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SUMMARY

Plant leaves play a pivotal role in automated species identification using deep learning (DL). However,

achieving reproducible capture of leaf variation remains challenging due to the inherent “black box” prob-

lem of DL models. To evaluate the effectiveness of DL in capturing leaf shape, we used geometric morpho-

metrics (GM), an emerging component of eXplainable Artificial Intelligence (XAI) toolkits. We photographed

Ranunculus auricomus leaves directly in situ and after herbarization. From these corresponding leaf images,

we automatically extracted DL features using a neural network and digitized leaf shapes using GM. The

association between the extracted DL features and GM shapes was then evaluated using dimension reduc-

tion and covariation models. DL features facilitated the clustering of leaf images by source populations in

both in situ and herbarized leaf image datasets, and certain DL features were significantly associated with

biological leaf shape variation as inferred by GM. DL features also enabled leaf classification into

morpho-phylogenomic groups within the intricate R. auricomus species complex. We demonstrated that

simple in situ leaf imaging and DL reproducibly captured leaf shape variation at the population level, while

combining this approach with GM provided key insights into the shape information extracted from images

by computer vision, a necessary prerequisite for reliable automated plant phenotyping.

Keywords: deep learning, leaf images, phenotypic variation, eXplainable AI, geometric morphometrics,

Ranunculus auricomus, smartphone imaging in situ.

INTRODUCTION

A morphometric approach to capture plant phenotypes

The study of phenotypic variation in natural plant popula-

tions is a crucial component of ecological, evolutionary,

and conservation research. It provides information on the

variability of specific traits, which are important for study-

ing responses to both abiotic and biotic environmental

conditions, as well as for discriminating between individ-

uals, populations, or species (Karbstein et al., 2020;

Stuessy, 2009). Plant vegetative organs like leaves are

widely used due to their immense morphological diversity,

which encodes both taxon-specific traits and environmen-

tally influenced phenotypic plasticity (Hodac et al., 2023;

Wu et al., 2023). Accurate and biologically meaningful

measures of phenotypic similarity are provided by geomet-

ric morphometrics (GM), a statistical method that captures

unbiased shape information derived from biologically

homologous points called landmarks (Bookstein, 1997).

Landmarks provide a more straightforward measure of

shape differences than pixel-based methods such as seg-

mentation or edge detection. GM allows prior biological

knowledge (e.g., assignment to genetic groups or geo-

graphically isolated populations) to be incorporated into

the analyses by selecting appropriate landmarks, ensuring

that the shape analysis is consistent with the underlying

biology of the morphological structures under study (Pet-

rovi�c et al., 2015; Qi et al., 2024; Reich et al., 2020). The GM

approach, including multivariate statistics, models shape

changes that effectively discriminate between taxa (Klin-

genberg, 2013; Zelditch et al., 2012). Additionally, GM pro-

vides visually comprehensive and statistically quantifiable

representations of shape variation within datasets, while

remaining insensitive to variations in background,
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illumination, contrast, and other imaging conditions that

can affect segmentation and edge detection techniques.

Computer vision approach—deep learning

With immense technical progress and increasing availabil-

ity of images, deep learning (DL) models, particularly con-

volutional neural networks (CNNs), have gained significant

attention in automatic plant identification in recent years,

achieving high levels of classification accuracy (Borowiec

et al., 2022; M€ader et al., 2021). The superiority of DL fea-

tures over traditional morphometric measurements has

been demonstrated for several plant benchmark datasets

(Beikmohammadi et al., 2022; Saleem et al., 2019; Tan

et al., 2020). CNNs also outperform traditional machine

learning classifiers (e.g., K-Nearest Neighbors/KNN) based

on biological features such as leaf shape and color (Kay-

han, 2022; W€aldchen et al., 2018). The power of CNNs lies

in learning leaf features directly from raw input data,

including hierarchical transformations from lower to higher

levels of abstraction (Lee et al., 2017). Thus, plant classifi-

cation can now be measured based on image descriptors

(i.e., DL features) automatically extracted from images

(Rzanny et al., 2022). However, although DL models accu-

rately classify taxa, their decision-making process remains

a black box to the human observer (Mostafa et al., 2023).

