set-
ting these boundary sizes as the stepping thresholds. According to
the trend in Fig. 2, each flow starts off being mapped to bucket 0 for
the ℎ<0G -hop path with the globally minimum latency. It gradually
moves leftwards on the figure to shorter paths with increased la-
tency, as it sends more data and gets mapped to higher buckets. In
normal cases, bucketing does not cause packet reordering, because
flows shift from lower-latency paths to higher-latency paths.

The flow size buckets for a UCMP group are fixed when U is
specified. If multiple paths have the same minimum uniform cost,
meaning they are tied for minimum latency with the same hop
count, these paths share the same flow size bucket. As stated in
§3.2, each flow is assigned a single path in the UCMP group. In
cases where there is a tie, we break the tie by randomly selecting a
path for each flow using its 5-tuple hash value, similar to ECMP.
The implementation details of this random flow assignment are
described in §6.2.

Unlike ECMP, UCMP experiences hash collisions to a minor
degree, thereby avoiding uneven load distribution. Thanks to high
path coverage and frequent topology reconfigurations, flows on
congested paths will switch to different paths in the next time
slice, resulting in a load-balanced network. As shown in Appx. C,
UCMP achieves load-balanced performance close to VLB, which is
considered the upper bound with randomized packet spraying.

5.2 Tuning Weight Factor U
The weight factor U in Eqn. 2 affects the link utilization. A larger
U increases the penalty for long paths and directs flows towards
shorter paths to reduce link utilization. In UCMP, we support live
tuning of U regarding a desirable link utilization.

U × B8I4 (5) = � × (;0C4=2~ (?1) − ;0C4=2~ (?2)) (4)
Eqn. 3 can be converted easily to the above form. We simply

change the function for mapping the flow size to the bucket (left-
hand side of Eqn. 4), and the bucket boundaries (right-hand side
of Eqn. 4) become fixed values irrelevant to U . In this way, the
stepping thresholds for flow aging, namely the bucket boundaries,
are pre-determined. New values of U can be broadcast to the hosts
to update the mapping function, so flows are mapped to different
buckets accordingly.

Network operators can tune U regarding a target link utilization
and update it at runtime as traffic evolves. Measurement studies
reveal that traffic in production DCNs changes gradually [34, 38],
so daily or at most hourly tuning frequency is sufficient in practice.
Fig. 10 verifies this method and guides us to set U = 0.5 in the
simulation for 70% ToR-to-ToR link utilization.

5.3 Failure Recovery
UCMP paths are robust to failures by nature. Fig. 5 demonstrates
high path diversity and coverage of UCMP paths. In our simulated

438

Uniform-Cost Multi-Path Routing for Reconfigurable Data Center Networks ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Bucket

07
7

Dst.

2
3

<…>, <…>, <…>

7 0

1
0

tstart

<0,1,0>,<4,6,2>,<6,2,2>

Path:
<ToR, Egr. Port, Dep. Slice>

 <…>, <…>, <…>

UCMP Source Routing Table on ToR0

Src=0 Bucket=3Dst=7 <0,1,0>,<4,6,2>,<6,2,2>
Packet

ToR 6ToR 7

Po
rt
6

0

2
m

Draining Packets
···

···Queues for future
 time slices

ToR 4
···

0

Po
rt

i

···

Figure 4: Source routing for UCMP paths.

network, UCMP providesmulti-paths 94.4% of the time, and 93.2% of
the UCMP paths are edge-disjoint. The multi-paths serve as backup
paths in the event of failures, and ToRs can update the routing
entries to redirect traffic to the backup paths, as detailed in the
UCMP system (§6.2).

In the time slice when a pair of ToRs are connected by a direct
circuit, the direct path has the minimum latency and minimum hop
count, making it the sole path in the UCMP group as per the UCMP
properties described in §4.3. For such instances, we prepare backup
2-hop paths for the single UCMP path. These time slices are rare,
typically occurring once per circuit cycle. In our simulated network
(§7), they only appear 5.6% of the time, and we provide backup
paths for only 3.9% of the total UCMP paths.

As Fig. 12 shows, with this simple recovery strategy, UCMP can
sustain 10% ToR failures, 5% link failures, and 16.6% circuit switch
failures without loss of connectivity, and the performance degra-
dation under normal levels of DCN failures is minimal. If higher
availability is required, UCMP supports higher ratios of backup
paths or recomputation for the affected paths, with compromised
uniform costs.

6 UCMP Implementation
We implemented a UCMP prototype system with Intel Tofino2
switches and Mellanox NICs. In this section, we describe the key
components including flow bucketing on the hosts (§6.1), source
routing on source ToRs (§6.2), and rerouting on intermediate ToRs
when packets violate the time schedule (§6.3).

6.1 Flow Aging and Bucketing
Theboundary values of flow size buckets derived in §5.1 and §5.2 are
specific to each UCMP group. To have globally recognizable buckets,
we get the union of all the boundary values by Eqn. 4 across UCMP
groups. These boundary values serve as the stepping thresholds for
flow aging, and the intervals between the boundaries become the
buckets. These universal bucket intervals are fine-grained, so for a
particular UCMP group, several buckets may map to the same path.

We implemented flow aging in libvma [2], a high-performance
user-space library supported byMellanox NICs. Alternatively, it can
be implemented as a Linux kernel module like done in PIAS [11]. It
counts the number of bytes each flow has sent and tags outgoing
packets of the flow with the corresponding bucket index. We follow
PIAS to use the Differentiated Services Code Point (DSCP) field for
bucket tagging, which has 6 bits and can support 64 buckets. This
is sufficient for UCMP. As we will show in Table 2, UCMP requires
42 buckets for a 1024-ToR RDCN.

6.2 Source Routing
UCMP requires the entire path to be known before routing is per-
formed, so we realized UCMP with source routing on source ToRs.
We pre-load the routing paths onto each source ToR. Fig. 4 illus-
trates the UCMP lookup table entries, where the destination ToR
and the starting time slice map to a UCMP group, and the bucket
index identifies the specific path in the group. The action field con-
tains the list of next-hop ToRs for the matched path, which are
written into the packet using the Strict Source and Record Route
(SSRR) option for source routing [33]. We overwrite the next-hop
IP addresses in SSRR with the tuple of the next-hop ToR, the egress
port on the ToR, and the time slice when the packet should be sent
out from the port.

In the case of multiple tied paths in a bucket, we adopt ECMP’s
strategy of randomly distributing flows across different paths. This
can be realized using the action selector feature on Tofino2 switches,
which allows one match entry to have a group of action data (i.e.,
tied paths) and select one action based on a given index (i.e., the
5-tuple hash value of a flow).

We assume that the ToRs are synchronized with the RDCN con-
troller and are aware of the circuit schedule, as suggested by previ-
ous RDCN work [29, 30, 32]. Packet waiting at intermediate ToRs
can be achieved using queue pausing/unpausing in Tofino2. Each
egress port of Tofino2 switches has 128 queues, and each queue is
unpaused at a pre-set time slice to be active for draining packets.
Once a time slice duration elapses, the currently active queue is
paused, and the next priority queue is resumed. This process is
periodic and aligns with the RDCN’s circuit schedule. Note that the
queues can be circular without one-to-one mapping to time slices.
Table 2 shows a 1024-ToR RDCN needs 32 queues per port at most,
under Tofino2’s limit of 128 queues per port.

