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We test for skewness preferences in a large set of observational panel data on online poker games 
(n=4,450,585). Each observation refers to a choice between a safe option and a binary risk of 
winning or losing the game. Our setting offers a real-world choice situation with substantial 
incentives where probability distributions are simple, transparent, and known to the decision-

makers. Individuals reveal a strong and robust preference for skewness, which is inconsistent 
with expected utility theory. The effect of skewness is most pronounced among experienced and 
unsuccessful players but remains significant in all subsamples that we investigate, in contrast to 
the effect of variance.

1. Introduction

Over the last 50 years, scholars in finance and behavioral economics have argued that whether people take up or avoid risk depends 
on its skewness, that is, on its standardized third moment. Skewness preferences—a preference for positive and an aversion toward 
negative skewness—are a central prediction of most behavioral models of choice under risk, such as prospect theory (Kahneman and 
Tversky, 1979), salience theory (Bordalo et al., 2012), or models building on the anticipation of regret or disappointment (Loomes 
and Sugden, 1982, 1987a,b; Gul, 1991; Inman et al., 1997). In contrast, expected utility theory cannot explain why people seek 
positively skewed risks but avoid negatively skewed risks. Skewness preferences can explain a wide range of seemingly disparate 
puzzles in choice under risk: the favorite-longshot bias, whereby positively skewed long shots are overbet and negatively skewed 
return distributions of favorites are underbet (e.g., Snowberg and Wolfers, 2010); the simultaneous demand for lottery-like gambles 
and high-premium insurances (Kahneman and Tversky, 1979; Sydnor, 2010; Garrett and Sobel, 1999); the Allais paradox (Allais, 
1953); the growth puzzle (Fama and French, 1992; Bordalo et al., 2013); and many instances of portfolio underdiversification (Mitton 
and Vorkink, 2007).
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Despite the vast literature on skewness preferences (for a survey see Trautmann and van de Kuilen, 2018), direct tests of the 
effect of skewness on real-world choices are scarce: the support for skewness preferences either comes from highly stylized labora-

tory experiments (e.g., Ebert and Wiesen, 2011; Ebert, 2015; Dertwinkel-Kalt and Köster, 2020), or—mainly in finance and labor 
economics—from real-world decision situations where the underlying probability distribution is very complex, estimated based on 
past data, and basically unknown to the decision maker.1

This paper directly tests for skewness preferences in a large set of observational panel data on real-world choices. Our setting 
combines a number of advantages. Contrary to laboratory experiments, our study covers a wide range of incentives, with an expected 
value of the average lottery of $62.39, and builds on a high number of observations and less artificial choice situations. In contrast to 
the empirical finance and labor economics literature, we do not have to approximate the underlying probability distribution and do 
not need to impose strong assumptions that individuals correctly estimate and comprehend such a distribution, as probabilities are 
transparently displayed to decision-makers before they make their decisions. The risks involved are binary and uniquely determined by 
the first three moments of their probability distribution: expected value, variance, and skewness, which allows for a clean identification 
of skewness preferences. In addition, individuals in our data set can generally be expected to understand risks and probabilities well, 
reducing the confounding effects of misunderstandings of probabilities and imperfect information.

In detail, we study risk preferences in online poker, making use of a novelty that one of the leading online poker platforms, 
Pokerstars, introduced in August 2019: the so-called all-in cashout. The all-in cashout provides insurance against a player’s risk in 
a showdown situation. In a showdown situation, the outcome of the poker hand is solely determined by the cards drawn from the 
remaining deck of cards. The two possible outcomes for each player are: i) losing and receiving a payout of zero or ii) winning the 
entire pot, that is, the accumulated bets by players throughout a hand. The all-in cashout now gives each player in a showdown 
situation the additional option to choose a safe payout equal to the expected payout of the underlying lottery minus a profit margin 
for Pokerstars of 1%. Before making her decision whether to take the insurance or not, all relevant information is disclosed to each 
player. Each observation in our data set refers to a player’s choice between this safe insurance option and the respective binary 
lottery.2 Our data set includes 4,450,585 of such individual choices in showdown situations with two opponents for Omaha Poker 
cash games, all collected between January 1, 2020, and June 30, 2021.3

This specific setting allows us to identify the effect of skewness on risk-taking. We show that skewness has a sizeable effect on 
risk-taking, while the effect of variance is comparably negligible. The insurance option is selected in 20.0% of cases when the risk is 
left-skewed, but only in 14.2% of cases when the risk is right-skewed. Put differently, it is around 40% more likely that the insurance 
option is selected when players face a left-skewed instead of a right-skewed risk. As winning the pot is a complementary event for 
the two opponents, for each observation involving a right-skewed lottery with the winning probability 𝜋 < 0.5, there is exactly one 
observation in our data set that involves a left-skewed lottery with the winning probability 1 − 𝜋 > 0.5. Both of these lotteries have 
identical variance but inverse skewness, which allows us to circumvent the limitations of other studies (e.g., Golec and Tamarkin, 
1998) where variance and skewness always change simultaneously.

In our regression analyses, we follow Mitton and Vorkink (2007) and assume a utility function that is linear in the different 
risk moments. In our basic specification, we regress an insurance choice dummy that equals one if player 𝑖 chooses the insurance 
option in showdown 𝑗 and zero otherwise, on the first three moments of the underlying lottery and a dummy that controls for the 
potential effect of loss aversion. We further include game fixed effects to control for heterogeneity in insurance choices across different 
games and month fixed effects to account for month-specific heterogeneity as potentially driven by seasonal effects or COVID-19 
countermeasures. Increasing skewness by one standard deviation, keeping the variance and expected values of the lotteries constant, 
decreases the likelihood that the insurance option is chosen by 0.9 percentage points, which is equivalent to a decrease of around 
5.3% compared to the average share of positive insurance choices. The estimated effect of variance is negligible and statistically 
insignificant in most specifications.

To disentangle skewness effects from loss aversion, we control for loss aversion in all of our regressions. This is important as 
players could perceive their contribution to the pot as a reference point. According to loss aversion, they exhibit a preference to at 
least recoup this reference amount, thus achieving a gain and avoiding a loss. In our setting, players facing left-skewed risks usually 
recoup their contribution with the insurance option and thus realize a gain. Conversely, players who experience a loss from choosing 
the insurance option may prefer to take the risk as this offers the chance of a gain. Players facing right-skewed risks usually fall into 
this category. There are exceptions, however, because of “dead” money from players not reaching the showdown. These instances 
of players choosing between a right-skewed risk and an insurance option that offers a gain compared to their pot contribution allow 
us to disentangle loss aversion and skewness preferences. When the insurance option represents a gain instead of a loss, players are 
around five percentage points more likely to choose the insurance. We thus find evidence for the coexistence of skewness preferences 
and loss aversion.

Our results remain robust to different empirical specifications (such as Probit and Logit models), to controlling for player-specific 
characteristics (such as experience and average profit per hand) and hand-specific variables (such as the amount of money the player 
started the hand with, the weekday, or the stake, that is, the size of mandatory bets), to excluding outliers, and to using the coefficient 

1 Among others, the tests of skewness preferences in finance (Boyer et al., 2010; Bali et al., 2011; Conrad et al., 2013; Lin and Liu, 2018; Jondeau et al., 2019) and 
labor economics (Hartog and Vijverberg, 2007; Berkhout et al., 2010) fall into this category: here, the probability distributions can only be approximated through 
expected moments that are estimated based on past data.

2 Strictly speaking, the lottery is not always binary as there are situations where a split pot can occur; we discuss this limitation of our study in Section 5.1.
3 Showdowns with more than two players typically yield more complex probability distributions, depending on the timing of bets during a hand and on players’ 
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of variation (the inverse “Sharpe” ratio of the lottery) instead of expected value and variance. The panel structure of our data further 
allows us to include individual fixed effects to control for time-invariant heterogeneity across individuals. Including individual fixed 
effects does not change the impact of skewness, neither in magnitude nor significance, and it also does not substantially affect the 
estimated coefficients of the first two moments.

We also explore whether our effects vary across different subgroups. To determine whether our findings hold in contexts with large 
monetary stakes, we restricted our analysis to the subsample that involves pots of more than $100. In this subsample, the average 
lottery has an expected value of $252.93. The proportion of insurance choices (11.7%) is notably lower than in the full sample. Despite 
this, the skewness effect’s magnitude is only slightly smaller, which suggests that the effect of skewness on risk-taking behavior is 
similar across both low- and high-stake decisions.

Moreover, we split our sample at the median for various player- and hand-specific characteristics. We find evidence of skewness 
preferences in all subsamples. The evidence is strongest for relatively experienced players, as measured by the number of showdowns 
the player participated in or by the total number of hands played (including hands without showdowns). For this group of players, the 
estimated effect of skewness is about one and a half times the effect in the full sample. Additionally, we analyze the impact of skill by 
considering separate analyses for successful (those with positive aggregated net profits over our observation period) and unsuccessful 
players (those with aggregated net losses). While a player’s skill cannot affect the outcome of the studied lotteries, it can affect the 
long-run profits of players and is likely related to differences in risk attitudes and players’ motivation to play poker. Indeed, while 
skewness affects both successful and unsuccessful players, its effect is stronger for the latter group.

Among others, this paper contributes to the literature on decision-making in poker games (for other related literature, see Sec-

tion 2). Besides some studies that aim to quantify the extent of skill and luck in poker games (e.g., Fiedler and Rock, 2009; Potter 
van Loon et al., 2015; Duersch et al., 2020), researchers have mainly used poker data to study reference-dependent risk attitudes. 
Smith et al. (2009) and Eil and Lien (2014) find that poker players play less cautiously, longer, and more aggressively after losing 
a big pot or if a player is losing within a poker session. These findings are in line with the break-even hypothesis predicted by loss 
aversion (Kahneman and Tversky, 1979; Thaler and Johnson, 1990). One challenge when analyzing poker play is that it crucially 
depends on the players’ expectations about the opponents’ hands and playing style (both of which are unobservable). By focusing 
on those situations where all uncertainty is resolved and players cannot actively affect the outcome of the game anymore, we can, 
however, overcome these problems. So unlike in previous studies (e.g., Smith et al., 2009; Eil and Lien, 2014), missing information, 
wrong beliefs or a misunderstanding of the risks involved should not play a role in our setup and should not confound our insights 
on the drivers of risk-taking.

We proceed as follows. In Section 2 we define skewness preferences and discuss the related literature. In Section 3 we describe 
our data and setting before we present our results in Section 4. Section 5 discusses the limitations of our framework and provides 
corresponding robustness checks. Section 6 concludes.

2. Theoretical background and related literature

Our observations involve binary decisions between a safe “insurance” option and a binary lottery 𝐿. As we will see in Lemma 1, 
such a binary lottery is uniquely defined by its expected value 𝔼[𝐿], its variance 𝑉 𝑎𝑟[𝐿] and its skewness 𝑆[𝐿], which is defined by 
the third standardized central moment

𝑆[𝐿] ∶= 𝔼
⎡⎢⎢⎣
(

𝐿− 𝔼[𝐿]√
𝑉 𝑎𝑟[𝐿]

)3⎤⎥⎥⎦ . (1)

We can then define the following notions.

Definition 1. Lottery 𝐿 is called right-skewed (or, equivalently, positively skewed) if 𝑆(𝐿) > 0, left-skewed (or, equivalently, nega-

tively skewed) if 𝑆(𝐿) < 0, and symmetric otherwise.

Other definitions of positive skewness, such as via “long and lean” tails of the risk’s probability distribution, exist and are, in 
general, not equivalent. For binary risks 𝐿 = (𝑥1, 𝜋; 𝑥2, 1 −𝜋), where outcome 𝑥1 is realized with probability 𝜋 and 𝑥2 with probability 
1 −𝜋, Ebert (2015), however, shows that all conventional notions of skewness are equivalent and the skewness of a binary risk is well-

defined. Moreover, binary lotteries can be uniquely identified by their first three moments as shown by Ebert (2015) and generalized 
by Dertwinkel-Kalt et al. (2023):

Lemma 1. For constants 𝐸 ∈ ℝ, 𝑉 ∈ ℝ+ and 𝑆 ∈ ℝ, there exists exactly one binary lottery 𝐿 = (𝑥1, 𝜋; 𝑥2, 1 − 𝜋) with 𝑥2 > 𝑥1 such that 
𝔼(𝐿) =𝐸, 𝑉 𝑎𝑟(𝐿) = 𝑉 and 𝑆(𝐿) = 𝑆 . Its parameters are given by

𝑥1 =𝐸 −
√

𝑉 (1 − 𝜋)
𝜋

, 𝑥2 =𝐸 +
√

𝑉 𝜋

1 − 𝜋
, and 𝜋 = 1

2
+ 𝑆

2
√
4 +𝑆2

. (2)
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We denote the binary lottery with expected value 𝐸, variance 𝑉 , and skewness 𝑆 as 𝐿(𝐸, 𝑉 , 𝑆).
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As a result of Lemma 1, it is possible to vary skewness for binary risks while fixing the first two moments. We can now define 
skewness preferences as follows:

Definition 2. An agent reveals a preference for skewness if the following holds: for any 𝐸 ∈ℝ and any 𝑉 ∈ℝ+, there exists a unique 
threshold value 𝑆 ≥ 0 so that she strictly prefers the binary lottery 𝐿(𝐸, 𝑉 , 𝑆) over the safe option that pays 𝐸 if and only if 𝑆 > 𝑆 .