As a result, we cannot determine the specific biological

feature that distinguishes the classified taxa. An answer

can be provided by comparing DL features (AI) with GM

shapes (quantitative shape analysis), an approach to

eXplainable AI (XAI). XAI aims to understand how DL

models make decisions (Gunning & Aha, 2019; Holzinger

et al., 2022). Shedding light on the black-box nature of

plant taxa classification can pave the way for DL applica-

tions in integrative plant taxonomy, which requires biologi-

cally meaningful and reproducible comparisons between

taxa, as well as automated species phenotyping. As a con-

sequence of the growing interest in automatic DL-based

plant classification and its poorly understood biological

interpretability, eXplainable Artificial Intelligence (XAI) has

emerged as a new field in this domain (de Benito Fern�an-

dez et al., 2023; Holzinger et al., 2022; Li et al., 2022; Samek

et al., 2021). New XAI approaches are constantly being

developed, for example, activation maximization has been

used to interpret the decisions made by CNNs in plant dis-

ease classification (Toda & Okura, 2019). Feature map visu-

alization has identified specific regions within leaf images

that influence the CNN classification of different Quercus

species (Lee et al., 2017). Grad-CAM is a widely used XAI

technique in plant science that generates heat maps

highlighting the regions of plant images crucial for classifi-

cation (Borraz-Mart�ınez et al., 2022; de Benito Fern�andez

et al., 2023; Noviandy et al., 2023), with alternatives such

as LIME or SHAP (Mahin et al., 2022; Nahiduzzaman

et al., 2023; Paul et al., 2023). Dimension reduction

techniques such as UMAP and t-SNE are also part of the

XAI toolkit, as they help explore the global and local struc-

tures within the high-dimensional datasets generated by

CNN features (Tan et al., 2022). Despite the progress in

XAI, several knowledge gaps remain. A key question is

how well the features prioritized by CNNs in plant image

classification correspond to actual biological variation in

shape, and how this variation can be quantified. Recent

studies, such as a comparison of plant seed and fruit stone

classification using CNN and outline-based GM, have shed

light on the potential of GM as an XAI tool (Bonhomme

et al., 2023). While GM combined with machine learning is

well established in fields such as zoology, anthropology,

and medicine (Bellin et al., 2022; de Lima et al., 2024; Le

et al., 2020; Rodrigues et al., 2022; Sano & Kawabata, 2023;

W€ober et al., 2021, 2022), its application in plant science is

still an emerging discipline.

Model plant group

To study leaf shape variation in the context of XAI, we focus

here on the Ranunculus auricomus species complex

(Figure 1a), chosen as a model group due to its diverse leaf

shapes resulting from hybridization, polyploidy, and apo-

mixis (asexuality). Recent studies have unraveled the origins

of this morphological diversity, illustrating the intricate inter-

play of hybrid derivatives from sexual ancestors (Hodac

et al., 2018, 2023; Karbstein et al., 2020). The combination of

phylogenomic analyses with GM has been crucial in eluci-

dating morphological variation among genetic lineages, and

thus in redefining sexual progenitor species (Karbstein

et al., 2020). Europe-wide sampling of sexual species and

asexual lineages and analysis of their genomic structures

has delineated three major genetic clusters aligned with dis-

tinct morphological characteristics (Karbstein et al., 2022).

For simplicity, these three major morpho-phylogenomic

clusters will be referred to as “morpho-phylo-groups”

throughout the text. The three morpho-phylo-groups (abbre-

viated as “C,” “E,” “N”) are distinguished (among other

traits) by basal leaf morphology, which exhibits high vari-

ability at multiple systematic levels, including populations

and even individual plants. Leaf morphological variation in

apomictic/asexual lineages of the R. auricomus species com-

plex has been linked to parental subgenome contributions

and climatic factors (Hodac et al., 2023).

Research questions

Plant leaves are ideal model organs for studying the syn-

ergy between computer vision and quantitative morphol-

ogy, particularly GM, due to their inherent morphological

diversity, phenotypic plasticity, well-defined geometric

properties, and ease and affordability of image acquisition.

Our goal is to utilize DL to automatically extract features

from images of identical leaves photographed both in situ

and after herbarization (Figure 1a). We will then compare
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the representation of leaf images by DL features (computer

vision) with the representation of leaf shapes extracted as

landmark configurations by GM, that is, GM shapes (bio-

logical vision). The statistical evaluation of computer vision

by shape analysis (Figure S1) serves as an XAI approach to

address three research questions (Figure 1b): (RQ1) Can

we automatically and consistently cluster leaves into popu-

lation samples using DL features extracted from identical

leaves photographed in situ and after herbarization? (RQ2)

Do the DL features extracted from leaf images contain

information that reflect the biological shape of the

photographed leaves? (RQ3) Can DL features provide a

fine-grained taxonomic classification of herbarized

leaves into morpho-phylo-groups?

RESULTS

Clustering of DL features into source population samples

Unsupervised nonlinear clustering (UMAP) of the DL fea-

tures from the in situ images revealed clearly delineated

clusters corresponding to the six populations (Figure 2a).

The first UMAP axis separated populations KK203 (gray

dots) and LHM001 (green dots), while the second UMAP

axis separated populations LK0001 (purple dots) and

LHT001 (turquoise dots). In contrast, the UMAP ordination

of the herbarized leaf images (Figure 2b) resulted in weakly

defined clusters, except for population KK065B (red dots).

Notably, the UMAP visualization highlighted clear differ-

ences between the in situ and herbarized leaf image

Figure 1. Workflow of this study from data acquisition to research questions.

(a) A flowering plant of Ranunculus auricomus with developed taxonomically informative basal leaves. Image data were acquired from identical leaves as smart-

phone images (= in situ leaf images) and by leaf scanning after herbarization (= herbarized leaf images). The in situ leaf images had a natural background, while

the herbarized leaf images had a uniform background. From both in situ and herbarized images, we automatically extracted DL features (using a CNN) and man-

ually extracted GM shapes (using a landmark digitization).

(b) Our research questions regarding clustering of DL features (RQ1), covariation of DL features and GM shapes (RQ2), and automatic classification of DL fea-

tures into morpho-phylo-groups (RQ3).
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datasets based on the extracted DL features (Figure 2c).

