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Abstract
Motivated by the success of the serial dictatorshipmechanism in social choice settings,
we explore its usefulness in tackling various combinatorial optimization problems.We
do so by considering an abstract model, in which a set of agents are asked to act in a
particular ordering, called the action sequence. Each agent acts in a way that gives her
the maximum possible value, given the actions of the agents who preceded her in the
action sequence. Our goal is to compute action sequences that yield approximately
optimal total value to the agents (a.k.a., social welfare).We assume query access to the
value vi (S) that the agent i gets when she acts after the agents in the ordered set S. We
establish tight bounds on the social welfare that can be achieved using polynomially
many queries. Even though these bounds show a marginally sublinear approximation
of optimal social welfare in general, excellent approximations can be obtained when
the valuations stem from an underlying combinatorial domain. Indicatively, when the
valuations are defined using bipartite matchings, arborescences in directed graphs,
and satisfiability of Boolean expressions, simple query-efficient algorithms yield 2-
approximations. We discuss issues related to truthfulness and show how some of
our algorithms can be implemented truthfully using VCG-like payments. Finally, we
introduce and study the price of serial dictatorship, a notion that provides an optimistic
measure of the quality of combinatorial optimization solutions generated by action
sequences.
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1 Introduction

Serial dictatorship (SD) is arguably themost straightforward algorithmwith numerous
applications in many different settings [1, 7, 11, 19, 24, 29, 30]. In the economics
literature (e.g., see [1]), it was first considered as a solution to the house allocation
problem,where a set of houses have to bematched to agentswhohave strict preferences
for them. The algorithm considers the agents in a fixed order and assigns the most-
preferred available house to each agent considered.

Crucially, SD can be used in a much more general context. Consider a scenario
with a set of agents, each having a menu of available actions and preferences for them.
The objective is to compute a set of collective actions, with one action per agent. SD
can perform the task by asking the agents to act in a predefined order. Whenever it is
an agent’s turn to act, she does so by selecting the action that is best possible, given
the actions of agents who acted before. Previous actions may render some action of
an agent unavailable and they can furthermore change her initial preferences.

This is a paradigm with several advantages. From the computational point of view,
SD is as simple as possible. Furthermore, it is easily explainable to the agents, who are
expected to have a minimal interaction with it. As SD never uses any input from the
agents besides their actions, they have no other option but to select their best possible
action. On the negative side, the predefined order in which the agents are considered
may lead to inefficiencies [11]. An agentwho acts earlymay block actionswhichmight
be highly beneficial to agents acting later. Random serial dictatorship [1, 7, 19, 24] is
an attempt to address this inefficiency without deviating from the main principles of
SD. The main idea is to consider the agents in a uniformly random order in the hope
that problematic orderings will be used only rarely. However, inefficiencies may still
happen [19].

As an example, consider the scenario where three items, a, b, and c, have to be
assigned to three agents, 1, 2, and 3, under the constraint that each item is given to a
single agent and each agent gets one item. Agent 1 values item a at 2 and item b at 1.
Agent 2 values item a at 10 and item b at 1, while agent 3 values item c at 1. All other
agent-item values are zero. Let us apply SD using an agent ordering according to their
ids. First, agent 1 acts and selects hermost desirable item a. Then, item a is not available
to agent 2, who selects her most valuable item available, i.e., item b. Finally, agent 3
selects the remaining item c. The total value (or social welfare) of the agents in the
resultingmatching is 4. On the other hand, if SD uses any ordering that considers agent
2 before agent 1, it would assign item a to agent 2, item b to agent 1, and, again, item
c to agent 3, leading to an optimal social welfare of 12. The application of the random
serial dictatorshipmechanismwould result in selecting one of the twomatchings above
equiprobably, again yielding a suboptimal (expected) social welfare of 8.

In this paper, we attempt a radical improvement of SD and instead ask: what is
the ordering of the agents which SD must use in order to obtain the best possible
results? In other words, we are interested in optimizing over serial dictatorships for
a given problem. Of course, this task cannot be performed without using the agent
preferences. Starting with no information about the problem at hand, our algorithms
learn (part of) the preferences by posing queries to the agents. A typical query to an
agent asks for the value of her best possible action in an agent ordering. Our objective
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is to study the query complexity of optimizing over serial dictatorships. Hence, we
seek for algorithms that use as few queries as possible.

1.1 Our Contribution

At the highest level of abstraction, we define the problem OptimalSequence that
captures the essence of optimizing over serial dictatorships. Instances of OptimalSe-
quence consist of a set of n agents. Each agent i has a valuation function which returns
the value vi (S) she gets by her best available action after the agents in the sequence S
have acted before i. Our aim is to design algorithms that compute an agent ordering
that gives high value to the agents. Our benchmark is the social welfare, i.e., the total
value of all agents. An important restriction is low query complexity; we seek for algo-
rithms that use only polynomially many value queries. Our main result (under a mild
monotonicity assumption) is an asymptotically tight bound of �

( n ln ln n
ln n

)
on the best

approximation ratio that can be achieved by such algorithms that use randomization.
Next, we consider refined OptimalSequence instances that may be relevant for

practical applications. We do so by assuming an underlying combinatorial structure
which defines the valuations. Indicatively, we present three specific valuation struc-
tures, motivated by matching markets, network design, and constraint satisfaction.
These define three special cases of OptimalSequence, which we call OSM, OSA,
and OSS. In OSM, the agents have a set of items as their available actions. Whenever
it is an agent’s turn to act, she picks the available item that is of highest value to her.
In OSA, the agents correspond to the nodes of a network and they can establish links
to other nodes as actions. Whenever it is an agent’s turn to act, she draws a link of
maximumvalue under the constraint that the network stays acyclic. InOSS, each agent
controls a Boolean variable and has two actions: setting her variable to either True or
False. These variables appear in a collection of weighted clauses. Whenever it is an
agent’s turn, she acts so that the weight of new satisfied clauses is maximized.

It turns out that OSM, OSA, and OSS admit much better algorithms. We present
simple 2-approximation algorithms for them and leave open the question of better
approximation results or lower bounds on the approximation ratio that can be achieved
by algorithmswith polynomial query complexity.We furthermore study computational
questions related to the existence of serial dictatorships that produce a given solution to
the underlying combinatorial problem.We prove thatwhether a given perfectmatching
forOSM and a given arborescence forOSA can be produced by serial dictatorships can
be decided in polynomial time. In contrast, for OSS, we show that deciding whether
a given Boolean assignment can be produced by a serial dictatorship is an NP-hard
problem.

We also consider serial dictatorship as a solution concept and quantify the restric-
tions it poses on the solutions of optimization problems by introducing the notion of the
price of serial dictatorship (PoSD). The PoSD of a combinatorial optimization prob-
lem is the worst-case ratio over all instances of the benefit of the optimal solution over
the best social welfare obtained by a serial dictatorship.We prove that the PoSDof both
maximum-weight bipartite matching and maximum-weight arborescence in directed
graphs is 1 while, in contrast, it is between 3/2 and 2 for maximum satisfiability.
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Finally, we scratch the surface of truthful implementations of our algorithms. We
prove that our best algorithm for general instances of OptimalSequence has a truthful
implementation through VCG-like payments (see [15]) which require only polylog-
arithmically many queries to compute. Our algorithm for OSM and OSA are shown
to be non-truthful. For OSA, we present a very simple randomized truthful mecha-
nism that uses no payments while, for OSS, we show that any serial dictatorship is a
2-approximate truthful mechanism without payments.

Our work reveals many open problems; we give a list with the most important
ones later. We remark that the approach can be naturally extended to many other
combinatorial problems than the ones considered here.

1.2 Further RelatedWork

Serial dictatorship and its variations have been well-studied in the matching liter-
ature [26]. It seems however that the approach we consider here has not received
attention therein. As an attempt to optimize serial dictatorships, one can view the
notion of greedy weighted matchings in [18]. A greedy weighted matching is one that
can be produced by an algorithm which starts from an empty matching and iteratively
puts an edge of maximum weight that is consistent with it. This is a restricted way
to optimize over serial dictatorships. Furthermore, the authors in [18] study the com-
putational complexity of the problem assuming that the graph information (i.e., the
edge weights) is given to the algorithm upfront. The notion of picking sequence in
fair division [5, 10, 21, 23] is close to the action sequences that we consider here; the
crucial difference is that each agent can appear several times in a picking sequence.