Expected utility theory In the following, we formally show that Definition 2 violates expected utility theory (henceforth: EUT) and is 
not coherent with any EUT utility function. Let 𝑢(⋅) be a utility function with normalization 𝑢(0) = 0, and consider 𝐿 = (0, 1 −𝜋; 𝑥, 𝜋). 
According to Definition 2, there exists a threshold skewness value, or equivalently, a threshold probability level �̄� ∈

(
1
2 ,1

)
, so that 

for all 𝑥 ≥ 0 and all 𝜋 ∈ (0, 1) we have

𝑢(𝜋𝑥) ≥ 𝜋𝑢(𝑥) if 𝜋 > �̄� (3)

𝑢(𝜋𝑥) < 𝜋𝑢(𝑥) if 𝜋 ≤ �̄�. (4)

Now we define 𝑥′ ∶= 2𝑥 and assume 𝜋 ∈ ( 12 , 
�̄�

2 ). Then, (3) and (4) yield 2𝜋𝑢(𝑥) ≤ 𝑢(2𝜋𝑥) = 𝑢(𝜋𝑥′) < 𝜋𝑢(2𝑥), and thus 2𝑢(𝑥) < 𝑢(2𝑥). 
But we also have 𝑢(𝑥) = 𝑢( 12 ⋅ 2 ⋅ 𝑥) ≥ 1

2𝑢(2𝑥), which gives 2𝑢(𝑥) ≥ 𝑢(2𝑥). Taken together, these two derivations give a contradiction. 
Intuitively, Definition 2 stipulates that the agent is (i) risk-averse over all risks that are not sufficiently skewed, which necessitates 
a weakly concave utility function, but (ii) risk-seeking over all sufficiently skewed risks, which necessitates a strictly convex utility 
function. In sum, (i) and (ii) give a contradiction.

Notably, in our empirical setting the agent cannot obtain a gamble’s expected value 𝐸, but only slightly less, namely 0.99𝐸. This, 
however, does not alter any of the conclusions we have drawn on the validity of EUT, as demonstrated in the following. Suppose an 
agent strictly prefers a risky option 𝐿 = (0, 1 − 𝜋; 𝑥, 𝜋) over 99% of its expected value, 𝜋𝑥, if and only if the risky option’s skewness 
is sufficiently large. Then we obtain the conditions that are analogous to (3) and (4), namely,

𝑢(0.99𝜋𝑥) ≥ 𝜋𝑢(𝑥) if 𝜋 > �̄�

𝑢(0.99𝜋𝑥) < 𝜋𝑢(𝑥) if 𝜋 ≤ �̄�.

The very same contradiction as above can be constructed from these conditions. Intuitively, in order to weakly prefer 0.99𝐸 over a 
risky option with expected value 𝐸 and non-positive skewness, the utility function must be sufficiently concave, but in order to prefer 
the risky option over 0.99𝐸 when skewness is sufficiently positive, the utility function must not be that concave—a contradiction.

Contrary to our definition, some papers in the literature, such as Ebert and Karehnke (2023), define skewness preferences as 
preferring lottery 𝐿(𝐸, 𝑉 , 𝑆) over 𝐿(𝐸, 𝑉 , −𝑆). Skewness preferences in this alternative sense can be reconciled with EUT by making 
the additional assumption of prudence (whereby the third derivative of the utility function is strictly positive). We, however, view 
this alternative definition as less relevant for practice. In fact, we are unaware of any real-world choice between 𝐿(𝐸, 𝑉 , 𝑆) and 
𝐿(𝐸, 𝑉 , −𝑆), where an agent chooses between two risks that only differ in the sign of skewness. All of the motivating examples in the 
first paragraph of our introduction (e.g., gambling vs. insurance choice, and most of the applications in financial or labor economics), 
as well as the choice situations that we investigate in this paper, better fit our definition where individuals choose between a risky

and a safe option. When an individual decides whether to gamble or not, she chooses between some risk (gambling) and the safe 
option of not gambling. When an individual decides whether to buy insurance, she chooses between the risky option (of not taking 
up insurance) and the safe option of buying insurance. Explaining these choices between a safe and a risky option is also the core 
contribution of prospect theory, as highlighted in the last sentence of the abstract of the seminal paper by Kahneman and Tversky 
(1979).

Taken together, skewness preferences as defined in Definition 2 are not coherent with EUT. In order to explain why agents dislike 
symmetric risks, EUT needs to assume that the utility function is strictly concave. Under this assumption, however, EUT predicts, for 
any skewness level, that the safe payout of 𝐸 should be strictly preferred over any lottery that pays 𝐸 in expectation. When EUT 
wants to explain why an agent takes up a positively skewed risk, it has to assume a convex utility function (𝑢′′ > 0), but this then goes 
along with the implausible prediction (that also violates Definition 2) that every binary lottery is preferred over the safe option that 
pays its expected value. So, EUT cannot explain why people’s preference to take up a risk depends on the risk’s skewness. The same 
holds for standard portfolio theory (Markowitz, 1952), whereby people’s utility from some risk is linearly increasing in its expected 
value and linearly decreasing in its variance. Thus, EUT and standard portfolio theory would predict that whether some risk is taken 
up mainly depends on variance, but not on skewness.

Behavioral economics Skewness preferences as defined in Definition 2 are predicted, however, by most behavioral models of choice 
under risk such as cumulative prospect theory (Kahneman and Tversky, 1979), salience theory (Bordalo et al., 2012), regret theory 
(e.g., Bell, 1982; Loomes and Sugden, 1982), and disappointment aversion (Gul, 1991), as shown, for instance, in Barberis (2012), 
Dertwinkel-Kalt and Köster (2020), and Ebert and Karehnke (2023). Also seminal models proposed in the behavioral finance literature 
(Mitton and Vorkink, 2007) allow for skewness preferences by, for instance, augmenting standard portfolio theory by an additional 
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term that allows not only for a linear effect of expected value and variance, but also of skewness on utility.



Games and Economic Behavior 147 (2024) 460–484M. Dertwinkel-Kalt, J. Kasinger and D. Schneider

Skewness preferences allow us to understand why revealed attitudes toward risks vary across contexts. On the one hand, people like 
to gamble (e.g., Golec and Tamarkin, 1998, Garrett and Sobel, 1999) but they also overpay for insurance with low deductibles (e.g., 
Sydnor, 2010; Barseghyan et al., 2013). In financial markets, investors seek positively skewed return distributions (Chunhachinda 
et al., 1997; Prakash et al., 2003; Mitton and Vorkink, 2007; Boyer et al., 2010; Bali et al., 2011; Conrad et al., 2013). Skewness 
preferences also matter in labor economics and, in particular, career choices (Hartog and Vijverberg, 2007; Berkhout et al., 2010; 
Grove et al., 2021) as workers accept a lower expected wage if the distribution of wages in a cluster (i.e., education-occupation 
combination) is right-skewed. Similarly, a preference for skewness can explain the substantial entrepreneurial investments in private 
equity with bad risk-return tradeoffs (Moskowitz and Vissing-Jørgensen, 2002).

Implications for our empirical approach The characteristics of binary lotteries outlined above make it appealing to study skewness 
effects at the hand of binary lotteries. To identify skewness preferences, it is optimal to let agents repeatedly choose between a safe 
option and a binary lottery, where only the lottery’s skewness differs between choices. In such a setting, skewness preferences predict 
a negative relation between insurance choice and the lottery’s skewness. While this decision situation is hardly implementable in 
the field (for a laboratory experiment that precisely implements this see Experiment 1 in Dertwinkel-Kalt and Köster, 2020), our 
setup approximates these experiments as closely as possible (for a discussion of differences to the ideal setup see the discussion of 
limitations in Section 5.1).

In our setup, poker players face the choice between a lottery and the safe option that pays 99% of the lottery’s expected value. 
Thus, the insurance is selected if and only if for the player’s utility function 𝑈 (⋅) we have 0.99 𝑈 (𝔼(𝐿)) > 𝑈 (𝐿). We follow Mitton and 
Vorkink’s (2007) reduced-form approach by assuming “Lotto investors” that have identical preferences as traditional investors over 
mean and variance (see Markowitz, 1952), but also a preference for skewness. The utility such investors derive from some lottery 𝐿
is then given by

𝑈 (𝐿) = 𝔼(𝐿) + 𝛽𝑉 𝑉 𝑎𝑟(𝐿) + 𝛽𝑆𝑆(𝐿).

Unlike Mitton and Vorkink (2007) we adopt the usual narrow-framing assumption that is adopted throughout experimental economics: 
namely, that subjects do not integrate their earning from the respective game into their overall wealth, but evaluate it in isolation.

We will not directly estimate the effect of the lottery’s moments on utility, but on the likelihood that the safe insurance option 
is preferred over the lottery. Given this dependent variable, a positive (negative) coefficient 𝛽𝑉 indicates variance-averse (variance-

seeking) agents, and a positive (negative) coefficient 𝛽𝑆 indicates a preference for negative (positive) skewness. This approach, 
therefore, allows for both positive and negative effects of variance and skewness on insurance choice.

3. Background and data

In this section, we first provide background information about the underlying poker game and the new insurance option that our 
study builds on (Section 3.1). In Section 3.2, we give an overview of our data set.

3.1. Background

On Omaha Poker cash games We analyze hands from Omaha Poker cash games. In a cash game, all players start the hand with 
an amount of real money, the stack, which will be used for betting throughout the respective hand.4 Money cannot be added or 
withdrawn during a hand. However, players can leave the game after a hand is concluded or add chips up to a maximum amount 
depending on the blinds (i.e., the mandatory bets posted before every hand) of the respective game. Accordingly, we define the stake 
of a game by the size of the blinds. In a poker cash game there are usually two blinds, the big blind and the small blind, which is half 
the size of the big blind. In the remainder of the paper, the stake always refers to the big blind.

In Omaha Poker cash games, each player is dealt four private cards (hole cards) that are only visible to the respective player. 
In addition, there are up to five community cards that are public information and are dealt throughout three stages: i) Flop: first 
three community cards; ii) Turn: fourth community card; iii) River: fifth community card. Each stage is preceded and/or followed 
by a betting round. The money that players post throughout these betting rounds is collected in the pot. Furthermore, there is a fee 
collected by Pokerstars, called the rake that is deducted from the pot. The rake is calculated as a percentage of the pot, ranging from 
3.5% to 5% depending on the stake, and capped at a certain amount. Accordingly, the winning player is awarded the net pot, that is, 
the pot minus the rake.

If the betting causes all but one player to lay down their hole cards (i.e., they fold), the remaining active player wins the net pot 
without showing any private cards. Otherwise, the net pot is awarded to the active player with the best five-card poker hand after 
the last community card is dealt. This best five-card poker hand consists of two of the player’s hole cards and three community cards 
(see also the official ranking of poker hands in Appendix A.1).

The hole cards are revealed when either the betting round after the River is finished or when there are 𝑁 > 2 active players, of 
which at least 𝑁 − 1 players are all-in, that is, they put their entire stack in the pot. The latter scenario is called a showdown. In a 

4 Beside the fact that the insurance option is only available for cash games, cash games are also more suited to our question and “easier to analyze than tournament 
games, since in a cash game, a player who is risk neutral over money should also be risk neutral over chips. This is not necessarily the case in a tournament, for a 
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number of reasons” (Eil and Lien, 2014), including varying incentives to outlast other players in different tournament phases or non-linear payout structures.
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Fig. 1. Exemplary screen of a showdown on Pokerstars with one card to come.

showdown, the players face a binary lottery 𝐿, whose outcome depends solely on the cards that will be drawn from the remaining 
deck of cards: 𝐿 = (pot − rake, 𝜋; 0, 1 − 𝜋). In such a situation, the probability that one player wins the net pot, 𝜋, can be calculated 
conditional on the revealed individual hole cards and the community cards that have been dealt until the showdown. Under certain 
circumstances, split pot situations may occur. In such a scenario, the lottery is not binary. We abstract from these scenarios here and 
discuss the issue in Section 5.1 in more detail.