Linear dimension reduction further confirmed that the in

situ images, represented by their DL feature vectors, were

not randomly scattered but clustered into separate groups

based on their source populations (Figure 2d). Discrimi-

nant analysis (DAPC) of the six populations revealed statis-

tically significant differences between them in both in situ

(P = 0.0010) and herbarized leaf images (P = 0.0010). The

two-dimensional ordination of the in situ images along the

first two discriminant axes mirrored the unsupervised

UMAP ordination, with well-separated populations such as

LHM001 (green dots) and LHT001 (turquoise dots). Simi-

larly, these populations remained distinct in the DAPC ordi-

nation of the herbarized leaf images (Figure 2e). The

PERMANOVA test on the original (not reduced) feature

vectors further supported significant differences between

the six leaf image population samples, with

Bonferroni-adjusted P values of 0.0060 for both the in situ

and herbarized leaf image datasets. Additionally, DAPC

indicated a significant difference (P < 0.0001) between the

two image datasets themselves (Figure 2f).

Population differences inferred by DL features and GM

shape analysis

Applying Grad-CAM to a CNN trained to discriminate

between six populations of leaf images highlighted the

regions of the basal leaf surface that corresponded to taxo-

nomically relevant characters (Figure 3a). In some popula-

tions, for example, EH10333, the neural network primarily

focused on the middle segment of the basal leaf

(Figure 3a, upper part), consistent across both in situ and

herbarized leaf images. In other populations, for example,

KK065B, the attention of the neural network was distrib-

uted across various regions of the leaf surface (Figure 3a,

lower part) and differed between in situ and herbarized leaf

images. The Grad-CAM analysis revealed that the taxo-

nomically important middle segment of the basal leaf

(Figure 3b) often received the neural network’s attention in

Figure 2. Clustering of DL features to infer differences between population samples.

(a, b) Nonlinear dimension reduction using UMAP for DL features extracted from in situ (a) and herbarized leaf images (b).

(c) The same method to highlight the difference between the in situ and corresponding herbarized leaf images.

(d, e) Linear dimension reduction with PCA followed by discriminant analysis (DAPC) to infer the statistical difference between the population samples of in situ

(d) and herbarized leaf images (e).

(f) The DAPC to indicate the significant difference between the in situ and herbarized leaf image datasets. The six population samples are distinguished by color:

blue = EH10333, red = KK065B, gray = KK203, dark green = LHM001, turquoise = LHT001, purple = LK0001.
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both herbarized and in situ leaf images, often in combina-

tion with other regions of the basal leaf surface and out-

line, for example, the lateral segments.

GM shape analysis, based on the alignment of land-

mark configurations (Procrustes superimposition;

Figure 3b), extracted leaf shape variation from the entire

image dataset. The resulting shape PCA (Figure 3c; only

the herbarized leaf image dataset is shown) visualized the

leaf shapes within the morphospace, with the first principal

component (PC1) explaining 50% of the leaf variation,

mainly related to the shape of the leaf blade base. The sec-

ond most important shape trend (PC2; 22%) of the leaf

morphospace was related to the shape and orientation of

the lateral segments. Linear discriminant analysis (CVA) of

leaf shapes revealed significant shape differences among

the six populations in both the in situ (Figure 3d) and her-

barized (Figure 3e) leaf image datasets. CVA analysis fur-

ther revealed significant shape differences (expressed as

Procrustes distances) between all pairs of populations with

all permutations P < 0.0500, within both the in situ and

herbarized leaf image datasets. A small but significant dif-

ference was also found between the two image datasets

(Figure 3f), with permutation P < 0.0001. This difference

appeared in the leaf base, which was narrower in the in

situ leaf images and broader in the herbarized leaf images.

Association of DL features and GM shapes

The decomposition of leaf shape variation into major

shape trends using GM allowed further association of GM

shape and DL features via correlation and covariation

Figure 3. Computer vision versus geometric morphometric shape analysis to infer differences between population samples.

(a) Grad-CAM to illustrate the differences in the attention of a neural network when discriminating the population samples EH10333 (two top rows) and KK065B

(two bottom rows). A representative heatmap and an average of six different heatmaps are shown for both population samples.

(b) Characteristic morphology of the taxonomically informative basal leaf of Ranunculus auricomus (Hodac et al., 2023). The 26 landmarks on the leaf outline

are biologically homologous points—a basis for leaf shape extraction.

(c–e) (b) Procrustes-aligned (superimposed) landmark configurations (only the symmetric component is shown here) as a basis for extraction of shape variables

by the PCA (c) and discrimination of population samples by canonical variates analysis (CVA) (d, e). Population samples EH10333 (red dots) and KK065B (blue

dots) are highlighted, and the wireframe plots illustrate the GM shape trend that best separates the populations. Black arrows parallel to the canonical variate

axes indicate the direction of leaf shape change that best separates the groups. Orange wireframe plots represent in situ leaf shapes and green wireframe plots

represent herbarized leaf shapes.

(f) Discriminant analysis of GM shapes to infer the difference between in situ leaf images (orange) and corresponding herbarized leaf images (green).
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analyses. The nine most important shape principal compo-

nents, capturing more than 1% of the total shape variation,

accounted for 94% (in situ leaf images) and 95% (herbar-

ized leaf images) of the overall leaf shape variation. These

shape PCs were significantly correlated (r > 0.30;

P < 0.0500) with 786 DL features in the herbarized leaf

images and 630 DL features in the in situ leaf images,

among a total of 1792 DL features extracted per image.

The third principal component (PC3) of the leaf morpho-

space accounted for the largest number of significant cor-

relations with DL features (Figure 4a). Within the

herbarized leaf images, 372 DL features were significantly

correlated with PC3 (and 301 DL features in the in situ leaf

images). The morphological trend most correlated with DL

features described a change in leaf shape from leaves with

shorter, wider, and more dissected middle segments to

leaves with longer, thinner, and less dissected middle seg-

ments (blue leaf silhouettes/wireframe plots in Figure 4a).