Optimizing over serial dictatorships can be thought of as a particular way of exploit-
ing greediness in computation. There have been several attempts to formally define
greedy algorithms, including their relations to matroids, which are covered in classical
textbooks on algorithmdesign [16]. In relation to combinatorial optimization, thework
on incremental priority algorithms [8, 9, 17] has conceptual similarities. Furthermore,
for maximum satisfiability, there is an ongoing research line (e.g., see [27]) that aims
to design simple greedy-like algorithms that achieve good approximation ratios. In the
EconCS literature, cut, party affiliation, constraint satisfaction games (e.g., [6, 12])
and boolean games [31] are closest to ours among works that use boolean formulae to
express logical relations between agents’ actions. However, all these studies neglect
query complexity questions.

Finally, we remark that value queries, similar in spirit to those we consider here,
have been used to solve the maximumwelfare problem in combinatorial auctions [25].
The PoSD notion is inspired by the price of stability in strategic games [3] and the
price of fairness in allocation problems [4, 13].

1.3 Roadmap

The rest of the paper is structured as follows. We give preliminary definitions and our
notation in Section 2. We then study the query complexity of OptimalSequence in
Section 3. The refinement of OptimalSequence with specific valuation structures is
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presented in Section 4. The three case studies on bipartite matchings, arborescences,
and satisfiability follow inSections 5, 6, and7. Issues related to truthful implementation
are considered in Section 8.

2 Preliminaries

We consider scenarios where a set of agents are asked to act in a particular order.
Whenever it is the turn of an agent to act, she selects an action that gives her the
maximum possible value, given the actions of agents who acted before her. In this
section, we present basic definitions and notation for an abstract model that captures
such scenarios. Later, in Section 4, we refine this model further to bring it closer to
well-known combinatorial optimization problems.

We denote by n the number of agents, which we assume to be identified by the inte-
gers in set [n] = {1, 2, ..., n}. An action sequence (respectively, action subsequence)
S is an ordering S = (S(1), S(2), ...) of the agents in [n] (respectively, some of the
agents in [n]). For a subset of agents C ⊆ [n], we denote by SC the set of all action
(sub)sequences of the agents in C. For an agent i ∈ [n], we write S−i to denote all
possible action subsequences consisting of agents from the set [n] \ {i}. We reserve
the letters S and π for use as action (sub)sequences.

For two action subsequences S and S′, we write S′ ≤ S if S′ is an ordered subset
of S, i.e., if all agents in S′ are also in S and have the same relative ordering. We use
S||i to denote the action (sub)sequence which is obtained by appending agent i to the
action subsequence S. We use S \ j to denote the action subsequence obtained by
removing agent j from S, and preserving the order of the remaining agents. For an
action (sub)sequence S, we write Si to denote the action subsequence consisting of
the ordered set of agents that are ranked ahead of agent i in S. We sometimes use the
term prefix to refer to agents at the beginning of an action (sub)sequence. Clearly, for
any agent i who appears in action subsequence S, it is Si ≤ S. For an integer c ∈ [n],
we denote by S|c the action subsequence consisting of the first c agents of S.

Every agent i ∈ [n] has a valuation function vi : S−i �→ R≥0 which, for every
action subsequence S ∈ S−i , returns the value vi (S) that agent i gets when acting
immediately after the agents in the action subsequence1 S. We say that the valuations
of an agent i are monotone if for any two action subsequences S, S′ ∈ S−i , S′ ≤ S
implies vi (S′) ≥ vi (S). The social welfare SW(S) of an action sequence S is the total
value of the agents in the sequence, i.e., SW(S) = ∑

i∈[n] vi (Si ).
We study the problem of computing an action sequence having maximum social

welfare, which we callOptimalSequence. In particular, an instance of OptimalSe-
quence consists of the valuation functions of n agents and the objective is to compute
an action sequence of maximum social welfare. An important limitation of our model
is that the valuation functions are not given to the algorithm as part of the input.
Instead, the algorithms for solving OptimalSequence can access the entry vi (S)

of the valuation function through a query. We are interested in algorithms that solve

1 Note that agents aremyopic, i.e., they choose their best available action in a given round without thinking
how their peers will behave in subsequent rounds.
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OptimalSequence using a polynomial number of queries. In other words, we are
interested in understanding the query complexity of OptimalSequence. Notice that
exponentially many queries (for each agent i and each action subsequence in S−i )
can always be used to learn the valuation functions. Then, OptimalSequence can
be solved exactly. We remark that computational limitations are not our concern in
this work and we assume to have unlimited computational resources to process the
valuations once these are available.

As we will see, solving OptimalSequence exactly using polynomially many
queries is a challenge. So, we are interested in algorithms that compute approxi-
mately optimal solutions. On input an OptimalSequence instance, a ρ-approximate
action sequence (for ρ ≥ 1) is one which has a social welfare that is at most ρ

times smaller than the maximum possible (or optimal) social welfare over all action
sequences. We refer to ρ as the approximation ratio of an algorithm which always
returns ρ-approximate action sequences. Similarly, we say a randomized algorithm is
ρ-approximate if for an instance, it outputs an action sequence π such that

E [SW(π)] ≤ ρ · SW(π̃).

where π̃ is the optimal action sequence of the considered instance. We are interested
in OptimalSequence algorithms that make only polynomially many queries and
achieve an approximation ratio that is as low as possible.

3 The Query Complexity of Approximate Serial Dictatorships

We devote this section to studying the query complexity of approximation algorithms
for OptimalSequence, presenting both positive and negative results. It is not hard
to see that non-monotone valuations are notoriously hard to cope with and any finite
approximation may require to examine almost all the n! action sequences.2 However,
as we will see later in Section 7, excellent approximations for special cases of non-
monotone valuations are possible.

So, in the rest of this section, we focus on instances with monotone valuations. On
the positive side, we present two algorithms forOptimalSequence, one deterministic
and one randomized, called Det and Rand, respectively. Both algorithms use an
integer parameter c ≥ 1 and apply ton-agentOptimalSequence instances.Wedenote
by Nc the collection consisting of all sets of c distinct agents from [n]. AlgorithmDet
considers all c-sets in Nc. For each set C ∈ Nc, it considers every action subsequence
S ∈ SC and selects the one, call it S′, that maximizes the quantity

∑
i∈C vi (Si ).

Finally, it returns an action sequence that contains S′ as a prefix (by filling the last
n − c positions in the action sequence with agents in [n] \ C in arbitrary order).

Theorem 1 On input n-agent monotoneOptimalSequence instances, algorithmDet
makes

(n
c

) · c · c! queries and has an approximation ratio of at most n
c .

2 Indeed, consider instances in which a special agent i has valuation vi (S) = 1 if S contains all n − 1
other agents in a specific hidden order and all other agent valuations are zero. To compute the only action
sequence with non-zero social welfare, an algorithm needs to “guess” the hidden order.
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Proof Consider an n-agent OptimalSequence instance and notice that the algorithm
enumerates all the

(n
c

)
elements of Nc and for each such element C ∈ Nc and each

of the c! action subsequences S ∈ SC , it makes c queries to compute the value of the
sum

∑
i∈C vi (Si ). The bound on the number of queries follows.

Given an n-agent OptimalSequence instance, let π̃ be the optimal action
sequence, π be the action sequence returned by algorithm Det, and S = π |c. Denote
by S̃ ≤ π̃ the action subsequence consisting of those c agents that have the c highest
values vi (π̃

i ) (breaking ties arbitrarily). Then, by the definition of Det,

∑

i∈S
vi (S

i ) ≥
∑

i∈S̃
vi (S̃

i ). (1)

Furthermore, by monotonicity, the fact that S̃i ≤ π̃ i implies that vi (S̃i ) ≥ vi (π̃
i ) for

every agent i and, thus,

∑

i∈S̃
vi (S̃

i ) ≥
∑

i∈S̃
vi (π̃

i ). (2)

Finally, by the definition of S̃, we have

∑

i∈S̃
vi (π̃

i ) ≥ c

n
·
∑

i∈[n]
vi (π̃

i ). (3)

By inequalities (1), (2), (3), and the definition of the social welfare, we get

SW(π) =
∑

i∈[n]
vi (π

i ) ≥
∑

i∈S
vi (S

i ) ≥ c

n
·
∑

i∈[n]
vi (π̃

i ) = c

n
· SW(π̃).

The bound on the approximation ratio follows. 	

Theorem 1 implies the following using c = 1/ε for constant ε > 0.

Corollary 2 For every constant ε > 0, on input n-agent monotoneOptimalSequence
instances, algorithmDet has an approximation ratio at most ε ·n by making O

(
n2/ε

)

queries.

