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Supplementary Note 1 

Across the spectrum of data-driven discovery methods, distinct characteristics emerge 

in terms of applicability, level of prior information required, and actual performance 

on a variety of metrics. Here, we provide an introduction to different data-driven 

equation discovery approaches.  

Sparse regression 

Sparse regression is a regression method when feature selection is required1. The term 

"sparse" refers to only a small subset of features being essential, while the others are 

ignored and effectively set to zero. The central assumption of sparse regression for 

discovering governing equations from data is that most physical systems are governed 

by only a few terms, generally represented by derivative terms2. The sparsity-

promoting methods, such as LASSO3 and STRidge4, are designed to solve equation 

discovery tasks without a brute-force search over all possible combinations. For 

example, if the goal is to discover the Burgers equations (e.g., 𝑢𝑡 = −𝑢𝑢𝑥 + 𝑢𝑥𝑥), one 

can assume that the equation is 𝑢𝑡 = Ξ1𝑢 + Ξ2𝑢𝑥 + Ξ3𝑢𝑢𝑥 + Ξ4𝑢𝑥𝑥 + Ξ5𝑢𝑢𝑥𝑥 +

Ξ6𝑠𝑖𝑛(𝑢)𝑢𝑥𝑥 +⋯. Sparse regression ensures that every correct nonzero Ξ𝑖  can be 

detected. Due to its low computational cost and few hyperparameters, it has 

developed rapidly and is especially suitable for those high-dimensional PDE systems 5. 

A recent notable improvement direction is to combine sparse regression with physics-

informed neural networks6,7. In these methods, neural network parameters are 

determined by fitting to noisy data and satisfying governing equations. The exact form 

of these equations is left unspecified, with the PDE provided in an extended format 

that includes additional terms not present in the true governing equation and 

subsequently filtered out by sparse regression8–14. This approach can significantly 

enhance the performance of sparse regression, making it more robust to noise and 

sparse data.  

Equation learner networks 

Recently, a neural network architecture called the EQL network, tailored explicitly for 

equation discovery, has been proposed15,16. The EQL network replaces conventional 

activation functions (e.g., Relu, tanh) with basic mathematical operators (e.g., ×, (∙)2) 

and establishes connections using fully connected layers. The training processes are 

the same as conventional neural networks, e.g., stochastic gradient descent methods. 

Once trained, the discovered equation can simply be read from the weights of the 

networks, analogous to the coefficients in linear regression. Regularization constraints 

are imposed during training to enforce the necessary sparsity for the physical 

equations. The EQL network has been extended to high-dimensional and dynamic 

systems, including PDEs and parametric PDEs17–19. The EQL network allows end-to-end 

training of the entire architecture through backpropagation, and it can interpolate 

seamlessly in time and make predictions at arbitrary time points19, demonstrating 

remarkable flexibility. The drawback of the EQL network is that it does not consistently 

achieve optimal convergence. This issue arises because the regularization constraint is 



implemented through the loss function, which is a soft constraint and cannot strictly 

guide the network training. 

Genetic programming 

Genetic programming (GP) is an evolutionary algorithm that efficiently explores 

potential solutions to specific problem ions within a given search object. There are 

various applications of GP20, and the first introduction for symbolic regression is 

generally attributed to Koza21, who demonstrated that GP could be employed for 

symbolic equations by encoding mathematical expressions as computational trees. 

Each tree node represents an operation (e.g., +,−,×, sin) and an operand containing 

physical and constant variables (e.g., 𝑥, 𝑦, 𝑧, 𝜋 ). In the algorithm, a population of 

individuals represented by trees is randomly generated. This population then evolves 

according to established evolutionary rules that include mutation, crossover, and other 

advanced operations. Individuals with high fitness are selected from the current 

population to serve as optimal individuals and parents for the next generation. This 

iterative process continues until a predetermined level of accuracy is achieved. GP is 

flexible in that it requires minimal prior physical information to derive the governing 

equations from the data. However, the main drawbacks of GP are premature 

convergence (i.e., the algorithm stops evolving too early) and bloat (i.e., the equations 

become unnecessarily complex), leading to equations of poor accuracy and excessive 

complexity. Numerous improvements have been proposed to enhance the 

performance of GP and successfully discover complex ODEs and PDEs from data22–26. 