As Fig. 4 shows, a packet from)>'0 to)>'7 arrives at)>'0 in
CBC0AC = 0. It belongs to bucket 3, so it matches to the third entry in
)>'0’s UCMP source routing table. The corresponding UCMP path
is written to the packet header’s SSRR field and will be enforced
by the following ToRs. First, the source)>'0 forwards the packet
to the next hop)>'4 at the current time slice 0. When the packet
arrives at)>'4,)>'4 reads out egress ?>AC6 and send time slice
C = 2 from the path list. It then enqueues the packet to ?>AC6’s
priority queue 2, waiting for the send time slice C = 2, which is 2
time slices away from the current time slice 0. Once the queue is
unpaused at C = 2, the packet will be sent out to the next hop)>'6
and eventually arrive at the destination)>'7.

Per-flow path allocation in UCMP does not require extra states
on ToRs other than the buckets, which makes UCMP lookup tables
scalable to large DCNs irrespective of the number of flows. As
shown in Table 2, the SRAM usage of lookup table entries per ToR
for a 1024-ToR RDCN setting is only 3.06% of the Tofino2 capacity,
demonstrating the sustainability of our UCMP design.

6.3 Rerouting
Each priority queue lasts for one time slice duration, indicating it
can only carry a fixed number of bytes, equivalent to the product
of the time slice duration and the link bandwidth. Consequently, it
is possible that a packet cannot be buffered at the target priority
queue and miss the planned time slice. In such scenarios, we adopt

439

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Li et al.

a simple rerouting strategy: recirculating the packet and using the
intermediate ToR as the new source ToR. Source routing in §6.2 is
repeated at the intermediate ToR to select a new UCMP path and
forward the packet onward. Packets that have been recirculated
more than 5 times on a ToR are dropped, which is extremely rare
in our simulation (§7). We observe at most 3.03% rerouted packets
in all our simulation experiments, even under heavy traffic loads
saturating the network core.These results indicate the low overhead
of the rerouting mechanism.

7 Evaluation
In this section, we evaluate the performance of UCMPwith analytics
of the UCMP paths and simulations over DCN traffic traces. We
introduce our experimental setup (§7.1), followed by experiments
to evaluate different aspects of the UCMP design (§7.2 to §7.4).

7.1 Experimental Setup
Simulated network. We realize UCMP in the htsim packet-level
simulator, which is widely used for evaluating routing and trans-
port designs in DCNs and RDCNs [25, 29, 37, 41, 43]. The simulated
RDCN comprises 108 ToRs, each connected to 6 hosts via 6 down-
links and to 6 circuit switches via 6 uplinks. The network contains
648 hosts and 6 circuit switches in total. All links are 100Gbps.
The propagation delay between every ToR pair is set to 500 ns (100
meters of fiber length), and the distance between hosts and ToRs is
ignored.
Baselines. We compare UCMP with VLB, KSP, and Opera as ex-
plained in §2.2. For KSP and Opera, we set : to 1 and 5 to evaluate
the single-path and multi-path variants.
Transport protocols. We run UCMP with DCTCP and NDP to
evaluate its performance under different DCN transport protocols.
We pair each routing scheme with its default transport protocol:
RotorLB for VLB [30], DCTCP for KSP [43], and NDP for short
flows in Opera under 15MB. In Opera, long flows over 15MB are
routed with VLB thus RotorLB is used as well. For DCTCP, we
configure the switch queue size to 300 MTU-sized packets and the
ECN threshold to 65 MTU-sized packets. For NDP, the switch queue
size is set to 80 MTU-sized packets to satisfy the Opera constraint.
Circuit settings. To align with different circuit switching tech-
nologies [12, 29, 30], we set the circuit reconfiguration delay to
10 ns, 1 µs, and 10 µs, and set the time slice duration to 1 µs, 10 µs,
50 µs, and 300 µs. For Opera, we adopt its native circuit schedule that
offsets the reconfiguration times across circuit switches to achieve
partial topology reconfiguration per time slice. We modify this
schedule by removing the offsets to obtain a fully reconfigurable
schedule for VLB, KSP, and UCMP. We consider an alternative
round-robin circuit schedule for UCMP to test it under different
schedules.
Workloads. We run the web search and data mining traces from
Microsoft’s production DCNs [9, 23]. We scale the traces to reach
40% utilization on the host-to-ToR links. This is an extremely high
load saturating the core bandwidth. To put things in perspective, our
simulated network uses fewer switches than a 3:1 oversubscribed
Clos topology. The web search trace features short flows, with the
majority under 15MB, whereas the data mining trace involves long

0 4 8 12 16
0.0

0.5

1.0

Paths per slice

Edge-disjoint paths

20 40 60 80 100
UCMP paths

0.0

0.5

1.0

Paths per cycle

C
D

F

(a)

UCMP Opera
(k=1)

Opera
(k=5)

KSP
(k=1)

KSP
(k=5)

0.0

0.2

0.4

0.6

0.8

1.0

p
a
th

s%

1 Hop

2 Hops

3 Hops

4 Hops

5 Hops

(b)
Figure 5: (a) UCMP path numbers. (b) Hop count comparison.

flows whose sizes can reach up to 1GB, and the majority of packets
are from flows exceeding 15MB.

7.2 Path Characteristics
We first analyze the UCMP paths to show their properties, which
will help understand the later simulation results.
Number of paths. As explained in §4.3, a UCMP group % (BA2, 3BC,
CBC0AC) is specific to a source ToR BA2 , a destination ToR 3BC , and
a starting time slice CBC0AC for routing. The top figure of Fig. 5a
presents the UCMP group size distribution. Over 20% UCMP groups
contain more than 5 paths, and the majority have more than 3 paths.
These UCMP paths, though modest in numbers, are deliberately
chosen for minimum uniform cost. UCMP achieves path diversity
across time slices, as shown in the bottom figure for the number
of unique paths per cycle. For example, the case for a single path
in the UCMP group is when there happens to be a direct circuit
between the ToR pair, which has both minimum latency and hop
count by the uniform cost definition (Eqn. 2). In the next time slice,
this ToR pair will have a new UCMP group having more paths but
still ensuring minimum uniform cost. In this way, UCMP provides
a wide range of high-quality path options throughout time.
Edge-disjoint paths. In the top figure of Fig. 5a, 93.2% of the
UCMP paths are edge-disjoint. Similarly, the percentage is 89.8%
for the alternative setting with a round-robin circuit schedule in
Fig. 16 of Appx. C. Recall from the UCMP path space in Fig. 2
that UCMP paths have decreasing latency as the hop count grows,
and the path latency defined in Eqn. 1 is determined solely by the
last hop, so UCMP paths have different last-hop ToRs, in different
time slices. With the average path length as low as 2.32 hops in
Fig. 5b, which will be explained below, UCMP paths have a high
probability of being edge-disjoint. This property contributes to high
path coverage. Consequently, as we detail in Appx. C, the loads
across ToR ports in our simulated network are well balanced, with
Jain’s fairness index [17] of 0.9.
Path hop counts. Fig. 5b displays the hop count distribution of all
the paths over all the ToR pairs across time slices. UCMP exhibits
lower hop counts than Opera and KSP, with an average of 2.32
hops and all the paths under 4 hops. KSP and Opera have high
hop counts because they stick to continuous paths, and Opera even
more so due to the extra constraint preventing rerouting of in-flight
packets during circuit reconfiguration. We find this constraint an
overshoot, because UCMP only has up to 3.03% rerouted packets
in all our simulations, under the high traffic load saturating the
network core. Naively expanding from single-path (: = 1) to multi-
paths (: = 5) increases the hop count significantly: Opera’s average
hop count rises from 3.11 to 4.45, while KSP’s from 2.80 to 3.61. This

440

Uniform-Cost Multi-Path Routing for Reconfigurable Data Center Networks ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

UCMP + DCTCP UCMP + NDP VLB KSP (k= 1) KSP (k= 5) Opera (k= 1) Opera (k= 5)

104 105 106 107

Flow size (Bytes)

101

102

103

104

105

106

9
9

%
-i

le
 F

C
T
 (

s)

(a)

102 103 104 105 106 107 108 109

Flow size (Bytes)

101

102

103

104

105

106

107

9
9

%
-i

le
 F

C
T
 (

s)
(b)

50

Routing solutions

0.00

0.25

0.50

0.75

1.00

B
a
n
d
w

id
th

 e
ff

ic
ie

n
cy

(c)

10

Routing solutions

0.00

0.25

0.50

0.75

1.00

B
a
n
d
w

id
th

 e
ff

ic
ie

n
cy

(d)
Figure 6: FCTs under (a) web search and (b) data mining. Bandwidth efficiency under (c) web search and (d) data mining.