This observation, inferred from the herbarized leaf images,

also applied to the in situ leaf images (figure not shown),

where PC3 similarly accounted for most of the correlations

with DL features. Among the nine most important principal

components of the leaf morphospace, 20% of all DL fea-

tures were consistently correlated with the principal com-

ponents in both the herbarized and in situ leaf images.

Mantel correlation tests were applied to investigate

whether leaf shape distances in morphospace corre-

sponded to their distances in DL feature space, essentially

testing if the neural network captured differences between

leaf images in a way that was quantitatively comparable to

differences in leaf shape alone. Within both the in situ and

herbarized leaf image datasets, significant correlations

were found between leaf differences in morphospace and

DL feature space (Figure 4b). The correlation was slightly

stronger within the herbarized leaf images (r = 0.26,

P = 0.0010) compared to the in situ leaf images (r = 0.17,

P = 0.0010). Significant correlations were also found

between leaf scores on the discriminant axes in the

Figure 4. Leaf shape variation captured by deep learning and geometric morphometrics: association analyses.

(a) Scatterplot representing leaf morphospace (inferred from herbarized leaf images) showing leaf shape variation along three principal components. Wireframe

plots illustrate leaf shape variation described by the principal components. Confidence ellipsoids are shown for two population samples (LHT001/turquoise,

EH10333/blue) to highlight their separation in the leaf morphospace. The bar chart indicates how many DL features show a significant correlation with each of

the principal components.

(b) Mantel test of GM shape differences in morphospace (Procrustes distances) and DL feature differences feature space (Euclidean distances). Values are Spear-

man’s rank correlation coefficients, only significant values are shown.

(c, d) Partial least squares (PLS) analysis of the covariation between GM shapes in morphospace and DL features in feature space to extract the main direction

of GM shape variation captured by DL features. (c) PLS scatterplot of the in situ leaf image dataset. (d) PLS scatterplot of the herbarized leaf image dataset. Cir-

cles in the scatterplots are colored according to six population samples.
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morpho and DL feature spaces. The vector that best sepa-

rated populations in the DL feature space was significantly

correlated (r = 0.54; P < 0.0500) with a GM shape change

describing variation at the blade base (Figure S2a–c). The
general covariation model of GM shape and DL feature

association (computed via PLS analysis) indicated a stron-

ger association in the herbarized leaf images (R = 0.68,

P = 0.0001) than in the in situ leaf images (R = 0.58,

P = 0.0001). Within both image datasets, the covariation

model showed that the variation in DL features is mostly

associated with the shape variation focused on the blade

base and the dissections of the lateral segments. A closer

look at the particular features associated with different leaf

shape trends revealed that different leaf shape changes

were associated with different sets of DL features

(Figure S3a,b).

Classification of leaves within the R. auricomus species

complex using DL features and GM shapes

The DL features extracted from images of sexual and apo-

mictic leaf morphotypes (Figure 5a), in combination with

the three selected classification algorithms, provided high

accuracies for both the validation data partition and the

unseen test data (Figure 5b). Random forest achieved a

classification accuracy of 0.97 for both validation and test

data. Support vector machine achieved a classification

accuracy of 0.97 for validation data and 0.98 for test data.

XGBoost achieved a classification accuracy of 0.97 for vali-

dation data and 0.98 for test data. Automatic classification

of the Thuringian population samples based on DL fea-

tures (Figure 5c) therefore yielded consistent results for the

three machine learning classifiers. Based on the leaf

images, five of the six Thuringian populations could be

classified into morpho-phylo-group E (Figure 5c), referring

to the sexual progenitor species Ranunculus envalirensis.

One population sample (LHT001) was consistently classi-

fied in morpho-phylo-group N, referring to the sexual pro-

genitor R. notabilis. For the GM shape data, the validation

and test accuracies were lower than for DL features

described above. RF achieved a validation accuracy of 0.72,

and test accuracy of 0.71, SVM achieved a validation accu-

racy of 0.73, and test accuracy of 0.60, XGBoost achieved a

validation accuracy of 0.73, and test accuracy of 0.67. Nev-

ertheless, the classification of the six population samples

Figure 5. Automatic classification of herbarized leaf images based on DL features. The leaf images were classified into morpho-phylo-groups of the Ranunculus

auricomus species complex, as derived from Karbstein et al. (2022).

(a) Examples of the training data—leaf images showing characteristic morphotypes of the three morpho-phylo-groups C (blue), E (green), and N (orange). Within

the training dataset, each morpho-phylo-group group consists of leaf morphotypes representing both sexual and apomictic populations. The map shows the

geographical distribution of the three morpho-phylo-groups in Europe.

(b) Confusion matrices to infer the classification accuracy achieved by different machine learning classification algorithms (RF, random forest; SVM, support vec-

tor machine; XGBoost, eXtreme gradient boosting) after training and classification of test data.

(c) Automatic classification of the six population samples after training the classifiers on leaf images representing the three morpho-phylo-groups C, E, N. The

herbarized leaf images show the characteristic leaf morphotype for each population sample, and the pie charts illustrate the proportions of leaves within each

population sample classified into one to three classes. The final classification of the population samples resulted from the most frequent class as consistently

classified by the three different classifiers.
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from Thuringia resulted in class assignments consistent

with the DL feature data (Figure S4).