Fig. 1 shows an example of a showdown after the Turn, that is, with one card to come. Player 1 is all-in, and no more betting is 
possible. The best five-card hand of Player 1 is a High Card Queen, which loses against the Two Pairs (queens and tens) of Player 6. 
Player 1 can only win the hand if a Heart-card is drawn from the remaining cards, which would give her a winning Flush (five cards of 
the same suit). In total, there are 13 Heart-cards in the 52-card deck. Five Heart cards have been already revealed, implying that there 
are still eight Heart cards among the 40 cards that have not been revealed yet. The probability of Player 1 winning the hand is thus 
simply the number of remaining Heart cards (eight in our example) divided by the number of remaining cards, 52 − 12 = 40, so that 
we obtain a winning probability of Player 1 of 8

40 = 0.20, and a probability of losing of 0.80. As shown in Fig. 1, these probabilities 
and the exact size of the net pot are displayed in an all-in situation on the players’ screens. If the showdown happens at an earlier 
stage, the probabilities can be calculated by dividing all possible realizations of community cards, in which a specific player holds 
the winning hand, by the total number of possible realizations. Again, the corresponding probabilities and the net pot are displayed 
to the players (see in Appendix A.2 an example where the showdown happens before any community card is revealed).

The insurance option We make use of the new insurance option (the so-called all-in-cashout) introduced on August 13, 2019, on the 
Pokerstars website, which provides a safe alternative against the risk that the players face in a showdown. If a player chooses this 
insurance option, she will no longer be eligible to contest any portion of the net pot, and the offered amount will be added to her 
stack immediately and risk-free. If she declines, she will continue to contest the entire net pot as usual. Importantly, while other 
players in a game can observe the other players’ insurance decisions, the outcome of a showdown is unaffected by the opponent’s 
insurance decision. Players declining the insurance option still need the best hand in a showdown to win the net pot, even if all their 
opponents have cashed out. As a result, each active player in a showdown faces a choice between a binary risk and a safe option. The 
guaranteed payout from choosing the insurance option is equal to the expected value of the lottery minus a fee of 1% on this expected 
value, that is, equal to $(pot − rake) × 𝜋 × 0.99. The 1% fee charged by Pokerstars is equal for all players and has not changed since 
the insurance option’s introduction. The insurance payout is rounded to full cents.

To better understand a player’s decision in a showdown, turn again to Fig. 1, which shows a situation in which the insurance 
option is offered to Player 1. The two red buttons represent the binary choice between two options: i) the risky option “Resume 
hand” (explained above) that pays $2.79 with 20% and zero with 80%; and ii) the safe insurance option that pays $0.55 with 100%. 
465

As can be seen in Fig. 1, the probabilities and the exact size of the net pot are displayed on the players’ screens. The displayed 
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Table 1

Summary statistics on insurance choice.

Statistic N #(Choice=1) #(Choice=0) Mean St. Dev.

Insurance Choice 4,450,585 761,585 3,689,000 0.171 0.377

Note: The table reports summary statistics on the insurance choice dummy that equals one if the safe option 
is chosen and zero otherwise.

Table 2

Summary statistics on different moments.

Statistic N Mean St. Dev. Pctl(25) Median Pctl(75)

Expected Value 4,450,585 62.39 326.58 5.11 13.37 35.92

Variance 4,450,585 73,786.68 2,157,525.00 29.52 148.86 964.71

Skewness 4,450,585 0.00 2.23 −0.86 0.00 0.86

Note: The table reports summary statistics of the expected value, variance, and skewness for the lotteries 
in our sample, using net pot sizes measured in US-$.

insurance payout already includes the rake and the 1% fee. Accordingly, Player 1’s insurance payout in our example is equal to: 
$2.79 × 0.2 × 0.99 = $0.55 and Player 6’s insurance payout will be: $2.79 × 0.8 × 0.99 = $2.21. Thus, the players are readily presented 
with all information that is relevant for their decision. The players have 12 seconds to make their choice. If players do not choose one 
of the proposed alternatives within 12 seconds, the hand resumes with the risky option. The 12-second countdowns for the players 
start simultaneously, and decisions are shown to the players at the table as soon as they are made, regardless of whether the other 
player has already made her decision.

3.2. Data

Our data set includes 4,450,585 observations, where every observation refers to a unique decision by a single player in a two-

person showdown situation as described above. This includes the decisions of 83,219 distinct players.5

Our data set is extracted from 35,529,631 distinct poker hands played between January 01, 2020, and June 30, 2021 on Pokerstars, 
the largest online poker network during our observation period (Primedope, 2023). The number of distinct poker hands exceeds the 
number of observations, as not every poker hand results in a two-person showdown. We obtain the raw data from a commercial 
poker data provider that collects and stores hand histories for every Omaha Poker cash game played on Pokerstars.6 Hand histories 
are automatically generated by the Pokerstars software and include all public information of a single poker hand. The raw data is 
provided in text files and we make use of the commercial poker software “PokerTracker 4” to convert the raw data into a workable 
data set. Smith et al. (2009) use an earlier version of “PokerTracker” to construct their data set.

Our data set spans a wide range of games that vary in the size of the mandatory bets and the maximum amount players can bring 
to the respective game. The hand histories include information on all community cards, the hole cards of the players that went to a 
showdown, and the net pot size. This information allows us to calculate each player’s probability of winning the pot at showdown 
and assign each player’s insurance payout value. Furthermore, our data allow us to infer whether a respective player has chosen the 
insurance option for each showdown.

We capture a player’s decision between the safe option and the binary lottery by the variable insurance choice, our dependent 
variable of interest. This variable equals one if the player chooses the safe option and zero if she chooses the binary lottery. In our 
data set, players choose the safe option in 17.1% of cases with a standard deviation of 0.377 (Table 1). Notably, the overall share 
of choices of the insurance option is rather low. A majority of players choose the risk instead of the insurance option, which might 
be driven by a large share of individuals that are risk-seeking in general or by the 1%-margin that has to be paid to Pokerstars if the 
insurance option is chosen.

The winning probabilities and the net pot size allow us to calculate the expected value, 𝐸 = 𝜋𝑥, the variance, 𝑉 = 𝜋(1 −𝜋)𝑥2, and 
the skewness, 𝑆 = 1−2𝜋√

𝜋(1−𝜋)
, of each binary gamble players face in a showdown situation. Table 2 presents the descriptive statistics for 

the first three moments of the binary lotteries in our data set. Our lotteries have an average expected value of 62.39, with a standard 
deviation of 326.58 and a median of 13.37 (all in US-$). The expected values range from as little as $0.001 to as much as $64,242.40. 
Our measure of skewness takes values between -40.79 and 40.79 with a mean of zero.

The data set also includes a pseudonymized player ID, which serves as a unique identifier for each observation (together with 
the distinct hand number). In addition, our data records each player’s stack at the beginning of the hand and some hand-specific 
characteristics, such as date, time, and the size of the mandatory bets (stake). For all four betting rounds, we further observe the 

5 As we explain in Section 5.1 in more detail, we exclude all observations that involve a winning probability of 0.5, as most of these observations refer to situations 
with degenerated lotteries, for which no insurance option was offered.

6 Our data provider HH Dealer (https://www .hhdealer .com/) collects the hand histories for various online poker platforms. At Pokerstars, a hand history is accessible 
by all Pokerstars users that opened the window of a respective game. As a quality check, we observed several sessions on the Pokerstars platform during the data 
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collection period and checked whether the obtained histories are complete and accurate.

https://www.hhdealer.com/
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Note: Fig. 2 depicts the share of insurance choices depending on ex-ante winning proba-

bilities. The probability space is divided into 10 equidistant segments. Right-skewed and 
complementary leftskewed risks with the same variance are grouped together (e.g., the first 
red bar at the left refers to the interval of right-skewed risks with winning probabilities in 
the range (0, 0.1] while the neighboring blue bar refers to the interval of left-skewed risks 
with loss probabilities in (0, 0.1]). For more details on observations and differences be-

tween groups see Table 10, Appendix A.4.

Fig. 2. Share of insurance choices for different winning probability ranges. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

actions of all active players, that is, players that have not folded their hands. On average, a player in our sample plays 2,159 hands 
and faces 53.48 two-person showdown situations during the respective period. The average stack at the beginning of the hand is 
$115.1, ranging from $0.1 to $81,644.7

For additional analyses and robustness checks, we extract several player-specific characteristics from the raw data, including 
the number of hands played over the observation period, the amount won/lost over the entire period (including hands with no 
showdown), and the average winning probability in showdown situations. As a result of the rake collected by Pokerstars, a player 
makes an average loss of $0.088 per hand played. More details and the respective summary statistics are provided in Appendix A.4.

4. Results

We first describe our descriptive results, then our main regression analyses before we discuss in how far our results vary across 
different subgroups.

4.1. Descriptives

As we focus on situations where two players are in a showdown, that is, winning the pot is a complementary event for both 
opponents, each right-skewed lottery (𝜋 < 0.5) has exactly one left-skewed lottery (1 − 𝜋 > 0.5) as a complement. The variance of 
the opponents’ binary lotteries are identical, 𝑉1 = 𝑉2 = 𝜋(1 − 𝜋)𝑥2. Accordingly, the opponent of a player facing a binary risk with 
skewness 𝑆 faces a lottery with a skewness of −𝑆 . Thus, we can directly analyze insurance choice frequencies for different signs of 
skewness, but with constant variance.

First, we group the observations conditional on the sign of skewness and find that individuals who face a negatively-skewed lottery 
choose the insurance option in 20.0% of cases. In contrast, individuals who face a positively-skewed risk do so in only 14.2% of the 
cases. This difference is statistically significant (𝑝-value < 0.0001, two-sided Welch’s 𝑡-test, assuming independent samples) and in 
line with a preference for positive skewness.

Second, Fig. 2 illustrates the choice frequencies of the insurance option for different ranges of ex-ante winning probabilities with a 
constant average variance. The horizontal axis depicts the winning probability range of right-skewed lotteries and the loss probability 
of the complementary left-skewed lotteries. For example, the first red bar at the left illustrates the insurance choice frequency for 
lotteries with a winning probability between 0 and 0.1, while the neighboring blue bar plots the frequency for lotteries with winning 
probabilities between 0.9 and 1, that is, loss probabilities between 0 and 0.1. In all subgroups, individuals who face a negatively 
(left-)skewed lottery choose the insurance option significantly more often than their opponents who face a positively (right-)skewed 
lottery with the same variance. The differences are sizable and statistically significant in all groups and range from 1.5% to 8.7% (see 
Table 10, Appendix A.4). The differences are smallest for ranges closer to 𝜋 = 0.5, that is, for more symmetric lotteries. Insurance 
shares tend to be smaller for lotteries with a larger variance, suggesting a positive preference for variance by the average player. 
Interestingly, insurance shares seem rather constant concerning the variance for right-skewed lotteries and tend to decrease for a 
higher variance for left-skewed lotteries.

7 The average stack and the average number of showdown situations are calculated using the 4,450,585 observations in our final data set. The number of hands 
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played by a distinct player is based on all hands in our initial data set, including hands that did not result in a two-person showdown with a winning probability ≠ 0.5.
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While these results support a preference for skewness, they do have certain drawbacks, as they, for instance, do not account for 
different expected values of the gambles and other factors, such as loss aversion, that may confound our results. We address these 
issues in our regression analyses.

4.2. Regression analyses

Empirical strategy We investigate how each moment of the underlying probability distribution influences individual insurance choices 
while holding the other moments constant. We follow Mitton and Vorkink (2007) in assuming that the different risk moments have 
a linear effect on utility. We do not have a clear prior regarding the influence of the expected value, given that both the safe option 
and the lottery exhibit roughly the same expected value. In contrast, we expect a positive (negative) sign for variance if individuals 
in our sample are, on average, risk-averse (risk-seeking). Skewness preferences imply a negative skewness coefficient, meaning that 
individuals choose the risky option more often for higher skewness. In our main specifications, we estimate the following reduced-form 
equation:

𝑦𝑖,𝑗(𝑡,𝑧) = 𝛽0 + 𝛽𝐸𝐸𝑗 + 𝛽𝑉 𝑉𝑗 + 𝛽𝑆𝑆𝑗 + 𝛾Z𝑖 + 𝜂W𝑗 + 𝜆𝑡 +𝜓𝑧 + 𝜖𝑖,𝑗 , (5)

where the dependent variable 𝑦𝑖,𝑗(𝑡,𝑧) is a binary indicator of whether player 𝑖 chooses the insurance option in decision 𝑗. Each decision 
refers to a specific month 𝑡 and a game with stake 𝑧. Variables 𝐸𝑗 , 𝑉𝑗 and 𝑆𝑗 denote the expected value, variance, and skewness of the 
binary risk in decision 𝑗. 𝜆𝑡 are month fixed effects that control for month-specific factors constant across players, such as seasonality, 
adaptions over time, or COVID-19 effects. 𝜓𝑧 captures stake fixed effects that account for the fact that a game with a higher stake 
directly implies higher average expected values and variance. If such fixed effects were not included, our coefficients would not only 
capture the effect of 𝐸𝑗 and 𝑉𝑗 on insurance choice but also heterogeneity between games with different stakes. Finally, 𝜖𝑖,𝑗 denotes 
the error term.