Algorithm Rand is similar to Det; it uses randomization to avoid the enumeration
over all elements of Nc. First, it selects a c-set C from Nc uniformly at random.
Then, it considers every action subsequence S ∈ SC and selects the one, call it S′,
that maximizes the quantity

∑
i∈C vi (Si ). Finally, it returns an action sequence that

contains S′ as a prefix.

Theorem 3 On input n-agent monotone OptimalSequence instances, algorithm
Rand makes c · c! queries and has an approximation ratio of at most n

c .
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Proof The bound on the number of queries is due to the fact that Rand considers all
the c! action subsequences with the agents in C and computes the sum

∑
i∈C vi (Si )

by making c queries for each of them.
To bound the approximation ratio, consider an n-agentOptimalSequence instance

and let π̃ and π be the optimal action sequence and the (random) action sequence
returned by Rand, respectively. Also, let SC be the action subsequence consisting of
agents in C so that SC ≤ π̃ . Since Rand prefers the prefix π |c to SC , we have

∑

i∈C
vi (π

i ) ≥
∑

i∈C
vi (S

i
C ) ≥

∑

i∈C
vi (π̃

i ). (4)

The last inequality follows bymonotonicity of valuations, which implies that vi (SiC ) ≥
vi (π̃

i ) since SiC ≤ π̃ i for every agent i ∈ C . Now, since C is selected uniformly at
random from Nc, an agent from [n] belongs to C with probability c

n . Using linearity
of expectation, inequality (4), and this last observation, we have

E [SW(π)] ≥ E

[
∑

i∈C
vi (π

i )

]

≥ E

[
∑

i∈C
vi (π̃

i )

]

= c

n
·
∑

i∈[n]
vi (π̃

i ) = c

n
· SW(π̃).

This completes the proof. 	

For c = �

( ln n
ln ln n

)
, Theorem 3 yields the following.

Corollary 4 On input n-agent monotone OptimalSequence instances, algorithm
Rand makes at most poly(n) queries and has an approximation ratio of at most
O

( n ln ln n
ln n

)
.

In the following, we show that Rand is (asymptotically) optimal through the fol-
lowing lower bound.

Theorem 5 For every integer c ≥ 1, any (possibly randomized) algorithm for mono-
toneOptimalSequence that makes at most c!

n −1 queries when applied on instances
with n agents has an approximation ratio at least n

c+1 .

Proof For an integer c ≥ 1, we will define a probability distribution Qc over n-agent
instances of OptimalSequence with an optimal social welfare of n, and will prove
that the expected social welfare of any deterministic algorithm that makes at most
c!
n − 1 queries on these instances is at most c + 1. Then, by Yao’s principle [32],
the quantity n

c+1 will be a lower bound on the approximation ratio of randomized
algorithms for OptimalSequence.

We define the family Fc consisting of instances Iπ for every π ∈ S[n]. Instance Iπ
is defined by the following valuation functions. For any agent i ∈ [n] and any action
subsequence S from S−i :

vi (S) =
{
1 if |S| < c or S ≤ π

0 otherwise
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Hence, the valuation functions are binary. An agent gets a value of 1 only in the
following two cases: (a) when she has fewer than c agents ahead of her, or (b) when the
agents ranked ahead of her have the same relative ordering as in the action sequence
π . In all other cases, her value is 0. Notice that the action sequence π has optimal
social welfare of n for instance Iπ .

Let us prove that the instances in Fc are indeed valid ones, i.e., the valuations
defined are monotone. Fix any agent i ∈ [n] and any action subsequence S ∈ S−i . To
prove monotonicity, we need to show that vi (S′) ≥ vi (S) for any action subsequence
S′ ≤ S. This follows trivially when |S| < c or when vi (S) = 0. Therefore, let us
assume that |S| ≥ c and vi (S) = 1. This implies that S is an action subsequence of
π , i.e., S ≤ π . By transitivity, we have S′ ≤ π as well, and the definition of vi yields
vi (S′) = 1, thereby proving that vi is monotone.

For integer c ≥ 1, the probability distribution Qc simply selects a magic action
sequence π̂ uniformly at random among the n! action sequences of S[n] and produces
the instance Iπ̂ . Consider a deterministic algorithm A that makes at most k = c!

n − 1
queries; we will show that the expected social welfare of its output on the (random)
instances produced by distribution Qc is at most c + 1. Assume that, on input the
instance Iπ̂ , algorithm A makes k queries of the form (i, S) and eventually returns
the action sequence π ∈ S[n]. We say that an action (sub)sequence S hits the magic
action sequence π̂ when |S| ≥ c and S|c ≤ π̂ . We define the enhanced version of A,
denoted by Aπ̂ , that works as follows when applied on instance Iπ̂ . Algorithm Aπ̂

simulates algorithmA, performing the following additional steps.WheneverAmakes
a query (i, S) so that S hits the magic action sequence π̂ ,Aπ̂ returns π̂ and terminates.
Also, if the action sequence π returned by A hits π̂ , algorithm Aπ̂ returns π̂ instead.
Otherwise, it returns π .

Observe that, the social welfare of algorithm A when applied on the instance Iπ̂
is never higher than the social welfare of the enhanced algorithm Aπ̂ . This is due to
the fact that Aπ̂ returns a suboptimal action sequence (i.e., one that is different than
π̂ ) only when this sequence is returned by A. Hence, it suffices to bound the social
welfare of algorithm Aπ̂ when applied on instance Iπ̂ .

For an action (sub)sequenceS, observe thatS[n] contains n!
c! action sequencesπ

′ such
that S|c ≤ π ′. Thus, the k action subsequences that algorithm A uses in its k queries
and the action sequence π it outputs hit at most (k+1)n!

c! different action sequences in
total. Since π̂ is selected uniformly at random among the n! action sequences of S[n],
the probability that either some of the k action subsequences that algorithmA uses in
its k queries or the action sequence π it outputs hit the magic action sequence π̂ is at
most k+1

c! . We conclude that the enhanced algorithmAπ̂ returns π̂ with probability at
most k+1

c! and gets social welfare n. Notice that if this is not the case, the social welfare
of the action sequence returned is exactly c. Then, the expected welfare of algorithm
A is

EI∼Qc [SW(A(I))] ≤ Eπ̂∼Qc [SW(Aπ̂ (Iπ̂ ))] ≤ c + (n − c) · k + 1

c! ≤ c + 1,

as desired. The last inequality follows by the definition of k. 	
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By applying Theorem 5 with c = �
( ln n
ln ln n

)
, we obtain that Rand is essentially

best possible.

Corollary 6 Any (possibly randomized) algorithm for monotone OptimalSequence
that makes poly(n) queries has approximation ratio �

( n ln ln n
ln n

)
.

4 Specific Valuation Structures

We now explore specific instances of OptimalSequence, in which valuations have
a combinatorial structure. In particular, the definition of valuations assumes that each
agent i has a set Xi from which she can select her actions. A collection of actions
is just a set of agent-action pairs (i, a), each consisting of an agent i and an action
a ∈ Xi . An agent i may appear in at most one agent-action pair of a collection. A
collection of actions that includes all agents is called full. A constraint F defines which
collections of actions are feasible. F is called downward closed if every subset of a
feasible collection of actions is feasible as well.

An action (sub)sequence S produces a collection of actions A as follows. Initially,
A is empty. When it is the turn of agent i to act, she selects an action â from Xi which
is best possible among all actions a in Xi such that A∪ {(i, a)} is feasible. The agent-
action pair (i, â) is then included in the collection of actions A. To decide which action
is best possible, agent i uses a strict ranking of the actions in Xi (possibly dependent on
other agent-action pairs inAwhen this decision is made) and corresponding valuations
for them that are consistent to it. We call the ranking of an agent and the corresponding
valuations for their action endogenous when it is independent of actions by other
agents. For an agent i who acts after a collection of actions by other agents, we denote
her best possible action as BR(i, A).

We consider three different feasibility constraints, which define three different
classes of valuations and corresponding restricted classes of OptimalSequence
instances; others can be defined analogously. Essentially, with each class, we restrict
our attention to OptimalSequence instances that may appear in practical applica-
tions and which are hopefully easier to solve than the very general ones. The three
valuation structures we consider are described in the next three subsections.

