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Abstract
Due to the exponential growth of the Hilbert space dimension with system size, the simulation of
quantum many-body systems has remained a persistent challenge until today. Here, we review a
relatively new class of variational states for the simulation of such systems, namely neural quantum
states (NQS), which overcome the exponential scaling by compressing the state in terms of the
network parameters rather than storing all exponentially many coefficients needed for an exact
parameterization of the state. We introduce the commonly used NQS architectures and their
various applications for the simulation of ground and excited states, finite temperature and open
system states as well as NQS approaches to simulate the dynamics of quantum states. Furthermore,
we discuss NQS in the context of quantum state tomography.
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Quantum many-body systems are of great interest for many research areas, including physics, biology
and chemistry. However, their simulation has remained challenging until today, due to the exponential
growth of the Hilbert space with the system size, making it exceedingly difficult to parameterize the wave
functions of large systems using exact methods. One common approach to overcome this problem are
variational methods, where a certain functional form of the quantum state is assumed, with free parameters
to be optimized to obtain the best possible representation of the state under investigation. A well established
method based on variational wave functions are tensor networks (TN) [1–8], among them variants that can
be contracted efficiently, like matrix product states (MPS) [9–11], and which hence allow an efficient
evaluation of observables. MPS are restricted to states that obey the area law of entanglement [12, 13], and
are hence particularly well suited for one-dimensional gapped quantum systems, although extensions to
higher dimensional systems are possible [1, 7, 14]. Another class of methods for the numerical simulation of
quantum systems, quantumMonte Carlo (MC) algorithms [15–17], suffers from the sign problem [18, 19]
and slow convergence for large system sizes close to critical points or other challenging statistical physics
problems [20].

The ability of sufficiently large neural networks to represent any continuous function [21–24] motivated
their use for the simulation of quantum states, and was pioneered by Carleo and Troyer [25] in 2017. To date,
these so-called neural quantum states (NQS) have been shown to overcome many problems that are inherent
to some conventional methods such as MPS: (i) Some works have demonstrated that NQS are capable of
representing volume-law entangled states [26–30] and can hence in principle be used for a broad range of
quantum systems [26–28, 30–33]. In particular, it has been shown that in some cases mappings between
NQS and efficiently contractable TNs can be established, e.g. in [34] the authors find that TNs are a subset of
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the considered NQS [26]. (ii) They can be designed to be particularly well suited for two-dimensional
problems. Most prominently, some architectures like convolutional neural networks were specifically
designed for two-dimensional data; (iii) In many cases, they allow for an efficient evaluation of operators, in
some cases even global operators like the momentum [35].

NQS are typically used for two distinct tasks: First, they have appeared in the field of quantum state
tomography (QST), where they are used for quantum state reconstruction of states prepared in experiments,
allowing the estimation of observables that can not be accessed in experiments [36, 37]. Second, they can be
used as simulation tools for quantum systems, with a Hamiltonian driven optimization similar to TNs. In
this setting no training data is needed [25]. Furthermore, NQS simulations can not only be applied to
represent ground states, but also excited states, finite temperature states, the time evolution of quantum
states or open systems.

The goal of this article is to give an overview of the current state of NQS, i.e. existing NQS architectures,
their training and their performance in quantum state simulation and tomography in comparison to
conventional methods. Previously published overviews on neural quantum states can be found in [20,
38–41] in the more general context of neural network applications in quantum physics, or more specifically
on NQS and their optimization in [42–45]. Furthermore, another review on NQS [46] appeared after the
publication of the first version of this work.

The outline of this review is as follows: We start with an overview of existing NQS architectures and their
application to physical systems as well as commonly used design choices. The second part considers
applications of NQS, namely the simulation of ground and excited states, finite temperature states, time
evolution and open quantum systems. Furthermore, we review QST and hybrid simulation schemes with
NQS.

1. A short introduction to neural quantum states (NQS)

In most cases, NQS are used to represent a quantum state

|ψ⟩=
∑
σ

ψ (σ) |σ⟩, (1)

for complex ψ(σ) in a certain basis choice |σ⟩ that is given by the dl different local configurations, e.g. the
spin configurations or Fock space configurations σ. For a system with N sites, σ = (σ1,σ2, . . . ,σN) consists
of e.g. σi = 0,1 for spin systems (dl = 2) or σi = 0,1,2, . . .nmax for bosonic systems (dl = nmax + 1).

The underlying idea of neural quantum states is to use neural networks in order to represent the wave
function coefficients ψ(σ) of the state under investigation. Hereby, the neural network is used as a
variational wave function, mapping configurations σ to the respective wave function coefficient ψθ(σ),
parameterized by the neural network parameters θ. More precisely, the input of the neural network used for
the NQS representation are configurations σ, and the output is

ψθ (σ) =
√

pθ (σ)e
iϕθ(σ), (2)

which is often split into its amplitude pθ(σ) = |ψθ(σ)|2 and its phase ϕθ(σ) = Im(logψθ(σ)). To feed an
input σ into the network, σ can be one-hot encoded, i.e. the dl different local configurations are encoded
binary, resulting in a matrix σ ∈ RN×dl for every configuration σ of length N. Note that this is not necessary
for spin-1/2 systems where the values of the spins are normally mapped to a sequence of±1 or 0,1.
Furthermore, the input is often embedded into a space of dimension dh, i.e. using a trainable or physically
inspired projection the input is projected onto the dh dimensional space that the network is operating on.

The main difficulty of variational approaches is to come up with a good representation ψθ(σ) of the true
wave function coefficients. Here, the great strength of neural networks, namely their expressive power, comes
into play: Neural networks with at least one hidden layer, a sufficient number of parameters and an arbitrary
non-linear activation function have the ability to represent continuous functions of any—potentially very
complicated—form [21–24]. This makes them promising candidates for a successful representation ψθ that
is close to the exact wave function ψ. In order to obtain this representation ψθ , the network parameters θ are
adjusted during the training of the NQS, i.e. starting from some initialization of the neural network
parameters θ0, the network parameters are adjusted such that ψθ approximates the true wave function ψ at
the end of the training.

NQS have been first proposed by Carleo and Troyer in 2017 [25]. In this first work, NQS have been
applied for the ground state and dynamics simulations of spin systems. Figure 1(a) shows two exemplary
results from the original work for the antiferromagnetic Heisenberg (AFH) model: In the top figure, the
relative ground state errors ϵrel of the NQS energies ENQS compared to exact energies Eexact, i.e.
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Figure 1. Neural quantum states (NQS): (a) In the seminal work bei Carleo and Troyer [25], NQS are used for ground state
representations (top) and dynamics simulations of spin systems (bottom), here for antiferromagnetic Heisenberg (AFH) models
on a 10× 10 lattice (top) and on an 80 site chain. From [25]. Reprinted with permission from AAAS. (b) Representative power of
Matrix product states (MPS) and NQS. NQS have been proven to have strictly the same or higher expressive power than
practically usable variational tensor networks, see e.g. [26]. This results from the high connectivity between sites of NQS, here
exemplary shown for a two-dimensional recurrent neural network (2D-RNN, see blue inset) as considered in [49] on the top
right, compared to MPS, for which information is passed through the system in a 1D manner (see orange inset). Figures adapted
from [26, 38].

ϵrel = (ENQS − Eexact)/|Eexact|, are shown for a 10× 10 square lattice AFH. Already in this early work, NQS
achieve competitive results to state-of-the art 2D methods like entangled plaquette states (EPS) and PEPS
when using sufficiently many parameters (hidden units). Correspondingly, the NQS dynamics simulations of
a spin chain with 80 sites for two quenches of Jz shows very good agreement with t-DMRG.

Starting from this paper, many works on NQS have appeared in recent years, exploring different NQS
architectures, training approaches and their application to various physical systems. Furthermore, many
works concern the theoretical representative power of NQS. NQS have been shown to be capable of
representing a broad range of quantum states [26–28, 30–33]. To compare their expressivity to more
conventional variational approaches like TNs and PEPS, the relationship between them has been studied [26,
47–49]. Some NQS architectures have been proven to have strictly the same or higher expressive power than
practically usable variational tensor networks [26], see figure 1. In particular, a range of works have shown
that some NQS can encode some volume law states without exponential cost [26–30], although there are
volume-law entangled states like the ground state of the Sachdev-Ye-Kitaev model that can not be
represented efficiently [50]. Furthermore, [51] develops a combination of TNs and autoregressive NQS,
which improves the capabilities compared to both the original TN and NQS. However, in contrast to TNs
which are guaranteed to converge after a sufficiently long optimization, the training of NQS involves a
non-convex landscape. Hence, it can be challenging to find the actual ground state, even when the NQS
ansatz itself is expressive enough to capture it. Advanced training strategies to overcome this issue are
discussed in section 3.1.

In contrast to most machine learning applications, the training can be done in a self-contained way
without the use of external data. In general, the specific design choices for the NQS can have a significant
impact on its performance, which will be the focus of section 2: Besides the choice of architecture, e.g. the
way how the real and imaginary parts of the wave function coefficients ψθ are modeled. This can be done by
splitting ψθ into amplitude pθ and phase ϕθ parts and using separate networks or separate output nodes /
final layers for each part. Another possibility is to use complex network parameters to model the full ψθ with
a single network. The performance of the wave function does moreover depend on the optimization and the
specific task under consideration, which is discussed in section 3.

Similar to Monte Carlo methods, observables of NQS are evaluated by generating samples {σ} from the
NQS amplitudes, which are used for the estimation of the respective expectation values. Specifically, for an
operator Ô, the expectation value can be written as

⟨Ô⟩= ⟨ψθ|Ô|ψθ⟩
⟨ψθ|ψθ⟩

=
∑
σ,σ ′

⟨ψθ|σ⟩⟨σ|Ô|σ ′⟩⟨σ ′|ψθ⟩∑
σ ′ ′⟨ψθ|σ ′ ′⟩⟨σ ′ ′|ψθ⟩

=
∑
σ

Pθ (σ)
∑
σ ′

ψθ (σ
′)

ψθ (σ)
⟨σ|Ô|σ ′⟩ ≈ ⟨Oloc

θ (σ)⟩σ (3)
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with the probability for each configuration Pθ(σ) and the local estimator Oloc
θ (σ), defined as

Pθ (σ) =
|ψθ (σ) |2∑

σ ′ ′ |ψθ (σ ′ ′) |2
and Oloc

θ (σ) =
∑
σ ′

ψθ (σ
′)

ψθ (σ)
⟨σ|Ô|σ ′⟩ (4)

respectively, as well as the Monte Carlo average ⟨·⟩σ . For operators involving only a limited number of matrix
elements, namely local operators or global operators that do not require the calculation of higher order
correlations, Oloc

θ can be evaluated very efficiently [52]. The computational cost of equation (3) results from
the generation of samples σ from |ψθ|2, as well as from the evaluation of the wave function amplitudes for σ
and its connected samples σ ′. The computational cost of the former strongly depends on ψθ being
normalized or not, since in the latter case samples can not directly be generated from the wave function and
more elaborate approaches like Metropolis sampling are needed. Normalized NQS, using so-called
autoregressive architectures, are the topic of section 2.5. Autoregressive NQS can be designed to obey certain
symmetries like U(1) symmetries as discussed in section 2.5.1. For non-autoregressive NQS symmetries can
be taken into account in the Monte Carlo sampling.

2. NQS architectures

Neural network quantum states can be implemented using several techniques, including various neural
network architectures and different representations of phase and amplitude parts of the wave function. Each
architecture comes with its advantages and specialized training strategies, see also [120]. Additionally, the
choice of architecture can also depend on the physical model under investigation.

In this section, we discuss commonly used architectures, their application to physical systems in the
literature as well as their advantages and downsides compared to other ansätze. In figure 2 the type of
architectures used in the works cited in this review are shown. It can be seen that the field started with
representations in terms of restricted Boltzmann machines (RBMs, section 2.2), as in the seminal work by
Carleo and Troyer in 2017 [25]. In the first two years after that, mainly works with NQS based on
convolutional neural networks (CNNs, section 2.3) and feed forward neural networks (FFNNs, section 2.1)
appeared, while in recent years autoregressive networks (section 2.5) and transformer neural networks
(section 2.6) have gained attention. Furthermore, after a focus on spin systems in the early stage of
development of NQS architectures, the field turns towards the simulation of fermionic systems (section 2.7).
At the time of publication of this (revised) work (June 2024), works on many different architectures appear
with a similar fraction. To the best of our knowledge, this is mostly due to the fact that it is not clear at first
sight and which NQS architecture is most suitable for a given physical problem is a major open question in
the field. Nevertheless, most architectures have certain strengths, which we attempt to summarize in table 1
and in the remaining part of this section.