One approach to improvement is to incorporate structural assumptions into the 

equations by defining model encodings within GP, such as dimensional homogeneity 

that ensures terms in the generated equations are consistent in their units27.  

Heuristic symbolic regression 

Heuristic symbolic regression (HSR) is another time-honored symbolic regression 

algorithm that facilitates data-driven discovery of mathematical expressions through 

iterative heuristic tests on a dataset. HSR uses underlying heuristic rules to simplify 

equation discovery, such as physical regulations. In the 1970s, Gerwin28 developed the 

first HSR method for discovering complicated mathematical functions of a single 

variable from data. Subsequently, Langley29 and Falkenhainer and Michalski30 

proposed analogous HSR approaches. In recent years, HSR has received renewed 

interest. AIFeynman31 and its updated version32 are innovative heuristic symbolic 

regression techniques that use a divide-and-conquer strategy and problem 

decomposition heuristics for equation extraction, which helps partition the data into 

simpler sub-problems and allows recursion. While current tests focus on algebraic 

equations, future research may extend to complex PDEs due to the scalability of HSR 
31.  

Mixed-integer nonlinear-programming approaches  

Mixed-integer nonlinear programming (MINLP) is a branch of mathematical 

optimization that deals with the optimization of a mathematical model containing 



both continuous and discrete decision variables and nonlinear functions33. The 

equation discovery problem can be formulated as a MINLP problem and solving it using 

established optimization algorithms34–38. The advantage of MINLP is that deterministic 

optimization techniques provide globally optimal mathematical expressions, 

bypassing exhaustive solution space search, and are thus much faster than other 

symbolic regression methods37. However, it is crucial to note that the computational 

time for MINLP solvers grows exponentially with the size of the input data. This 

becomes particularly pronounced when dealing with noisy data in geoscience analysis, 

where substantial computational resources are required to explore the symbolic 

expression space and identify solutions with low error and simplified expressions34.  

Deep reinforcement learning 

Deep reinforcement learning (DRL) is a deep learning algorithm that allows agents to 

learn and make decisions through trial and error, often used in tasks where an agent 

interacts with an environment to maximize a cumulative reward, such as autonomous 

vehicles and robotics control. Recently, DRL has been applied as an effective symbolic 

regression approach for discovering unknown governing equations39,40. This method 

employs a recurrent neural network (RNN) trained through reinforcement learning 

techniques. The RNN generates equations and utilizes a reward function to assess their 

performance in terms of equation accuracy by comparing predicted values with 

ground truth values. The original framework, known as Deep Symbolic Regression 

(DSR)39, has been refined in subsequent studies to enhance model performance41–43 

and ensure physical consistency 44. DRL is advantageous for its ability to narrow the 

search space and incorporate in-situ physical constraints (e.g., we can assume that the 

right child nodes of partial differential operators must be space variables when 

discovering PDEs), leading to superior performance in various tests of governing 

equation discovery39,42,43.  

Large-scale pre-trained Transformers 

Transformers45 is a deep learning model that employs self-attention mechanisms to 

dynamically weigh the importance of different parts of the input data, enabling 

exceptional performance in complex tasks such as machine translation and video 

understanding. Recently, significant progress has been made in developing large-scale 

pre-trained Transformers for symbolic regression. This approach generates substantial 

training data and then trains a transformer model using a supervised learning 

approach 46–50. The essential principle of this approach is to take advantage of the ease 

with which symbolic expressions for scalar functions can be generated and evaluated 

with random inputs, resulting in an abundance of training data. The large-scale pre-

trained Transformer method can recover symbolic equations much faster than other 

approaches, particularly for complex expressions because the inference process is 

performed by trained Transformers with fixed parameters. Moreover, their inherent 

capability of transfer learning makes them ideal for inferring new governing equations 

by utilizing knowledge from previous tasks with minimal additional training. It is worth 

noting that the lack of fine-tuning during testing can lead to reduced algorithm 



performance when faced with new out-of-distribution problems. 
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