W𝑗 is a vector of hand-specific characteristics. Importantly, W𝑗 includes a loss aversion dummy that is included in every specifica-

tion (see the next paragraph for details). To account for other confounding factors, we include additional features of a particular hand 
in some specifications (indicated by “hand-specific controls” in the tables below), such as the amount of money the player started 
the hand with (that is, the stack), whether the player risked the entire stack during a particular showdown, the weekday, and the 
position of the respective player during a hand.8 The vector Z𝑖 includes a set of player-specific characteristics to control for different 
players’ playing styles and experience levels. Player-specific characteristics are based on all poker hands in our data set (including 
those without a showdown) and cover the following variables: number of hands played, number of showdowns, profit or loss per 100 
hands played, and the average winning probability in showdowns over all hands (summary statistics can be found in Appendix A.4).

We control for the potential effect of loss aversion via a dummy variable. Loss aversion, a key element of prospect theory (Kahne-

man and Tversky, 1979), posits that individuals assess payoffs relative to a specific reference point and have a preference for avoiding 
a loss over attaining a similarly sized gain, defined relative to this reference point. In our setting, the amount contributed by a player 
to the pot could serve as a natural reference point. According to loss aversion, players then avoid the insurance option when the insur-

ance pays less than the player contributed to the pot, as this would represent a safe loss. In the showdown situations that we analyze, 
players facing left-skewed risks usually recoup their contribution with the insurance option and thus realize a gain.9 Conversely, 
players facing right-skewed risks typically incur a loss when choosing the insurance option due to their low winning probability and 
thus may prefer to take the risk. However, there are exceptions due to “dead” money from players who folded their hands prior to 
the showdown. These instances of players choosing between a right-skewed risk and an insurance option that offers a gain relative 
to their pot contributions allow us to distinguish between loss aversion and skewness preferences. To control for the potential effect 
of loss aversion in our regressions, we include a “loss aversion” dummy variable indicating whether the insurance option represents 
a loss relative to the pot contribution. The coefficient on this dummy serves as our metric for loss aversion, indicating the change 
in the likelihood of selecting insurance when it represents a loss as opposed to a gain.10 The summary statistics of the loss aversion 
dummy are presented in Table 7, Appendix A.4.

While including player-specific controls addresses some endogeneity concerns, our estimated coefficients may still be biased if 
unobserved factors correlate with the type of lotteries individuals face. To address this issue, we exploit the panel structure of our 
data and include player-specific fixed effects 𝛼𝑖 that control for all time-invariant heterogeneity across individuals. We extend the 
previous specification and estimate the following fixed effect regression:

𝑦𝑖,𝑗(𝑡,𝑧) = 𝛽𝐸𝐸𝑗 + 𝛽𝑉 𝑉𝑗 + 𝛽𝑆𝑆𝑗 + 𝜂W𝑗 + 𝜆𝑡 +𝜓𝑧 + 𝛼𝑖 + 𝜖𝑖𝑗 (6)

8 Two remarks on the hand-specific characteristics: i) in a two-person showdown, there is always one player that is all-in, thereby risking her entire stack, because 
otherwise, betting between the two players would still be possible, which rules out a showdown; ii) the position during a hand indicates when a player has to act 
during the hand, which may have important implications for the playing style and whether a player decides to play (i.e., voluntarily putting money in the pot) a 
particular set of hole cards or not. For example, players who already put money into the pot by posting the mandatory blinds tend to play a wider selection of hole 
cards, as the posted blinds count towards the necessary amount they have to call to see the first three community cards. Similarly, players who act last in each betting 
round (button) will have more information on opponents’ actions when they act in future betting rounds, which usually increases the range of played sets of hole 
cards as well.

9 Because of the rake that is deducted from the pot by Pokerstars, there are some situations where players facing a left-skewed lottery are, in fact, in the loss domain.
10 Since our data only allows us to approximate a player’s contribution to the pot in situations where multiple players may have contributed before the showdown, 
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we exclude 32,750 observations where the approximation is not precise enough.
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Table 3

Regression results for full sample.

Dependent variable:

Insurance choice dummy

(1) (2) (3) (4)

Expected Value −0.001 0.0002 −0.00003 0.005∗∗∗

(−1.292) (0.274) (−0.043) (6.026)

Variance 0.001∗ 0.0004 0.0004 −0.002∗∗

(2.048) (1.129) (1.221) (−3.121)

Skewness -0.009∗∗∗ -0.009∗∗∗ -0.009∗∗∗ -0.010∗∗∗

(−10.766) (−11.025) (−11.158) (−12.444)

Loss aversion dummy −0.050∗∗∗ −0.050∗∗∗ −0.052∗∗∗ −0.046∗∗∗

(−18.881) (−21.048) (−21.694) (−19.315)

Constant 0.195∗∗∗ 0.196∗∗∗ 0.197∗∗∗

(40.173) (46.261) (46.782)

Player-specific controls No Yes Yes No

Hand-specific controls No No Yes Yes

Player fixed effects No No No Yes

Observations 4,417,835 4,417,000 4,417,000 4,417,835

Note: The table reports OLS regression coefficients of our main empirical specification (Equation (5)), including the loss aversion dummy. The 
dependent variable is a binary indicator that equals 1 if a player chooses the insurance option and zero otherwise. All specifications include 
fixed effects for different games (on the stake level) and different months. The risk moments enter the regression as standardized z-scores. 
Corresponding t-statistics are provided in parentheses. Standard errors for the fixed effects regression are clustered at the individual level. 
Number of observations in Columns 2 and 3 differs from other columns because the average winning probability, one of the player-specific 
control variables, is not available in 835 choice situations. ∗ : p<0.1; ∗∗ : p<0.05; ∗∗∗ : p<0.01.

Regression results Table 3 shows the estimated marginal effects from a linear probability model estimating Equations (5) and (6). To 
simplify the comparison of coefficients’ magnitudes, we standardize the different moments in our main specifications.11 The signs and 
the p-values of the coefficients are largely unchanged if we use non-standardized variables (see Table 15, Appendix A.6). Similarly, 
our main results are unchanged if we estimate a Probit or a Logit model instead (see Table 16, Appendix A.6).

If we only include the three moments and the loss aversion dummy as independent variables (see Column 1, Table 3), we find 
that a one standard deviation increase in skewness reduces the likelihood of choosing the insurance by 0.9 percentage points, or 
5.3% compared to the average insurance choice likelihood, while holding expected value and variance constant. The coefficient is 
statistically significant (p-value< 0.0001).

The impact of variance and expected value are significantly smaller. The negligible effect of variance is noteworthy in light of our 
substantial sample size, especially when contrasted with the skewness parameter’s absolute t-statistic of above 10. The effect of the 
lottery’s expected value is statistically insignificant in most specifications. Note that a positive expected value coefficient does not 
mean that Poker players dislike positive returns because the insurance value also increases with the risk’s expected value. A positive 
coefficient indicates that players are more likely to choose the insurance option when facing lotteries with larger expected values.

Incorporating player-specific characteristics (Column 2 of Table 3) and other hand-specific controls (Column 3) does not substan-

tially alter the estimated effects. The results of the player fixed effects regression model are presented in Column 4. The estimated 
effect of skewness slightly increases in magnitude compared to the base specification. The effects of expected value and variance 
slightly increase in absolute terms, but are still substantially smaller than the effects of skewness.

Loss aversion also affects the insurance choice. Everything else equal, the baseline model shows a 5.0 percentage point decrease in 
the insurance choice likelihood when the insurance represents a loss (Table 3). This effect remains stable across various specifications, 
providing support for the coexistence of skewness preferences and loss aversion.

Overall, our regressions demonstrate a significant effect of skewness on insurance take-up. Despite extensive data, we fail to find 
a clear effect of variance—what is typically regarded as a risk’s main property. The estimated effect of skewness is negative and both 
statistically and economically significant. The absolute magnitude and the t-statistics of the standardized skewness coefficients are 
considerably larger than for the other two moments, suggesting a preeminent role of skewness preferences for individual risk-taking.12

4.3. Heterogeneous effects

In this subsection, we estimate our main specifications for different potentially interesting subgroups. We split the full sample at 
the median of different player- and hand-specific characteristics, ensuring an even distribution of observations across the subsamples. 

11 We follow the literature and standardize the variables by computing the z-score, that is, we subtract the respective mean and scale the variable by the inverse of 
its standard deviation. This allows us to make a unit-independent comparison of the coefficient magnitudes.
12 Our findings suggest that skewness effects outweigh the potential effects of negative emotions associated with having a lower winning probability than the 

opponent (i.e., the negative emotions associated with facing a right-skewed risk in the showdown situation). According to previous literature (Schildberg-Hörisch, 
2018; Necker and Ziegelmeyer, 2016; Guiso et al., 2018), such negative emotions tend to increase risk aversion and therefore also, in our setup, the attractiveness of 
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the insurance option. We, however, find that individuals appear to be less risk-averse and are less likely to choose the insurance option in these instances.
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Table 4

Regression results for different levels of player experience.

Dependent variable:

Insurance choice dummy

# showdowns # hands

≤ 421 > 421 ≤ 13,861 > 13,861

(1) (2) (3) (4)

Expected Value 0.005∗∗∗ −0.006∗∗∗ 0.006∗∗∗ −0.005∗∗∗

(5.787) (−4.135) (4.443) (−4.512)

Variance −0.002∗ 0.002∗ −0.002∗ 0.002∗

(−2.331) (2.111) (−2.201) (2.346)

Skewness −0.003∗∗∗ −0.015∗∗∗ −0.003∗∗∗ −0.015∗∗∗

(−6.131) (−9.659) (−6.142) (−9.547)

Loss aversion dummy −0.034∗∗∗ −0.063∗∗∗ −0.038∗∗∗ −0.059∗∗∗

(−23.727) (−13.101) (−24.364) (−12.633)

Constant 0.177∗∗∗ 0.212∗∗∗ 0.184∗∗∗ 0.206∗∗∗

(95.281) (23.239) (93.089) (22.900)

Num.Obs. 2,212,773 2,205,062 2,209,924 2,207,911

Unique players 81,187 1,941 80,845 2,283

Note: The table reports OLS regression coefficients of our main empirical specification (Equation (5)) for different subsam-

ples. The full sample is split at the median of two different measures of player experience (as in Fig. 6): i) the number of 
observed showdown situations per player (Columns 1 and 2); and ii) the total number of played hands by each player, in-

cluding those without a showdown (Columns 3 and 4). At this place, we only present results from the specification without 
additional control variables or individual fixed effects (equivalent to Column 1 of Table 3). The dependent variable is a 
binary indicator that equals 1 if a player chooses the insurance option and zero otherwise. All specifications include fixed 
effects for different games (on the stake level) and different months. The risk moments enter the regression as standardized 
z-scores. Corresponding t-statistics are provided in parentheses, using standard errors clustered at the individual level.
∗ : p<0.1; ∗∗ : p<0.05; ∗∗∗ : p<0.01.

Across all subsamples, we find evidence of skewness preferences, with the skewness coefficient being negative and significant in all 
specifications. For a list and summary statistics of the characteristics, see Tables 5–9 in Appendix A.4.

Players’ experience Players’ experience is a potentially important dimension for understanding players decisions in showdown situ-

ation. Previous studies suggest that experienced poker players are more self-reflective, less affected by negative emotions, and make 
better decisions, by mathematical standards, than inexperienced players (Palomäki et al., 2013, 2014). In our study, this suggests 
that the observed effects for experienced players are less likely due to a misperception of the underlying lotteries or due to impulsive 
choice but rather reflect a preference for different risk moments. Moreover, we have more repeated observations for more experienced 
players (for varying risks and payouts), which increases the power of our fixed effect regression model (see Table 11, Appendix A.5).