UCMP + DCTCP

UCMP + NDP

VLB
KSP (k= 1)

KSP (k= 5)

Opera (k= 1)

Opera (k= 5)

0 125 250 375 500
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

A
v
g
.
To

R
-t

o
-h

o
st

 l
in

k
u
ti

l.

(a)

0 125 250 375 500
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

A
v
g
.
To

R
-t

o
-T

o
R

 l
in

k
u
ti

l.

(b)
Figure 7: Average (a) ToR-to-host (b) ToR-to-ToR link utilization un-
der the web search trace.

demonstrates the necessity of choosing multi-paths in a principled
way like UCMP.

7.3 Performance Comparison
Next, we compare UCMP performance to the baselines in simu-
lations, with the default setting of 50 µs time slice duration, 10 ns
reconfiguration delay, and weight factor U = 0.5.
FCT. In Fig. 6a and Fig. 6b, UCMP almost always outperforms
the baselines, and we discuss the impact of transport protocols in
§7.4. For the web search trace in Fig. 6a, UCMP achieves orders of
magnitude lower FCTs for short flows. This is because minimizing
uniform cost directs short flows to longer yet lower-latency paths,
while long flows tend to wait at intermediate ToRs for shorter paths.
In this regard, UCMP places a higher priority on sending short flows.
VLB experiences high FCTs for short flows due to the excessive
waiting time during its phase 2 of transmission, while its high
throughput benefits long flows. KSP and Opera exhibit elevated
FCTs for the high hop counts shown in Fig. 5b. Notably, UCMP with
NDP has 53% to 98% lower FCTs compared to the state-of-the-art
single-path Opera routing (: = 1) also using NDP.

For the data mining trace in Fig. 6b, where long flows domi-
nate, Opera resorts long flows over 15MB to VLB, and we enable
latency relaxation for UCMP. We find DCTCP and NDP are unable
to achieve high throughput for a large number of latency-relaxed
2-hop paths. To overcome this limitation, we adopt the RotorLB
transport protocol from Opera, whose implementation in the ht-
sim simulator requires the full set of VLB paths as latency-relaxed
paths. We continue to use DCTCP and NDP for the remaining short
flows over regular UCMP paths. UCMP offloads long flows less
aggressively than Opera but exhibits lower FCTs due to more effi-
cient UCMP paths minimizing uniform costs. We expect even better

performance of UCMP should transport protocols be improved for
discontinuous latency-relaxed 2-hop paths, which, by design ac-
cording §4.3, include 2-hop paths having lower minimum costs than
VLB, e.g., allowing waiting at the source for lower overall latency.
Bandwidth efficiency. In Fig. 6c and Fig. 6d, UCMP also demon-
strates high bandwidth efficiency. A value of 0.5, as in VLB, implies
that packets, on average, traverse 2 hops. In Fig. 6c, UCMP achieves
the highest bandwidth efficiency, e.g., 1.26× that of VLB, 1.76× that
of KSP (: = 1), and 1.55× that of Opera (: = 1). These results are
attributed to UCMP guiding long flows towards 1- and 2-hop paths
in the web search trace. For the data mining trace in Fig. 6d, UCMP
achieves similar bandwidth efficiency to VLB due to comparable
effects of latency relaxation, and so does Opera which resolves to
VLB in this case. KSP, and Opera under web search, display worse
bandwidth efficiency, especially when : = 5, due to the high hop
counts as Fig. 5b reveals.
Link utilization. To deepen the understanding of bandwidth
efficiency, we look at the link utilization of the web search trace
in Fig. 7a and Fig. 7b. The results for the data mining trace are
shown in Fig. 17 of Appx. D. UCMP achieves 40% ToR-to-host link
utilization, as high as the traffic load, suggesting UCMP facilitates
high throughput of the hosts. At the same time, UCMP keeps the
ToR-to-ToR link utilization at the lowest level. It shows UCMP
maintains minimal network congestion, consistent with the low
hop counts in Fig. 5b and high bandwidth efficiency in Fig. 6c. VLB
doubles the load in the network, i.e., 40% ToR-to-host vs. 80% ToR-
to-ToR, as a result of the 2-hop routing. Other solutions collapse
with falling host throughput due to the long paths.

7.4 Performance under Various Settings
We move on to examine different design aspects of UCMP under
diverse settings. Without loss of generality, these experiments em-
phasize on the web search trace.
Impact of transport protocols. UCMP is not reliant on a strict
queue size upper bound for packet delivery as Opera. It shows
obvious performance advantages over the baselines in Fig. 6 with
both DCTCP and NDP.

In the web search trace, most traffic is made of shorter flows
that route through standard UCMP paths, so the network core gets
congested. In this case, DCTCP is better able to rate limit longer
flows and prevent queues from excessively building up. This results
in lower FCT for short flows compared to NDP, which struggles
more to control traffic, and has to resort to active recovery as queues
fill up.

441

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Li et al.

104 105 106 107

Flow size (Bytes)

101

102

103

104

105

106

9
9

%
-i

le
 F

C
T
 (

s) Accurate flow size

Flow bucketing

Figure 8: FCTs with accurate flow
size and flow bucketing.

104 105 106 107

Flow size (Bytes)

101

102

103

104

105

106

9
9

%
-i

le
 F

C
T
 (

s) 10 ns

1 s

10 s

Figure 9: FCTs under different re-
configuration delays.

0 125 250 375 500
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

A
v
g
.
To

R
-t

o
-T

o
R

 l
in

k
u
ti

l.

= 0.3

= 0.5

= 0.7

(a)

104 105 106 107

Flow size (Bytes)

101

102

103

104

105

106

9
9

%
-i

le
 F

C
T
 (

s) = 0.3

= 0.5

= 0.7

(b)
Figure 10: (a) Avg. ToR-to-ToR link util. and (b) FCTs under U .