DISCUSSION

The present study shows that DL captures the shape of

morphological traits, whether in smartphone images taken

in the field or in standardized images of herbarium speci-

mens. Our approach to XAI—a combination of DL and sta-

tistical shape analysis—offers novel insights into the

automatic recognition of biological shapes from images.

Our work is innovative in two ways: (1) we analyzed for the

first time DL features extracted from identical leaves

imaged in situ and after herbarization and (2) we provided

statistical support for leaf shape being encoded in DL fea-

tures automatically extracted from leaf images.

DL captured even subtle differences between populations

Previous computer vision studies have not compared

images of the same leaves taken in situ and after herbariza-

tion. Surprisingly, despite a comparatively uniform back-

ground, herbarized leaf images showed greater variation in

DL features than in situ images. This aligns with the obser-

vation from benchmark datasets (PlantCLEF 2020 and

2021) that images of herbarized leaves may be preferable

for capturing plant morphology (Chulif et al., 2023). How-

ever, in situ leaf images captured background noise and

illumination variations, which can influence what a DL

model learns, as also shown in our Grad-CAM experiments

(Figure 3a), where sometimes image attributes other than

leaf shape were also learned. This is consistent with previ-

ous conclusions that CNN-based classification is sensitive

to image background, especially for small image datasets

(Barbedo, 2018). Our Grad-CAM analysis showed differ-

ences in neural network attention when discriminating

between population samples of in situ and herbarized leaf

images. In addition to the explanation regarding different

backgrounds, also leaf morphology itself can undergo sig-

nificant changes during the drying process (Blonder

et al., 2012; Carranza-Rojas et al., 2017; Tomaszewski &

G�orzkowska, 2016). Our GM analysis revealed that the pri-

mary difference in leaf shape between in situ and herbar-

ium images was due to the treatment of the leaf material.

The fresh in situ leaves and pressed herbarium leaves

exhibited a slightly different shape in the basal part. None-

theless, the geometric morphometric approach captured

similar overall leaf shapes from both in situ and herbarium

images. Although the morphology of herbarized plants

may not always be directly interchangeable with that of

fresh material, their inclusion greatly expands the data-

bases of preserved morphological characters (e.g., GBIF)

and plays an important role in plant taxonomy (Wu

et al., 2023). Unsupervised UMAP clustering of DL features

successfully distinguished all population samples as sepa-

rate clusters, supporting the applicability of DL features in

discriminating classes above the species level, as previ-

ously demonstrated, for example, for Nile tilapia fish eco-

types (W€ober et al., 2021). In our case, DL features also

discriminated between in situ and herbarium specimens

more effectively than GM shapes, irrespective of whether

the background was natural or plain. This is likely because

DL features captured more complex leaf shape characteris-

tics that the simpler GM shape approach can achieve to

distinguish between populations.

Deep learning automatically recognized leaf shapes from

images

Handmade morphological features and GM with expert

input provide biological interpretability where homologous

and analogous biological structures need to be quantified

(de Lima et al., 2024). Phenotypic plasticity, the ability of a

genotype to produce different phenotypes in response to

environmental differences, generates complexity in mor-

phology (Bucksch et al., 2017) that requires biologically

interpretable analytical approaches to separate technical bias

from genetic and environmental factors. Besides genetic

background, bioclimatic parameters or altitude can also

influence leaf phenotypes in nature, as shown, for example,

for R. auricomus basal leaves (Hodac et al., 2023). Our ana-

lyses showed that a stronger association of DL features with

biological shapes was observed in herbarized leaf images

than in in situ leaf images. Furthermore, different sets of DL

features were correlated with biological shape variation in

herbarized and in situ leaf images. Comparable studies on

the direct biological interpretability of DL features are scarce.

A concept of mones as abstract morphological genes

derived from DL features has been applied in digital pathol-

ogy (Foroughipour et al., 2022). Our XAI approach searches

for associations between DL features and taxonomically rele-

vant shapes captured by GM. Unlike traditional statistical

shape modeling (Laga et al., 2013, 2014; Woods et al., 2017),

GM focuses on those regions of biological objects that are

important to taxonomists or evolutionary biologists. In tradi-

tional taxonomic approaches, and presumably in DL, shape

is the most discriminating feature of plant leaves (Karbstein

et al., 2020; Stuessy, 2009; W€aldchen & M€ader, 2018). In our

XAI workflow, we manually digitized leaf morphometric

shapes from the preprocessed smartphone images, and the

biological interpretability of our custom landmark set is

based on previous evolutionary and ecological studies on

the R. auricomus model system (Hodac et al., 2023; Karb-

stein et al., 2022). Manual landmark digitization is a common

approach in plant morphometric studies (Savriama, 2018;

Stojni�c et al., 2022; Viscosi & Cardini, 2011), and can be

accomplished using a variety of free software, such as geo-

morph (Baken et al., 2021), TpsDig2 (Rohlf, 2015), or ImageJ

(Rueden et al., 2017). However, landmark placement (digiti-

zation) might be automated in the future using a variety of

approaches, including machine learning classifiers (Porto &

� 2024 The Author(s).
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Voje, 2020), feedforward neural networks (Devine

et al., 2020), CNN architectures (Nguyen et al., 2022; Rodri-

gues et al., 2022; Shuai et al., 2023; Yun et al., 2022), CNN

with transformer (Song et al., 2024), Spatial Transformer

Generative Adversarial Network (Wang et al., 2022),

LSTM-RNN (Chen et al., 2017), or point cloud-based

approaches (Porto et al., 2021).