Experienced players face more than 421 showdowns. This threshold number balances the observations in the subsamples of 
inexperienced and experienced players. Experienced players opt for insurance in 22.0% of the cases when facing a left-skewed and 
14.2% of the cases when facing a right-skewed lottery in the showdown. In contrast, the difference in insurance choice ratios between 
the left- and the right-skewed lotteries is considerably smaller for inexperienced players (17.9% vs. 14.2%). This pattern is consistent 
across different levels of lottery variance (Panels A and B of Fig. 6, Appendix A.5). Again, for both subgroups, differences in insurance 
choices between left- and right-skewed lotteries narrow, as skewness approaches zero (see Table 12, Appendix A.5).

In our regression analyses, we also find large heterogeneity in skewness preferences between experienced and inexperienced play-

ers. For experienced players (as measured via the number of showdowns), increasing skewness by one standard deviation decreases 
the likelihood of choosing the insurance option by 1.5 percentage points (Column 2, Table 4). For inexperienced players, the esti-

mated effect of skewness on individuals’ risk-taking is around a fifth in size (Column 1, Table 4). This difference persists when we 
include individual fixed effects and hand-specific control variables (see Table 11, Appendix A.5). Moreover, we also find differences 
in estimated effects of loss aversion, with experienced players showing a stronger sensitivity.

The coefficients of the other two moments also differ for experienced and inexperienced players. The effect of variance is quite 
small in all subsamples and has different signs for experienced and inexperienced players in the basic specification, similar to the 
expected value coefficient. These results further underscore our earlier observation that, in our sample, skewness is a more influential 
factor than variance.

In Panels C and D of Fig. 6 (Appendix A.5) and Columns 3 and 4 of Table 4, we split the sample according to an alternative measure 
of experience: the total number of hands played by an individual player (including those without a showdown). The cutoff value is 
equal to 13,861 played hands. The differences between the two subgroups align with our previous findings and remain essentially 
unchanged if we include fixed effects (see Table 11, Appendix A.5). Moreover, the impact of other risk moments is similar across 
both measures of experience.

Players’ success Skill partly drives poker players’ success, which separates poker from games of pure chance, such as roulette (Potter 
van Loon et al., 2015; Duersch et al., 2020). While skill does not affect the outcome of the binary lotteries we study in this paper, it 
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affects the outcome of the preceding strategic interactions taking place under imperfect information. Skilled players typically achieve 
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higher net returns due to better judgment of hand strength, more accurate predictions of opponents’ hands, and adjusted betting 
strategies. Consequently, there are likely systematic differences in playing motives, risk attitudes, and preferences between successful 
and unsuccessful players.

We categorize players into successful and unsuccessful based on their aggregated net profits over our observation period, including 
results from non-showdown hands. Successful players are those with positive aggregated net profits over our observation period and 
unsuccessful players those with aggregated net losses. To account for the fact that profits can be the result of sheer luck if a player 
only plays a few hands, we also examine the heterogeneity in the subsample of experienced players only, who play at least 13,861 
hands over our observation period. We distinguish between sophisticated players and recreational players. Sophisticated players are 
experienced successful players, while we define recreational players as experienced unsuccessful players. Like sophisticated individual 
investors, sophisticated poker players are more likely to reflect upon and adjust their strategy. Sophisticated players are less likely to 
play for recreational reasons only and are thus potentially more similar to financial experts. In contrast, recreational players and their 
underlying risk attitudes may be more comparable to speculative retail investors or people who gamble in a casino. It is noteworthy 
that successful players are often experienced. In our data set, the median experienced player makes an average loss of $3.91 per 
hundred hands, while the median inexperienced player makes an average loss of $20.43.

Table 13, Appendix A.5, presents the results of our subsample analysis. We find strong evidence of skewness preferences in both 
subsamples. Notably, unsuccessful players exhibit stronger skewness preferences, particularly those in the recreational subgroup. In 
this group, a one standard deviation increase in skewness reduces the likelihood of choosing insurance by about 2.1-2.3 percentage 
points, consistent across both the base and fixed effects models (Columns 5 and 7). The effects of the other two moments are small, 
aligning with the full sample results. For successful and sophisticated players (Columns 2, 4, 6, and 8), the absolute effect of increased 
skewness on insurance choice is smaller, at only 0.5-0.6 percentage points, but remains significant across all models. Again, the 
expected value and variance effects are statistically insignificant for sophisticated players. In contrast, the estimated effects of loss 
aversion are relatively large in all subsamples, ranging from 2.2-2.4 percentage points for successful players and 5.7-6.4 percentage 
points for unsuccessful players.

The subsamples also differ in average insurance rates. Successful players choose insurance in about 11.4% of cases, compared 
to 19.4% for unsuccessful players. The difference in insurance shares increases if we consider recreational and sophisticated players 
(23.2% vs. 10.6%). The differences, both in terms of insurance shares and risk preferences, are consistent with the idea that risk 
neutrality is advantageous for long-term earnings. Therefore, successful poker players are expected to show less sensitivity to risk 
moments. Nonetheless, skewness still significantly influences the insurance decisions of successful players, indicating its importance 
even among those who are more risk-neutral.

Large monetary stakes It is particularly interesting to see whether our results also hold when we restrict our analysis to large monetary 
stakes, that is, for decisions involving pots of more than $100. The median lottery in this subsample has an expected value of $95.45, 
with a mean of $252.93. In this subsample, players selected the insurance option in 104,390 of 892,191 instances, yielding an 
insurance rate of 11.7%. Notably, players facing negatively-skewed lotteries chose the insurance in 13.7% of the cases, while those 
with positively-skewed risks did so in 9.7% of the cases.

Our regression results, which are presented in Table 14, Appendix A.5, show that with large monetary stakes, the absolute mag-

nitude of the skewness coefficients moderately decreases to 0.5-0.8 percentage points, yet remains statistically significant across 
all specifications. The absolute size of the estimated loss aversion effect slightly decreases as well, from 4.6-5.2 to about 3.8-4.4 
percentage points. Thus, our main conclusions remain unchanged when restricting our analysis to decisions with larger monetary 
stakes.

5. Limitations of our framework and robustness

In this section, we show the robustness of our results by addressing potential limitations and shortcomings of our setup. We first 
address the fact that, in our setting, lotteries are not always binary. Second, we address miscellaneous other issues.

5.1. Lotteries are not always binary

One limitation of our setup is that the underlying risks are, strictly speaking, not always binary, as split pots can occur. Split 
pots arise when players hold the same best five-card hand after all community cards are dealt. In this case, each involved player is 
awarded half of the pot. In our sample, 6.6% of all showdown situations result in a split pot. As players’ best five-card hand includes 
precisely two of their private cards and three of the community cards, split pots are rare in Omaha Poker cash games compared to 
other Poker games. This is one reason why it is advantageous to focus on this particular poker variant in our study.

In scenarios where split pots are possible, players face the following trinary lottery: 𝐿 = (𝑥, 𝜋; 12𝑥, 𝜇; 0, 1 − 𝜇 − 𝜋), where 𝜇 is the 
ex-ante probability of a split pot and 𝜋 is the ex-ante probability of winning the entire pot. In our data, 𝜇 and 𝜋 are not independently 
observable, neither for the players nor for us. In fact, we only observe a “payout-weighted” winning probability �̃� = 1

2𝜇 + 𝜋, which 
can be understood as the percentage of the pot the player is expected to win. If a split pot is possible, the agent thus sees the binary 
lottery: �̃� = (𝑥, �̃�; 0, 1 − �̃�), for which 𝐸(𝐿) =𝐸(�̃�). In Appendix A.3, we present an example of a choice situation where a split pot is 
possible and explain in detail how the payout-weighted probabilities are calculated. If no split pot is possible ex-ante (𝜇 = 0), which is 
true for the majority of hands, both lotteries are equivalent (𝐿 = �̃�). Moreover, in every showdown situation, for the player that faces 
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the right-skewed and the one that faces the left-skewed risk, the probability of a split pot is the same, the variance of the lottery is the 
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same, and the absolute value of the lottery’s skewness is the same. Consequently, the possibility of split pots should not systematically 
confound our estimated skewness effects.

Notably, there are situations where the likelihood of a split pot is equal to one (𝜇 = 1), where the hand will result in a split pot 
irrespective of the remaining cards drawn from the deck. In these situations, the weighted probability we observe is equal to 0.5, 
but no insurance option was offered as the hand outcome is deterministic. Our dataset does not allow for a clear distinction between 
these deterministic scenarios and those with a weighted probability of 0.5. To address this issue, we exclude all observations with 
a weighted probability of 0.5. Most of these observations refer to a situation where the underlying lottery is degenerate, and no 
insurance option was offered.13 Moreover, a winning probability of 0.5 implies that the underlying risk is not skewed but symmetric.

In response to the issue of split pots, we run our regression analyses for a subsample that excludes all observations that resulted 
in a split pot. The results are illustrated in Table 21, Appendix A.6. The estimated coefficients and p-values of all three moments 
remain nearly unchanged compared to our main regressions (Table 3). Note, however, that this approach only excludes observations 
that ultimately resulted in a split pot and not all showdowns where a split pot is possible ex-ante. However, the robustness of our 
estimated effects reassures us that our results are not confounded by the possibility of split pots.

5.2. Additional robustness checks

This subsection provides additional robustness checks to address other potential endogeneity issues and limitations. First, as 
mentioned above, we estimate Logit and Probit models to account for the inherent non-linear relationship between our binary outcome 
variable and our independent variables. The results are consistent with our main findings. The estimated average marginal effects of 
skewness, as well as their significance, remain nearly unchanged in both specifications (see Table 16, Appendix A.6).

Second, the first two moments of the lotteries depend on the net pot size. Our observations differ considerably in net pot sizes 
leading to substantial tails in the distribution of lotteries’ expected value and variance. To make sure that this dispersion in pot sizes 
does not drive our results, we conduct our analyses using a normalized measure of lotteries’ volatility, which is independent of the pot 
size: the “coefficient of variation” (CV) of the lotteries, which can be understood as the inverse of the “Sharpe ratio” of the lotteries.14

The CV is defined as the ratio of the standard deviation to the mean: 
√
𝑉 𝑎𝑟(𝐿)∕𝐸(𝐿) =

√
𝜋(1 − 𝜋)𝑥2∕𝜋𝑥 =

√
(1 − 𝑝)∕𝑝. This measure 

is dimensionless and commonly used in finance and economics (similar to the Sharpe ratio, Sharpe, 1994) and in psychology (e.g., 
Weber et al., 2004). We estimate the same regression equation as above with the only difference that we replace the expected value 
and the variance of the lottery with its CV. Table 17 in the Appendix shows the estimated marginal effects. The skewness coefficient 
slightly increases and remains highly statistically significant. The coefficient of the CV is slightly positive in all specifications and 
statistically significant at the 1%-level (except for the specification with player fixed effects). As an additional corroboration that 
our results are not driven by outliers, we run our main specification with samples trimmed at the 1%- and the 99%-percentiles of 
the lotteries’ net pot. The results are shown in Table 18. The skewness coefficient remains almost unchanged. The coefficients are 
comparable if we trim the sample with respect to the expected at the 5%- and 95%-percentiles or if we winsorize the samples instead 
of trimming (results not shown).

Third, we run the same regressions for a sample that only includes players that face both types of lotteries—left- and right-

skewed—at least once. This does also not change our results (see Table 19, Appendix A.6). Thus, our skewness effects are not driven 
by a fundamental difference between individuals facing left-skewed and individuals facing right-skewed risks.

Fourth, we estimate Equations (5) and (6), excluding all observations of players who never or always choose the insurance option. 
This rules out that our results are driven by the fact that players who always choose the insurance option face fundamentally different 
binary risks than players who never choose the insurance option. Limiting our sample to those players increases the estimated skewness 
effect (Table 20, Appendix A.6). Again, the (absolute) effect size and t-statistics of the skewness variable clearly exceed the estimates 
of the other moments in those specifications.

Finally, it is conceivable that the insurance decision is affected by other factors connected to the surrounding poker game. We 
provide additional robustness checks in the appendix controlling for two features of the surrounding poker game (Table 22, Ap-

pendix A.6). First, we control for the players’ last action in a hand. A player’s last action is either betting or calling, whereas there is 
always one caller and one bettor per hand. The caller knows the hand will end in a showdown, but the bettor is unsure whether their 
opponent will call, which creates uncertainty about reaching a showdown. This difference between players can affect their emotional 
state when deciding whether to choose the insurance. Second, we control for whether the opponent in the showdown took the in-

surance or not. While the opponent’s insurance decision does not influence the outcome of the showdown, as noted above, players 
in a game observe the insurance decision of the other players, allowing for a potential behavioral response to the other’s decision. 
Including these control variables in our regression analyses does not affect our main results. Moreover, the coefficients on these two 
additional control variables are rather small and insignificant in most specifications.