2.1. Feed forward neural networks (FFNNs)
A feed forward neural network (FFNN), often represented by the structure of a multi-layer perceptron
(MLP), is the fundamental building block of artificial neural networks. It is composed of distinct layers of
neurons, including an input layer that receives the data, one or more hidden layers where computations are
performed, and an output layer that delivers the final result, see figure 3. Within each layer l, each neuron is

assigned a bias b(l)j , and is linked to neurons in the adjacent layers through connections w(l)
i,j . These weights

and biases are crucial as they are iteratively adjusted during the network’s training, primarily using
backpropagation and optimization techniques like gradient descent. The activation functions applied to each
neuron’s output introduce non-linearity, enabling the network to model complex relationships. In a fully
connected FFNN, every neuron in a layer is connected to all neurons in the next layer. The value of each

neuron, a(l)j , in layer l, can be described mathematically as:

a(l)j = f

(
n∑

i=1

w(l)
ij · a(l−1)

i + b(l)j

)
, (5)

where w(l)
ij represents the weight from the i-th neuron in layer l− 1 to the j-th neuron in layer l, a(l−1)

i is the

activation of the i-th neuron in layer l− 1, and b(l)j is the bias of the j-th neuron in layer l. The function f
denotes the activation function. This straightforward, yet powerful structure makes FFNNs a vital
component in the field of neural networks and deep learning, and has lead to a range of applications in the
context of NQS:
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Figure 2. Architectures used in the works cited in this review in a time interval of 6 months from 2016 to June 2024: The fraction
of works with implementations of variants of feed forward neural networks (FFNNs, section 2.1), restricted Boltzmann machines
(RBMs, section 2.2), convolutional neural networks (CNNs, section 2.3), transformers (section 2.6), autoregressive networks
(section 2.5), fermionic networks (section 2.7) or other architectures. The total number of works is shown in black; note that for
2024 we consider only works until June 2024. In some works, several architectures are used, and are taken into account as separate
works for each architecture here. Autoregressive transformers are counted twice.

Table 1. Overview of NQS architectures and their applications to ground, excited states, dynamics, finite temperature states, and open
systems.

Exemplary Works and Considered Physical Systems

Architecture Features
Ground and Excited States,
Finite T States Open Systems and Dynamics

Feed Forward
Neural Networks
(section 2.1)

simplicity (frustrated) spin systems [53, 54],
bosons [53, 54, 56–58]

spin systems [55]
—

Restricted
Boltzmann
Machines
(section 2.2)

well studied, e.g. in
terms of expressivity;
interpretability

(frustrated) spin systems [59–64],
spin liquids [48, 65], topologically
ordered states [31, 66–69], bosons
[53, 72–74], fermions [78],
molecules [79]

spin systems in 1D [25, 55, 70],
ladders [71] and 2D [75–77]

Convolutional
Neural Networks
(section 2.3)

incorporate lattice
symmetries

frustrated spin systems [25, 45,
80–87] on various lattice
geometries [90–94]

2D spin systems [75, 88, 89]

Graph Neural
Networks
(section 2.4)

applicable to any
lattice geometry

(frustrated) spin systems [95] and
bosons [96] on various lattice
geometries

—

Transformer
Neural Networks
(section 2.6)

self-attention
mechanism

(frustrated) spin systems [97–100],
Rydberg states [101–103], quantum
chemistry [104, 106–108]

spin systems [40, 104, 105]

Autoregressive
Neural Networks
(section 2.5)

perfect sampling (frustrated) spin systems [34, 98,
109–112], spin glass [113],
topologically ordered (bosonic)
states [115, 116], Rydberg states
[101, 103, 117], fermions [35, 118]

spin systems [105, 114],
Rydberg states [119]

Cai and Liu [54] uses FFNNs to describe ground states of different one-dimensional systems, as well as
spinless fermions and the frustrated J1 − J2 spin-1/2 model in 2D. Choo et al [53] explores the possibility to
directly target excited states, see section 3.2, and compares the capabilities of FFNNs and restricted
Boltzmann machines (section 2.2) to represent excited states of the one-dimensional Heisenberg and
Bose–Hubbard models. A Bose–Hubbard model on a ladder with strong magnetic flux is studied using a
FFNN in [56]. In [57], a FFNN is trained to represent the ground state of the one- and two-dimensional
Bose–Hubbard model. By using the particle number as well as the interaction strength U as additional input
parameters to the network, the ground state can be directly obtained without or with little re-training for
different Hamiltonian parameters.

Furthermore, FFNNs were applied to simulate quantum systems with continuous degrees of freedom. In
[58], a FFNN is used to simulate the ground state of the Calogero-Sutherland model in one dimension and
Efimov bound states in three dimensions, where the particle positions in real space are used as input to the
network. Another approach to use FFNNs to simulate continuous quantum systems was taken in [121] using
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Figure 3. Feed forward neural network (FFNN): The physical state σ (blue circles enclosed by the grey rectangle) is taken as the
input. Blue circles denote the nodes of the network, grey lines the connecting weight matrices. The output of the neural network
is the wave function coefficient ψ(σ), here split into its amplitude and phase.

Figure 4. (a) Hopfield network: All-to-all connections between the physical sites are learned by the network. (b) Restricted
Boltzmann machine (RBM): An additional set of hidden, unphysical nodes is introduced. Furthermore, the Boltzmann machine
is restricted to only inter-layer connections which connect the physical (visible) layer and the hidden layer.

Radial Basis Function (RBF) networks. RBF networks consist, as FFNNs, of an input layer, one or more
hidden layers with RBFs as activation functions, and an output layer. RBFs are of the general form

f(x) = ϕ(∥x− c∥) , (6)

where x is a point in the input space, c is the center of the radial basis function, ∥·∥ denotes a distance
measure, such as the Euclidean distance, and ϕ is a radial function, such as the Gaussian function. The
neurons’ activation is thus determined by the distance of the input x from certain points in the input space c,
known as centers, which are trainable network parameters. The RBF activation functions strongly depend on
the distance to a center point, which allows them to capture variations in data that are radially symmetric. In
[121], the input to the RBF corresponds to the quantum numbers of e.g. an undisturbed quantum harmonic
oscillator, and the network parameters are optimized to represent the ground state of a quantum harmonic
oscillator with an additional applied field.

2.2. Restricted Boltzmannmachines (RBMs)
Restricted Boltzmann machines are energy based models, i.e. they are governed by an energy function Eθ(σ)
for configurations σ. Using statistical physics, the respective probability distribution of these models is
directly related,

pθ (σ) =
1

Zθ
exp(−Eθ (σ)) , (7)

with the normalization constant Zθ . A first example for energy based models were Hopfield networks [122]
shown in figure 4(a), which consist of all-to-all connected nodes with connectionsW ij and the biases bi,
similar to an Ising model with long-range interactions and local magnetic field.

When being used to model physical systems, the number of nodes in a Hopfield model corresponds to
the number of physical sites in the system under consideration (visible nodes σ). In contrast, Boltzmann
machines (BMs) increase the expressiveness by introducing additional, unphysical nodes (hidden nodes h)

7
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and the respective connections that increase the expressiveness of the network. With their all-to-all
connections between all visible and hidden nodes, BMs are very expressive but can be hard to train. Hence,
they are mostly used in their restricted version, see figure 4(b), were only visible-to-hidden node connections
W ij and no hidden-to-hidden or visible-to-visible node connections are considered. Analogously to
statistical physics, the energy of a restricted Boltzmann machine (RBM) is given by

Eθ (σ,h) =−
∑
ij

Wijhiσj −
∑
j

bjσj −
∑
i

cihi, (8)

with the biases in the visible and hidden layers, bj and ci, respectively. Using equation (7) and summing over
the hidden nodes h, the corresponding probability for a given input configuration of physical sites σ is given
by [123]

pθ (σ) =
∑
h

pθ (σ,h) =
∑
h

exp(−Eθ (σ,h))

Zθ
. (9)

An overview on the application of RBMs in physics can be found in [123].
To use RBMs for representing quantum states, apart from the amplitude pθ(σ) = |ψθ(σ)|2 a phase of the

RBM has to be defined. This can be done in several ways, e.g. by making the network parameters θ complex
[25] or by modeling the phase with a separate RBM [124].

The expressivity of the RBM ansatz is often studied in the framework of tensor networks [47, 48, 67,
125], using the entanglement that can be captured with an ansatz as an indicator for the representability. For
RBMs, the connectivity between visible and hidden layers, that indirectly couples all sites of the physical
system, allows for the entanglement entropy to scale with a subregion’s volume, in contrast to its area [27]. In
particular, this can make RBMs more efficient in capturing volume-law entangled states compared to
e.g. MPS or PEPS. However, the efficiency of shallow RBMs to represent general quantum states has
limitations, but they can be overcome with deep RBMs [24, 28, 126, 127]. This was further confirmed
empirically e.g. in [128, 129], where random matrix product states were learned with shallow and deep
RBMs using supervised approaches. Furthermore, RBMs can, due to their connectivity, straightforwardly be
applied to higher dimensions, e.g. 3D systems [130].

RBMs have been used for modeling a large number of physical systems, among them frustrated spin
systems [59, 60], spin liquids [65], topologically ordered states [31, 66, 68], the Toric code [66, 69],
Bose–Hubbard models [53, 72–74], strongly interacting fermionic systems [78], boson—fermion coupled
systems such as electron—phonon coupled systems [131], and molecules [79]. In these works, often variants
of RBMs are used, e.g. the correlator RBM where correlations are introduced into the RBM energy functional
based on physical insights [69]. Another modification, the convolutional RBM (CRBM) (see section 2.3),
makes use of the fact that physical models are typically translationally invariant and feature local
interactions. This is taken into account by introducing an additional convolutional layer between the visible
and the hidden layers and is employed e.g. in [132, 133] for the simulation of Ising and Kiteav models as well
as the Hubbard model. Furthermore, the implementation of symmetries was shown to improve the results
[62]. In [63, 64] further symmetries such as non-abelian or anyonic symmetries are considered. RBMs have
also been used for the simulation of real-time dynamics [25, 70, 71, 75–77], see also section 3.3.

2.3. Convolutional neural networks (CNNs) and group CNNs
Convolutional neural networks (CNNs) are used in processing data with a grid-like topology, most
commonly two-dimensional data like images. The building blocks of CNNs are shown in figure 5: First,
convolutional layers employ filters or kernels to scan the input, which can detect local patterns and capture
spatial relationships. Basically, each filter in the network uses the same weights for different parts of the
input, making CNNs translationally invariant. This approach significantly reduces the number of parameters
compared to fully connected networks. Second, pooling layers downsample the spatial dimensions, reducing
computational complexity while preserving important features. The final layer of a CNN typically consists of
one or more fully connected layers.

Each convolution layer consists of feature maps a and kernels k. The kernel k is slid over the input image
(or feature maps at later layers), and for each translation (x− x̃,y− ỹ), the the kernel values ki(x− x̃,y− ỹ)
are multiplied with the translated input feature values ai(x̃, ỹ). In total, the convolution of the
two-dimensional input data/feature map a is

ã(x,y) = [a ∗ k] (x,y) =
∑
x̃,̃y

∑
i

ai (x̃, ỹ)ki (x− x̃,y− ỹ) . (10)
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Figure 5. (a) Convolutional neural network (CNN) with convolutions as defined in equation (10), pooling layers that downsample
the spatial dimension and fully connected layers as final layers. (b) Comparison of equivariance w.r.t. the translational group
present in conventional CNNs (top) and w.r.t. other groups, e.g. C4 rotations (bottom) that can be implemented in G-CNNs.

The result of this operation is a new feature map ã, which is the input of the subsequent layers. The index i
refers to the value of the i− th channel of the input feature. For an RGB image, for example, there are three
channels (red, green, blue), and ai(x̃, ỹ) is the intensity of one of these colors at pixel position (x̃, ỹ). ki(x,y) is
the the value of the i− th channel of the kernel at position (x, y) within the kernel.