In the data mining trace, most traffic consists of longer flows
routed through latency-relaxed paths, resulting in a more uniformly
distributed traffic load in the core. In this scenario, NDP performs
better than DCTCP for the remaining short flows over the regular
UCMP paths, thanks to NDP’s lower latency overhead and more
aggressive initial rate. Note that RotorLB is used for long flows over
latency-relaxed paths. Improving DCTCP and NDP to deliver high
throughput for a large number of 2-hop paths remains a topic for
future study.
Degree of packet rerouting. We observe 3.03% of packets are
rerouted in the web search trace and 0.9% in the data mining trace.
Rerouting is initiated when a predetermined path is no longer
available; the network then treats the current intermediate ToR
as the starting point for selecting an alternative path. The new
path chosen still follows the minimum uniform cost principle. This
ensures that short flows are immediately directed along low-latency
paths, whereas long flows are routed along short paths that optimize
for bandwidth efficiency.
Accuracy of flow bucketing. As Fig. 8 shows, the tail FCTs
achievedwith our flow bucketingmechanism (§5.1) are very close to
those obtained with accurate flow size information. More precisely,
flow bucketing introduces slight FCT increases for shorter flows
and decreases for longer flows. This is because flow bucketing, built
atop flow aging, initially treats new flows as short flows, directing
a small portion of packets from long flows to low-latency paths
at the start. It modestly speeds up longer flows while marginally
increasing congestion on ToR-to-ToR links, thus slightly delaying
shorter flows. Overall, this finding confirms that UCMP is effective
without accurate flow size information.
Impact ofweight factorU . In §5.2, we have explained how to tune
U in Eqn. 2 according to a targeted link utilization. As discussed,
U balances latency and hop count. Increasing U directs flows to
shorter yet higher-latency paths, resulting in improved bandwidth
efficiency, i.e., a lower ToR-to-ToR link utilization. Fig. 10a validates
our method, showing decreased link utilization with the increase
of U . It also shows tuning interval can effectively regulate the link

50

Routing solutions

0.00

0.25

0.50

0.75

1.00

B
a
n
d
w

id
th

 e
ff

ic
ie

n
cy 1 s

10 s

50 s

300 s

(a)

104 105 106 107

Flow size (Bytes)

101

102

103

104

105

106

9
9

%
-i

le
 F

C
T
 (

s) 1 s

10 s

50 s

300 s

(b)
Figure 11: (a) Bandwidth efficiency and (b) FCTs under different time
slice durations.

utilization, without causing high sensitivity. We set U to 0.5 for 70%
ToR-to-ToR link utilization. As Fig. 10b reveals, FCT is insensitive
to variations in U as long as it stays in a reasonable range for the
targeted link utilization.
Impact of time slice duration. Fig. 11 demonstrates UCMP’s
adaptability to diverse time slice durations, contrary to the rigid
constraint in Opera. In Eqn. 1, we define routing latency as the
product of the number of time slices a path spans and the time
slice duration. Hence, reducing the time slice duration leads to
lower latency, which would cause uniform cost in Eqn. 2 to choose
shorter paths to lower the penalty of the hop count term. Fig. 11a
reflects this trend, where shorter time slices enjoy higher bandwidth
efficiency, thanks to the lower hop counts. FCTs in Fig. 11b are less
straightforward. For shorter time slices, on one hand, the improved
bandwidth efficiency in Fig. 11a suggests less load in the network;
on the other hand, packets are more likely to be rerouted due to
reduced slice durations.The joint effects result in the FCT variations
in Fig. 11b, but they follow similar trends of growth and consistently
outperform the baselines.
Impact of reconfiguration delay. The reconfiguration delay pri-
marily influences the RDCN duty cycle, defined as the ratio of the
circuit holding time to the total cycle duration. As Fig. 9 depicts, a
longer reconfiguration delay results in packets remaining in queues
for an extended time before transitioning to the next time slice,
leading to increased FCTs. With our based time slice duration of
50 µs, changing the reconfiguration delay from 1 µs to 10 µs reduces
the duty cycle from 98% to 83%. Most RDCNs suggest a duty cycle
larger than 90% [12, 30].
Robustness to failures. Fig. 12a-c illustrate the breakdown of
UCMP recovery options available to the affected paths under ToR,
link, and circuit switch failures. Only backing up 3.9% of the paths
as described in §5.3, UCMP can sustain 10% ToR failures, 5% link fail-
ures, and 16.6% circuit switch failures without loss of connectivity,
and the large majority of failed paths can transition to other UCMP
paths with the same length, which preserves the minimum uniform
cost. From §5.3, the high path diversity and the high percentage of
edge-disjoint paths in Fig. 5a ensures failure resilience.

In Fig. 12d, UCMP exhibits low FCT degradation under up to 5%
link failures over the web search trace. Putting it into context with
Fig. 6a, even the elevated FCTs under failures are orders of magni-
tude lower than those of the baselines. This observation indicates
no need for additional failure recovery involving backup paths or
path recomputation at compromised uniform costs, though UCMP
supports that.

442

Uniform-Cost Multi-Path Routing for Reconfigurable Data Center Networks ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

1 2 3 4 5 6 7 8 9 10
Failure ToRs (%)

0.0

0.2

0.4

0.6

0.8

1.0

R
e
co

v
e
ry

 o
p

ti
o
n
 r

a
ti

o

Shorter path

Same-length path

Longer path

Unrecoverable

(a)

1 2 3 4 5 6 7 8 9 10
Failure links (%)

0.0

0.2

0.4

0.6

0.8

1.0

R
e
co

v
e
ry

 o
p

ti
o
n
 r

a
ti

o
(b)

16.6 33.3 50.0
Failure circuit switches (%)

0.0

0.2

0.4

0.6

0.8

1.0

R
e
co

v
e
ry

 o
p

ti
o
n
 r

a
ti

o

(c)

104 105 106 107

Flow size (Bytes)

101

102

103

104

105

106

9
9

%
-i

le
 F

C
T
 (

s)

Normal

1% faulty links

3% faulty links

5% faulty links

(d)

Figure 12: UCMP’s recovery options for (a) ToR, (b) link, (c) circuit switch failures, and (d) FCTs under 1%, 3%, and 5% faulty links.

0 300 600 900 1200
FCT (s)

0.00

0.20

0.40

0.60

0.80

0.99

C
D

F

UCMP

KSP (k=1)

Opera (k=1)

VLB

Figure 13: Memcached FCTs on testbed.

8 Prototype Testbed
In this section, we implement UCMP on a small-scale testbed to
demonstrate the feasibility of our UCMP system in §6. We also
implement VLB, KSP, and Opera on the testbed for cross-validation
of the simulation results, with real applications on an end-to-end
system. Besides performance comparisons, we realize the UCMP
paths for various RDCN scales up to 1024 ToRs to evaluate the
system overheads.
Testbed setup. Our RDCN testbed consists of 3 Intel Tofino2 pro-
grammable switches and 4 servers each equipped with a Mellanox
ConnectX-5 dual-port NIC. We virtualize 2 physical switches each
into 4 logical ToRs, and make each NIC port act as a logical host. We
emulate a circuit switch with the third switch. Our emulated net-
work thus contains 8 logical ToRs each connected to a logical host
with a 100Gbps downlink and to the circuit switch via 4 10Gbps
uplinks to mirror oversubscription in real DCNs. We set the time
slice duration to 50 µs and the reconfiguration delay to 1 µs, as one
of the settings in simulation. We set : = 1 for KSP and Opera, and
set U = 0.5 for UCMP. Everything is run with TCP as the transport
protocol.
Application performance. We use the Memcached [3] key-value
storage to generate short flows. We run 1 Memcached server and
7 Memslap [4] benchmarking clients each on a host, and a client
requests 4KB data to a server in each PULL operation. We run
iPerf [1] to generate long flows, where each host sends long-lasting
traffic in the background to the host under its neighboring ToR.

Fig. 13 shows the FCT distribution of the Memcached flows.
Although the testbed and simulation results are not directly compa-
rable, the relative performance of the routing methods follows the
same trends as in Fig. 6a. UCMP still outperforms all baselines by
large margins, reaffirming the effectiveness of UCMP paths. KSP
has lower FCTs than Opera because rerouting of in-flight packets is
unlikely on the small-scale testbed, and KSP benefits from shorter

Table 2: Hardware resource usage for various RDCN scales.