13 This is implied by the following observation: In total, there are 111,507 observations (out of 4,562,092) with an observed probability of 0.5. Of those observations, 
95,401 result in a split pot. In these 95,401 cases, the insurance option was chosen in 830 cases (0.9%). In the 16,106 cases that did not result in a split pot, the 
insurance was chosen in 3,528 cases (21.9%).
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14 Note that the Sharpe ratio in financial economics is usually defined in terms of the difference between a risky investment’s return and the risk-free return.
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6. Discussion and conclusion

The introduction of the insurance option in online poker allows us to cleanly test for skewness preferences in a large set of 
observational data among individuals who are rather experienced in choice under risk. We detect a strong and robust effect of 
skewness on risk-taking. Our results complement, for instance, recent survey findings (Holzmeister et al., 2020) whereby skewness 
is the only moment that systematically affects financial professionals’ perception of financial risk. We substantiate this finding in a 
real-world setting with a comprehensive data set of strongly incentivized choices.

Arguably, offering insurance (as reflected, in our case, by the all-in cashout) against negatively skewed risks as faced in a show-

down situation increases the attractiveness of gambling. This way, players can enjoy positively skewed risks while being insured 
against negatively skewed risks, which caters to players with skewness preferences. If such skewness preferences do not reflect true 
preferences, but are bias-driven as suggested, for instance, by the salience literature (Bordalo et al., 2022; Dertwinkel-Kalt and Köster, 
forthcoming), the introduction of the all-in cashout induces players to gamble excessively. The online casino’s profits then increase 
due to the introduction of this option, but even though consumers demand it, their surplus potentially decreases.

As we analyze poker players, our study relies on a selective sample of people—a feature that is shared by most field studies on 
risky choice, which are restricted to, for instance, financial investors (e.g., Boyer et al., 2010; Conrad et al., 2013; Lin and Liu, 2018), 
game show participants (e.g., Gertner, 1993; Post et al., 2008), bettors (e.g., Snowberg and Wolfers, 2010; Andrikogiannopoulou 
and Papakonstantinou, 2020), or people buying auto insurance (e.g., Cohen and Einav, 2007). In our case, the selected sample has 
advantages and disadvantages. Online poker may attract individuals with non-representative (risk) preferences, which is backed by the 
observation that the overall insurance take-up is rather low and playing online poker has, on average, a negative expected return due 
to the fee taken by the platform providers (on average a player loses around $0.088 per hand). Past studies suggest that online poker 
players are more likely to be younger and predominantly male compared to the general population (Barrault and Varescon, 2016). 
While not necessarily applicable to the general population, our results could be rather informative for individuals that self-select 
into risky choices in other instances, such as individual investors—particularly those with a large propensity to invest in lottery-type 
stocks (Kumar, 2009; Han and Kumar, 2013) or cryptocurrencies (Hackethal et al., 2022)—, bettors (e.g., Andrikogiannopoulou and 
Papakonstantinou, 2020; Moskowitz, 2021), and entrepreneurs (Moskowitz and Vissing-Jørgensen, 2002).

More generally, our results suggest that payoff skewness or lottery-like features are important drivers for risk-taking and (asset) 
prices, particularly in markets that are predominately populated by young speculative individuals, such as the markets for crypto 
assets. In addition, our findings have important real-world implications beyond asset pricing and risk-taking, as skewness preferences 
affect career choices and may explain recent phenomena, such as the boom of tech start-ups or the popularity of extended warranties 
for many durable goods, even when generous base warranties are in place (Lee and Venkataraman, 2022).
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Appendix A

A.1. Poker hands ranking

The player with the highest ranked five-card hand, consisting of two private cards and three community cards, wins the pot in 
Omaha Poker cash games. The poker hand ranking is as follows (Source: Pokerstars: https://www .pokerstars .eu /poker /games /rules /
hand -rankings/):

1. Straight Flush: Five cards in numerical order, all of identical suits. In the event of a tie, the highest rank at the top of the 
sequence wins. The best possible straight flush is known as a royal flush, which consists of the ace, king, queen, jack, and ten of a 
suit. A royal flush is an unbeatable hand.

2. Four of a Kind: Four cards of the same rank, and one side card or ‘kicker.’ In the event of a tie, the highest four of a kind wins. 
In community card games, where players have the same four of a kind, the highest fifth side card (‘kicker’) wins.

3. Full House: Three cards of the same rank, and two cards of a different, matching rank. In the event of a tie, the highest three 
matching cards win the pot. In community card games, where players have the same three matching cards, the highest value of the 
two matching cards wins.

4. Flush: Five cards of the same suit. In the event of a tie, the player holding the highest ranked card wins. If necessary, the 
second-highest, third-highest, fourth-highest, and fifth-highest cards can be used to break the tie. If all five cards are the same rank, 
the pot is split. The suit itself is never used to break a tie in poker.

5. Straight: Five cards in sequence. In the event of a tie, the highest ranking card at the top of the sequence wins. Note: The Ace 
may be used at the top or bottom of the sequence, and is the only card which can act in this manner. A, K, Q, J, T is the highest (Ace 
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high) straight; 5,4,3,2, A is the lowest (Five high) straight.

https://www.pokerstars.eu/poker/games/rules/hand-rankings/
https://www.pokerstars.eu/poker/games/rules/hand-rankings/
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Fig. 3. Example of an all-in cashout situation before any community cards have been dealt (German software).

6. Three of a kind: Three cards of the same rank, and two unrelated side cards. In the event of a tie, the highest ranking three 
of a kind wins. In community card games, where players have the same three of a kind, the highest side card, and if necessary, the 
second-highest side card wins.

7. Two pair: Two cards of a matching rank, another two cards of a different matching rank, and one side card. In the event of a 
tie: Highest pair wins. If players have the same highest pair, highest second pair wins. If both players have two identical pairs, highest 
side card wins.

8. One pair: Two cards of a matching rank, and three unrelated side cards. In the event of a tie, the highest pair wins. If players 
have the same pair, the highest side card wins, and if necessary, the second-highest and third-highest side card can be used to break 
the tie.

9. High card: Any hand that does not qualify under a category listed above. In the event of a tie, the highest card wins, and if 
necessary, the second-highest, third-highest, fourth-highest, and smallest card can be used to break the tie.

A.2. Choice situation for a showdown before the flop

Fig. 3 shows another example of a showdown situation, in particular of a constellation before any community cards have been 
dealt. The difference from the example in the main text is the different stage of the game when the showdown situation has occurred. 
The situation environment for the player is equivalent, that is, payouts and probabilities are clearly displayed on the player’s screen 
and the decision the player takes is the same. Note that the players have the insurance option only once, namely in the moment of 
showdown.

A.3. Showdowns with split pot possibility

Fig. 4 shows an example of a showdown situation with one card to come. The difference from the example in the main text is 
that there is a split pot possibility. After the Turn, Player 1 holds the best five-card hand with a “Straight” (5-6-7-8-9). Player 4’s best 
possible five-card hand is 8-8-8-K-9, three of a kind. Again, there are still 40 cards in the deck. Player 4 would win the entire pot if 
the board pairs, that is, if a King, 9, 5 or 8 is drawn, giving her a winning Full House. As Player 1 holds one 8 and one 5, there are 
seven cards in the remaining deck that would give Player 4 the winning hand. Accordingly, the likelihood for Player 4 to win the 
entire pot is 𝜋 = 7

40 = 0.175. However, as player 4 also holds a 6 (and 8/9) in her hand, a 7 on the River would give her the same 
straight (5-6-7-8-9) as Player 1, which would result in a split pot. There are three 7s still in the deck, implying a probability for a 
split pot of: 𝜇 = 3

40 = 0.075. As Player 4 would only win half of the pot in this case, 12𝜇 is added to the winning probability to get the 
“payout-weighted probability,” or expected winning share of pot, that is displayed on the screen: 𝜋 + 1

2𝜇 = 0.175 + 1
20.075 = 0.2125. 

Apart from that, the decision environment for the player is equivalent, that is, payouts are clearly displayed on the player’s screen 
and the players only have the insurance option once, namely in the moment of showdown.
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Fig. 5 illustrates shares of hands that result in a split pot depending on expected winning shares of the pot.
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Fig. 4. Example of an all-in cashout situation on the Turn with a split pot possibility.

Note: This figure presents the share of hands that resulted in a split pot depending on ex-

pected winning shares of the pot. The expected winning share is equivalent to the “payout-

weighted” winning probability introduced in Section 5.1. The shares are divided into 10 
equidistant segments and right-skewed and complementary left-skewed risks are grouped 
together (e.g., the first red bar on the left refers to the interval of right-skewed risks with 
expected winning shares in the range (0,0.1] and the neighboring blue bar refers to the 
interval of left-skewed risks with expected winning shares in [0.9,1)).
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Fig. 5. Share of split pots depending on the expected winning share of the pot.
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A.4. Additional summary statistics and descriptives

Table 5

Summary statistics of player-specific characteristics.

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Number of hands played 83,219 2,159.42 12,932.65 1.00 53.00 186.00 785.00 602,706.00

Number of experienced showdown situations 83,219 53.48 252.60 1.00 2.00 7.00 26.00 13,930.00

Average winning probability 82,470 0.44 0.15 0.00 0.37 0.45 0.52 1.00

Profit per hundred hands 83,219 −98.01 1,048.16 −145,158.40 −66.45 −19.73 −2.27 36,620.00

Note: The table reports summary statistics of all player-specific characteristics that we use in our empirical analysis. Characteristics are used, both, as control variables 
in our regressions analyses and to split the full sample for our subsample analyses (Section 4.3). The variable Number of experienced showdown situations is calculated 
using the 4,485,585 observations of showdown situations in our full sample. The other characteristics are based on all hands in our initial data set, which also includes 
hands that did not result in a two-person showdown with a winning probability of ≠ 0.5. The statistics are calculated with equal weights on all players. For the profit 
per hundred hands variable this implies that players who have played fewer hands are heavily overweighted in the calculation of the summary statistics. As these 
players usually make high losses in few hands and then stop playing, we get a large discrepancy between the average profits per hundred hand across all hands and 
players, which is equal to -$8.88, and the profit per hundred hands when the mean is calculated with equal weights on single players (as illustrated in the table). The 
number of observations (N) for average winning probability differs compared to other characteristics as these values are not available in the data for 749 players.

Tables 6-8 report summary statistics of all hand-specific characteristics that we use in our empirical analysis.

Table 6

Summary statistics of stakes & stacks.

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Stake 4,450,585 1.195 5.505 0.100 0.100 0.250 0.500 100.000

Stack 4,450,585 115.088 628.627 0.100 10.390 25.240 63.960 81,643.93

Note: The table reports summary statistics of the stake (mandatory bets) and the stacks (money of each player at the beginning of the hand) 
in our sample. Values are measured in US-$ terms.

Table 7

Summary statistics of the risk-all-stack dummy, the dummy indicating insurance choice of the other player and the dummy indicating whether 
the last action of a player was a call.

Statistic N # Dummy = 1 # Dummy = 0 Mean St. Dev.

Loss aversion dummy 4,417,835 2,158,020 2,259,815 0.488 0.500

Risk-All-Stack dummy 4,450,585 2,225,425 2,225,160 0.500 0.500

Other player’s insurance dummy 4,450,585 761,577 3,689,008 0.171 0.377

Call dummy 4,450,585 2,171,584 2,279,001 0.488 0.500

Note: The table reports the number of hand situations where the offered insurance payout was smaller than the players’ pot contributions 
(loss aversion dummy), the respective player risks her entire stack (Risk-all-stack=1), where the other player has chosen the insurance and 
where the last action of the respective player was a call. As we do not directly observe whether a player risks her entire stack in a showdown, 
we approximate the risk-all-stack dummy with the player’s stack, final pot and expected winning shares. Due to rounding and the presence 
of mandatory bets of other players who are not involved in the showdown, there might be some individuals that wrongly end up in the 
subsample of individuals that do not risk their entire stack. The error margin should be small and should not confound the results.

Table 8

Frequencies of positions in a showdown situation.

BB BTN CO EP MP SB

Frequency 915,826 902,579 773,689 362,749 632,235 863,507

Note: The table reports absolute frequencies of the different positions of the player in a showdown situation. These are namely: BB (“Big 
Blind”; person that has to post the big blind), BTN (“Button”; person that acts last in every betting round after the Flop), CO (“Cut-Off”; 
person that acts second last in every betting round after the Flop), SB (“Small Blind”, person that has to post the big blind) as well as EP 
(“Early Position”) and MP (“Middle Position”) that refers to positions between the “Big Blind” and the “Cut-Off”.