In the context of NQS, CNNs are regarded as a viable approach to deal with the properties of
two-dimensional systems. The application of CNNs to solve the highly frustrated J1 − J2 antiferromagnetic
Heisenberg model was first introduced in [80]. In these systems the sign problem remains a significant
challenge for quantumMonte Carlo approaches. Liang et al [80] demonstrates how CNNs effectively tackle
the challenging problem of finding the ground state of such models. Furthermore, [30] shows that deep
CNNs can encode volume-law entangled states efficiently, requiring only O(

√
N) parameters to represent a

2D system with N particles, instead of O(N) for RBMs or O(N2) for fully connected networks. In a typical
neural network, adding more layers, i.e. making the network deeper, theoretically allows the network to learn
more complex features and improve its performance on tasks. However, in practice, when the network gets
too deep, one faces problems such as vanishing gradients, where the gradients (which are used to update the
weights in the network during training) become very small and make learning very slow or even stop it
entirely. This problem is addressed e.g. in [87] using skip connections that allow to bypass some layers and
layer normalization, where inputs for all neurons within the same layer are normalized for each sample.
Furthermore, a variant of stochastic reconfiguration (SR) tailored for large parameter numbers is used in this
work. Besides these ground state calculations, CNNs have also been applied for dynamics simulations [75,
88, 89], see also section 3.3.

In [90], a novel approach is introduced for adapting CNNs to other common lattice structures such as
triangular lattices, which are somewhat analogous to sheared square lattices, allowing the application of
regular CNN filters. In the same work, the authors consider honeycomb and Kagome lattices, where the key
techniques involve augmenting these lattices with strategically placed virtual vertices, effectively
transforming them into grid-like structures akin to triangular lattices. This allows for the application of
standard CNN convolutional kernels while preserving the unique properties of the original lattices. The
method enhances information processing and exchange, expanding the receptive field and enabling the
analysis of varied local structures and staggered arrangements unique to these lattices.

Although CNNs exhibit translational invariance, they lack the ability to learn additional types of
symmetries, such as rotation or mirror symmetries. Typically, data augmentation is employed to train the
model for these specific symmetries [86]. In [81] the wave function was symmetrized in order to incorporate
the rotational symmetries, see also section 2.8. A more intrinsic solution is the development of group
convolutional neural networks (G-CNNs). These networks extend the capabilities of standard CNNs by
using group theory, allowing them to automatically incorporate various symmetries, see figure 5(b). The key
component of G-CNNs is the group convolution operation. An equivariant convolution ensures that if the
input is transformed (e.g. rotated), the output feature maps will be transformed in the same way. The
group-equivariant convolution of the input/feature map a with a kernel k under the group G evaluated at a
group element g corresponds to

[a ∗G k] (g) =
∑
h∈G

a(h)k
(
g−1h

)
. (11)

This convolution operation is designed to be equivariant to the transformations in the group G. G can be
a group of (discrete) rotations, translations, or other transformations. Roth and MacDonald [91] considers
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Figure 6. Graph neural network: In each permutation equivariant layer, the weights are updated through typically pairwise
message passing, i.e. the value of a given node is updated according to the values of its immediate neighbors. Graph neural
networks can easily be applied to any lattice geometry, here we show a hexagonal lattice as an example.

the full wallpaper group, consisting of translation, rotation and mirror symmetry. The first convolution takes
the input σ = (σ1,σ2, . . .,σN), where i are the positions in the lattice, and transforms it as

a1 (g) = f

(∑
i

k
(
g−1i

)
σi

)
, (12)

where f is a point-wise non-linear activation function, to obtain the value of the feature map a(g) for the
group element g. This first (embedding) layer thus generates equivariant feature maps, which are indexed
with group elements, from the input. After repeating the application of group convolution and non-linearity
for l layers, the wave function coefficient ψ(σ) is determined as

ψ (σ) =
∑
g

χg−1 exp
(
alg

)
, (13)

where χg is the character of the symmetry operation g.
Roth and MacDonald [91] uses G-CNNs to determine the ground state energy of the J1 − J2 Heisenberg

model on a square and triangular lattice. Roth et al [92] underscores the capability of very deep G-CNNs in
achieving high-accuracy results for the same lattices, and furthermore directly calculates low-lying excited
states by changing the characters of the symmetry operations χg accordingly. For a Heisenberg model on a
Kagome lattice, one of the most studied models in frustrated magnetism since it is a promising candidate to
host exotic spin liquid states, [93] presents a new ground state: the spinon pair density wave (PDW), which
does not break the time-reversal and lattice symmetries. G-CNNs are used to study the ground state of the
J− Jd Heisenberg model on the Maple-Leaf lattice, which results in dimer state paramagnetic and canted
magnetic order phases for different values of Jd/J, [94].

2.4. Graph Neural Networks
Graph neural networks directly take the geometry of the underlying problem into account [134]. In the case
of NQS, this means that the lattice geometry of the Hamiltonian under consideration is used as the graph
structure. Throughout the graph neural network, this graph structure is kept, see figure 6. In [95], a
sublattice encoding, denoting the position of the site within the unit cell, is used as additional input for each
site on the lattice. Subsequently, in each permutation equivariant layer of the graph neural network, the
values of the nodes are updated through typically pairwise message passing. This means that the value of a
given node is updated according to the values of its immediate neighbors, thus directly taking the graph
structure into account. The specific details of this updating procedure are design choices, leading e.g. to
graph convolutional neural networks [135] or gated graph sequence neural networks [136], where a gated
recurrent unit is used.

One advantage of the graph structure and message passing layers is that a transfer to different system
sizes is straightforwardly possible, as shown in [95]. Yang et al [96] considers the ground state of the
hard-core bosonic t−V model on different lattice geometries, such as the Kagome and triangular lattices.
Since this constitutes a stoquastic Hamiltonian, no sign structure has to be learned. In [95], the ground state
of the J1 − J2 Heisenberg model on square, triangular, honeycomb and Kagome lattices is studied, in which
case a non-trivial sign structure exists. The performance for using complex network weights as well as
separate networks for amplitude and phase are compared.

Permutation equivariant message passing has also been used in the context of neural network backflow
transformations to simulate interacting fermions in continuous space in [137, 138]. Luo et al [139] uses a
graph neural network to represent a generalized pair amplitude in the context of a BCS type wave function.
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Figure 7. (a) Recurrent neural network (RNN). At each site denoted by the blue circles, the local configuration is passed through
the RNN cell. Furthermore, information from previous sites is passed to the next cell (horizontal arrows). (b) Left: A plain vanilla
RNN cell, where the local configuration σi and the hidden state hi are simply added and passed through a tanh-activation
function. Right: Gated recurrent unit (GRU), enabling the RNN to capture longer-ranged correlations throughout the system. In
a GRU, the proposed update (dark blue), reset and update gates (red and orange) decide how much of the old state is kept.

2.5. Autoregressive Networks
Autoregressive architectures are characterized by their normalized amplitudes pθ = |ψθ|2. The use of
autoregressive networks for NQS was first proposed by Sharir et al [34]: At a local configuration σi, the
authors propose to mask out the local configurations j⩾ i, and only consider sites σ<i = (σ1, . . .σi−1), such
that the network represents pθ(σi|σ<i). The total probability is given by

pθ (σ) =
N∏
i

pθ (σi|σ<i) . (14)

This allows to normalize pθ by normalizing each conditional pθ(σi|σ<i), and hence to sample directly from
the amplitudes instead of more elaborate sampling procedures like Markov chain sampling needed for
non-autoregressive architectures. Since the generation of many, uncorrelated samples is crucial for the
training, this can yield a speed up and an improvement of the optimization. However, [140] suggests that the
autoregressive sampling can in some cases reduce the expressivity of the neural network wave function.
Furthermore, the application of SR for optimizing autoregressive NQS can cause problems, as discussed in
section 3.1. For further reading on the potential of autoregressive networks in the context of quantum
physics and NQS we refer the reader to [41].

Some architectures like CNNs and transformers (see section 2.6) can be made autoregressive by masking
out future inputs σi, . . .σN for the i-th input vector [34, 98, 101, 103, 109]. In the following, we discuss a
network architecture to which the autoregressive property is inherent due to their recurrent structure:
recurrent neural networks.

2.5.1. Recurrent neural networks (RNNs)
Recurrent neural networks (RNNs) consist of several RNN cells, and information is passed from one cell to
the next, in a recurrent manner, through the network, as schematically shown in figure 7(a).

The first applications of RNNs to represent quantum states have considered one-dimensional spin
systems [110, 111]. In these cases, the RNN is constructed by N cells and the information is passed from the
first cell corresponding to the first spin of the 1D chain to the last cell in a recurrent fashion. At each lattice
site i, the cell receives a local spin configuration σi and the so-called hidden state hi−1 that passes information
from previous lattice sites through the network. The cell then outputs the updated hidden state hi as well as
an output yi that can be used to calculate the local conditional probability and a local phase of the state
representation. Normally, each cell is represented by the same weights (weight sharing), but in some contexts
the cells can also be chosen to have different weights [113]. In the former case, the RNN architecture is
tailored to model bulk properties and hence becomes particularly effective for large systems [111].
Furthermore, it is possible to iteratively retrain on larger and larger systems, which can improve the
performance for large systems [111].

The local amplitude at each RNN cell is given by a conditional probability determined by the previous
spin configurations σ<i, i.e. pθ(σi|σ<i). The activation function of the RNN’s output layer can be chosen
such that the local amplitude is normalized and hence also the total amplitude equation (14), making the
RNN autoregressive.

To model long-range correlations, it is crucial that the information is passed through the cells in an
efficient way. This is usually done by replacing the plain vanilla RNN cells with gated recurrent units (GRU)
[141], see figure 7(b), enabling a long-term memory of the RNN [142]. In one-dimensional settings, this
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modification yields successful representations of spin systems like Heisenberg and transverse field Ising
model [110, 111]. For two-dimensional systems, the hidden states can be passed in a 1D snake through the
system, similar to MPS calculations, as e.g. in [111]. However, it is also possible to pass the information in a
2D fashion through the system, as proposed in [143] and further improved by introducing a tensorized
version of a GRU in [113]. Furthermore, the authors show that an imposed U(1) magnetization conservation
and spatial symmetries as well as direct implementation of the Marshall sign rule for spin-1/2 systems
improve the results, in agreement with other works [110–112]. This U(1) symmetry is usually imposed by
setting pθ(σi|σ<i) = 0 if the system with the new sampled σi violates the corresponding conservation law.
For example, for the U(1) particle number conservation of hardcore bosons with local states σi = 0(1)
corresponding to empty (occupied) sites, pθ(σi = 1|σ<i) = 0 with if σ<i is already in the correct particle
number sector. With these modifications, RNNs have been applied in many contexts, including the
Heisenberg model on square and triangular lattices [144], prototypical states in quantum information [145],
states with topological order [115, 116] and fermionic systems using Jordan-Wigner strings [35]. In the
context of real-time dynamics simulations, see also section 3.3, RNNs have been used e.g. in [105, 114, 119].

In order to investigate the expressivity of the RNN ansatz, the authors of [49] present a mapping from
tensor networks to 1D MPS-RNNs and 2D tensorized MPS-RNNs, i.e. RNNs with linear or multilinear
update rules for the hidden states and quadratic output layers. For linear update rules and one-dimensional
settings, MPSs can be mapped to the 1DMPS-RNN with the same number of variational parameters, but not
vice versa, making the latter potentially more expressive than MPS. The 2D version of the MPS-RNN receives
hidden states from two directions, inspired from projected entangled pair states (PEPS) [146], and features
multilinear updates. This architecture is shown to encode an area law of entanglement entropy, but unlike
PEPS, it supports perfect sampling and hence efficient evaluations of the wave function. In particular,
receiving hidden states from two directions makes the RNN more efficient in state compression compared to
the class of TNs which support wave function evaluation in polynomial time [30].