Despite the widespread use of Grad-CAM to better

understand automatic classification of biological objects,

few studies have compared how CNN features relate to

morphological characters relevant to taxonomy. One of the

few comparable studies examined the shape of mussels

(Kiel, 2021) and showed that focal areas of a CNN aligned

with morphological characters used by taxonomists.

Another study comparing morphological identifications by

citizen scientists with CNN-based classification of lizards

demonstrated the superior accuracy of computer vision in

recognizing cryptic species (Pinho et al., 2023). Grad-CAM

has also been utilized in entomology to show how CNN

classifications agree with biologically meaningful morpho-

logical features in the automatic identification of mosqui-

toes (Adhane et al., 2021) or midges (Milo�sevi�c et al.,

2020). Our experiments with Grad-CAM revealed that the

neural networks distributed their attention across multiple

regions of the leaf surface rather than consistently focusing

on a single most important area, although there was an

observable tendency to frequently focus on the central seg-

ment of basal leaves in R. auricomus (Figure 3a), a mor-

phological trait critical to the taxonomy of our specific

model plant group (Borchers-Kolb, 1983; H€orandl & Guter-

mann, 1995). The covariation models also showed that the

DL features extracted from the leaf images were signifi-

cantly associated with differences in leaf shape, especially

with the taxonomically relevant variations in the leaf mid-

dle segment or basal sinus.

DL features for classification of evolutionarily intricate

species complexes

We investigated whether DL features extracted for morpho-

logically distinct population samples allow automatic classi-

fication into morpho-phylo-groups within the R. auricomus

species complex (Hodac et al., 2023; Karbstein et al., 2022).

Previous studies have already shown that training on her-

barized leaf images from one region can be transferred to

herbarized leaf images from another region (Carranza-Rojas

et al., 2017). Our study followed a similar approach, where

we trained the classifiers on leaf images from different

regions of Europe in order to test the classifier on images

from Central Europe. Based on the majority rule, five

Thurigian population samples were assigned to the

morpho-phylo-group E and one to the morpho-phylo-group

N. It is noteworthy that within a population sample, leaves

were often classified in up to three different classes. This

could be due to the high morphological variation within

each population, which exceeds the morphological limits of

the morpho-phylo-group. Furthermore, the possibility of

genetic hybrids of three subgenomes, as previously reported

for three of the six asexual populations (Karbstein

et al., 2022), with dominance of subgenome E and smaller

proportions of subgenomes N and C, likely contributes to

this variation. In addition, the classification of the herbarized

leaf images might be biased due to the use of DL features

extracted with a neural network trained on fresh plant

images. To overcome such bias in the future, a herbarium-

field triplet loss network architecture has been proposed that

addresses transfer learning between herbarium and field

data (Chulif et al., 2023). For our model plant group, classifi-

cation accuracy was higher when using DL features com-

pared to geometric morphometric (GM) shapes. DL features

likely capture a more complex representation of leaf mor-

phology, including subtle variations in shape, texture, and

patterns that a simplified GM-based shape representation

misses. Additionally, DL feature extraction is automated and

data-driven, whereas GM landmarks require manual selec-

tion of biologically homologous points, which are unlikely to

capture the full complexity of leaf shapes. However, despite

the lower classification accuracies achieved by the GM

approach, the final classification results (assignments into

the morpho-phylo-groups) were almost identical for both

GM shapes and DL features. This suggests that

both methods are capable of recognizing concordant pat-

terns of overall class discrimination.

Perspectives on smartphone phenotyping

We propose an efficient and easy-to-use approach to plant

phenotyping using a novel method of explainable AI (XAI).

Our approach captures and classifies leaf morphotypes

and reveals which DL features account for the variation in

biological shape. Samples of target morphological traits

(e.g., leaves, flowers, stems, etc.) can be easily imaged in

situ using smartphone apps, with observations registered

using a custom protocol provided by the app, essentially

functioning as a digital herbarium (Boho et al., 2020). Our

approach differs from related studies that have employed

smartphones alongside additional equipment, such as for

medicinal plant phenotyping (Azadnia & Kheiralipour, 2021)

or black tea quality grading (Li et al., 2021). Instead, our

method aligns more closely with citizen science initiatives

that utilize smartphone imaging, which relies on handheld

image capture without the need for additional costly equip-

ment, as already employed in maize phenotyping (Liu

et al., 2021; M€uller-Linow et al., 2019) or tobacco leaf matu-

rity analysis (Sun et al., 2023). To further speed up the phe-

notyping process, the automated detection of relevant

morphological structures from raw smartphone images

can be done automatically, for example, by using a U-Net

architecture for plant structure segmentation (Yang

et al., 2020) or the GinJinn2 DL toolbox (Ott &

� 2024 The Author(s).
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Lautenschlager, 2022). Leveraging leaf segmentation, auto-

mated landmark digitization followed by Procrustes nor-

malization can help align leaf shapes from differently

rotated images. Combining the strengths of GM and DL

methods could benefit from reproducible shape matching,

thereby enhancing the classification model’s performance.