Table 9

Frequencies of weekdays.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Frequency 610,961 610,300 617,142 616,895 641,434 682,997 670,856
476

Note: The table reports absolute frequencies of the weekdays when showdown situations have occurred.
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Table 10

Differences in shares of insurance choice among right- and left-skewed risks for different ranges of winning probabilities.

right-skewed interval (𝑟) left-skewed interval (𝑙) Obs. (𝑟) Obs. (𝑙) Δ in shares t-statistic

(0.0,0.1] [0.9,1.0) 298,984 298,984 0.087∗∗∗ 86.165
(0.1,0.2] [0.8,0.9) 344,012 344,013 0.085∗∗∗ 88.607
(0.2,0.3] [0.7,0.8) 462,970 463,002 0.076∗∗∗ 95.299
(0.3,0.4] [0.6,0.7) 563,305 563,297 0.054∗∗∗ 78.788
(0.4,0.5) (0.5,0.6) 555,986 556,032 0.015∗∗∗ 21.340

Note: The table reports the number of observations in each of the ten equidistant probability ranges illustrated in Fig. 2. Column 
5 reports the difference in the shares of insurance choice between complementary groups of left- and right-skewed risks. The 
imbalance in observations between the left- and right skewed intervals is due to rounding differences in winning probabilities. 
Column 6 reports 𝑡-statistics of the two-sided Welch’s 𝑡-test, assuming independent samples. ∗ : p<0.1; ∗∗ : p<0.05; ∗∗∗ : p<0.01.

A.5. Additional subsample analyses

Note: The figure depicts the share of insurance choices depending on ex-ante winning probabilities, equivalent to Fig. 2, for different subsamples of relatively 
inexperienced players (Panels A and C) and subsamples of relatively experienced players (Panels B and D). The sample is split at the median of the respective 
experience measure. In Panels A and B, players’ experience is measured by the number of observed showdowns in the sample. In contrast, Panels C and D use the 
total number of played hands by each player, including those without a showdown, as a measure of the player’s experience. The probability space is divided into 
10 equidistant segments. Right-skewed and complementary left-skewed risks with the same variance are grouped together. For more details on observations and 
differences between groups see Table 12, Appendix A.5.

Fig. 6. Share of insurance choices depending on players’ experience.
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Table 11

Regression results in subsamples, with fixed effects.

Dependent variable:

Insurance choice dummy

# showdowns # hands

≤ 421 > 421 ≤ 13,861 > 13,861

(1) (2) (3) (4)

Expected Value 0.011∗∗∗ −0.00004 0.012∗∗∗ −0.001

(8.124) (−0.039) (8.062) (−0.694)

Variance −0.003∗∗∗ 0.0002 −0.004∗∗∗ 0.0004

(−3.899) (0.682) (−4.054) (1.222)

Skewness −0.003∗∗∗ −0.017∗∗∗ −0.004∗∗∗ −0.017∗∗∗

(−7.486) (−11.167) (−7.588) (−10.921)

Loss aversion dummy −0.029∗∗∗ −0.062∗∗∗ −0.032∗∗∗ −0.059∗∗∗

(−20.895) (−13.964) (−20.664) (−13.416)

Player-specific controls No No No No

Hand-specific controls Yes Yes Yes Yes

Player fixed effects Yes Yes Yes Yes

Observations 2,212,773 2,205,062 2,209,924 2,207,911

Unique players 81,187 1,941 80,845 2,283

Note: The table reports OLS regression coefficients of our fixed effects specification (Equation (6)) for different subsamples. 
Compared to Table 4, we include individual fixed effects and hand-specific characteristics as control variables (equivalent to 
Column 4 of Table 3). The full sample is split at the median of two different measures of player experience: i) the number of 
observed showdown situations in our sample per player (Columns 1 and 2); and ii) the total number of played hands by each 
player, including those without a showdown (Columns 3 and 4). The dependent variable is a binary indicator that equals 1 if 
a player chooses the insurance option and zero otherwise. All specifications include fixed effects for different games (on the 
stake level) and different months. The risk moments enter the regression as standardized z-scores. Corresponding t-statistics 
are provided in parentheses, using standard errors clustered at the individual level. ∗: p<0.1; ∗∗ : p<0.05; ∗∗∗ : p<0.01.

Table 12

Differences in shares of insurance choice among right- and left-skewed risks.

𝑟 𝑙 # showdowns # hands

≤ 421 > 421 ≤ 13,861 > 13,861

(1) (2) (3) (4) (5) (6)

(0.0, 0.1] [0.9, 1.0) 0.044∗∗∗ 0.132∗∗∗ 0.049∗∗∗ 0.128∗∗∗

(32.088) (89.251) (35.267) (87.543)

(0.1, 0.2] [0.8, 0.9) 0.049∗∗∗ 0.121∗∗∗ 0.054∗∗∗ 0.117∗∗∗

(37.326) (86.976) (40.775) (84.803)

(0.2, 0.3] [0.7, 0.8) 0.048∗∗∗ 0.103∗∗∗ 0.053∗∗∗ 0.098∗∗∗

(43.805) (89.307) (47.609) (86.359)

(0.3, 0.4] [0.6, 0.7) 0.041∗∗∗ 0.065∗∗∗ 0.045∗∗∗ 0.061∗∗∗

(42.663) (66.679) (46.300) (63.359)

(0.4, 0.5) (0.5, 0.6) 0.012∗∗∗ 0.016∗∗∗ 0.013∗∗∗ 0.015∗∗∗

(12.590) (16.507) (13.815) (15.337)

Note: The table presents the difference in the shares of insurance choice between left- and right-skewed risks for different 
subsamples and ranges of ex-ante winning probabilities, as defined in Columns 1 and 2 and illustrated in Fig. 6. The full 
sample is split at the median of two different measures of player experience: i) the number of observed showdown situations 
in our sample per player (Columns 3 and 4); and ii) the total number of played hands by each player, including those without 
a showdown (Columns 5 and 6). Corresponding t-statistics of the two-sided Welch’s 𝑡-test, assuming independent samples, 
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Table 13

Regression results in subsamples, depending on players’ success.

Dependent variable:

Insurance choice dummy

All players Experienced players only

without fixed effects with fixed effects without fixed effects with fixed effects

Profit per hundred hands Profit per hundred hands Profit per hundred hands Profit per hundred hands

≤ 0 > 0 ≤ 0 > 0 ≤ 0 > 0 ≤ 0 > 0
(1) (2) (3) (4) (5) (6) (7) (8)

Expected Value 0.003∗ 0.001 0.009∗∗∗ 0.002∗ −0.002 0.000004 0.004 0.001

(2.530) (0.630) (5.529) (2.449) (−1.478) (0.003) (1.816) (0.899)

Variance −0.001 −0.0002 −0.003∗∗ −0.001 0.001 0.00003 −0.001 −0.0003

(−1.266) (−0.400) (−2.891) (−1.922) (1.332) (0.053) (−1.122) (−0.705)

Skewness −0.010∗∗∗ −0.005∗∗∗ −0.011∗∗∗ −0.005∗∗∗ −0.021∗∗∗ −0.005∗∗ −0.023∗∗∗ −0.006∗∗∗

(−10.161) (−4.121) (−11.381) (−4.345) (−9.195) (−3.269) (−10.309) (−3.534)

Loss aversion dummy −0.064∗∗∗ −0.024∗∗∗ −0.057∗∗∗ −0.022∗∗∗ −0.094∗∗∗ −0.019∗∗∗ −0.090∗∗∗ −0.019∗∗∗

(−18.723) (−8.213) (−18.143) (−7.891) (−12.751) (−5.454) (−12.758) (−5.394)

Constant 0.226∗∗∗ 0.125∗∗∗ 0.277∗∗∗ 0.114∗∗∗

(39.836) (15.459) (22.183) (10.811)

Player-specific controls No No No No No No No No

Hand-specific controls No No Yes Yes No No Yes Yes

Player fixed effects No No Yes Yes No No Yes Yes

Observations 3,170,340 1,247,495 3,170,340 1,247,495 1,280,157 927,754 1,280,157 927,754

Unique players 65,815 17,313 65,815 17,313 1,472 811 1,472 811

Note: The table reports regression coefficients for basic OLS specification (Equation (5)) in Columns 1, 2, 5, and 6 and for the setup including player fixed effects 
(Equation (6)) in Columns 3, 4, 7 and 8. The baseline samples are split into unsuccessful (columns with an uneven number) and successful (columns with an even 
number) players. Columns 1 to 4 employ the full sample, and Columns 5 to 8 use the sample of experienced players as the baseline sample. All specifications include 
fixed effects for different games (on the stake level) and different months. The risk moments enter the regression as standardized z-scores. Corresponding t-statistics 
are provided in parentheses, using standard errors clustered at the individual level. ∗: p<0.1; ∗∗ : p<0.05; ∗∗∗ : p<0.01.

Table 14

Regression results for the subsample of hands with pot size > 100 US-$.

Dependent variable:

Insurance choice dummy

(1) (2) (3) (4)

Expected Value −0.003∗ −0.002∗ −0.003∗ 0.002∗

(−2.493) (−2.011) (−2.346) (2.229)

Variance 0.002∗∗ 0.002∗∗ 0.002∗ 0.0001

(2.756) (2.708) (2.575) (0.293)

Skewness −0.005∗∗∗ −0.007∗∗∗ −0.007∗∗∗ −0.008∗∗∗

(−5.367) (−7.955) (−7.974) (−8.287)

Loss aversion dummy −0.038∗∗∗ −0.043∗∗∗ −0.044∗∗∗ −0.039∗∗∗

(−13.108) (−15.571) (−15.800) (−13.977)

Constant 0.136∗∗∗ 0.139∗∗∗ 0.139∗∗∗

(23.684) (26.869) (27.011)

Player-specific controls No Yes Yes No

Hand-specific controls No No Yes Yes

Player fixed effects No No No Yes

Observations 877,118 877,057 877,057 877,118

Note: The table reports OLS regression coefficients of our main empirical specification (Equation (5)) for the subsample of 
hands with pot size > 100 US-$. The dependent variable is a binary indicator that equals 1 if a player chooses the insurance 
option and zero otherwise. All specifications include fixed effects for different games (on the stake level) and different months. 
The risk moments enter the regression as standardized z-scores. Corresponding t-statistics are provided in parentheses, using 
standard errors clustered at the individual level. Number of observations in Columns 2 and 3 differs from other columns 
because the average winning probability, one of the player-specific control variables, is not available in 61 choice situations. 
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A.6. Robustness checks

Table 15

Regression results for full sample, non-standardized variables.

Dependent variable:

Insurance choice dummy

(1) (2) (3) (4)

Expected Value −0.000004 0.0000008 −0.0000001 0.00002∗∗∗

(−1.292) (0.274) (−0.043) (6.026)

Variance 0.0000000005∗ 0.0000000003 0.0000000003 −0.000000001∗∗

(2.048) (1.129) (1.221) (−3.121)

Skewness −0.004∗∗∗ −0.004∗∗∗ −0.004∗∗∗ −0.004∗∗∗

(−10.766) (−11.025) (−11.158) (−12.444)

Loss aversion dummy −0.050∗∗∗ −0.050∗∗∗ −0.052∗∗∗ −0.046∗∗∗

(−18.881) (−21.048) (−21.694) (−19.315)

Constant 0.210∗∗∗ 0.102∗∗∗ 0.081∗∗∗

(23.810) (5.424) (4.182)

Player-specific controls No Yes Yes No

Hand-specific controls No No Yes Yes

Player fixed effects No No No Yes

Observations 4,417,835 4,417,000 4,417,000 4,417,835

Note: The table reports OLS regression coefficients of our main empirical specification (Equation (5)). In contrast to 
Table 3, the risk moments enter the regression as non-standardized absolute values. The dependent variable is a binary 
indicator that equals 1 if a player chooses the insurance option and zero otherwise. All specifications include fixed effects 
for different games (on the stake level) and different months. Corresponding t-statistics are provided in parentheses, 
using standard errors clustered at the individual level. Number of observations in Columns 2 and 3 differs from other 
columns because the average winning probability, one of the player-specific control variables, is not available in 835 
choice situations. ∗ : p<0.1; ∗∗ : p<0.05; ∗∗∗ : p<0.01.

Table 16

Regression results for full sample, Logit and Probit specifications.