(# , 3) #Q/port #Buckets #Entries/ToR SRAM

(108, 6) 18 27 9.5K 0.38%
(324, 12) 27 34 50K 0.94%
(768, 24) 32 36 140K 2.31%
(1024, 32) 32 42 187K 3.06%

paths. This is similar to the case for short flows in Fig. 6a. The im-
pact of transport protocols is minimal for the Memcached short
flows with fixed throughput background traffic. We thus verify the
correctness of our simulation experiments.
Number of queues. Table 2 presents UCMP’s switch resource
consumption, where # is the number of ToRs in the RDCN, and
3 is the number of uplinks per ToR. The first column shows the
maximum number of priority queues needed per ToR egress port,
which by our design in §6.2 is the number of time slices per cycle,
essentially # /3 . This number does not change much as # and 3

scale simultaneously in practice. A 1024-ToR RDCN needs 32 queues
per port, well under the capacity limit of commercial switches [22,
35], e.g., 128 queues per port in Tofino2 switches.
Number of flow buckets. The second column shows the total
number of buckets across topologies in the RDCN. A 1024-ToR
RDCN requires 42 buckets. The number of buckets is mainly deter-
mined by ℎ<0G , the maximum hop count of UCMP paths, and # /3 ,
the number of time slices per cycle. # /3 stays mostly constant as
discussed above, and ℎ<0G is the diameter of the topologies, so
the number of buckets grows slowly with the network scale. As
described in §6.1, we use the 6-bit DSCP field to encode buckets,
which provides 64 buckets in total, adequate for large-scale RDCNs.
Number of routing entries. The third column lists the number
of routing entries per source ToR used for source routing in §6.2.
This number is proportional to the number of destination ToRs
− 1 and the number of time slices per cycle # /3 . UCMP requires
187K entries for 1024 ToRs, and the entries are stored in the switch
SRAM. The low SRAM usage in the last column suggests our design
is sustainable.

9 Discussion
Buffer management. Any RDCN routing scheme that involves
waiting at intermediate hops are subject to buffering issues, e.g.,
VLB and UCMP. Nevertheless, with the performance gains shown
in the paper, we should not step back to solutions like Opera and
KSP that stick to continuous paths.

The maximum queue occupancy is influenced by various factors,
including the transport protocol, traffic load, and time slice duration.

443

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Li et al.

Generally, shorter time slices drastically reduce waiting times and
consequently buffer usage. We have not observed severe buffer
problems with UCMP in our experiments, partly because UCMP
benefits from the short time slices of modern RDCNs, and partly
because UCMP further reduces the waiting times by considering
both latency and bandwidth efficiencywhen optimizing the uniform
cost. However, buffering issues may still occur, especially for long
flows. A potential hybrid solution could involve buffering short
flows at ToRs and long flows at hosts, offering a viable buffering-
bandwidth trade-off.
Packet reordering. Packet reordering is a common issue in RD-
CNs, as the topology changes and paths get updated accordingly. It
is especially serious with randomized packet spraying across multi-
ple time slices such as in VLB, but is also present in the single-path
routes of Opera. UCMP also exhibits packet reordering when flows
cross different time slices and later-dispatched packets end up on
faster paths than the previously sent packets. Nevertheless, our
solution aims to avoid heavy reordering by mapping flows to a
single UCMP path. Fortunately, there are recent transport proto-
cols specifically designed to handle reordering, e.g., NDP [25] and
TDTCP [16]. We show good performance with NDP in the paper,
and we leave deeper study of the topic to future work.
UCMP extension. UCMP serves as an equivalent to ECMP for
RDCNs. Inspired by existing approaches that allocate ECMP paths
based on congestion sensing [8, 21, 26], our method could also
incorporate congestion states into the online path assignment. We
can change the mapping function from flows to the buckets to
impose penalties on congested paths, like live tuning of U in §5.2. In
this way, we make congested paths less favorable and help mitigate
network hot spots. We leave this optimization for future work.
Improvement of transport protocols. Transport protocols de-
signed for static networks work well under the assumption of rela-
tively stable end-to-end latency. However, latency of UCMP paths,
especially shorter (e.g., 2-hop) ones, can be subject to large vari-
ations of waiting time at intermediate ToRs. As observed in our
simulation experiments (§7), DCTCP and NDP perform reasonably
well for longer paths but suffer from low throughput for latency-
relaxed 2-hop paths. Since routing solutions for RDCNs are usually
coupled with customized transport protocols for optimized per-
formance [12, 30], we consider it necessary to develop dedicated
transport protocols for UCMP in the future.
Switch-centric design. UCMP is a switch-centric design, with
most functionalities implemented on the ToRs. The host system
simply handles flow aging and determines the bucket for each flow.
While an ECMP-like design transparent to host machines might
seem appealing, moving the flow bucketing functionality to the
ToRs would require per-flow states to track the accumulated traffic
amount, potentially causing state explosion on switches.

10 Related Work
RDCNs. Traffic-aware RDCNs were first proposed to reconfigure
the topology based on real-time traffic demands [15, 20, 24, 32, 34].
As circuit duration started to shrink, traffic-oblivious RDCNs gained
popularity as a scalable alternative [12, 29, 30]. The focus of this
work is on routing for traffic-oblivious RDCNs, and we have shown
performance benefits over VLB [12, 30], KSP [41, 43], andOpera [29].

Mars [6] and VBS [10, 45] have been proposed recently to optimize
the circuit schedules for traffic-oblivious RDCNs, and their routing
strategies are similar to VLB. In that sense, we expect UCMP to
improve their performance as UCMP is general to different traffic-
oblivious circuit schedules. reTCP [31] and TDTCP [16] are TCP
variants for RDCNs, but originally optimized for hybrid electrical-
optical RDCNs. Their suitability for UCMP specific to pure RDCNs
is unclear, and we leave this investigation to future work.
Multi-path routing and load balancing in DCNs. ECMP is the
status quo routing scheme for Clos topologies such as Fat-tree [7, 40]
and VL2 [23]. It leverages the large number of equal-cost paths to
uniformly distribute traffic. WCMP [46] is an extension to ECMP
for use in settings where the available paths are asymmetric. For
instance, Jupiter [34], Google’s traffic-aware RDCN architecture,
uses WCMP for better load balancing instead of always mapping
flows to the shortest paths like in ECMP. In this regard, UCMP
is a further extension that takes advantage of the unique setting
of RDCNs to provide paths based on latency-efficiency trade-offs.
CONGA [8], DRILL [21], Vertigo [5], and Hula [26] assign flows
to ECMP paths based on real-time congestion signals, which leads
to better load balancing. Our UCMP implementation assigns paths
statically based on the flow size, but we do not exclude future
extensions to consider congestion states. On the other hand,MPTCP
[37] is a TCP extension that splits a single flow in multiple subflows
traveling across different paths in parallel, and is often coupled
with KSP routing in expander graph topologies. In this work we
showcase UCMP using single-path transport, but we believe an
adoption of MPTCP-like transport could benefit performance.

11 Conclusion
Benefiting from the progress of high-speed circuit switches, traffic-
oblivious RDCNs emerge as a potential solution for the next-generation
cloud infrastructure. However, routing on such network topologies
remains relatively unexplored. This paper presents UCMP as the
first principled method for multi-path routing in RDCNs. We have
demonstrated how our definition of uniform cost effectively bal-
ances latency and hop count, and how our design of offline path
calculation and online path assignment successfully delivers the
expected performance in FCT and bandwidth efficiency. Being first
of its kind, we hope UCMP to inspire alternative principled designs
for multi-path routing in RDCNs. Also as an ECMP equivalent,
we anticipate followup work on runtime adjustments of the load
distribution over the UCMP paths, as this line of work developed
on top of ECMP [5, 8, 21, 46].