4.1 Matchings in Bipartite Graphs

The valuations are defined using a complete bipartite graph G = Kn,n , equipped with
a function w : [n]2 → R≥0, that assigns non-negative weights to its edges. The nodes
in the left part of the bipartition correspond to the n agents. The nodes in the right part
correspond to items, which are to be given to the agents, under the restriction that each
agent can get (at most) one item and each item will be given to (at most) one agent.
Such an assignment of items to agents is represented by a matching in G. The weight
w(i, j) denotes the value agent i has for item j. Agents pick their items according to
an action sequence. When it is the turn of an agent to act, she picks the item of highest
value among those that have not been picked by agents who acted before her.
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Formally, each agent i has a strict ranking ri that ranks the items in monotone
non-increasing order with respect to the value of agent i for them, breaking ties in a
predefined (agent-specific) manner. We denote by ri ( j) the rank of item j for agent i.
The items of rank 1 and n for agent i are ones for which she has highest and lowest
values, respectively. Also, ri ( j) < ri ( j ′) implies thatw(i, j) ≥ w(i, j ′). For an action
subsequence S ∈ S−i , denote byμi (S) the item agent i getswhen she acts immediately
after the agents in S. By overloading notation, we use μ(S) to denote the set of items
picked by the agents who acted before agent i, i.e., μ(S) = ∪k∈Sμk(Sk). Clearly,
μ(∅) = ∅. Then, the action of agent i when acting after the action subsequence
S ∈ S−i is to pick item μi (S) = argmin j∈[n]\μ(S) ri ( j), which gives her value
vi (S) = w(i, μi (S)). Notice that, when all agents have acted, the items picked form
a perfect matching in G.

We denote by OSM the special cases of OptimalSequence when applied on
instances with the specific valuation structure as defined above. To make a connection
with the general combinatorial structure described above, each agent i has the set of
all items as its set of available actions Xi . The feasibility constraint F requires that the
collection of actions form a matching in G. Clearly, F is downward closed. All agents
have endogenous rankings/valuations.

Lemma 7 OSM valuations are monotone.

Proof We will prove the claim by showing the following property: for every agent
i ∈ [n] and action subsequences S, Ŝ ∈ S−i with Ŝ ≤ S, it holds μ(Ŝ) ⊆ μ(S). This
implies that ri (μi (Ŝ)) ≤ ri (μi (S)) and, consequently, vi (Ŝ) ≥ vi (S).

To complete the proof, assume that the property is not true. Then, there exists an
agent k who gets in Ŝ an item that does not belong to set μ(Sk) and is different than
item μk(Sk). Assume, furthermore, that among the agents satisfying these conditions,
k is the agent that acts earliest in Ŝ. This would mean that the two items μk(Ŝk) and
μk(Sk) are both available to agent k when his turn in Ŝ and S comes. Picking a different
item in Ŝ and S violates our definition of agent actions. 	


4.2 Arborescences in Directed Graphs

The valuations are defined using an n-node complete directed graph G = ([n], E)

with a weight function w : E → R≥0 on its edges. The nodes correspond to the
agents. The weight w(i, j) denotes the value of agent i for the edge (i, j) (i.e., the
directed edge from node i to node j). Each agent has as objective to connect to another
node through a directed edge of maximum value so that this edge forms a directed
forest with edges drawn before.

Formally, each agent i has a strict ranking ri that ranks the outgoing edges from
node i in monotone non-increasing order with respect to the value of agent i for them,
breaking ties in a predefined manner. We denote by ri ( j) the rank of edge (i, j) for
agent i. The edges of rank 1 and n−1 for agent i are ones for which agent i has highest
and lowest values, respectively. Also, ri ( j) < ri ( j ′) implies that w(i, j) ≥ w(i, j ′).
For an action subsequence S ∈ S−i , denote by GS the subgraph of G consisting of
the edges drawn during the actions of the agents in S. Clearly, G∅ consists of the n
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nodes of G and no edges. For an agent i and action subsequence S ∈ S−i , we say an
edge (i, j) is forbidden if it forms a cycle when put together with the graph GS . The
action of agent i when acting after the action sequence S ∈ S−i is to draw an edge
to node τi (S) defined as the node j minimizing ri ( j) under the constraint that edge
(i, j) is not forbidden. The agent draws no edge if all edges are forbidden and gets a
value of vi (S) = 0. Notice that this will happen only for an agent who acts after all
other agents. Otherwise, the value of agent i is vi (S) = w(i, τi (S)). Notice that, when
all agents have acted, the edges drawn form an arborescence in G, i.e., a tree whose
edges are directed towards the root, which has out-degree 0.

According to the terminologyof thegeneral combinatorial structure, each agent i has
the set of all edges outgoing fromnode i as its set of available actions Xi . The feasibility
constraint F requires that the collection of actions form a directed forest in G; this is
clearly downward closed. Again, all agents have endogenous rankings/valuations. We
use the term OSA to refer to these instances of OptimalSequence.

Lemma 8 OSA valuations are monotone.

Proof Consider agent i ∈ [n] and twoaction subsequences S, Ŝ ∈ S−i such that Ŝ ≤ S.
We will show the following property: the edge agent i draws when she acts after the
action subsequence S is not forbidden when she acts after the action subsequence Ŝ.
Hence, we get vi (Ŝ) ≤ vi (S), as desired.

For the sake of contradiction, assume that the property is not true. Then, there
should exist action subsequences S and Ŝ with Ŝ ≤ S and an agent k in Ŝ, for which
the edge (k, j) she picks in S is forbidden when her turn to act comes in Ŝ. Among
all agents who may satisfy this condition, we specifically select k to be the one who
acts earliest in Ŝ. As edge (k, j) is forbidden for agent k in Ŝ, let C be the cycle it
forms together with GŜ . Let j1 be the node/agent that is furthest from k in C among
those drawing different edges in S and Ŝ. Let ( j1, j2) and ( j1, j3) be the edges agent
j1 draws in Ŝ and S, respectively.
We now claim that when it is the turn of agent j1 to act in S, the edge ( j1, j2) is not

forbidden. The reason is that the only nodes to which node j1 can be connected via
edges that were drawn in S before agent j1 acts, are those in the path from j2 to k in
C. As agent k has not acted before agent j1, no cycle can be formed if agent j1 draws
edge ( j1, j2). Hence, r j1( j2) > r j1( j3). But then, agent j1 who acts before agent k in
Ŝ and draws edge ( j1, j2) must have the edge ( j1, j3) she drew in S as forbidden. This
contradicts our assumption on the timing of agent k. 	


4.3 Satisfiability of Clauses

The valuations are defined using nBoolean variables x1, x2, ..., xn , a set C ofm clauses3

C1, C2, ..., Cm , and a function w : C → R≥0 that assigns a non-negative weight to
each clause. Agent i ∈ [n] controls the variable xi . Informally, when acting according
to an action sequence, an agent sets the value of her variable to either True or False,
so that the additional weight in the newly satisfied clauses is maximized. The value of

3 A clause is the disjunction of literals of the variables e.g., C4 = x1 ∨ x2 ∨ x4.
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an agent is then simply this additional weight of clauses that became satisfied due to
her action.

Formally, for agent i ∈ [n] and a set of clauses M, we denote by P(i, M) (respec-
tively, N (i, M)) the total weight of the clauses inM which contain the positive literal
xi (respectively, the negative literal xi ). For an action subsequence S, we denote by
CS the set of clauses that are not satisfied by the actions of the agents in S. Clearly,
C∅ = C. The action of agent i when acting after the agents in the action subsequence
S ∈ S−i is to set her variable xi to True if P(i,CS) > N (i,CS) and to False if
P(i,CS) < N (i,CS). Ties, i.e., when P(i,CS) = N (i,CS), are resolved by setting
xi to a predefined value (True or False). Then, the valuation vi (S) is simply P(i,CS)

or N (i,CS), whichever is higher, i.e., vi (S) = max{P(i,CS), N (i,CS)}.
According to the terminology above, each agent i has True and False as her two

available actions in Xi and there is no feasibility constraint. In contrast to the two
classes above, the agent rankings/values of the two actions are non-endogenous. We
denote by OSS the special cases of OptimalSequencewhen applied on satisfiability
instances.

Lemma 9 OSS valuations are not monotone.

Proof Consider the instance with three agents and the following clauses: x1 ∨ x2 of
weight 6, x1 ∨ x2 ∨ x3 of weight 2, x1 ∨ x2 ∨ x3 of weight 1, and x1 ∨ x2 of weight
2. Consider the action subsequence 12. Agent 1 sets x1 = 1 and then agent 2 sets
x2 = 0, leaving x1 ∨ x2 ∨ x3 as the only unsatisfied clause. Hence, agent 3 sets x3 = 1
and gets a value of v3(12) = 2. Now, consider the action subsequence that consists
only of agent 2. Agent 2 set x2 = 1 and, then, the only clause that is unsatisfied and
contains variable x3 is x1 ∨ x2 ∨ x3. We get v3(2) = 1, which violates monotonicity
of v3. 	