Dependent variable:

Insurance choice dummy

Logit Probit

(1) (2) (3) (1) (2) (3)

Expected Value 0.007∗∗∗ 0.010∗∗∗ 0.015∗∗∗ 0.004∗ 0.007∗∗∗ 0.009∗∗∗

(3.421) (4.469) (6.657) (2.547) (4.004) (5.017)

Variance −0.002 −0.004 −0.002 −0.001 −0.002 −0.001

(−1.100) (−1.349) (−1.580) (−1.041) (−1.605) (−1.351)

Skewness −0.008∗∗∗ −0.008∗∗∗ −0.008∗∗∗ −0.008∗∗∗ −0.008∗∗∗ −0.008∗∗∗

(−10.257) (−10.483) (−10.532) (−10.196) (−10.677) (−10.755)

Loss aversion dummy −0.049∗∗∗ −0.050∗∗∗ −0.051∗∗∗ −0.049∗∗∗ −0.050∗∗∗ −0.051∗∗∗

(−18.994) (−21.791) (−22.369) (−19.024) (−22.148) (−22.764)

Player-specific controls No Yes Yes No Yes Yes

Hand-specific controls No No Yes No No Yes

Observations 4,417,835 4,417,000 4,417,000 4,417,835 4,417,000 4,417,000

Note: The table reports (average) marginal effects from estimating Logit & Probit specifications according to Equation (5). 
The dependent variable is a binary indicator that equals 1 if a player chooses the insurance option and zero otherwise. All 
specifications include fixed effects for different games (on the stake level) and different months. The risk moments enter 
the regression as standardized z-scores. The values of Wald test statistics (for testing the null hypothesis that coefficients 
are zero) are provided in parentheses, using standard errors clustered at the individual level. Number of observations in 
Columns 2 and 3 differs from other columns because the average winning probability, one of the player-specific control 
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Table 17

Regression results, employing coefficient of variation as a measure of dispersion instead of expected value and variance.

Dependent variable:

Insurance choice dummy

(1) (2) (3) (4)

Coefficient of Variation 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.001

(3.733) (3.619) (3.691) (0.659)

Skewness −0.012∗∗∗ −0.011∗∗∗ −0.012∗∗∗ −0.011∗∗∗

(−10.248) (−9.964) (−10.095) (−9.791)

Loss aversion dummy −0.049∗∗∗ −0.050∗∗∗ −0.052∗∗∗ −0.046∗∗∗

(−18.979) (−21.19) (−21.848) (−19.685)

Constant 0.195∗∗∗ 0.196∗∗∗ 0.197∗∗∗

(40.251) (46.336) (46.849)

Player-specific controls No Yes Yes No

Hand-specific controls No No Yes Yes

Fixed effects No No No Yes

Observations 4,417,835 4,417,000 4,417,000 4,417,835

Note: The table reports OLS regression coefficients of our main empirical specification (Equation (5)). The dependent 
variable is a binary indicator that equals 1 if a player chooses the insurance option and zero otherwise. All specifications 
include fixed effects for different games (on the stake level) and different months. The coefficient of variation and 
skewness enter the regression as standardized z-scores. Corresponding t-statistics are provided in parentheses, using 
standard errors clustered at the individual level. Number of observations in Columns 2 and 3 differs from other columns 
because the average winning probability, one of the player-specific control variables, is not available in 835 choice 
situations. ∗ : p<0.1; ∗∗ : p<0.05; ∗∗∗ : p<0.01.

Table 18

Regression results for a subsample with the net pot to be trimmed between 1%- and 99%-percentiles.

Dependent variable:

Insurance choice dummy

(1) (2) (3) (4)

Expected Value 0.001 0.005∗∗ 0.004∗ 0.017∗∗∗

(0.736) (2.641) (2.477) (11.266)

Variance −0.001 −0.002∗∗ −0.002∗ −0.005∗∗∗

(−1.338) (−2.803) (−2.514) (−7.627)

Skewness −0.009∗∗∗ −0.008∗∗∗ −0.008∗∗∗ −0.009∗∗∗

(−9.994) (−10.028) (−10.170) (−10.41)

Loss aversion dummy −0.051∗∗∗ −0.051∗∗∗ −0.052∗∗∗ −0.044∗∗∗

(−18.66) (−20.595) (−21.173) (−18.018)

Constant 0.198∗∗∗ 0.198∗∗∗ 0.198∗∗∗

(40.264) (46.082) (46.613)

Player-specific controls No Yes Yes No

Hand-specific controls No No Yes Yes

Player Fixed effects No No No Yes

Observations 4,337,527 4,336,710 4,336,710 4,337,527

Note: The table reports OLS regression coefficients of our main empirical specification (Equation (5)). The underlying 
sample is trimmed between 1%- and 99%-percentiles of the net pot. The dependent variable is a binary indicator 
that equals 1 if a player chooses the insurance option and zero otherwise. All specifications include fixed effects for 
different games (on the stake level) and different months. The risk moments enter the regression as standardized z-

scores. Corresponding t-statistics are provided in parentheses, using standard errors clustered at the individual level. 
Number of observations in Columns 2 and 3 differs from other columns because the average winning probability, one 
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Table 19

Regression results for the subsample of players that face both left- and right-skewed showdown situations.

Dependent variable:

Insurance choice dummy

(1) (2) (3) (4)

Expected Value −0.001 0.0002 −0.00007 0.005∗∗∗

(−1.360) (0.256) (−0.098) (6.005)

Variance 0.001∗ 0.0004 0.0005 −0.002∗∗

(2.097) (1.196) (1.247) (−3.114)

Skewness −0.009∗∗∗ −0.009∗∗∗ −0.009∗∗∗ −0.010∗∗∗

(−10.842) (−11.115) (−11.250) (−12.481)

Loss aversion dummy −0.050∗∗∗ −0.051∗∗∗ −0.052∗∗∗ −0.046∗∗∗

(−18.893) (−21.057) (−21.712) (−19.306)

Constant 0.196∗∗∗ 0.196∗∗∗ 0.197∗∗∗

(40.005) (46.045) (46.569)

Player-specific controls No Yes Yes No

Hand-specific controls No No Yes Yes

Fixed effects No No No Yes

Observations 4,382,489 4,382,399 4,382,399 4,382,489

Note: The table reports OLS regression coefficients of our main empirical specification (Equation (5)). Compared to Table 3, 
we exclude all observations of players that do not face at least one right- and one left-skewed lottery. The dependent variable 
is a binary indicator that equals 1 if a player chooses the insurance option and zero otherwise. All specifications include fixed 
effects for different games (on the stake level) and different months. The risk moments enter the regression as standardized z-

scores. Corresponding t-statistics are provided in parentheses, using standard errors clustered at the individual level. Number 
of observations in Columns 2 and 3 differs from other columns because the average winning probability, one of the player-

specific control variables, is not available in 90 choice situations. ∗ : p<0.1; ∗∗ : p<0.05; ∗∗∗ : p<0.01.

Table 20

Regression results for a subsample, excluding players who never or always choose the insurance option.

Dependent variable:

Insurance choice dummy

(1) (2) (3) (4)

Expected Value 0.006∗∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.014∗∗∗

(3.582) (4.442) (4.535) (6.089)

Variance −0.002∗ −0.003∗∗ −0.002∗∗ −0.006∗∗∗

(−2.176) (−2.676) (−2.614) (−3.462)

Skewness −0.011∗∗∗ −0.011∗∗∗ −0.011∗∗∗ −0.012∗∗∗

(−11.206) (−10.806) (−10.849) (−11.835)

Loss aversion dummy −0.065∗∗∗ −0.063∗∗∗ −0.064∗∗∗ −0.058∗∗∗

(−19.870) (−21.251) (−21.672) (−19.400)

Constant 0.250∗∗∗ 0.249∗∗∗ 0.249∗∗∗

(43.067) (50.924) (51.212)

Player-specific controls No Yes Yes No

Hand-specific controls No No Yes Yes

Fixed effects No No No Yes

Observations 3,454,399 3,454,356 3,454,356 3,454,399

Note: The table reports OLS regression coefficients of our main empirical specification (Equation (5)). Compared to Table 3, 
we exclude all observations of players here who never or always choose the insurance option. The dependent variable is a 
binary indicator that equals 1 if a player chooses the insurance option and zero otherwise. All specifications include fixed 
effects for different games (on the stake level) and different months. The risk moments enter the regression as standardized z-

scores. Corresponding t-statistics are provided in parentheses, using standard errors clustered at the individual level. Number 
of observations in Columns 2 and 3 differs from other columns because the average winning probability, one of the player-
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Table 21

Regression results for the subsample in which no split pots occur.

Dependent variable:

Insurance choice dummy

(1) (2) (3) (4)

Expected Value −0.0001 0.001 0.001 0.006∗∗∗

(−0.176) (1.185) (1.063) (6.534)

Variance 0.0005 0.0002 0.0003 −0.002∗∗

(1.412) (0.478) (0.787) (−3.280)

Skewness −0.008∗∗∗ −0.008∗∗∗ −0.008∗∗∗ −0.009∗∗∗

(−9.675) (−9.843) (−9.955) (−11.457)

Loss aversion dummy −0.055∗∗∗ −0.056∗∗∗ −0.057∗∗∗ −0.051∗∗∗

(−19.442) (−21.663) (−22.343) (−19.905)

Constant 0.204∗∗∗ 0.204∗∗∗ 0.205∗∗∗

(40.493) (46.677) (47.229)

Player-specific controls No Yes Yes No

Hand-specific controls No No Yes Yes

Fixed effects No No No Yes

Observations 4,130,862 4,130,065 4,130,065 4,130,862

Note: The table reports OLS regression coefficients of our main empirical specification (Equation (5)). Compared to Table 3, we exclude 
all observations that result in a split pot ex-post. The dependent variable is a binary indicator that equals 1 if a player chooses the 
insurance option and zero otherwise. Additionally we add fixed effects for different games (on the stake level) and different months to 
control for the unobserved heterogeneity across games and over time. The risk moments enter the regression as standardized z-scores. 
Corresponding t-statistics are provided in parentheses, using standard errors clustered at the individual level. Number of observations 
in Columns 2 and 3 differs from other columns because the average winning probability, one of the player-specific control variables, 
is not available in 797 choice situations. ∗ : p<0.1; ∗∗ : p<0.05; ∗∗∗ : p<0.01.

Table 22

Regression results including the dummy for the insurance choice of the other player and the dummy indicating whether the last action 
of the respective player was a call.

Dependent variable:

Insurance choice dummy

(1a) (1b) (1c) (2) (3) (4)

Expected Value −0.001 −0.001 −0.001 0.0002 −0.00006 0.005∗∗∗

(−1.31) (−1.304) (−1.299) (0.251) (−0.086) (5.998)

Variance 0.001∗ 0.001∗ 0.001∗ 0.0004 0.0005 −0.002∗∗

(2.060) (2.053) (2.055) (1.145) (1.238) (−3.118)

Skewness −0.009∗∗∗ −0.009∗∗∗ −0.009∗∗∗ −0.009∗∗∗ −0.009∗∗∗ −0.010∗∗∗

(−10.804) (−10.789) (−10.780) (−11.082) (−11.243) (−12.525)

Loss aversion dummy −0.050∗∗∗ −0.050∗∗∗ −0.050∗∗∗ −0.051∗∗∗ −0.052∗∗∗ −0.046∗∗∗

(−19.085) (−18.914) (−19.051) (−21.279) (−22.033) (−19.664)

Other player’s insurance 0.001∗ 0.001∗ 0.001∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(2.398) (2.373) (4.697) (7.477) (9.469)

Call Dummy 0.002∗∗∗ 0.002∗∗∗ 0.001∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(4.381) (4.373) (3.748) (5.554) (10.959)

Constant 0.196∗∗∗ 0.196∗∗∗ 0.196∗∗∗ 0.196∗∗∗ 0.197∗∗∗

(40.251) (40.171) (40.253) (46.308) (46.871)

Player-specific controls No No No Yes Yes No

Hand-specific controls No No No No Yes Yes

Player fixed effects No No No No No Yes

Observations 4,417,835 4,417,835 4,417,835 4,417,000 4,417,000 4,417,835

Note: The table reports OLS regression coefficients for our main empirical specification (Equation (5)), including additional controls: 
the dummy indicating the insurance choice of the other player and the dummy indicating whether the last action of the respective 
player was a call. Column 1a reports results for the basic specification, including both of these additional dummies, Columns 1b and 
1c report results for specifications in which each dummy is included separately. The dependent variable is a binary indicator that 
equals 1 if a player chooses the insurance option and zero otherwise. All specifications include fixed effects for different games (on 
the stake level) and different months. The risk moments enter the regression as standardized z-scores. Corresponding t-statistics are 
provided in parentheses, using standard errors clustered at the individual level. The number of observations in Columns 2 and 3 
differs from other columns because the average winning probability, one of the player-specific control variables, is not available in 
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