Acknowledgments
We thank our shepherd, Amin Vahdat, and the anonymous review-
ers for their insightful comments. We also extend our gratitude to
our collaborators, Balakrishnan Chandrasekaran and Raj Joshi, for
their involvement in the design of an early version of this work.

444

Uniform-Cost Multi-Path Routing for Reconfigurable Data Center Networks ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

References
[1] 2024. iPerf. https://iperf.fr/.
[2] 2024. Mellanox Messaging Accelerator. https://github.com/Mellanox/libvma/

blob/master/README.
[3] 2024. Memchached. https://memcached.org/.
[4] 2024. Memslap. http://docs.libmemcached.org/bin/memslap.html.
[5] Sepehr Abdous, Erfan Sharafzadeh, and Soudeh Ghorbani. 2021. Burst-tolerant

datacenter networks with vertigo. In Proceedings of the 17th International Confer-
ence on emerging Networking Experiments and Technologies. 1–15.

[6] Vamsi Addanki, ChenAvin, and Stefan Schmid. 2023. Mars: Near-optimal through-
put with shallow buffers in reconfigurable datacenter networks. Proceedings of
the ACM on Measurement and Analysis of Computing Systems 7, 1 (2023), 1–43.

[7] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A scal-
able, commodity data center network architecture. ACM SIGCOMM computer
communication review 38, 4 (2008), 63–74.

[8] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Matus,
Rong Pan, Navindra Yadav, et al. 2014. CONGA: Distributed congestion-aware
load balancing for datacenters. In Proceedings of the 2014 ACM conference on
SIGCOMM. 503–514.

[9] MohammadAlizadeh, Albert Greenberg, David AMaltz, Jitendra Padhye, Parveen
Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010. Data
center tcp (dctcp). In Proceedings of the ACM SIGCOMM 2010 Conference. 63–74.

[10] Daniel Amir, Tegan Wilson, Vishal Shrivastav, Hakim Weatherspoon, Robert
Kleinberg, and Rachit Agarwal. 2022. Optimal oblivious reconfigurable net-
works. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of
Computing. 1339–1352.

[11] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang. 2017.
PIAS: Practical information-agnostic flow scheduling for commodity data centers.
IEEE/ACM Transactions on Networking 25, 4 (2017), 1954–1967.

[12] Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel Cletheroe, Istvan Haller,
Krzysztof Jozwik, Fotini Karinou, Sophie Lange, Kai Shi, Benn Thomsen, et al.
2020. Sirius: A flat datacenter network with nanosecond optical switching. In
Proceedings of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols for
computer communication. 782–797.

[13] Kai Chen, Ankit Singla, Atul Singh, Kishore Ramachandran, Lei Xu, Yueping
Zhang, Xitao Wen, and Yan Chen. 2013. OSA: An optical switching architecture
for data center networks with unprecedented flexibility. IEEE/ACM Transactions
on Networking 22, 2 (2013), 498–511.

[14] Kai Chen, Xitao Wen, Xingyu Ma, Yan Chen, Yong Xia, Chengchen Hu, and Qun-
feng Dong. 2015. WaveCube: A scalable, fault-tolerant, high-performance optical
data center architecture. In 2015 IEEE Conference on Computer Communications
(INFOCOM). IEEE, 1903–1911.

[15] Li Chen, Kai Chen, Zhonghua Zhu, Minlan Yu, George Porter, Chunming Qiao,
and Shan Zhong. 2017. EnablingWide-Spread Communications on Optical Fabric
with MegaSwitch. In NSDI, Vol. 17. 577–593.

[16] Shawn Shuoshuo Chen, Weiyang Wang, Christopher Canel, Srinivasan Seshan,
Alex C Snoeren, and Peter Steenkiste. 2022. Time-division TCP for reconfigurable
data center networks. In Proceedings of the ACM SIGCOMM 2022 Conference.
19–35.

[17] Dah-Ming Chiu and Raj Jain. 1989. Analysis of the increase and decrease algo-
rithms for congestion avoidance in computer networks. Computer Networks and
ISDN systems 17, 1 (1989), 1–14.

[18] Paolo Costa, Hitesh Ballani, Kaveh Razavi, and Ian Kash. 2015. R2C2: A network
stack for rack-scale computers. ACM SIGCOMMComputer Communication Review
45, 4 (2015), 551–564.

[19] Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Hajabdolali
Bazzaz, Vikram Subramanya, Yeshaiahu Fainman, George Papen, and Amin
Vahdat. 2010. Helios: a hybrid electrical/optical switch architecture for modular
data centers. In Proceedings of the ACM SIGCOMM 2010 Conference. 339–350.

[20] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil Devanur, Janard-
han Kulkarni, Gireeja Ranade, Pierre-Alexandre Blanche, Houman Rastegarfar,
Madeleine Glick, and Daniel Kilper. 2016. Projector: Agile reconfigurable data cen-
ter interconnect. In Proceedings of the 2016 ACM SIGCOMM Conference. 216–229.

[21] Soudeh Ghorbani, Zibin Yang, P Brighten Godfrey, Yashar Ganjali, and Amin
Firoozshahian. 2017. Drill: Micro load balancing for low-latency data center
networks. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication. 225–238.

[22] Prateesh Goyal, Preey Shah, Kevin Zhao, Georgios Nikolaidis, Mohammad Al-
izadeh, and Thomas E. Anderson. 2022. Backpressure flow control. In Proceedings
of NSDI.

[23] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A Maltz, Parveen Patel, and Sudipta
Sengupta. 2009. VL2: A scalable and flexible data center network. In Proceedings
of the ACM SIGCOMM 2009 conference on Data communication. 51–62.

[24] Navid Hamedazimi, Zafar Qazi, Himanshu Gupta, Vyas Sekar, Samir R Das, Jon P
Longtin, Himanshu Shah, and Ashish Tanwer. 2014. Firefly: A reconfigurable
wireless data center fabric using free-space optics. In Proceedings of the 2014 ACM
conference on SIGCOMM. 319–330.

[25] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W
Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-architecting datacenter
networks and stacks for low latency and high performance. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication. 29–42.

[26] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer
Rexford. 2016. Hula: Scalable load balancing using programmable data planes. In
Proceedings of the Symposium on SDN Research. 1–12.

[27] Sergey Legtchenko, Nicholas Chen, Daniel Cletheroe, Antony Rowstron, Hugh
Williams, and Xiaohan Zhao. 2016. {XFabric}: A Reconfigurable {In-Rack}
Network for {Rack-Scale} Computers. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16). 15–29.

[28] Yunpeng James Liu, Peter Xiang Gao, Bernard Wong, and Srinivasan Keshav.
2014. Quartz: a new design element for low-latency DCNs. ACM SIGCOMM
Computer Communication Review 44, 4 (2014), 283–294.

[29] William M Mellette, Rajdeep Das, Yibo Guo, Rob McGuinness, Alex C Snoeren,
and George Porter. 2020. Expanding across time to deliver bandwidth efficiency
and low latency. In 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20). 1–18.

[30] William M Mellette, Rob McGuinness, Arjun Roy, Alex Forencich, George Papen,
Alex C Snoeren, and George Porter. 2017. Rotornet: A scalable, low-complexity,
optical datacenter network. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. 267–280.