Automated processing of smartphone-captured morpho-

logical traits reveals valuable data about species in their

natural environment, as these data contribute to growing

web databases of citizen science images (e.g., iNaturalist,

GBIF). Large collections of plant trait images have already

enabled machine learning-based automatic classification

of petal pigmentation (Perez-Udell et al., 2023), and flower

colors sampled with an R shiny pipeline have been used to

study non-random spatial patterns in flower color distribu-

tion in American wallflowers (Luong et al., 2023). The use

of smartphones to collect plant phenotypic data in natural

environments is a promising area for integrative taxonomy

based on machine learning, where genomic data can be

efficiently supported by informative morphological data

(Karbstein et al., 2024). The use of low-cost, low-threshold

smartphone imaging, hand in hand with machine learning

and citizen science, could advance efforts toward global

plant conservation initiatives (Corlett, 2023).

EXPERIMENTAL PROCEDURES

Sampling and image preprocessing

We assembled six population samples of basal leaf images
(Figure 1a) representing different morphotypes within the R. auri-
comus species complex. These six populations (all sampled in
central Germany, Thuringia; Table S1) were likely clonal/apomic-
tic, exhibiting reduced flowers and growing outside the restricted
range of all known sexual progenitors within the R. auricomus
species complex (Karbstein et al., 2020, 2021). The sampled popu-
lations originated from the biogeographic range where the
morpho-phylo-group E (a group of clonal morphospecies with a
major subgenome contribution from the sexual progenitor species
R. envalirensis) has a high prevalence (Karbstein et al., 2022).
Morpho-phylo-group E is mainly distinguished by basal and stem
leaf morphology and genomic features from the co-occurring
European groups N, named after the sexual progenitor species R.
notabilis, and C, named after the sexual progenitor species R. cas-
subicifolius (Karbstein et al., 2020). The six populations sampled
in central Germany exhibited morphological variation in basal leaf
shape, the key taxonomic character in this species complex
(H€orandl & Gutermann, 1995; Melzheimer & H€orandl, 2022). These
basal leaves provide a set of geometric morphometric landmarks
already used for integrative systematics and evolutionary studies
of this group (Hodac et al., 2023; Karbstein et al., 2020).

To capture the morphological variation within each popula-
tion (sampling site), taxonomically informative basal leaves from
20 flowering-stage plants were imaged (Figure 1a). For each indi-
vidual plant, the two most dissected basal leaves were photo-
graphed from the adaxial view (Rzanny et al., 2019) and then
collected for herbarium preparation. Leaf images were captured
directly in situ using the smartphone application Flora Capture
(Boho et al., 2020), which allows systematic recording of individ-
uals while storing metadata such as GPS coordinates. Herbarized

leaves were scanned from the adaxial view using a Canon LiDE
400 scanner and labeled identically to their in situ counterparts.
To minimize potential artificial differences (e.g., leaf position and
orientation) between the in situ and herbarized leaf image data-
sets, all leaves were rotated to achieve similar orientation. This
was necessary because we analyzed the leaves using both GM
and a CNN in parallel, and GM requires that objects have a similar
rotation. Also, the images we used to train the machine learning
classifiers by Hodac et al. (2023) used identical image treatment,
that is, rotating all images to achieve similar leaf orientation. The
herbarized leaf images were manually cropped to a standard size
of 800 9 800 pixels, preserving the original leaf size information,
and the in situ leaf images were manually cropped to a fixed 1:1
width to height ratio. Preprocessing was done using the GIMP
2.10 image editor. The final sample size was 346 leaf images, and
the number of images per population sample is given in Table S1.
In the present study, we intentionally focused on using images
with natural backgrounds to reflect the conditions under which DL
models would typically be applied in real-world scenarios, such as
in situ imaging and automatic identification of plant organs.
Although segmenting leaves from their background could poten-
tially enhance the performance of DL classification models, this
approach involves a significantly greater effort (Rzanny
et al., 2017). Therefore, the aim of this study was to evaluate
whether DL methods applied to raw, unprocessed images can
effectively capture differences in leaf shape compared to GM,
without the labor-intensive step of spatial segmentation.

Extraction of DL features and dimension reduction

The research questions addressed in this study are illustrated in
Figure 1(b). To assess whether DL features extracted from leaf
images using FloraNet, a neural network trained on more than
16 000 plant species (M€ader et al., 2021), allow clustering of the
images according to their source population samples, their dimen-
sionality was reduced using a nonlinear technique called uniform
manifold approximation and projection (UMAP; parameters pro-
vided in Methods S1). UMAP is a powerful method capable of
handling the nonlinear relationships often present in
high-dimensional data (McInnes et al., 2018). To support the
robustness of the DL feature clustering with a linear dimension
reduction method, principal component analysis (PCA) was also
performed on the same data (Jolliffe, 2002). The scores of the leaf
representations (DL features) in the lower dimensional space
obtained from PCA were then used to test for significant differ-
ences between pairs of populations. This was achieved using a
linear discriminant analysis of principal components, DAPC (Jom-
bart et al., 2010). A two-group discriminant analysis was then per-
formed to compare the in situ and herbarized leaf image datasets.
The DAPC analysis was implemented using the adegenet package
(Jombart, 2008) in R (R Core Team, 2022). Differences between
groups in the reduced space were further tested using ANalysis Of
SIMilarity (ANOSIM), implemented in the R package vegan
(Dixon, 2003). As an alternative test for population differences
based on the original DL feature vectors, a permutational multivar-
iate analysis of variance/PERMANOVA (Anderson, 2017) with a
post hoc test (using Bonferroni-corrected p-values) was performed
in the scikit-bio python library (Pedregosa et al., 2011).

