Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Controlled Phonon Transport via Chemical Bond Stretching and Defect Engineering: The Case Study of Filled β-Mn-Type Phases

MPG-Autoren
/persons/resource/persons126561

Cardoso-Gil,  Raul
Raul Cardoso, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126626

Grin,  Yuri
Juri Grin, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Cherniushok, O., Parashchuk, T., Cardoso-Gil, R., Grin, Y., & Wojciechowski, K. T. (2024). Controlled Phonon Transport via Chemical Bond Stretching and Defect Engineering: The Case Study of Filled β-Mn-Type Phases. Inorganic Chemistry, 63(39), 18030-18042. doi:10.1021/acs.inorgchem.4c02562.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-FC78-F
Zusammenfassung
Controlling the elastic properties of the material could become a powerful tool for tuning the thermal transport in solids. Nevertheless, the impact of the crystal structure, chemical bonding, and elastic properties on the lattice thermal conductivity remains to be elucidated. This is a pivotal issue for the advancement of thermoelectric (TE) materials. In this context, the influence of cation substitution in tetrahedral voids on the structural, thermal, and TE properties of α- and β-PbyGa6-xInxTe10─filled β-Mn-type phases─is reported here. The investigated materials show semiconducting behavior and a change from p- to n-type conductivity, depending on the chemical composition and temperature. Our findings indicate that the electronic transport in β-Mn-type phases is largely influenced by the substantial distortion of the Te framework, which causes the low weighted mobility and strong scattering of charge carriers. The presence of a significant anharmonicity of lattice vibrations results in the ultralow lattice thermal conductivity of PbyGa6-xInxTe10 materials. With increasing x, κL decreases from 0.59 to an extremely low value of 0.36 W m-1 K-1 at 298 K due to the decrease of bonding energy, intensification of anharmonic thermal vibrations of atoms, and formation of point defects. This work demonstrates the efficacy of utilizing the crystal structure and elastic properties to regulate phonon transport in functional materials. © 2024 The Authors. Published by American Chemical Society.