4.4 Three Key Questions

We devote the last part of this section to introduce the three key questions that we
consider, using the termOSF as a proxy for a valuation structure defined by a feasibility
constraint F.

With specific valuation structures, we hope to be able to achieve considerably
better approximations with polynomially many queries, compared to the upper bounds
for general OptimalSequence instances in Theorem 3. We remark that, like in our
algorithms in Section 3, the only tool that is available to algorithms for these problems
is query access to the valuations. However, knowledge of the fact that the valuations
have a specific underlying structure may prove useful.

Question 1: How well can algorithms that use polynomially many queries
approximate OSF?

We remark here that the computational complexity of the underlying optimization
problem does not have any implications for the query complexity of (approximating)
the corresponding OptimalSequence instance. We demonstrate this with a tailored
class of instances (defining the special case OSI of OptimalSequence) that use
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independent sets to define the valuations. Does the fact that the maximum independent
set problem is NP-hard (even to approximate) imply any lower bound on the query
complexity of OSI? We will see that the answer is negative.

An OSI instance is defined with an n-node undirected graph G. Each node corre-
sponds to an agent. For an agent i ∈ [n], the value vi (S) for an action subsequence
S ∈ S−i is 1 if the nodes in S ∪ {i} form an independent set and 0 otherwise. It is
not difficult to see that these valuations are monotone. Furthermore, the social wel-
fare SW(π) of an action sequence π is equal to the length of the maximal prefix
of π consisting of agents whose corresponding nodes form an independent set in G.
Hence, the optimal social welfare among all action sequences is equal to the size of the
maximum independent set. Now, notice that a simple algorithm that uses only O(n2)
queries can learn the underlying graph G, compute a maximum independent set in it,
and, consequently, an action sequence with maximum social welfare. It just suffices
to query the value vi ( j) for every pair of agents i and j. Then, the edge (i, j) exists in
G if vi ( j) = 0 and does not exist if vi ( j) = 1.

Next, we would like to understand how rich the space of action sequences is with
respect to all feasible solutions to the underlying combinatorial problem.

Question 2: What is the computational complexity of the following problem?
Given a collection of actions that satisfies the feasibility constraint F, decide
whether it can be produced by an action sequence.

An action sequence can be viewed as a greedy algorithm for computing a solution
to the combinatorial optimization problem MaxF, whose objective is to compute a
feasible collection of actions of maximum total value for the agents. An important
question about the quality of action sequences is then:

Question 3: How well can the best action sequence approximate the optimal
solution to the underlying MaxF combinatorial optimization problem?

We introduce the concept of the price of serial dictatorship (PoSD) of MaxF to
quantify the answer to Question 3. The price of serial dictatorship of an instance of
MaxF is the ratio of the maximum total value for the agents among all the feasible
collections of actions over the social welfare of the best action sequence. Then, the
price of serial dictatorship of MaxF is the worst-case PoSD over allMaxF instances.
Note that PoSD is a number higher or equal to 1.

5 Matchings in Bipartite Graphs

We now present answers to these three key questions for OSM. An answer to Question
1 can be obtained using Algorithm 1, which is presented in the following.

Algorithm 1 builds the action sequence π gradually in steps. In the k-th step, it
selects the agent i∗ (among those in the set variable R, which contains the agents not
included in π yet) who attains maximum value if she acts immediately after the action
subsequence built so far. Notice that π is an empty action subsequence initially and is
augmented in each execution of the for loop of Algorithm 1.
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Algorithm 1 A 2-approximation algorithm for OSM.
Input: Query access to an n-agent OSM instance
Output: An action sequence π

1: Initialize π ← ∅; R ← [n];
2: for k ← 1 to n do
3: Let i∗ ← argmaxi∈R vi (π);
4: Update π(k) ← i∗; R ← R \ {i∗};
5: end for
6: return π ;

Theorem 10 On input n-agent OSM instances, Algorithm 1 uses O(n2) queries and
computes a 2-approximate solution.

Proof The bound on the number of queries is obvious: the algorithm makes n execu-
tions of the for loop and, in each of them, it makes a query (i, π) for each of the at
most n agents in set R.

Let π̂ be an optimal action sequence for a given OSM instance consisting of a
complete bipartite graph G = Kn,n , edge-weight function w : [n]2 → R≥0, and rank
information {ri }i∈[n] and π the action sequence returned by Algorithm 1. Let M and
M̂ be the sets of edges defined by the items picked in action sequences π and π̂ . Let
ei be the edge that is incident to node i in M̂ . Let C be the set of agents who pick a
different item in π and π̂ . For each agent i ∈ C , denote by e+

i and e−
i the two edges

of M which are incident to edge ei . Notice that the definition of Algorithm 1 implies
that, for any i ∈ C , the agent who picks the first among edges e+

i and e−
i gets a value

that is at least as high as the weight of edge ei (since ei was available at that point and
agent i had not picked any item yet). Hence, w(ei ) ≤ w(e+

i ) + w(e−
i ) and

SW(π̂) =
∑

i∈[n]
w(ei ) =

∑

i∈C
w(ei ) +

∑

i∈[n]\C
w(ei ) ≤

∑

i∈C
(w(e+

i ) + w(e−
i )) +

∑

i∈[n]\C
w(ei )

= 2 ·
∑

i∈C
w(i, μi (π

i )) +
∑

[n]\C
w(i, μi (π

i )) ≤ 2 · SW(π),

as desired. 	

Despite the simplicity of Algorithm 1, improvements seem to be technically chal-

lenging:

Open Question 1: Are there algorithms that solve OSM optimally using poly-
nomially many queries?

We suspect that the answer to Open Question 1 is positive, at least for the special
case of OSM where each agent has different valuations for the items. Unfortunately,
our attempts to design an algorithm that learns the underlying valuations in polynomial
time have not been successful so far. In our answer to Question 2, we will first use
our more general terminology as we intend to provide an answer for a large class of
valuation structures; our answer to Question 2 for OSM will follow as a corollary.

Theorem 11 Consider anOSF instance defined by a downward closed feasibility con-
straint F and endogenous valuations, and let A = {(i, ai )}i∈[n] be a full feasible
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collection of actions. Deciding whether there exists an action sequence π that pro-
duces A can be done in polynomial time.

We prove Theorem 11 using Algorithm 2, which constructs the action sequence π

in a greedy way. It uses the set variable P to keep the agents whose actions have not
been checked yet; the set variable M keeps the agent-action pairs with agents in P.
The action sequence is stored in variable π , which is returned at the end. In case no
action sequence can be computed, the algorithms returns a Fail report.

Algorithm 2 Deciding whether a full collection of actions can be produced by an
action sequence.
Input:A feasibility constraint F, a feasible full collection of actions {i, ai }i∈[n], rank information {ri }i∈[n]
Output: An action sequence that produces {i, ai }i∈[n] or Fail report
1: Initialize π ← ∅; P ← [n]; M ← ∅; k ← 1;
2: while P �= ∅ do
3: Top ← {i ∈ P : ai = BR(i, M)};
4: if Top �= ∅ then
5: Let i∗ ∈ Top;
6: π(k) ← i∗; P ← P \ {i∗}; M ← M ∪ {(i∗, ai∗ )}; k ← k + 1;
7: else
8: return Fail;
9: end if
10: end while
11: return π ;

Proof Clearly, the algorithm runs in polynomial time assuming we have polynomial-
time access to BR(i, M). To prove its correctness, first notice that it indeed outputs an
action sequence that produces the collection of actions A if it never fails. Now, assume
that A can be produced by an action sequence π̂ ; we will show that the algorithm never
fails. Indeed, at the beginning of any execution of the while loop, let i be the agent in
setP that acts earliest in π̂ . Denote by M̂ the collection of actions decided by the action
subsequence π̂ i (while M is the collection of actions that have been checked prior to
the current while loop execution). Since M ∪ {(i, ai )} ⊆ A, downward closedness of
F implies that M∪{(i, ai )} is feasible. Furthermore, since M̂∪{(i, x)} ⊆ M∪{(i, x)}
for any x ∈ Xi , we conclude that any action that is available to agent i in π i was also
available in π̂ i . Endogeneity of valuations then implies that ai = BR(i, M). 	


For OSM, Theorem 11 implies the following corollary.

Corollary 12 Given an instance of OSM and a perfect matching μ in the underlying
bipartite graph G, deciding whether there exists an action sequence π that produces
μ can be done in polynomial time.