[31] Matthew K Mukerjee, Christopher Canel, Weiyang Wang, Daehyeok Kim, Srini-
vasan Seshan, and Alex C Snoeren. 2020. Adapting {TCP} for reconfigurable
datacenter networks. In 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20). 651–666.

[32] George Porter, Richard Strong, Nathan Farrington, Alex Forencich, Pang Chen-
Sun, Tajana Rosing, Yeshaiahu Fainman, George Papen, and Amin Vahdat. 2013.
Integrating microsecond circuit switching into the data center. ACM SIGCOMM
Computer Communication Review 43, 4 (2013), 447–458.

[33] Jon Postel. 1981. RFC0791: Internet protocol.
[34] Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun Singh, Mukarram Tariq,

Rui Wang, Jianan Zhang, Virginia Beauregard, Patrick Conner, Steve Gribble,
et al. 2022. Jupiter evolving: transforming google’s datacenter network via optical
circuit switches and software-defined networking. In Proceedings of the ACM
SIGCOMM 2022 Conference. 66–85.

[35] Ting Qu, Raj Joshi, Mun Choon Chan, Ben Leong, Deke Guo, and Zhong Liu.
2019. SQR: In-network packet loss recovery from link failures for highly reliable
datacenter networks. In Proceedings of ICNP.

[36] Martin Raab and Angelika Steger. 1998. “Balls into bins”—A simple and tight anal-
ysis. In International Workshop on Randomization and Approximation Techniques
in Computer Science. Springer, 159–170.

[37] Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh, Damon
Wischik, and Mark Handley. 2011. Improving datacenter performance and ro-
bustness with multipath TCP. ACM SIGCOMM Computer Communication Review
41, 4 (2011), 266–277.

[38] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren.
2015. Inside the social network’s (datacenter) network. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication. 123–137.

[39] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani, Paolo Costa, Ki Suh Lee,
Han Wang, Rachit Agarwal, and Hakim Weatherspoon. 2019. Shoal: A network
architecture for disaggregated racks. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19). 255–270.

[40] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, et al. 2015.
Jupiter rising: A decade of clos topologies and centralized control in google’s
datacenter network. ACM SIGCOMM computer communication review 45, 4 (2015),
183–197.

[41] Ankit Singla, Chi-Yao Hong, Lucian Popa, and P Brighten Godfrey. 2012. Jellyfish:
Networking data centers randomly. In Presented as part of the 9th {USENIX} Sym-
posium on Networked Systems Design and Implementation ({NSDI} 12). 225–238.

[42] Vojislav Ðukić, Sangeetha Abdu Jyothi, Bojan Karlaš, Muhsen Owaida, Ce Zhang,
and Ankit Singla. 2019. Is advance knowledge of flow sizes a plausible assump-
tion?. In 16th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 19). 565–580.

[43] Asaf Valadarsky, Gal Shahaf, Michael Dinitz, andMichael Schapira. 2016. Xpander:
Towards optimal-performance datacenters. In Proceedings of the 12th International
on Conference on emerging Networking EXperiments and Technologies. 205–219.

[44] Guohui Wang, David G Andersen, Michael Kaminsky, Konstantina Papagiannaki,
TS Eugene Ng, Michael Kozuch, and Michael Ryan. 2010. c-Through: Part-time
optics in data centers. In Proceedings of the ACM SIGCOMM 2010 Conference.
327–338.

[45] Tegan Wilson, Daniel Amir, Vishal Shrivastav, Hakim Weatherspoon, and Robert
Kleinberg. 2023. Extending Optimal Oblivious Reconfigurable Networks to all

445

https://iperf.fr/
https://github.com/Mellanox/libvma/blob/master/README
https://github.com/Mellanox/libvma/blob/master/README
https://memcached.org/
http://docs.libmemcached.org/bin/memslap.html

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Li et al.

N. In 2023 Symposium on Algorithmic Principles of Computer Systems (APOCS).
SIAM, 1–16.

[46] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kabbani, Leon Poutievski, Arjun
Singh, and Amin Vahdat. 2014. WCMP: Weighted cost multipathing for improved
fairness in data centers. In Proceedings of the Ninth European Conference on
Computer Systems. 1–14.

446

Uniform-Cost Multi-Path Routing for Reconfigurable Data Center Networks ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Appendix
Appendices are supporting material that has not been peer-
reviewed.

A Path Computing Algorithm
Algorithm 1 =-Hop Minimum-Latency Path Algorithm
Require:
R ← set of ToRs
S ← set of time slices in one cycle
ℎ<0G ← hop count of the globally minimum-latency path

Ensure:
P ← set of =-hop minimum-latency paths over all BA2-3BC ToR pairs
in R × R and all start time slices CBC0AC in S, = ∈ [1, ℎ<0G]

1: for CBC0AC in S do
2: for n in [1, ℎ<0G] do
3: if n == 1 then ⊲ Direct paths
4: for 〈BA2,3BC 〉 in R × R do
5: ? (BA2,3BC, CBC0AC , 1) = [BA2,3BC]
6: P.add(?)
7: else ⊲ Multi-hop paths
8: for 〈BA2,3BC 〉 in R × R do
9: (% ← ∅

10: B?1 = ? (BA2,3BC, CBC0AC , = − 1)
11: for intermediate ToR ;0BC in R − {BA2,3BC } do
12: B?2 = ? (;0BC, 3BC, CBC0AC , 1)
13: (% .033 (B?2)
14: sort (% by ;0C4=2~ (B?2) in ascending order
15: for B?2 in (% do
16: if ;0C4=2~ (B?1) ≤ ;0C4=2~ (B?2) then
17: ? = B?1 + B?2

18: P.add(?)
19: break
20: return P

The time complexity of calculating Ω(ℎ<0G) is$ (# 3), where #
represents the number of ToRs. As detailed in Alg. 1, incorporating
Ω(ℎ<0G) results in a time complexity of $ (# 3 × Ω(ℎ<0G) × # /3)
and a space complexity of$ (# 2×Ω(ℎ<0G) ×# /3). Here, Ω(ℎ<0G)
and # /3 (the number of time slices per cycle) remain relatively
small and constant even as the network size increases. Conse-
quently, the overall time and space complexity simplify to $ (# 3)
and $ (# 2), respectively.

B Details on Upper Bound of ℎ<0G

We provide more details on determining the upper bound of ℎ<0G ,
which is the hop count of the globally fastest path. Recall that
ℎBC0C82 indicates the largest network diameter of expander graphs
that constitute RDCNs, and ℎB;824 denotes the maximum number of
hops a packet can traverse within a single time slice. For example,
if the link bandwidth is 100Gbps, the network transmission delay
for an MTU-sized packet is 120 ns. Additionally, assuming a 100-
meter distance between a ToR pair, the propagation delay is 500 ns.
In the case of a 1 µs time slice, the packet can traverse at most
ℎB;824 = b1000/(500 + 120)c = 1 hop. With a time slice of 10 µs,
ℎB;824 = b10000/(500 + 120)c = 16 hops. The computation of ℎ<0G

is conducted under two cases.
Case I: ℎB;824 ≥ ℎBC0C82 . Then ℎ<0G ≤ ℎBC0C82 .

0 1 2 3 4 5 6
Time slices (c)

10 12

10 10

10 8

10 6

10 4

10 2

100

P
(u

n
v
is

it
e
d

 T
o
R

s)

(N,d)

(108,6)

(324,6)

(324,12)

(1200,12)

(1200,24)

(4320,24)

Figure 14: % (D=E8B8C43)>'B) across diverse topology scales.