2.6. Transformers
A transformer model relies entirely on an attention mechanism which draws global dependencies between
input and output [147]. This self-attention layer in the transformer setup generates all-to-all interactions
between the sites in the system. These trainable connections can potentially represent strong connections or
correlations, regardless of their position [97, 101]. The transformer first embeds the different given input
elements into a unified feature space. This embedding corresponds to a linear projection, with trainable
parameters, of the input elements with a dimension di to elements with an embedded dimension dh. The
position of the inputs in the sequences are not explicitly modeled in the transformer, but efficiently
transformed into abstract representations using positional encoding vectors that are added to the embedded

input vectors [97]. Each embedded input element σ(e)
i is projected on a query vector (qi), key vector (ki) and

a value vector (vi) of the same dimension dh as the embedded input, given by:

qi =
dh∑
l=1

Wq
i,lσ

(e)
i,l ki =

dh∑
l=1

Wk
i,lσ

(e)
i,l vi =

dh∑
l=1

Wv
i,lσ

(e)
i,l , (15)

with the matricesWq,Wk andWv to be the trainable weight matrices of dimension dh×dh. The query, key
and value matrices are then given by Q= (q1, . . .,qN), K= (k1, . . .,kN) and V= (v1, . . .,vN). In multi-headed
attention, each query, key and value vector is mapped to h vectors with trainable weight matrices, with h the
number of attention heads. This is indicated in figure 8(middle). A distinction has to be made between two
different classes of transformers: the encoder and the decoder. Both architectures consist of the multi-head
attention mechanism and a subsequent FFNN. The encoder maps an input sequence of symbolic
representations to a context vector, which is used to condition the decoder. The decoder then combines this
context vector with the input snapshot to generate the final output probability. Commonly, only a decoder is
used for the NQS ansatz. Unlike encoders that map the input to a context vector, the decoder model is
usually made autoregressive by adding a maskM to the self-attention layer, which allows connections to all
previous elements in the sequence but not to subsequent elements [147] and enables efficient exact sampling
from the model [98, 101, 103, 105]. Then, a softmax activation function is applied to the masked dot product
of the vectors Q and K. The complete attention formalism in the decoder can be summarized by

Attention(Q,K,V) = softmax

(
QK√
dh/h

+M

)
V , (16)
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Figure 8. Left: The transformer neural network wave function, adapted from [147]. The input is passed through the multi-head
attention mechanism, addition and normalizing layers (Add and Norm) and a feed forward neural network (FFNN). Middle: The
multi-head attention itself consists of h scaled dot-product attention layers. Right: The scaled dot-product attention according to
equation (16), based on the attention map QKT, which can in principle represent all-to-all correlations throughout the system.
Sites of the system that have not been considered yet are masked out by adding the maskM, before passing it through a softmax
activation layer and mutiplying with the values V.

as shown in figure 8(right). In [148] different variants of the attention mechanism are compared.
Transformer quantum states can learn ground state properties of various physical systems, such as the 1D

transverse field Ising model and the 1D Heisenberg J1 − J2 and XYZ model [98]. Comparable results to
DMRG calculations have been obtained with a transformer decoder for a 1D frustrated spin model, with a
relatively low number of parameters [97]. In [105], transformers have shown to be able to simulate the
real-time dynamics and steady state in 1D and 2D transverse field Ising and Heisenberg models [105]. In
[104, 106–108] transformers are used in the context of quantum chemistry calculations.

Small modifications of the transformer model, leading to the so-called vision transformers (ViT),
inspired the use of patched transformers. This model splits the system into patches, and can be used to
calculate the ground state properties of frustrated spin models [97]. A large patch size enhances the efficiency
of the transformer, but on the other hand the network output dimension increases exponentially with the
patch size, as it encodes the probability distribution over all possible patch states. To overcome this, large
patched transformers are introduced in [101]. In this ansatz, the output of the patched transformer is passed
to a patched RNN as the initial hidden state, which breaks the large inputs into smaller sub-patches, reducing
the output dimension. This model has been shown to accurately capture ground state properties and phase
transitions of large Rydberg systems, which can compete with quantumMonte Carlo results [101]. In [149],
a combined architecture of a transformer network and a FFNN is used. Hereby, first the transformer maps
the physical spins to a high-dimensional feature space. The authors argue that in this feature space the
determination of the ground-state properties is simplified, requiring only a single FFNN layer with
complex-valued parameters to parameterize the wave function in the second part of the network. The
combined architecture is used for the ground state search of the Shastry-Sutherland Model, featuring a spin
liquid phase besides phases with plaquette and antiferromagnetic order.

In [98], transformer quantum states have been used to learn ground state properties of a single system, as
well as to generalize to different, unseen systems. For the latter, not only the physical degrees of freedom, but
also the parameters of the Hamiltonian of the system are used as input. These parameters can be formulated
as new elements that have to be passed to the embedding layer. After training the transformer quantum state
for a Hamiltonian with different parameters, the transformer is able to generate the ground state for unseen
Hamiltonian parameters without any additional training. Although these are with slightly larger error, more
accurate results can be achieved with less training then without any a priori training. In [102] an
encoder-decoder transformer is designed to learn the distribution of measurement outcomes with the
Hamiltonian parameters of the system as the input. The transformer is trained on data from different
interacting Rydberg arrays and is able to generalize to systems outside of the training set.

In [99, 100], a transformer with a so-called factored attention is used. In contrast to the conventional
attention mechanism (16), where the attention weights QKT and the values V are calculated from both
embedded inputs and the positional encoding, factored attention uses QKT that depend only on positions,

13



Quantum Sci. Technol. 9 (2024) 040501 H Lange et al

Figure 9. NQS for fermionic systems: (a) Fermionic architectures are typically inspired from Slater-Jastrow ansätze with an
antisymmetric Slater determinant and a Jastrow factor that captures the correlations throughout the system. (b) Bosonic
architectures can be made fermionic by applying Jordan-Wigner strings. Effectively, this boils down to counting the number of
permutations P of configurations that are connected by matrix elements when calculating observables and multiplying the
respective terms in equation (19) by (−1)P.

and V that depend only on the embeddings. Rende et al [99] shows that training a model with a single
self-attention layer with factored attention can be mapped to solving the inverse Potts problem using the
pseudo-likelihood method. This method, in combination with the patched transformer, leads to high quality
results for the ground-state energy of the J1 − J2 Heisenberg model [99].

2.7. NQS for fermionic systems
NQS for the representation of fermionic quantum states can be divided into distinctly different ansätze: (i)
NQS ansätze that inherently incorporate the fermionic statistics and (ii) bosonic NQS that are
antisymmetrized by a Jordan-Wigner transformation, see figures 9(a) and (b) respectively.

2.7.1. Fermionic architectures
The antisymmetry of NQS ansätze with fermionic statistics can be achieved in various ways. The most
commonly used ansatz for fermionic variational wave functions is a Slater-Jastrow-inspired ansatz, where the
wave function is constructed from an antisymmetric part ψ0, typically a Slater determinant, and a Jastrow
factor J capturing the correlations, i.e.

|ψθ,ν⟩=
∑
σ

ψ0,θ (σ)Jν (σ) |σ⟩, (17)

where in principle both ψ0 and J can be parameterized by neural networks with parameters θ and ν. This is
shown schematically in figure 9(a).

In the setting of first quantization, architectures like FermiNet [150] and PauliNet [151, 152] that use
Slater determinants ψ0 reach high accuracies in ab initiomolecule simulations. However, the evaluation of
Slater determinants is costly in first quantization, which is overcome e.g. in [153] by an antisymmetric
construction of ψ0 by deep neural networks. However, these approaches often come at the price of a reduced
accuracy [154].

For quantum many-body systems, mostly second quantization is used, despite some exceptions e.g. for
repulsively interacting, spin-polarized fermions [155], where the authors chose to model ψ0(σ)J (σ) in
equation (17) by a single neural network. In the works using second quantization, machine learning
approaches are used to enhance the expressivity of the Slater-Jastrow ansatz. This can be done by employing
NNs to parameterize the Jastrow factor J .

One of the first examples is the RBM+PP architecture in [78], with a slightly different ansatz than
equation (17), i.e.

|ψθ⟩=
∑
σ

ψref (σ)Fθ (σ) |σ⟩, (18)

where correlations on top of a reference state ψref are modeled by a generalized version of an RBM, with
additional artificial neurons to mediate entanglement, that is represented by Fθ . In this work, the authors
take ψref to be a pair-product state (PP) that already incorporates some of the entanglement, and test the
architecture for the Fermi-Hubbard model.
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Currently, usually two methods are used [156]: (i) The hidden fermion determinant state, where neural
networks are used to replace the standard Slater determinant with a larger determinant which includes single
particle orbitals from additional projected hidden fermions [157, 158]. (ii) Neural backflow transformations,
which add correlation by making the single particle orbitals of the Slater determinant configuration
dependent, with the respective transformation learned by a neural network [138, 150, 151, 159–161]. In
[156] the authors show that both (i) and (ii) can be written as Jastrow-like corrections to the single-particle
orbitals. Furthermore, [162, 163] show that using Bloch single-particle wave functions in the Slater
determinant allows to simulate large fermionic systems such as moiré materials.

Furthermore, it is worth mentioning that in simulations of lattice models with a Slater-Jastrow
variational wave function, the autocorrelation time increases drastically for large system sizes, motivating the
development of a fully autoregressive Slater-Jastrow ansatz by combining a Slater determinant with an
autoregressive deep neural network as a Jastrow factor [164].

2.7.2. Bosonic architectures with Jordan wigner strings
The other way to simulate fermionic systems using NQS are Jordan-Wigner (JW) transformations, which are
used to map the bosonic NQS to a fermionic wave function. Hence, per se bosonic architectures can be used
and no special fermionic architecture is needed. The JW transformation is given by

ĉ(†)j = σ̂−(+)exp

iπ
∑
k<j

σ̂+
k σ̂

−
k

 , (19)

where indices refer to a one-dimensional labeling of the fermions, the σ̂± are the spin raising and lowering
operators. The resulting annihilation (creation) operators ĉ(†) fulfill the fermionic commutation relations.
More precisely, for two fermions at site i and j, exchanging these fermions yields a minus sign arising from
the argument of the exponential in equation (19). This rule does not have to be implemented in the NQS
architecture itself, but only on the level of the calculation of expectation values. For an operator Ô with
⟨Ô⟩= ⟨Oloc

θ (σ)⟩σ (see equation (3)) with

Oloc
θ (σ) =

∑
σ ′

⟨σ|Ô|σ ′⟩⟨σ ′|ψθ⟩
⟨σ|ψθ⟩

ησσ ′ , (20)

each matrix element is multiplied by a factor ησσ ′ = (−1)Pσσ ′ if σ ′ is connected to σ by Pσσ ′ two-particle
permutations, see figure 9(b). This method was applied to simulate molecules [165], for Fermi-Hubbard and
t− J models [35, 166] and solid state systems [167].

Despite its successful application, JW strings come with the disadvantage that the operators in
equation (19) are highly non-local, which can cause problems for some architectures. Whether
antisymmetrizing bosonic networks is as efficient as using inherently fermionic architectures is still under
debate [29].

2.8. Other design choices
Besides the architecture, other design choices can influence the performance of the NQS:

One choice is the way how amplitude and phase of the NQS are calculated. Hereby, amplitude and phase
can be learned by two different, real-valued networks, one real-valued network with two separate output
nodes or final layers for phase and amplitude or by one network with complex weights. In [168], a
complex-valued RBM and a RBM in which two separate real-valued networks approximate amplitude and
phase, are compared for the ground state of the J1 − J2 model. In a systematic study on small clusters, they
show that the complex RBM outperforms the latter.

A second design choice is how to incorporate symmetries in the NQS training in order to restrict the
optimization space to states in the target symmetry sector, hence improving the performance [45, 62, 110,
112]. Firstly, global U(1) symmetries can be imposed, see e.g. [110, 112, 118], by restricting to configurations
σ that obey the respective symmetry, e.g. magnetization or particle number conservation. For autoregressive
architectures, this is done by restricting the conditional probabilities to the targeted symmetry, see e.g.
section 2.5.1. For non-autoregressive architectures, the Mone Carlo updates can be chosen such that all
generated configurations stay in the same symmetry sector. Second, spatial symmetries can be imposed.
There are different symmetrizations used in the literature5, which require to generate new samples σS that
are connected by symmetry transformations T to the original samples σ:

5 We follow [45] here.
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(i) bare-symmetry:

ψS
θ (σ) = exp

 1

|T |
∑

σS∈T (σ)

log
[
ψθ

(
σS
)] (21)

(ii) exp-symmetry

ψS
θ (σ) =

 1

|T |
∑

σS∈T (σ)

ψθ

(
σS
) (22)

(iii) sep-symmetry

ψS
θ (σ) =

√√√√√exp

 1
|T |

∑
σS∈T (σ)

2Re{log [ψθ (σS)]}

 · exp

iarg

 ∑
σS∈T (σ)

exp(i Im{log [ψθ (σS)]})

. (23)

Note that only the last keeps the autoregressive property intact since
∑

σS∈T (σ) |ψS
θ(σ

S)|2 =∑
σS∈T (σ) |ψθ(σ

S)|2. Furthermore, architectures that preserve certain symmetries explicitly can be used,
such as group CNNs [91] and gauge equivariant neural Networks [169].