Note that, Corollary12 implies thatwith a full access to the agents valuations,we can
compute the optimal action sequence in polynomial time. We now use Algorithm 2
together with Corollary 12 to rediscover a characterization of Abdulkadiroğlu and
Sönmez [1] (see also [2]) aboutmatchings that can be computed by serial dictatorships.
To do so, we need to adapt Pareto-optimality to our case.
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Definition 13 Given a complete bipartite graph G = Kn,n and rank information
{ri }i∈[n] representing strict preferences of agent i ∈ [n] for n items, a perfect matching
μ is Pareto-optimal if there is no other perfect matching μ′ such that ri (μ′

i ) ≤ ri (μi )

for all i ∈ [n] and ri (μ′
i∗) < ri (μi∗) for some agent i∗ ∈ [n].

Theorem 14 (Abdulkadiroğlu and Sönmez [1])Given an instance of OSM consisting
of a complete bipartite graph G = Kn,n and rank information {ri }i∈[n], a perfect
matching can be produced by an action sequence if and only if it is Pareto-optimal.

Proof We prove that a perfect matching μ can be accepted by Algorithm 2 (by select-
ing i∗ from Top appropriately) if and only if μ is Pareto-optimal. Recall that, now,
Algorithm 2 takes (i, μi )i∈[n] as input.

Assume that Algorithm 2 fails for some matching μ. This means that Top is empty
after the execution of line 3 in some iteration of the while loop. Hence, for every
agent i in set P, μi �= νi = BR(i, M). Consider the subgraph consisting of the nodes
corresponding to the agents in P and the items they get in μ and the edges (i, μi )

and (i, νi ) for i ∈ P . As this subgraph has 2|P| nodes and edges, it has a cycle C,
which for every edge (i, μi ) it contains, it also has edge (i, νi ). Now, we define the
matching μ′ as follows. We set μ′

i = νi if node i belongs to the cycle C and μ′
i = μi

otherwise. By the definition of νi , every agent i of C satisfies ri (μ′
i ) < ri (μi ) while

ri (μ′
i ) = ri (μi ) for any agent i ∈ [n] \ C . Hence, μ′ Pareto-dominates μ, proving

that μ is not Pareto-optimal.
Now, consider a matching μ that is not Pareto-optimal; we will show that the

algorithm will fail. Let μ′ be a matching that Pareto-dominates μ. Let PC be the set
of agents who get a different item in μ and μ′. Also, denote by RC the set of items the
agents of PC get in μ and μ′. Consider an execution of the while loop in a step with
PC ⊆ P (so, no action of the agents in PC has been checked yet). Then, for every
agent i ∈ PC , it holds ri (μ′

i ) < ri (μi ) and, furthermore, as an item of RC , item μ′
i

is not among the actions that have been checked so far. Hence, BR(i, M) �= μi . This
means that no agent of PC can ever be included in set Top and the algorithm will fail
before set P becomes empty. 	


To answer Question 3, it suffices to use Theorem 14 and observe that there is always
a maximum-weight perfect matching that is Pareto-optimal. In this way, we obtain the
following corollary.

Corollary 15 The price of serial dictatorship of maximum weight perfect matching in
bipartite graphs is 1.

6 Arborescences in Directed Graphs

We devote this section to OSA; we answer Question 1 using Algorithm 3.
Algorithm 3 builds the action sequence π gradually. It aims to put at the beginning

of π agents who get their maximum value (i.e., equal to vi (∅)) by their action. The
actions of these agents form a directed forest in the underlying directed graph. To do
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Algorithm 3 A 2-approximation algorithm for OSA.
Input: Query access to an n-agent OSA instance
Output: An action sequence π

1: Initialize π ← ∅; B ← ∅;
2: for i = 1 to n do
3: if vi (π) = vi (∅) then
4: Update π ← π ||i ;
5: else
6: C ← {i} ∪ { j ∈ π : vi (π \ j) = vi (∅)};
7: 	 ← argmint∈C vt (∅);
8: Update π ← (π ||i) \ 	; B ← B|| j ;
9: end if
10: end for
11: Update π ← π ||B;
12: return π ;

so, the algorithm considers the agents one by one (in the for loop) and, when an agent
does not get her maximum value (lines 6-8) because the corresponding edge would
form a cycle in the current forest, it detects this cycle (through the queries to vi (π \ j)
and vi (∅) in line 6) and removes the agent of lowest value (i.e., the one who has drawn
the edge of lowest weight) in it from π (in lines 7 and 8). Agents who are removed
during this process are put in a reserve action subsequence B (line 8). When all agents
have been considered, the final action sequence consists of π followed by B (line 11).

Theorem 16 On input n-agent OSA instances, Algorithm 1 uses O(n2) queries and
computes a 2-approximate solution.

Proof The bound on the running time follows since there are n executions of the for
loop and each execution requires at most O(n) queries. In particular, at most n queries
are enough to compute C in line 6 and, similarly, at most n queries are enough to
compute 	 in line 7.

To prove the bound on the approximation ratio, we will account for the contribution
to the social welfare by the agents in action subsequence π that is computed by the
for loop (before the update at line 11). By the definition of the algorithm and due to
monotonicity, each of these agents i contributes vi (∅). We use the term top edge to
refer to the edge these agents draw.

Let N be the set of agents that are put to the action subsequence B and let P the all
other agents. For an agent 	 ∈ N , let i be the agent considered in the for loop when
	 was removed from π . This removal happened because the top edges of the agents
already in π form a cycle C together with the top edge of agent i, which has minimum
weight among all edges in C.

Let f (	) be an arbitrary agent different than 	 inC. By the definition of Algorithm 3,
it holds that v	(∅) ≤ v f (	)∅. Furthermore, observe that f (	) cannot appear in any cycle
formed in later executions. This is due to the fact that the only nodes that can be reached
from f (	) through edges already drawn or edges that will be drawn in later executions
are those in the path from f (	) to 	 (whose drawn edge was just removed). Hence,
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f (	) ∈ P and, furthermore, f (	) is a one-to-one function from N to P. Thus,

∑

i∈P

vi (∅) ≥
∑

	∈N
v f (	)(∅) ≥

∑

i∈N
vi (∅)

and

SW(π) ≥
∑

i∈P

vi (π
i ) =

∑

i∈P

vi (∅) ≥ 1

2

∑

i∈[n]
vi (∅) ≥ 1

2
· SW(π̂),

where π̂ denotes the optimal action sequence. 	

Like OSM, the answer to Question 2 for OSA follows by Theorem 11; recall that

the feasibility constraint of a directed forest is downward closed and valuations are
endogenous.

Corollary 17 Given an instance of OSA and an arborescence τ in the underlying
directed graph G, deciding whether there exists an action sequence π that produces
τ can be done in polynomial time.

We now characterize the arborescences that can be produced by action sequences
using, again, the notion of Pareto-optimality.

Definition 18 Given a complete directed graph G = ([n], E) and rank information
{ri }i∈[n] representing strict preferences of agent i ∈ [n] for the edges incident to node
i, an arborescence τ is Pareto-optimal if there is no other arborescencce τ ′ such that
ri (τ ′

i ) ≤ ri (τi ) for all i ∈ [n] and ri (τ ′
i∗) < ri (τi∗) for some agent i∗ ∈ [n].

Theorem 19 Given an instance of OSA consisting of a directed graph G = ([n], E)

and rank information {ri }i∈[n], an arborescence τ can be produced by an action
sequence if and only if τ is Pareto-optimal.

Proof Using Corollary 17, it suffices to show that an arborescence τ can be accepted
by Algorithm 2 if and only if it is Pareto-optimal.

Assume that Algorithm 2 fails for some arborescence τ . This means that Top is
empty after the execution of line 3 in some iteration of the while loop. Hence, for
every agent i ∈ P , it is τi �= BR(i, M). Consider a node k ∈ P that is furthest from
the root node in τ . Let νk = BR(k, M) and assume that νk belongs to the subtree of
k in τ . Since νk = BR(k, M), M ∪ {(k, νk)} is feasible. Hence, some edge (k′, τk′) in
the path from νk to k has not been checked yet by the algorithm. Therefore, k′ should
belong to P. This contradicts the assumption that k is a node that is furthest from the
root in τ . Hence, νk does not belong to the subtree of k in τ . By replacing the edge
(k, μk) by (k, νk) in τ , we obtain an arborescence that Pareto-dominates τ (recall that
rk(νk) < rk(τk)).