This suggests that any packet, irrespective of the src/dst ToR,
can reach the dst ToR within a single time slice. This further implies
that any n-hop fastest path will complete within a time slice. So we
have ℎ<0G ≤ ℎBC0C82 .

Case II: ℎB;824 < ℎBC0C82 . Then ℎ<0G ≤ ℎB;824 × (.
Here (is the maximum number of time slices the globally fastest

path can cover. In cases where the time slice is short, a packet might
have to span several time slices before ultimately arriving at the
dst ToR. In such cases, a packet might never reach the dst ToR if
a path is selected poorly. At the end of each time slice, a packet
could halt at an intermediate ToR, which always requires more
than ℎB;824 hops to reach the dst ToR. However, when next hop is
chosen randomly, we could estimate the probability of not reaching
the dst ToR after 2 time slices. Subsequently, (is set to 2 when the
probability is low enough. Regarding ℎB;824 hops at each time slice,
the total hop count is ℎB;824 ×(. This implies that a packet can reach
any ToR after ℎB;824 × (hops even the next hop is chosen randomly.

Estimating the probability of not reaching every dst ToR can be
modeled as the Balls into Bins problem [36]: throw< balls into =
bins randomly, determining the likelihood of having empty bins.
Relating this concept to our scenario, consider a RDCN consisting
of # ToRs, each equipped with 3 uplinks. Aligned with the RDCN’s
attributes, at each new time slice a ToR can connect to 3 new ToRs.
After 2 time slices, this accumulates to " = 32 combinations. If
the packet chooses a ToR randomly at every time slice, after 2 time
slices, what is the probability of the existence of unexplored ToRs?
We follow the solution of Balls into Bins problem and calculate the
probability, denoted as % (D=E8B8C43)>'B).

We start by calculating the probability denoted as % (>=4)>'

8B D=E8B8C43), which indicates the likelihood of a ToR remaining
unexplored.

% (>=4)>' 8B D=E8B8C43) = (1 − 1/#)" (5)

% (D=E8B8C43)>'B) = 1 − % (0;;)>'B 0A4 E8B8C43)

= 1 − [% (>=4)>' 8B E8B8C43)]#

= 1 − [1 − % (>=4)>' 8B D=E8B8C43)]#

= 1 − [1 − (1 − 1/#)"]#

(6)

We compute % (D=E8B8C43)>'B) across diverse topology scales
(Fig. 14). As the number of time slices (2) increases, the probability
drops significantly. We adopt a probability threshold of 10−12 and
use the current 2 value as the maximum time slices (() a packet

447

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Li et al.

Table 3: Upper bounds of ℎ<0G for various topology scales.

Time slice (N,d) ℎB;824 ℎBC0C82 Case (Ω(ℎ<0G)
1 µs (108,6) 1 5 II 5 5
1 µs (324,6) 1 8 II 6 6
2 µs (108,6) 3 5 II 5 15
2 µs (4320,24) 3 4 II 4 12
5 µs (1200,12) 8 5 I 5 5
10 µs (4320,24) 16 4 I 4 4
UCMP + DCTCP

UCMP + NDP

VLB
KSP (k= 1)

KSP (k= 5)

Opera (k= 1)

Opera (k= 5)

0 50 100 150 200
Time (ms)

0.00

0.25

0.50

0.75

1.00

Lo
a
d

 b
a
la

n
ce

 m
e
tr

ic

Figure 15: Load balance metric with web search trace.

0 4 8 12 16 20
0.0

0.5

1.0

Paths per slice

Edge-disjoint paths

20 40 60 80 100
UCMP paths

0.0

0.5

1.0

Paths per cycle

C
D

F

Figure 16: Number of paths in UCMP groups under a randomly gen-
erated schedule.

needs to traverse. For instance, in a RDCN with 108 ToRs and 6
uplinks, (is set to 5 to ensure that % (D=E8B8C43)>'B) is below the
probability threshold. Similarly, in a scenario with 324 ToRs and 6
uplinks, (is set to 6.

We further provide upper bounds of ℎ<0G for various topology
scales and time slice durations in Table 3. The upper bound is
denoted as Ω(ℎ<0G). It’s apparent that Ω(ℎ<0G) in Case II surpass
those in Case I. This is due to the fact that Ω(ℎ<0G) in Case II
are relatively loose upper bounds. Yet, considering that the path
computations are conducted offline, these values remain within an
acceptable range.

C UCMP Path Analysis
High path coverage. UCMP achieves high path coverage with a
fairly load-balanced network. We use the Jain fairness [17] of the
queue sizes across the ToR egress ports to assess the level of load
balancing, as Eqn. 7 shows.

UCMP + DCTCP

UCMP + NDP

VLB
KSP (k= 1)

KSP (k= 5)

Opera (k= 1)

Opera (k= 5)

0 125 250 375 500
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

A
v
g
.
To

R
-t

o
-h

o
st

 l
in

k
u
ti

l.

(a)

0 125 250 375 500
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

A
v
g
.
To

R
-t

o
-T

o
R

 l
in

k
u
ti

l.

(b)
Figure 17: Average (a) ToR-to-host (b) ToR-to-ToR link utilization
under the data mining trace.

!>03 10;0=24 <4CA82 =
(∑<

8=1@8)2

<
∑<
8=1@

2
8

(7)

The range of the load balance metric is [1/<, 1], where< is the
number of total egress ports. A larger value means the network is
more load-balancing, and a metric of 1 indicates all queue sizes at
each port are precisely the same.

In our simulation, queue sizes are sampled every 20 µs, and we
only display one sampling point every 1ms. As Fig. 15 shows, VLB
has the best path coverage, with the metric approaching its upper
bound of 1, meaning all ports are almost identically used. Having
the metric around 0.9, UCMP achieves fairly high path coverage,
but not at the cost of per-packet randomization like in VLB, which
indicates the effectiveness of path selection in UCMP.
Consistent on different schedules. Fig. 16 presents the UCMP
path numbers with another randomly generated schedule. On top
is the UCMP group size distribution, and the bottom is the number
of unique paths per cycle for a ToR pair. Under this schedule, 89.8%
of the UCMP paths are edge-disjoint. We observe consistent results
compared to the path numbers of the default schedule shown in
Fig. 5a.

D Link Utilization for Data Mining Trace
Fig. 17 shows the ToR-to-ToR and ToR-to-host link utilization for
the data mining trace.

448

	Abstract
	1 Introduction
	2 Background
	2.1 Traffic-Oblivious RDCNs
	2.2 Routing in Traffic-Oblivious RDCNs

	3 UCMP Overview
	3.1 Uniform Cost
	3.2 Design Intuitions
	3.3 Path Space

	4 Offline Path Calculation
	4.1 n-Hop Minimum-Latency Paths
	4.2 Upper Bound of hmax
	4.3 UCMP Groups

	5 Online Path Assignment
	5.1 Flow Size Buckets
	5.2 Tuning Weight Factor
	5.3 Failure Recovery

	6 UCMP Implementation
	6.1 Flow Aging and Bucketing
	6.2 Source Routing
	6.3 Rerouting

	7 Evaluation
	7.1 Experimental Setup
	7.2 Path Characteristics
	7.3 Performance Comparison
	7.4 Performance under Various Settings

	8 Prototype Testbed
	9 Discussion
	10 Related Work
	11 Conclusion
	Acknowledgments
	References
	A Path Computing Algorithm
	B Details on Upper Bound of hmax
	C UCMP Path Analysis
	D Link Utilization for Data Mining Trace