Furthermore, the authors of [54] show for the exemplary case of a FFNN that the choice of activation
function can strongly influence the performance. Lastly, the number of parameters of the NQS can be varied.
In [170] it is argued for the exemplary architecture of an RBM that using overparameterized NQS and
subsequently pruning small parameters of the trained model can improve the performance. The compression
by pruning is also discussed in [171]. However, increasing the number of parameters does not always yield an
improvement: In [172] it is shown that the accuracy of an RBM increases for small widths of the hidden layer
α, but saturates at high α. The authors observe that this behavior coincidents with a saturation of the
quantum geometric tensor’s rank, see equation (31) in section 3.1, i.e. the local dimension of the relevant
manifold for the optimized NQS saturates. Lastly, the open-source packages allow to readily optimize code
for graphics processing units (GPUs), which can highly accelerate NQS implementations, see also section 2.9.
Another direction for fast and energy efficient NQS implementations is spiking neuromorphic hardware
[173–175], as implemented for a RBM in [174].

For further reading on design choices beyond the discussion provided here, we refer the reader to Reh
et al [45], where the performance of RBMs, CNNs and RNNs with different symmetrization strategies are
compared.

2.9. Open-source toolboxes
There are several toolboxes that provide open-source implementations of NQS: NetKet allows for ground
state search, dynamics calculations based on TDVP and p-tVMC as well as state tomography using various
architectures and comes with many implemented bosonic and fermionic Hamiltonians [176, 177]. jVMC
[178], designed for computationally efficient variational Monte Carlo, provides several architectures for
ground state search and dynamics simulations as well. FermiNet [150] provides ground state simulations for
atoms and molecules. All of them are based on Google’s JAX library [179]. Lastly, we would like to mention
QuCumber [180], a RBM based tomography implementation.

3. Applications of NQS

3.1. Ground states
3.1.1. Variational Monte Carlo
To represent the ground state of a given system, neural quantum states are normally trained using variational
Monte Carlo (VMC) [181, 182]. VMC is based on variational wave functions |ψθ⟩ such as NQS,
parameterized by parameters θ. To approximate ground states with NQS, the energy

Eθ =
⟨ψθ|Ĥ|ψθ⟩
⟨ψθ|ψθ⟩

⩾ Egs, (24)

should be as close as possible to the ground state energy Egs. For variational wave functions ψθ , this
expectation value Eθ can be evaluated from samples σ drawn from the wave function’s amplitude |ψθ|2
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according to equation (3). To approximate ground states, NQS are usually trained by minimizing the
expectation value of the Hamiltonian, Eθ = ⟨Ĥ⟩ ≈ ⟨Hloc(σ)⟩σ , i.e. parameters θ are updated according to

∂θkEθ = 2Re

[∑
σ

Pθ (σ)
∂θkψ

∗
θ (σ)

ψ∗
θ (σ)

Hloc
θ (σ)

]
− 2Re

[∑
σ ′

Pθ (σ
′)
∂θkψ

∗
θ (σ

′)

ψ∗
θ (σ

′)

∑
σ

Pθ (σ)H
loc
θ (σ)

]

=
2

Ns
Re

[
Ns∑
i

∂θk logψ
∗
θ (σi) [Hloc (σi)−⟨Hloc (σ

′)⟩σ ′ ]

]
= 2Re⟨∂θk logψ

∗
θ (σ) [Hloc (σ)−⟨Hloc (σ

′)⟩σ ′ ]⟩σ. (25)

For autoregressive architectures, ⟨ψθ|ψθ⟩= 1 and hence the second term vanishes when calculating the
derivative of equation (3). However, often Hloc(σ) is replaced by the covariate (Hloc(σ)−⟨Hloc⟩) to reduce
the variance of the gradients [110, 183], leading to the same expression as equation (25). Another approach is
to (pre-)train the NQS with experimental or numerical data, see section 4.1.

The optimization of NQS can be done with methods commonly used in machine learning, such as
stochastic gradient descent, Adam [184] and AdamW [185]. A more elaborate approach is the SR algorithm
[15, 186, 187], which incorporates the knowledge of the geometric structure of the parameter space to adjust
the gradient direction [188–190]. The underlying idea6 of SR is to perform an imaginary time evolution of
the variational state |ψθ⟩, i.e.

|ψ (τ + δτ)⟩= exp
(
−δτ Ĥ

)
|ψθ⟩ ≈︸︷︷︸

smallδτ

|ψθ⟩+ |δψĤ⟩. (26)

For the latter equality, we have assumed small time steps δτ , when the change of the state from the imaginary
time evolution is

|δψĤ⟩=−δτ Ĥ|ψθ⟩=−δτ
∑
σ

ψθ (σ)H
loc (σ) |σ⟩. (27)

Naturally, the evolved state |ψ(τ + δτ)⟩ has less contributions from higher energy states, decreasing the
energy with every imaginary time step δτ [87]. In order to translate the evolved state |ψ(τ + δτ)⟩ to a
parameter update θ → θ ′, a projection onto the variational manifold of ψθ ′ is needed, which is done by
minimizing the Fubini-Study (FS) distance d(ψ(τ + δτ),ψθ ′) [192]. Expanding also for the projected state
for small δτ , |ψθ ′⟩= |ψθ⟩+ |δψθ⟩, with

|δψθ⟩=
∑
k,σ

∂ψθ (σ)

∂θk
δθk|σ⟩=

∑
σ

ψθ (σ)
∑
k

Ok (σ)δθk|σ⟩ (28)

and Ok(σ) =
1

ψθ(σ)
∂θkψθ(σ) [25], the FS distance can be written as

d(ψ (τ + δτ) ,ψθ ′) = ||Ōδθ− H̄loc||2 (29)

with || . . . ||2 the L2 norm, Ōk(σ) =
1√
Ns
(Ok(σ)−⟨Ok(σ)⟩σ) and H̄loc(σ) =− δτ√

Ns
(Hloc(σ)−

〈
Hloc(σ)

〉
σ
).

This results in the SR equation

Ōδθ = H̄loc ⇔ δθ = S−1Ō†H̄loc = S−1F, (30)

with the quantum geometric tensor

S= Ō†Ō, (31)

and the vector of forces

Fk = ⟨HlocO
∗
k ⟩− ⟨Hloc⟩⟨O∗

k ⟩.

Hence, the SR parameter update at the p-th iteration is given by

θ (p+ 1) = θ (p)− γ (p)S−1F, (32)

6 For the motivation of the SR algorithm from imaginary time evolution, we follow [87, 191].
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with a scaling parameter γ(p) [25].
The SR update equation (32) hence involves an inversion of the Smatrix. This inversion comes with the

following problems: (i) The matrix S has to be estimated to a very high precision to avoid instabilities in the
optimization, which requires a large number of samples. (ii) S is not necessarily invertible and hence, often a
regularization of S is needed for a stable optimization, especially if considered close to critical points or in
large spin systems [25, 70, 75]. Recent works indicate that the spectra of the Smatrix are distinctly different
for non-autoregressive and autoregressive architectures, which can cause problems for regularizing S for the
latter [35, 193]. (iii) S is a matrix of typically very large dimensions Nθ ×Nθ , making the inversion
computationally costly since the complexity of inverting S scales withO(NsN2

θ +N3
θ) when using direct

linear solvers [87]. To enlarge the allowed number of parameters by some orders of magnitudes, large-scale
supercomputers are needed [84, 194].

To overcome problem (iii), several modifications of SR have been proposed. Among them are iterative
solvers such as MINRES [25, 195] which avoid this scaling by iteratively computing the pseudo-inverse of S
[25]. However, for large Ns and Nθ typically also the required number of iterations grows. Another method is
the sequential local optimization approach, in which SR only optimizes a portion of all parameters to reduce
the time cost [196]. Other recent works have proposed modifications of the SR update rule which involve the
inversion of a Ns ×Ns matrix instead of S, with Ns the number of samples to estimate the gradient, which is
usually smaller than the number of parameters [87, 100]. Apart from that, the performance of SR can be
improved with adaptive learning rate solvers, such as the second order Runge Kutta integrator, allowing for
an optimal choice of the learning rate [197].

The optimization of NQS can become very difficult due to the in general very rugged and chaotic
optimization landscape with many local minima [192, 197, 198]. To overcome this problem, many
techniques have been developed. Among them are variational neural annealing that applies an artificial
temperature to avoid getting stuck in local minima [113, 144, 199], the application of symmetries [45, 62, 91,
110, 112] to enforce a training only in the target symmetry sector, transfer learning, i.e. the transfer learned
properties of small systems to larger system sizes, [111, 200, 201], and weight pruning [170, 171].

3.1.2. Optimization challenges
Further improvement can be achieved using complementary optimization methods: Firstly, the NQS can be
pretrained with external data, see section 4. Second, the energy resulting from the VMC optimization can be
improved by applying a few Lanczos steps after optimizing the network parameters using the techniques
described above [202]. Applying the Hamiltonian in the Lanczos algorithm to obtain the next Krylov vector
corresponds to minimizing the infidelity to the corresponding state and thus necessitates a separate training,
rendering typically only very few Krylov vectors accessible. Similar in spirit to Lanczos algorithms, power
methods can be used to find the ground states of (gapped) Hamiltonians [203].

A related approach, also based on applying imaginary time evolution, maximizes the fidelity to a target
state at each iteration. In contrast to SR, this is done explicitly, i.e. a small imaginary time step∆τ has to be
applied to the current state using e.g. the Euler [204] or the Heun method [193]. In [205], the general idea of
minimizing the difference between the current parameterization and an explicitly improved wave function is
introduced as supervised wave function optimization (SWO). The improved wave function, which
constitutes the target in this optimization, can e.g. be obtained through power methods or imaginary time
evolution.

Lastly, in [206] an optimization scheme based on stochastic representations of wave functions is
proposed. In this representation, not the configurations, here in terms of particle positions {Ri}i=1,...,Ns of a
continuous system, but a set of Ns samples (Ri,ψs(Ri)) is used for the optimization. The NQS is given by

ψs (Ri) = e−δτ ĤP̂s/aψθ (R) |R=Ri , (33)

with a variational function ψθ parameterized by a FFNN and stochastic projection P̂s/a onto the symmetric
or antisymmetric subspace. In order to train the NQS, first a set of samples (Ri,ψs(Ri)) is generated and
projected onto the target subspace. Then, simple regression is applied, with the goal of minimizing the sum
of squared residuals between the projected samples and P̂s/aψθ(Ri). The updated trial function P̂s/aψθ ′ is
then used to generate new sample coordinates R ′

i , and imaginary time evolution is performed on
P̂s/aψθ ′(R)|R=R ′

i
. In contrast to VMC, this method does not require that the samples are distributed

according to the wave functions’ amplitudes. Furthermore, no evaluation of the energy or its gradients is
required.

One reason why the optimization is so challenging is the intricate interplay between phase and amplitude
parts during the optimization. In some cases, the optimization outcomes are improved by imposing a certain
sign structure of the target state, e.g. the Marshall sign rule for the Heisenberg model (restricted to bipartite
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Figure 10. Comparison of energies obtained with NQS, ENQS, and matrix-product states (MPS) using density matrix
renormalization group (DMRG), EDMRG with 8192 SU(2) states [207], for ground states of the prototypical J1 − J2 model at
J2/J1 = 0.5 on 10× 10 lattices: We show energies obtained from FFNNs/MLPs in red (Ledinauskas et al (2023) [204]), CNNs in
blue (Liang et al (2018) [80], Choo et al (2019) [81], Szabo et al (2020) [82], Liang et al (2021) [83], Li et al (2022) [84], Liang
et al (2022) [85], Wang et al (2023) [86], Reh et al (2023) [45], Chen et al (2023) [87]), RBMs in green (Ferrari et al (2019) [60],
Nomura et al (2021) [61], Chen et al (2022) [202]) and transformers in yellow (Rende et al (2023) [100]). The color coding
denotes the appearance of the respective works. This plot is adapted from a table in [100].

lattices) [82, 110, 111]. Furthermore, the interplay between phase and amplitude during the optimization
can be investigated by considering the partial optimization problem. In [35, 197], either the exact phases or
the exact amplitudes are set and kept constant during the training, such that only amplitude or phase,
respectively, have to be learned. In both works, considering the J1 − J2 model and the bosonic and fermionic
t− J model, the authors find that none of the two optimization strategies can systematically improve the
ground state representation, and hence conclude that the interplay between phase and amplitude seems to
play a crucial role for the optimization.

3.1.3. Results on the J1 − J2 model
A commonly used model for benchmarking new NQS architectures and comparing different optimization
methods is the J1 − J2 model,

HJ1−J2 = J1
∑
⟨i,j⟩

Ŝi · Ŝj + J2
∑
⟨⟨i,j⟩⟩

Ŝi · Ŝj, (34)

with spin-1/2 operators Ŝi and ⟨i, j⟩ (⟨⟨i, j⟩⟩) denoting nearest (next-nearest) neighbors. In this model, the
nearest neighbor J1 and the next-nearest neighbor J2 interactions compete. For J2 → 0 and J1 > 0, the system
reduces to a Heisenberg antiferromagnet, whereas for J1 → 0 and J2 > 0 the system favors antiferromagnetic
stripes. In the intermediate regime around J2/J1 = 0.5, the nature of the ground state is not clear yet, ranging
from numerical results for gapped or gapless quantum spin liquids, different types of valence bond solids or
both of them [61]. With the frustration controlled by the ratio J2/J1, the J1 − J2 model has become a
paradigmatic model for the evaluation of the performance of NQS architectures [45, 60, 61, 80–87, 92, 100,
202, 204].