Now, consider an arborescence τ that is not Pareto-optimal; we will show that
Algorithm 2 fails for it. Let τ ′ be an arborescence that Pareto-dominates τ and let k
be an agent who uses different actions in τ and τ ′ and is furthest from the root in τ .
Consider the execution of the while loop in a step with k ∈ P . Repeating the argument

123



Theory of Computing Systems

in the previous paragraph, we obtain that τ ′
k cannot be in the subtree of k in τ . Hence,

the collection of actions M ∪ {(k, τ ′
k)} is feasible and, furthermore, rk(τ ′

k) < rk(τk).
Thus, BR(k, M) �= τk and agent k can never be included in Top before Algorithm 2
fails. 	


As there is always a maximum-weight arborescence that is Pareto-optimal, we
obtain the following corollary.

Corollary 20 The price of serial dictatorship of maximum weight arborescence in
complete graphs is 1.

7 Satisfiability

It turns out that the case of OSS is fundamentally different from the case of OSM and
OSA.

Theorem 21 Any action sequence yields a 2-approximate solution to OSS.

Proof Consider an action sequence π . Then, the quantity P(i,Cπ i ) + N (i,Cπ i ) is
the total weight of the clauses in which variable xi appears and which are unsatisfied
when it is the turn of agent i to act. Hence,

∑
i∈[n]

(
P(i,Cπ i ) + N (i,Cπ i )

)
is an upper

bound on the total weight in all clauses. In addition, the value agent i gets is clearly
vi (π

i ) ≥ 1
2

(
P(i,Cπ i ) + N (i,Cπ i )

)
. Thus,

SW(π)=
∑

i∈[n]
vi (π

i )≥ 1

2

∑

i∈[n]

(
P(i,Cπ i )+N (i,Cπ i )

)≥ 1

2

∑

j∈[m]
w(C j )≥ 1

2
SW(π̂),

where π̂ denotes the optimal action sequence for the OSS instance. 	

Given Theorem 21, the obvious next step would be to design more sophisticated

algorithms for achieving a better-than-2 approximation ratio with polynomially many
queries. However, we believe that there are important obstacles in doing so for OSS,
summarized in the next question:

Open Question 2: Is there an exponential lower bound on the query complexity
of (approximating) OSS?

Next, we denote by Sat- AS the problem of deciding whether a given Boolean
assignment for the underlying satisfiability instance of OSS can be produced by an
action sequence. In contrast to the easiness of deciding whether a given perfect match-
ing or arborescence can be produced by an action sequence, Sat- AS turns out to be
intractable.

Theorem 22 Sat- AS is NP-hard.

Proof We prove the theorem by presenting a polynomial-time reduction from Exact-
3Cover (X3C). An instance of X3C consists of a universe U of 3q elements and a
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collection T of t sets that each contains exactly three elements from U . The problem
of deciding whether there exists an exact 3-cover, i.e., a subcollection of q sets from
T that includes all elements of U , is a well-known NP-hard problem [20].

For an element x ∈ U , we write f (x) = |T ∈ T : x ∈ T | to denote the frequency
of x in collection T . We construct a satisfiability instance which contains one element
variable for each element in U , one set variable for each set in T , and one auxiliary
variable Q. Additionally, there are five types of clauses, each of which contains at
most two literals:

• Type A: Clause (Ti ∨ Tj ) of weight 1 for each pair of distinct sets Ti , Tj ∈ T .
There are a total of t(t − 1)/2 such clauses.

• Type B: Clauses (T ∨ x), (T ∨ y), and (T ∨ z), each of weight 1, for each set
T = {x, y, z} ∈ T . There are a total of 3t such clauses.

• Type C: Clause (x ∨ Q) of weight f (x) − 1/3 for each element x ∈ U . There are
a total of 3q such clauses.

• Type D: Clauses (Q ∨ T1), (Q ∨ T2), . . . , (Q ∨ Tt ), each of weight t − q + 7/3.
There are a total of t such clauses.

• Type E: Clause (with singleton literal) Q of weight t2 − qt + 7t/3 − 1/3.

Hence, the satisfiability instance consists of n = 3q + t + 1 variables and m =
t2/2 + 7t/2 + 3q + 1 clauses. We now show that there is an action sequence which
assigns the value of True to each variable of the satisfiability instance if and only if the
X3C instance has an exact 3-cover. The next three lemmas state important properties
an action sequence must have so that all variables are set to True. We use the terms set
agent and element agent to refer to the agents who control the corresponding variables.

Lemma 23 For the above construction, the following properties hold true.

1. Agent Q should act after all element agents.
2. Element agent x should act after at least one set agent T such that x ∈ T has acted.
3. At most q many set agents can act before agent Q.

Proof We prove the three stated properties in order.
For property (1), notice that variable Q appears as positive literal in clauses of total

weight t2 −qt +7t/3. Denoting by wC the total weight of all type C clauses, we have
thatQ appears as negative literal in clauses of total weight t2 −qt +7t/3−1/3+wC .
Since wC ≥ 2/3, agent Q can act and set its variable to True only after all type C
clauses are satisfied, which implies that all element agents have acted before (and set
their variable to True).

Next, for property (2), observe that element variable x appears as positive and
negative literal in clauses of total weight f (x)−1/3 and f (x), respectively. As literal
x appears only in type B clauses, the element agent x can set variable x to True only
if at least one set agent T such that x ∈ T acted before (and set her variable to True).

Finally, for property (3), consider the time when q set agents have acted; denote
them by set R. Every set agent T not belonging to R appears as positive and negative
literal in clauses of total weight t −q + 2 and t −q + 7/3, respectively, and would set
their variable to False if they acted before agentQ acts (and decreases the total weight
of unsatisfied clauses that include T as a negative literal). 	
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The above lemma establishes that the action sequence that assigns each variable
to True must have the following form: it starts with a set R of at most q set agents
corresponding to an exact 3-cover of the X3C instance, then come all the 3q element
agents, followed by agent Q, and finally the remaining set agents. We can verify that
such a structure works for any R that form an exact 3-cover, completing the proof. 	


Finally, we show that the price of serial dictatorship for maximum satisfiability is
higher than 1.

Theorem 24 There exists an OSS instance in which no action sequence produces
better than 3/2-approximate solution to the underlying satisfiability instance.

Proof Let ε > 0 be a negligibly small value. Consider the OSS instance defined
by three Boolean variables x1, x2, x3 and the following six clauses: (x1 ∨ x2 ∨ x3),
(x1 ∨ x2 ∨ x3), (x1 ∨ x2 ∨ x3), each of weight 1, and (x1), (x2), (x3), each of weight
1− ε. It is easy to verify that any action sequence sets the first two variables to 0 and
the third one to 1, producing an assignment that satisfies clauses of total weight at
most 4 − ε while the assignment x1 = x2 = x3 = 1 has maximum total weight of
6 − 3ε. 	


Closing the gap between 3/2 and 2 is an important open problem.

Open Question 3:What is the tight bound on the price of serial dictatorship for
maximum satisfiability?

Better upper bound on the price of serial dictatorship for maximum satisfiability
should exploit simple greedy algorithms. An algorithm we have studied considers
the agents in monotone non-increasing order in terms of the total weight in singleton
clauses containing their variable. Proving that this algorithm has an approximation
ratio, say, 3/2, would be enough to close the PoSD gap. Notice that this would match a
known 3/2 bound by Chen et al. [14] for a slightly more complicated greedy algorithm
proposed by Johnson [22].

8 Truthful Implementation

In this section, we explore truthful implementations of algorithms for OptimalSe-
quence. A serial dictatorship, that uses a fixed action sequence, is the simplest truthful
mechanism for OptimalSequence. As algorithms exploit queries to the agents in the
computation of action sequences, the agents may have incentives to misreport their
valuations and benefit from the output of the algorithm. Payments can be used in the
design of sophisticated algorithms to ensure that responses to the queries are sincere.

In this section, we use the terms mechanism and algorithm interchangeably. In
general, a mechanism for OptimalSequence takes as input (part of) the valuations
of the agents and decides an action sequence outcome and payments that are imposed
to the agents. Formally, we write v = {vi }i∈[n] to denote the valuations of all agents,
while v−i is the restriction of v to the values of all agents besides i. For a mechanism,
we typically use M(v) to denote the action sequence computed on input (part of) the
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valuation vector v.4 As usual, the notation Mi (v) is used to denote the prefix of agent i
in the action sequence M(v). Also, we denote by pi (v) the payment imposed to agent
i ∈ [n]. Then, the quantity vi (Mi (v)) − pi (v) is simply the utility of agent i when
agents report the valuation vector v. Truthfulness requires that the mechanism returns
the action sequence M(v) and payments pi (v) for i ∈ [n] so that no agent i has an
incentive to misreport any false valuation v′

i instead of her true valuation vi , for any
valuations v−i by the other agents, i.e.,

vi (M
i (v)) − pi (v) ≥ vi (M

i (v−i , v
′
i )) − pi (v−i , v

′
i ).