Grad-CAM to visualize population differences

To gain insight into how the neural network discriminates
between population samples, we applied Grad-CAM. This tech-
nique highlights the image regions crucial for the network to pre-
dict a specific class (Selvaraju et al., 2020). In our case, we had six

� 2024 The Author(s).
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classes corresponding to six population samples of leaf images.
The output of Grad-CAM (details provided in Methods S2) was
visualized as heatmaps overlaid onto the original images. We
used TensorFlow (Abadi et al., 2016) with the Keras API to operate
the underlying neural network model. Matplotlib (Hunter, 2007)
was used to visualize the images with overlaid Grad-CAM heat-
maps. Finally, the images and their heatmaps were averaged over
the population samples using NumPy (Harris et al., 2020).

Geometric morphometrics to evaluate leaf shape variation

GM allows the extraction of biological shapes from images. In this
study, we followed the methodology previously established for the
basal leaves of R. auricomus (Hodac et al., 2023; Karbstein
et al., 2020). The leaf shapes captured in the images were digitized
by 26 manually placed 2D landmarks using the program TpsDig2
version 2.32 (Rohlf, 2015). Landmark configurations were sub-
jected to Procrustes superposition (Zelditch et al., 2012) to separate
shape and non-shape information and to separate symmetric and
asymmetric components of leaf shape variation. Procrustes super-
imposition and subsequent morphometric analyses were per-
formed in the comprehensive morphometric software MorphoJ
version 1.07a (Klingenberg, 2011). Only the symmetric component
of shape variation was used to obtain shape variables. Differences
in leaf shape between population samples were inferred using
canonical variates analysis (CVA), a linear discriminant analysis
widely used in shape studies (Caiza Guamba et al., 2021; Nery &
Fiaschi, 2019; Yee et al., 2011), and tested with permutation tests
(10 000 permutations). Morphological distances between particular
leaf shapes were inferred as Procrustes distances computed in the
program TpsSmall version 1.20 (Rohlf, 2015).

Association of DL features and GM shapes

To analyze the key shape variations within the leaf morphospace,
we used shape PCA. To link these shape trends to the DL features,
we extracted the leaf shape scores on the principal components and
correlated them with the corresponding DL features using Spear-
man’s rankorder correlation coefficient in scipy.stats (Virtanen
et al., 2020). This analysis revealed which morphological trends
within the leaf morphospace were most likely to be captured by the
DL features. In addition, we sought to determine what proportion of
the DL features describing a leaf image were associated with the
leaf shape itself. Furthermore, we investigated whether the object
(leaf image) distances inferred from the DL features were consistent
with those captured by GM based on leaf shape. To gain deeper
insight into the pairwise differences of leaf image representations in
feature space, we computed a Euclidean distance matrix. We then
compared the distances of the leaf representations in feature space
with their distances in leaf morphospace, expressed as Procrustes
distances. Correlations between these distance matrices were com-
puted using the Mantel test in PAST version 4.15 (Hammer
et al., 2001). The significance of the correlation coefficient was
assessed using a permutation test (10 000 permutations). Similarly,
we compared the ordination of DL feature vectors in feature space
and GM shapes in morphospace after maximizing the differences
between population samples. The object scores (DL feature vectors
or GM shapes) obtained from the discriminant analyses were then
tested for association using Spearman’s rank-order correlation coef-
ficient. Finally, we examined the overall association between DL fea-
tures and GM shapes using partial least squares (PLS) in MorphoJ
version 1.07a (Klingenberg, 2011) to infer a comprehensive covaria-
tion model of leaf morphology captured by the DL features. These
analyses were performed on both the in situ and herbarized leaf
image datasets.

Machine learning based on DL features and GM shapes for

automatic classification of leaf images

We investigated whether the DL features extracted from herbar-
ized leaf images of the populations sampled in Thuringia could be
used to automatically classify them into the morpho-phylo-groups
E, C, or N recognized within the R. auricomus species complex.
The basal leaf images used to train the machine learning classi-
fiers were previously labeled (Hodac et al., 2023), stored online
(Karbstein et al., 2023), and reassembled here to include leaf mor-
photypes representative of all three morpho-phylo-groups C, E,
and N (Karbstein et al., 2022). The balanced training dataset con-
sisted of 366 leaf images, divided into three classes corresponding
to the three morpho-phylo-groups C, E, and N. Each class
included leaf morphotypes from both sexual species and apomic-
tic lineages (in an almost 1:1 ratio), revealed by scanning fresh
leaves of cultivated plants (Hodac et al., 2023; Karbstein
et al., 2020). The DL features were extracted from the leaf images
in the same way as from the six Thuringian population samples
using the FloraNet pipeline (M€ader et al., 2021). Three different
classifier algorithms (random forest/RF, support vector machi-
ne/SVM, eXtreme gradient boosting/XGBoost) were applied using
the machine learning library scikit-learn (Pedregosa et al., 2011).
The performance of the classifiers was evaluated based on valida-
tion and test classification accuracy, with test data taken from the
same source as the training data but belonging to a different sub-
set. Identical classification experiments were also conducted using
vectorized landmark configurations derived from the same leaf
images as in the DL-based approach. Before entering the machine
learning procedures, the vectorized landmark configurations were
first Procrustes superimposed and symmetrized to match the land-
mark data preprocessing described earlier.
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Figure S3. Partial least squares (PLS) analysis to infer the covari-
ance between DL features and GM shapes.

Figure S4. Automatic classification of leaf images: a comparison
of DL features and GM shapes.

Table S1. Six population samples of leaf images.

Methods S1. UMAP settings.

Methods S2. Grad-CAM settings.
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