The results obtained with variants of FFNNs, CNNs, RBMs and transformers for the J1 − J2 model on
10× 10 square lattices at J2/J1 = 0.5 are shown in figure 10. It can be seen that in recent years, results from
CNNs, RBMs and Transformers have become competitive with or have even outperformed DMRG results
obtained for a bond dimension of 8192 with implemented SU(2) symmetry (corresponding to a bond
dimension 32000 with only U(1) symmetry). In particular, recent modifications of SR as in [87, 100] have
allowed to use more than 105 parameters, systematically improving results obtained with smaller NQS with
around 103 − 104 parameters. However, also for 103 − 104 parameters some works have obtained energy
errors that are competitive with the NQS architectures using more than one order of magnitude more
parameters [45, 61, 86]. It hence becomes evident that in principle many NQS architectures can achieve
competitive results to conventional methods, but details on the implementation and the optimization
procedure can have a significant impact on the performance. Consequently, architecture, its hyperparameters
and optimization parameters have to be carefully chosen, but at the same time they can mostly only be
determined by try and error.

3.2. Excited states
The methods for calculating excited states using NQS fall into two categories, depending on the type of
excited states that are targeted: (i) Lowest energy states in a different symmetry sector than the ground state,
e.g. different momentum or magnetization sectors. (ii) Low-energy states in the same symmetry sector as the
ground state.
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Figure 11. Excited States: (a) Optimization for different momentum sectors. (b) Low-energy states in the same symmetry by
enforcing orthogonality to the lower excited states and the ground state as in [53, 69]. Reproduced from [35]. CC BY 4.0.

The former usually rely on the same VMC scheme, but with a restriction to the targeted symmetry sector
implemented in the wave function or the training loss [35, 53, 62, 131, 168, 208]. This enables e.g. the
calculation of quasiparticle dispersions from NQS [35, 53, 62, 69, 131]:

In [62], excited states are targeted using quantum-number projections [209], i.e. for a NQS
parameterization ψθ(σ) one defines the wave function using the total momentum k projection

ψk (σ) =
∑
R

e−ik·Rψθ

(
T̂Rσ

)
(35)

with the translation operator T̂R, shifting the system by the vector R. This can be combined with other
quantum-number projections, including e.g. spin parity and spatial symmetries, to improve the accuracy. In
another approach [35], specific momentum ktarget sectors are targeted by adding a mean square error
between ktarget and kNQS, see figure 11(a). Hereby, the momentum of the NQS is given by

kµNQS =
i

a
log⟨ψθ|T̂eµ |ψθ⟩, (36)

with the translation operator T̂eµ in direction of the unit vector eµ by a lattice constant a. In contrast to MPS
calculations, this global operator can be evaluated at low computational cost. Another approach to target
excited states in different symmetry sectors consists in the use of group convolutional neural networks, as
discussed in section 2.3.

For the second category, figure 11(b), usually more modifications need to be made. In [53, 69] excited
states are targeted by enforcing orthogonality to the ground state ψ0 or lower lying excited states ψi. In [69],
the first excited state ψ1,θ is calculated by adding the normalized overlap with the ground state,

⟨ψ0,θ ′ |ψ1,θ⟩
⟨ψ0,θ ′ |ψ0,θ ′⟩⟨ψ1,θ|ψ1,θ⟩

, (37)

to the cost function. In [53], the excited state is defined as

ψ1 := Φθ −λψ0,θ ′ . (38)

To enforce orthogonality, ⟨ψ1|ψ0,θ ′⟩= 0, they use λ= ⟨Φθ/ψ0,θ ′⟩. Both methods require the explicit
representation of the ground state ψ0,θ ′ , rendering the calculation of higher excited states computationally
demanding.

Another method, requiring no explicit orthogonalization of the different states, transforms the problem
of finding the K lowest excited states of a given system into that of finding the ground state of an expanded
system given by all targeted excited states [210]. The ansatz for the expanded ground state is written as

Ψ(x) := det

ψ1

(
x1
)

. . . ψK

(
x1
)

...
...

ψ1

(
xK
)

. . . ψK

(
xK
)
 , (39)

i.e. an unnormalized Slater determinant of many-particle wave functions ψi instead of single-particle
orbitals. Here, xi denotes a set of N particles xi1, . . .,x

i
N. The Hamiltonian is correspondingly expanded to act
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Figure 12. (a) Adapted visualisation from [211] of the p-tVMCmethod. In the cases when the tVMC evolution of a state ψ breaks
down, p-tVMC can resolve this problem by projecting the exactly evolved state onto the variational manifoldM. The tVMC
evolution of the state (red) starts to break down whereas the p-tVMC method projects the exactly evolved state U|ψθ⟩ back onto
the variational manifoldM (blue) at each timestep. (b) To project the exactly evolved state onto the variational wave function,
the distance in the Hilbert space needs to be minimized, resulting in an optimization problem of the infidelity. Reproduced from
[211]. CC BY 4.0.

on all K particle sets, and VMC is performed to find the ground state of the expanded system. Subsequently,
energies, expectation values, and overlaps in the excited states can be retrieved fromΨ(x).

Finally, in [167] the authors propose a method based on the assumption that one-particle excitations
dominate the low-lying spectrum, allowing to construct the excited states by single-particle excitations on
top of the ground state.

3.3. Dynamics
Neural network quantum states are furthermore capable of describing time-dependent systems. The
quantum dynamics can be obtained using time-dependent network weights θ(t) [15, 25]. Numerically exact
results for timescales comparable to or exceeding the capabilities of TN algorithms have been obtained for
the paradigmatic two-dimensional transverse-field Ising model [75]. However, even though NQS are able to
capture strongly entangled states, the required number of parameters needed to represent a quantum state
after a global quench can grow exponentially in time, according to [212]. This can potentially render the use
of NQS to represent the dynamics of a state inefficient. Dynamically increasing the network size and
choosing a network architecture incorporating the symmetry of the state are promising approaches to
overcome this problem.

Following the Dirac-Frenkel Variational principle, the time derivative of the neural network weights are
to be optimized such that the variational residuals

R
(
θ̇ (t)

)
= dist

(
∂tψθ̃,−iĤψθ

)
(40)

are minimized [25, 213]. This is achieved within the stochastic approach using time-dependent Variational
Monte Carlo method (t-VMC). In most cases t-VMC is used in combination with SR, see section 3.1. The
iteration scheme to find the ground state energy can be interpreted as an effective imaginary time evolution,
such that an iteration scheme to approximate the real-time evolution of the quantum spin system can be
derived in an analogous way [70]. At each time step, |ψθ(t)|2 is sampled and the variational residual is

evaluated. Minimization of the variational residuals with respect to θ̇ gives a first order differential equation
for the weights θ(t) [75]. The final equation to be solved for the variational parameters θ is then given by the
time-dependent variational principle (TDVP) equation:

S(t) θ̇ (t) =−iF(t) , (41)

with the covariance matrix S and the vector of forces F are the same as in section 3.1.
To solve this equation for the variational parameters, the covariance matrix needs to be inverted. Since

this matrix can be non-invertible, S−1 denotes the Moore-Penrose pseudo-inverse. This inversion leads to
various problems, see also section 3.1. Moreover, the unstable Moore-Penrose pseudo-inverse of the Smatrix
requires choosing a right cut-off tolerance for small singular values. In practice, one finds that the chosen
cut-off for the pseudo-inverse of S can alter t-VMC. Krylov subspace methods (i.e. the conjugate gradient
method or MINRES algorithm) avoid this sensitivity problem, but are not always converging [213]. When
calculating the dynamics of a system, this error accumulates with each time step. [193, 213]
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Regularization schemes for S have been developed, see section 3.1, but these still require a very large
number of samples [213] and impact the accuracy [193]. The choice of regularization method impacts the
stability of the dynamics [71]. In [75], this problem is approached by disregarding the contributions to the
TDVP of which there is insufficient information available due to constraints of a finite number of samples
NMC. This still requires the diagonalization of S, which has a high computational cost (O(N3

θ)) [213]. In
[55], they adopt the minSR approach to reduce this computational cost to O(N3

s ), as it allows to reshape S
into a Ns ×Ns matrix.

Successful applications of t-VMC have been obtained for system sizes up to N = 256 spins using an RBM
and for time scales up till 10 s in [25, 76, 214]. In [77], an RBM ansatz is used to capture the dynamics of the
2D Heisenberg model, predicting strong magnon-magnon interactions leading to supermagnonic
propagation. In [89] the dynamics of the 2D transverse-field Ising model around the quantum phase
transition has been studied with t-VMC, leading to insights in the quantum Kibble-Zurek mechanism.
Numerical simulations obtained with t-VMC have been used to validate experimental data interpretation, as
is done in [119] for a network description of wave function snapshots. However, accessing long times via
t-VMC stays challenging. The stability of t-VMC strongly depends on the chosen variational ansatz [193],
and is affected by systematic statistical bias or an exponential sample complexity when the wave-function
contains zeros. This is also the case for ground state calculations, but is less harmful due to the accumulation
of error that affects dynamics [211].

A new method is proposed to circumvent these issues in [193] and [211], see figure 12: Projected
time-dependent Variational Monte Carlo (p-tVMC). The scheme consists of casting a Runge-Kutta
integration scheme into minimizing a variational distance at each time step. Starting again from the
Dirac-Frenkel Variational Principle, an s-order Runge-Kutta approximant is to be used, instead of a first
order expansion of the time propagator [193]. In practice, a metric based upon infidelity can now be used, in
contrast to the normally used Fubini-Study distance. This infidelity can be estimated through Monte Carlo
sampling and should be considered the distance in the Hilbert space between U|ψθ⟩ and |ψθ̃⟩ , which is to be
optimized [211]:

min
θ̃

I
(
|ψθ̃⟩,U|ψθ⟩

)
. (42)

No expansion of |ψθ̃⟩ with respect to the variational parameters is necessary for p-tVMC, opposed to tVMC

where a second order expansion leads to equation (41). However, the unitary time evolution e−iĤδt needs to
be decomposed by the Trotter-Suzuki decomposition, leading to a scaling of the number of required samples
with the Trotter order. This is costly and breaks translational invariance. Alternatively, an expansion of the
time propagator into its Taylor decomposition is needed, typically up to second order in Ĥ in order to
evaluate long time dynamics. This results in a quadratic increase of the connected matrix elements that need
to be computed, and thereby the computational cost. Furthermore, for higher s-order integration schemes,
the computational cost scales with the system size N as Ns [193]. In [211] the use of an RBM avoids this issue
by computing the off-diagonal elements in the transverse field Ising model exactly. Because of this, the
p-tVMC method only scales linearly with the number of parameters, which makes this a promising method
to compute dynamics for large neural network architectures. As opposed to an update rule for the network
parameters θ, standard gradient descent based techniques to minimize the infidelity can be used. Since
p-tVMC is not affected by biases or vanishing SNR, it can simulate dynamics in cases where t-VMC fails or is
inefficient [211].

An alternative approach, using the implicit midpoint method, has been explored in [213]. Here, the
network parameters are optimized to minimize the error between the state at the next time step t+∆t and
the discrete flow of the implicit midpoint method applied to the Schrödinger equation. This has shown some
advantages in preserving the symplectic form of Hamiltonian dynamics while not complicating the network
optimization with intermediate quantities [213].

In [215], a dynamical strong disorder renormalization group approach is used to map the quantum
dynamics of a disordered spin chain onto a quantum circuit generated by local unitaries. These local
unitaries are applied to the NQS in a supervised scheme, similar to the SWO discussed in section 3.1 and the
infidelity minimization in p-tVMC.

Other methods to calculate the dynamics of a system consist of training with time evolved states that have
been exactly calculated using ED, such that the evolution of new initial states can be predicted by a neural
network without evolving the wave function explicitly with the Hamiltonian [216]. To speed up the
simulation of the dynamics of many-body systems, hybrid methods are used such as using neural quantum
states with calculations on quantum devices to determine expectation values with high computational cost
[214]. Another approach are variational classical networks [217–219], i.e. efficient and perturbatively
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controlled representations of (time-evolved) wave functions in terms of classical spins, where the latter are
used to construct a NQS representation of the state under consideration.

3.3.1. Spectral functions
Most of the work discussed so far focus on global quenches. Time-dependent NQS can however also be used
to simulate local quenches, such as the response of a system to a local perturbation, relevant for spectral
functions. In [88], the dynamical spin structure factor of different two-dimensional quantum Ising models is
calculated by applying t-VMC following a local perturbation (application of Ŝz operator) on top of the
ground state represented by a convolutional neural network. Subsequent Fourier transformation yields the
momentum- and frequency-resolved structure factor. A complementary approach is demonstrated in [220].
Here, the dynamical structure factor of the one- and two-dimensional Heisenberg model is calculated
explicitly using a Chebyshev expansion, where the corresponding wave functions are represented as RBMs. In
[221], the Green’s function

Gij (z) = ⟨ψ| Â†
i

1

z− Ĥ
Âj |ψ⟩ (43)

is directly calculated by an extension of the SR approach to obtain the correction vector∣∣χj (z)
〉
=

1

z− Ĥ
Âj |ψ⟩ , (44)

where the corresponding ground state |ψ⟩ of the system has been obtained beforehand using SR.

3.4. Finite temperature states
In many experimentally relevant situations, we are dealing with quantum many-body systems at a finite
temperature, and in order to compute thermodynamics properties of the system one needs to work with the
thermal density matrix

ρ̂=
1

Z
e−βĤ (45)

where Ĥ is the Hamiltonian of the system, β = 1
kBT

is the inverse temperature, and kB is the Boltzmann
constant. Hence, the task boils down to evaluating this density matrix efficiently. One approach that has been
developed and is commonly applied in the context of MPS is the idea of purification, also known as the
thermofield approach [2, 146, 222]. In the purification method, an additional auxiliary site is introduced for
each physical site of the system, known as an ancilla. As a result, one deals with a pure instead of a mixed
state, where said pure state lives in a higher dimensional Hilbert space. The algorithm then starts from an
infinite temperature state, followed by imaginary time evolution to cool down the system to the desired
temperature, where imaginary time τ here denotes the inverse temperature β. The desired thermal density
matrix is then obtained by tracing out the auxiliary degrees of freedom a, i.e.

ρ̂(σ,σ ′) =
∑
a

⟨σ,a|ψ ⟩⟨ψ |σ ′,a⟩. (46)

In the context of neural network quantum states, one approach to purification is through a modified
RBM, see figure 13(a). A similar type of architecture was also used in [223] to reconstruct mixed states. [191,
224] employ the purification method to obtain finite temperature expectation values for a Heisenberg chain
and a 6× 6 J1 − J2 model. On top of the imaginary time evolution, [225] deals with real-time evolution,
leveraging an RNN architecture. &percentage;For thermal states, the system’s configuration is not static but
evolves according to thermal fluctuations. RNNs can model this evolution by considering each spin’s state in
relation to its predecessors, allowing for an accurate representation of the system’s thermal dynamics without
simplifying the complex interactions between particles.

Another promising approach also developed in the context of tensor networks is the idea of minimally
entangled typical thermal states (METTS) [226, 227]. METTS is designed to efficiently sample from the
thermal ensemble instead of dealing with the full complexity of the mixed state directly. The idea is to
construct an ensemble of pure states, which provides a good approximation of the thermal equilibrium state.
Concretely, the trace in the evaluation of finite temperature expectation values can be expanded in terms of
an orthonormal basis as

⟨Ô⟩= Tr
(
ρ̂Ô
)
=

1

Z

∑
i

⟨σi|e−βĤ/2Ôe−βĤ/2 |σi ⟩=
1

Z

∑
i

P(i)⟨ψσi (β)| Ô |ψσi (β)⟩ . (47)
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Figure 13. Finite temperature state simulations: (a) In the purification method, ancilla sites a are introduced in addition to the
physical sites σ, see equation (46). The mixed state of the system is obtained by integrating out the auxiliary sites. (b) METTS:
Starting from a pure infinite temperature state (top), the state is evolved in imaginary time (ITE) to produce a METT state
(bottom). Next, a projective measurement (collapse) to a random basis state is done in order to obtain a new pure state. The
expectation value of desired observables is calculated through the ensemble of METT states.

To this end, one starts from a pure product state |σ0⟩. This product state is evolved in imaginary time to

generate a state |ψσi(β)⟩= e−βĤ/2 |σi ⟩. This procedure gives us a so-called METTS state |ψσ(β)⟩. After this
step, a projective measurement in the computational basis (collapse) is performed in order to produce a new
pure state |σ1⟩ to start over with imaginary time evolution. This procedure of sampling the states |σi⟩
ensures that the resulting states represent the thermal ensemble accurately [227]. At the end, we have a set of
states {|ψσ0(β)⟩ , |ψσ1(β)⟩ , . . . , |ψσn(β)⟩} from which the thermal average of a given operator Ô can be
estimated as:

⟨Ô⟩β =
1

Ns

n∑
i=1

⟨ψσi (β) |Ô|ψσi (β)⟩, (48)

where Ns is the number of METTS state samples. In [191, 228], the product states |σ0⟩ are prepared by
adjusting the parameters of an RBM correspondingly.

For the imaginary time evolution employed both in the purification and the METTS algorithm, the
following equation must be solved:

∂

∂β
|ψ (β)⟩=−1

2
Ĥ|ψ (β)⟩, (49)

where the new wave function after each imaginary time step δτ must stay within the variational manifold.
This constraint can lead to a modification of β.

Another approach to simulate finite temperature states is based on quantum typicality [191] which
utilizes the concept that a single pure state can accurately reproduce the expectation values of an observable
in the Gibbs ensemble for large systems. This method approximates an infinite temperature state using a
combination of a pair product (PP) wave function ΦPP and a neural network component ψθ , i.e.

Ψ(σ) = ψθ (σ)ΦPP (σ) . (50)

Pair product wave functions can model electron interactions within the system, including the prohibition of
double occupancy through the use of the Gutzwiller projection. The typical state is then evolved in imaginary
time to simulate finite temperatures.

In [229], a CNN with two input channels σ and σ ′ is used to represent a mixed state ρ̂(σ,σ ′) of a
one-dimensional bosonic system. Starting from an infinite temperature state, imaginary time evolution is
performed, such that the output of the network is the corresponding matrix elements of density matrix at the
desired temperature. As opposed to e.g. purification, this approach does not guarantee the hermiticity and
positive definiteness of the density matrix.

In contrast to the works discussed so far, which all use imaginary time evolution, a recent paper [230]
instead minimizes a modified free energy. Here, the von-Neumann entropy is replaced by the second Rényi
entropy, which can be evaluated fairly efficiently. The optimization of neural network parameters is guided
by the goal of minimizing this approximation to the free energy.
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3.5. Open systems
The state of an open quantum system is described by its density operator ρ̂. This makes the simulation of
open systems even more challenging than for closed systems, since for density matrices, the curse of
dimensionality is even more pronounced as for wave functions, e.g. for a system of N spin-1/2 particles the
number of coefficients to parameterize ρ̂ scales as 4N coefficients [114]. The dynamics of open quantum
systems is governed by the Lindblad master equation,

˙̂ρ=−i
[
Ĥ, ρ̂

]
+
∑
i

γi

((
L̂i
)†
ρ̂L̂i − 1

2

{(
L̂i
)†
L̂i , ρ̂

})
(51)

where [. . . ]({. . .}) denote (anti-)commutators and L̂ are so-called jump operators. The first term describes
the unitary dynamics of the system given by Ĥ, the second the non-unitary dynamics due to the dissipation
to the environment with strength γ. Equation (51) can also be expressed as

d

dt
ρ̂= L̂ρ̂ (52)

with the Liouvillian L̂.
In most cases, the second form is used to determine the solution ρ̂ using NQS. In order to do so, a neural

representation of the density operator is needed. This is typically realized by (i) using positive operator
valued measures (POVMs) [145] or (ii) introducing additional nodes that encode the mixing to the
environment [223, 231]. We would like to point out that the works discussed here in the context of (i) and
(ii) are inherently different from machine learning approaches to open quantum systems that e.g. aim learn a
parameterization of L̂ and not ρ̂ as e.g. in [232, 233].

In the POVM approach [145], the density matrix is represented by a probability distribution over
measurement outcomes a of an informationally complete (IC) set of measurement operators M̂a, inspired
from Born’s rule

Pθ (a) = Tr
(
M̂aρ̂POVM

)
. (53)

This leads to the definition

ρ̂POVM =
∑
a,a ′

Pθ (a)T
−1
a,a ′M̂a ′ , (54)

with the overlap matrix Ta,a ′ = TrM̂aM̂a ′ and different possible choices of M̂. The advantage of the
IC-POVM representation is that in equation (54) only the positive amplitudes Pθ(a) have to be modeled by a
neural network. However, ρ̂POVM is, in general, not a positive-definite matrix. This problem does not occur
in the purification ansatz [234].

The second approach is e.g. taken in [231], where an RBM with an additional hidden layer is used, and
both visible and hidden state representations are split into two representations for rows and columns of the
density matrix ρ̂(σ,σ ′), see figure 14. Other neural density operators exist, e.g. in terms of CNNs [235, 236]
or in form of an autoregressive network, see [234]. In the latter work, the density matrix is defined as

ρ̂(σ,σ ′) =
N∏

i=1

R∑
a=1

ψσ⩽i,a

(
ψσ ′

⩽i,a

)∗
, (55)

with ancillas a and neural network representations of ψσ⩽i,a. This is an example of the purification approach
discussed in section 3.4. In contrast to the POVM approach, this purification via the ancilla nodes in
equation (55) makes the density matrix positive semi-definite. Furthermore, each factor∑R

a=1ψσ⩽i,a(ψσ ′
⩽i,a

)∗ in equation (55) can be normalized, making the neural network representation of ρ̂
autoregressive.

With these ansätze (i) and (ii), the solution of equation (52) can be obtained using different approaches:

3.5.1. Time dependent solution of the Lindblad equation
Equation (52) can be solved directly by minimizing || ddt ρ̂−L̂θ|| using SR, where || . . . || can e.g. be taken to
be the Fubini-Study distance or the trace norm [231, 237]. This is done e.g. in [231] using an RBM with
additional nodes to simulate a 1D anisotropic Heisenberg model or in [237] using a deep (quantum) FFNN
for a dissipative 1D TFIM and 2D J1 − J2 spin systems. For systems that lack translational invariance, more
elaborate sampling and optimization procedures are necessary [238, 239]. In [105, 114, 240] the POVM
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Figure 14. Neural density operator based on a RBM as used in [231]: The state of the physical system is encoded by the visible
(blue) layer, with correlations encoded in the bottom hidden layer (purple) and mixing due to the environment encoded in the
top hidden layer (red). The left represents row, the right part column indices of the density matrix ρ̂(σ,σ ′).

ansatz implemented with autoregressive networks is used for the time dependent solution of 1D and 2D
dissipative Heisenberg models and prototypical states from quantum computing. In order to do so, the time
evolution has to be represented in the stochastic representation (54), i.e. an operator Ô is calculated that time
evolves Pθt(a). Then, the parameters θt+1 are selected such that the distance between ÔPθt(a) and Pθt+1(a) is
minimal. In [105, 240], this distance is calculated explicitly, e.g. in [240] the the Kullback-Leibler (KL)
divergence DKL(ÔPθt(a)|Pθt+1(a)), see equation (57), is minimized. In [105], the network parameters are
optimized to minimize the error between the new, time evolved state and the target state given by the discrete
flow according to a second-order forward-backward trapezoid method applied to the Lindblad equation.

In [114], the distance is measured by the KL or the Hellinger distance, but in this work the distance
metrics are expanded around small times, leading to the the time dependent variational principle update, see
equation (32), for Pθt(a). This reduces the sampling cost and makes the optimization problem convex.

3.5.2. Steady states
Other works use the fact that stationary states ρ̂ss in open systems fulfill

d

dt
ρ̂ss = L̂ρ̂ss = 0. (56)

The neural density operator is trained to fulfill this condition by minimizing e.g. the expectation value of L̂
[241, 242] or the L2-norm [236, 243]. Furthermore, L̂† can be applied from the left to equation (56), yielding
an optimization problem of L̂†L̂ instead of L̂, with the advantage that the former operator is hermitean and
hence has a real spectrum [244]. In [242], the dynamics of a 2D dissipative XYZ spin model is simulated
using an RBM with additional nodes. [243, 244] consider 2D transverse-field Ising models and other similar
spin systems.

4. Learning from data

4.1. Quantum state tomography
QST, i.e. the reconstruction of a quantum state from measurement data, plays a crucial role for the
characterization and verification of quantum devices [245]. For example, it can be applied to compare the
experimentally prepared state against the target state to estimate the error of the quantum device under
consideration, see figure 15. Furthermore, QST enables the evaluation of complex observables that would
not be accessible directly from experiments [36].

Full QST relies on two assumptions: (i) Since typically several measurements are needed to infer the
quantum state, it is assumed that identical copies of the state can be prepared from which the measurements
can be taken. (ii) The set of measurements, described by POVMs, is IC and hence the probability distribution
over measurement outcomes uniquely determine the quantum state via Born’s rule. Since these conditions
are not fulfilled in most cases, approximate QST schemes are necessary.

Conventional methods for QST, such as linear inversion and maximum likelihood estimation [246, 247],
are based on inverting Born’s rule and hence suffer from an exponential scaling with the system size, resulting
from an exponential growth of both the sampling complexity and the number of parameters needed to
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Figure 15. Quantum state tomography: Reconstruction of an unknown quantum state ψ on a quantum device, by taking
measurements σ and reconstruction with a neural network. The network is trained such that the amplitudes of the reconstructed
state ψθ are as close as possible to the real measurement distribution generated from ψ, see equation (57).

represent the state. Under these aspects, machine learning techniques have enormous potential for QST:
Firstly, machine learning models can learn the structure of a state under consideration, i.e. symmetries or
correlations, allowing them to efficiently represent typical physical states with a reduced number of
parameters [40]. Furthermore, they have the ability to generalize from an incomplete dataset, tackling the
exponential scaling of the sample complexity [248]. In [249], the authors show that a simple FFNN can
outperform conventional methods both in terms of reconstruction time and quality.

The potential of neural quantum states for QST has been explored for various pure and mixed quantum
states. One of the first works reconstructs finite temperature states of the 1D and 2D Ising model using
real-valued RBMs [250]. Furthermore, highly entangled states with more than a hundred qubits are
reconstructed in [124] using a complex RBM. In these works, the NQS is trained by minimizing the KL
divergence between the measurement distribution q and the NQS amplitudes pθ ,

DKL (q|pθ) =
∑
σ

q(σ) log

(
q(σ)

pθ (σ)

)
(57)

on the underlying datasetD with measurements σ ∈ D. In [251], instead of DKL the classical shadow
formalism (see below) is used to approximate the infidelity between target and reconstructed state.

This procedure assumes pure quantum states, which is typically not the case in experimental settings. In
some cases, pure representations can nevertheless be used to approximately represent the states under
consideration and effect of measurement errors in the training data can be mitigated by modifications of the
NQS architecture, as shown in [252] for data from 1D Rydberg tweezer arrays using an RBM with an
additional noise layer. However, in many cases, the reconstruction of the full density matrix is needed.
Requirements on the density matrix, such as positivity, can be enforced using a purification scheme with
additional latent units [223]. Other works considering mixed state representations involve generative models,
neural density operators and POVM representatins [145, 253, 254], see section 3.5. In [255], an iterative
scheme to promote any pure state reconstruction to a mixed state reconstruction is proposed. The
reconstruction performance can be increased by filtering the experimental data [256] or constraining the
density matrix, e.g. to positivity or global symmetries, improve the performance, in particular in the
presence of measurement imperfections [112, 257].

To further reduce the amount of measurement data needed for the reconstruction, an efficient evaluation
of the typically incomplete set of measurements is needed. In [258], the authors present an efficient method
for constructing approximate classical descriptions of quantum states from very few measurements, so-called
classical shadows, with an information-theoretic bound for the precision of estimated expectation values.
The procedure relies on randomly selecting unitaries Û from an ensemble of particular unitaries that allow
one to calculate

M(ρ̂) = E
[
Û†|σ⟩⟨σ|Û

]
(58)

from measurements in the computational basis |σ⟩. Here, E [. . . ] denotes the average over both the choice of
unitary and the outcome distribution. The density matrix ρ̂ can be approximated by the so-called classical
shadow S consisting of Ns samples, with

S =
{
ρ̂i =M−1

(
Û†

i |σ⟩i⟨σ|iÛi

)
with i ∈ 1, . . . ,Ns

}
. (59)

Further works consider the effect of local measurements [259] or an efficient choice of measurement
configurations [208, 260]. Hereby, adaptive schemes, that incorporate the knowledge gained from previous
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Figure 16. Variational autoencoder consisting of an encoder, the latent space or bottleneck layer, and a decoder. The latent space
representation is a multivariate Gaussian, i.e. the encoder generates the values for mean and variances of the Gaussian
distribution. By sampling from this Gaussian, the input for the decoder layer is generated.

measurements to propose the next measurement configuration, are of great interest [208, 261]. Moreover,
NQS can be pretrained with artificial data before the measurements to enhance the reconstruction [262].

Also in the setting of QST, the choice of NQS depends on the state under consideration, with potential
advantages e.g. of autoregressive networks and their perfect sampling [109] or of networks which can
represent a high degree of entanglement [104, 263]. Typical architectures are RBMs [37, 124, 250, 264] (see
section 2.2), RNNs [37, 112] (see section 2.5) and transformer networks [104, 263, 265] (see section 2.6) and
CNNs [109] (see section 2.3). Furthermore, latent space representations like variational autoencoders are
used [266–268]. Since these architecture has not been introduced yet, we we shortly describe autoencoders
and their application to quantum state reconstruction in the following.

4.1.1. Latent space representations
Latent space representations consist of an encoder, the latent space or bottleneck layer, and a decoder, see
figure 16. The encoder, typically several fully connected or convolutional layers, compresses the input into
just a few nodes in the bottleneck layer. The decoder subsequently generates an output based on the
information in the bottleneck layer. The network parameters are optimized such that the generated output is
as close to the input as possible.

In a variational autoencoder [269], the encoder generates the values for mean and variances in the
bottleneck layer, and the values used as input for the decoder are then sampled from a multivariate Gaussian.

Variational autoencoders have been used in [266–268] for (quantum) state reconstruction, where the
input consists of the measured data, which the autoencoder learns to compress and de-compress using
encoder and decoder. After training, the encoder can be dropped, and by sampling random numbers as input
to the latent space, new, uncorrelated samples can be generated.

In [266], this approach is used to reconstruct positive wave functions, i.e. effectively, the probability
distribution of the samples in the computational basis is learned. The efficiency of the compression is
quantified by the ratio of the number of network parameters to the Hilbert space dimension. In this case, the
size of the latent space is always chosen to correspond to the system size. [267] uses a conditional variational
autoencoder to perform state reconstruction of ground states of the 1D transverse field Ising model based on
IC positive-operator valued measures. The magnetic field h is the condition, which is used as additional input
to the decoder. Furthermore, the autoencoder representation of the quantum state is appealing since its
latent space contains information on the state under consideration: In [268], the low-dimensional latent
space representation of finite temperature samples of the 2D Ising model is used to extract physical features.
The authors of [270] determine the minimal size of the latent space needed to reproduce local observations
to measure the local complexity of time-evolved states.

4.2. Hybrid training
The ground state search described in section 3.1 typically starts from an NQS with randomly initialized
parameters θ0. Assuming convergence of the variational Monte Carlo procedure, the details of this
initialization should not matter. However, if the ground state search is challenging, e.g. due to local minima,
the question of convergence itself, as well as how many iterations are needed to reach the ground state can
crucially depend on the choice of θ0. Using existing data, e.g. from other numerical simulations or an
experimental realization, the initial parameters can be chosen such that the ground state search starts from a
highly promising region of the parameter space. In this case, the data is used to perform state reconstruction
as described in section 4.1. Subsequently, the parameters of the same neural quantum state are variationally
minimized to find the ground state.
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In an experiment, the ground state is typically not perfectly realized. The combination of experimental
data from a state close to the ground state with a subsequent numerical ground state search can yield better
results than either approach exhibits on its own, as demonstrated for large, interacting two-dimensional
Rydberg atom arrays using quantumMonte Carlo data in [271] and using experimental snapshots from large
two-dimensional Rydberg atom arrays [272] in [117]. This is done by minimizing the KL divergence between
the measurement distribution q and the NQS amplitudes pθ = |ψθ|2, see equation (57). In both cases, a
recurrent neural network was used to represent the quantum state. In these examples, the Hamiltonian
under consideration is stoquastic, and thus a wave function with real coefficients can represent its ground
state. This means in particular that measurements in the computational basis are sufficient for a faithful state
reconstruction.

In [273], molecular Hamiltonians for LiH and H2, as well as the one-dimensional lattice Schwinger
model are considered. The Hamiltonians under consideration are not stoquastic, and thus measurements in
different bases are necessary to faitfhully reconstruct their ground states. The computational cost for a single
iteration in the reconstruction training is 2K , where K is the number of sites on which measurements outside
of the computational basis (i.e. in the x- or y-basis) are performed. In order to constrain this computational
cost, measurements with only a few rotations out of the z-basis are used for state reconstruction. The ground
state is prepared using the variational quantum eigensolver on IBM quantum devices, based on
superconducting qubits, as well as using numerical simulations. Again, the results show that this hybrid
approach improves the numerical and experimental results to yield lower errors for the ground state energy.
Moreover, accurate estimations of more complex observables, such as the entanglement entropy, are directly
possible without requiring additional quantum resources.

The problem of the exponential cost for a reconstruction based on measurements from configurations
away from the computational basis is overcome in [103] by training on observables like spin-spin
correlations instead of the snapshots in the rotated basis. In order to do so, instead of the KL divergence, a
variant of the mean-square error loss is used for the rotated basis. This loss function does not incorporate
information on the measurement statistics, but allows to compensate for systematic errors that are
e.g. present in experimental data, for example by explicitly applying spatial symmetries when calculating the
experimental observables. Furthermore, for the computational basis [103] compares the KL divergence to
the Wasserstein (or earth movers distance), with the advantage of the latter that it can incorporate
information on the energy to the data-driven pretraining.

In [274] samples from a quantum state produced by the variational quantum eigensolver, a quantum
algorithm which generates the ground state on a quantum device, are used. In contrast to the other works
discussed in this context, the experimental samples directly replace the samples needed in the VMC, i.e. at the
beginning of the training these samples are used to calculate the expectation values for the VMC optimization
instead of samples generated from the trial function. The authors argue that this gives a better estimation of
the expectation values at the beginning of the training, speeding up the convergence. After this first stage, the
usual VMC algorithm is used. The method is applied for trial wave functions in form of an NQS and the
Gutzwiller wave function to find the ground state of the 1D TFIM and Fermi-Hubbard model, respectively.

5. Summary and outlook

In this review, we discuss NQS, i.e. variational wave functions that are represented by neural networks. The
extensive study of NQS since their proposal in 2017 [25], has revealed that the strengths of neural
networks—namely their great expressive power, their ability to compress information very efficiently and
their capability to generalize from a given dataset—turn out to be extremely helpful for the simulation of
quantum systems:

On the one hand, their expressivity permits the representation of a broad range of quantum states,
including a variety of (frustrated) spin systems as well as bosonic and fermionic quantum many-body states
in one, two and even three dimensions that we review in this article. The limits of this expressive power are
still topic of current research. Second, the efficiency of NQS allows to compress the exponential number of
wave function coefficients w.r.t. the system size into a tractable number of network parameters, competitive
with state of the art numerical methods. This makes NQS very versatile and applicable in many different
contexts in the field of numerical simulation of quantum systems and QST. However, finding the targeted
state in the huge and complicated optimization landscape with many local minima remains one of the main
challenges of the NQS approach, and the optimization depends sensitively on the choice of architecture,
hyperparameters and the specific optimization strategies, as we discuss in this review. Advanced training
strategies, among them SR which incorporates the geometric structure of the loss landscape, are crucial to
overcome this problem. For example, recent results on spin systems obtained with a modified version of SR
even start to reach numerical precision in terms of the obtained ground state energies [87]. Furthermore,
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hybrid approaches, allowing to choose a good starting point of the optimization obtained from training on
experimental or numerical data [117, 271] or from the initialization of certain NQS from TNs [49], allow to
combine the advantages of existing methods and NQS and are hence promising to overcome this challenge.
Finally, the capacity of neural networks to generalize from the training data makes NQS an excellent platform
for exploring innovative ideas that go beyond existing methods, such as the creation of toolboxes for
simulating entire phase diagrams rather than individual states [57, 98]. Harnessed with these strengths and
versatility, neural quantum states offer a new and promising perspective on the challenges posed by
simulating quantum many-body systems.
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