In other words, truth-telling is a utility-maximizing strategy for agent ino matter what
strategies the other agents use. To adapt this definition to randomized mechanisms (in
which either the action sequence or the payment part are random), it suffices to use
expectations of all terms.

In the following, we would like to explore whether the algorithms for OptimalSe-
quence we have already designed are truthful for appropriately defined payments. In
other words, we explore whether they have truthful implementations. A useful tool
here might be a well-known cycle monotonicity characterization result of Rochet [28].
However, the following much simpler argument is enough to prove negative results.

Lemma 25 An algorithm M has a truthful implementation only if for any valuation
profile v = (v−i , vi ) and an alternative valuation v′

i that agent i may report, the
following is true:

vi (M
i (v)) + v′

i (M
i (v−i , v

′
i )) ≥ vi (M

i (v−i , v
′
i )) + v′

i (M
i (v)). (5)

Proof Fix an agent i ∈ [n]. By truthfulness, we know that an agent i has no incentive
to misreport her value from vi to v′

i and vice versa. That is, assuming payment pi ,

vi (M
i (v)) − pi (v) ≥ vi (M

i (v−i , v
′
i )) − pi (v−i , v

′
i )

v′
i (M

i (v−i , v
′
i )) − pi (v−i , v

′
i ) ≥ v′

i (M
i (v)) − pi (v).

Summing the inequalities above, we get the desired inequality. 	

We can now use Lemma 25 to prove some non-implementability results.

Theorem 26 Algorithms 1, 3, and Det do not have truthful implementations.

Proof We present instances of OSM, OSA, and OptimalSequence for which Algo-
rithms 1, 3, and Det, respectively, do not satisfy the inequality (5) in Lemma 25 and,
thus, cannot be implemented truthfully.

4 Of course, we assume that any agent i can compute her valuations vi (S) for any action subsequence S.
For the specific valuations structures, this implies that agent i can simulate the actions of agents appearing
in S, and thus can decide the best available action for her. That is, we assume a complete information
environment for the agents, as opposed to the mechanism which relies on queries to elicit information about
valuations.
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Consider the OSM instance with two agents and two items and the following
weights: w(1, 1) = 1 + ε, w(1, 2) = 1 defining the valuation v1 for agent 1, and
w(2, 1) = 1, w(2, 2) = 1 − ε defining the valuation v2 for agent 1. Algorithm 1
(implicitly) matches agent 1 to item 1 and agent 2 to item 2. Now, consider another
valuation profile (v′

1, v2) corresponding to the weights w(1, 1) = 1− ε, w(1, 2) = 0,
w(2, 1) = 1, w(2, 2) = 1 − ε, and observe that Algorithm 1 matches agent 2 to
item 1 and agent 1 to item 2. Denoting the outcome of Algorithm 1 by M, we have
v1(M1(v)) = 1 + ε and v′

1(M
1(v−1, v

′
1)) = 0, while v1(M1(v−1, v

′
1) = 1 and

v′
1(M

1(v)) = 1 − ε. These values violate inequality (5).
Next, consider the 4-agent OSA instance with the following edge-weights:

w(1, 2) = 1 − ε, w(1, 4) = ε, w(2, 1) = 1, w(3, 4) = 1 − ε, and w(4, 3) = 1,
with all the remaining edges having weight 0. We denote the corresponding valua-
tion profiles of the three agents by v1, v2, v3 and v4. Also, consider the following
instance where the edge-weights are w(1, 2) = 1 + ε, w(1, 4) = 1, w(2, 1) = 1,
w(3, 4) = 1 − ε, and w(4, 3) = 1, with all the remaining edges having weight 0. We
denote the corresponding valuation profiles of the three agents by v′

1, v2, v3 and v3.We
have v1(M1(v)) = 0 and v′

1(M
1(v−1, v

′
1)) = 1 + ε, while v1(M1(v−1, v

′
1)) = 1 − ε

and v′
1(M

1(v)) = 1, again violating inequality (5).
Finally, consider the instance of OptimalSequence with n agents having the fol-

lowing valuations: there is a set C of c agents that have vi (S) = 10 if |S| < c and
vi (S) = 8 otherwise. The rest of the agents have valuation vi (S) = 9 for any S. So,
the action sequence M(v) has the agents in C in the first c positions, with the agents
of [n] \ C next. For some agent j ∈ C , the valuations v′

j are defined as v′
j (S) = 8

if |S| < c and v′
j (S) = 0, otherwise. The action sequence M(v−j, v

′
j ) has the agents

of C \ { j} and an additional agent from [n] \ C in the first c positions, and the rest
of the agents (including j) in the last n − c positions. We have v j (M j (v)) = 10 and
v j (M j (v−j, v

′
j ) = 8, while v′

j (M
j (v)) = 8 and v′

j (M
j (v−j, v

′
j )) = 0, again violating

inequality (5). 	

On the positive side, Rand can be truthfully implemented using VCG payments.

Recall that Rand selects a random set C of c ≤ n agents and puts them in the
beginning of the action sequence in such a way that their contribution to the social
welfare ismaximized. By adapting theVCGpayment scheme, we can define payments
as pi (v) = 0 if i is not selected in set C and

pi (v) =
∑

k∈C\{i}
vk(M

k(v−i , 0)) −
∑

k∈C\{i}
vk(M

k(v))

otherwise, where 0 denotes valuation of zero for agent i for any action subsequence.
In this way, Rand enjoys properties like non-negative payments and individual ratio-
nality (i.e., agents enjoy non-negative utilities).

We will now show how to use the VCG paradigm in a variation of Det, to get the
truthful mechanism Det+ for OptimalSequence. Like Det, Det+ uses an integer
parameter c. It considers all action sequences which have their last n−c agents ordered
according to their indices and picks the one of maximum social welfare (in this way,
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the outcome of Det+ is at least as good as that of Det). VCG payments, defined as

pi (v) =
∑

k∈[n]\{i}
vk(M

k(v−i , 0)) −
∑

k∈[n]\{i}
vk(M

k(v)),

lead to a truthful implementation forDet+ (with non-negative payments and individual
rationality). The next statement summarizes the above discussion onRand andDet+.

Theorem 27 Algorithms Rand and Det+ have truthful implementations. Also, Det+
achieves the same approximation guarantee with Det.

We remark that, in the definition of the payments, it is important to consider agent i
with zero valuation. Essentially, the VCG payment of agent i is equal to the harm that
her non-zero valuation (as opposed to her existence, which is the usual interpretation)
causes to the other agents. Furthermore, we remark that the payments for agents in
the last n − c positions of M(v) is not necessarily 0.

In addition to the better approximation ratio thatRand achieves compared toDet+,
another advantage is that payments require only polylogarithmically many queries to
compute (when the parameter c is set to �

( ln n
ln ln n

)
). On the other hand, the VCG

payments for Det+ require �(n2) queries.5

Open Question 4: Is there a deterministic algorithm for OptimalSequence
that uses polynomially many queries, achieves sublinear approximation ratio,
and has a truthful implementation with payments that can be computed with
polylogarithmically many queries?

Regarding OptimalSequence instances with specific valuation structures, recall
that OSS has a truthful mechanism that does not use payments at all. Indeed, any serial
dictatorship is truthful and furthermore achieves an approximation ratio of 2. We will
present a similar result for OSA. In particular, we develop the randomized algorithm
Bit that is truthful without payments and computes 2-approximate arborescences.
Bit tosses a fair coin and returns the action sequence (1, 2, ..., n) on Heads, and the
reverse action sequence (n, n − 1, ..., 1) on Tails.

Theorem 28 Algorithm Bit is truthful and returns 2-approximate solutions of OSA.6

Proof Algorithm Bit is clearly truthful since it does not use any queries. We will
account for the contribution of an agent to the social welfare only if/when she gets a
value of vi (∅). Consider an agent i ∈ [n] and let (i, k) be her rank-1 edge. Notice that
agent i will draw edge (i, k) if she acts before agent k, which happens with probability
1/2. Hence, SW(π) = ∑

i∈[n] vi (π i ) ≥ 1
2

∑
i∈[n] vi (∅) = 1

2SW(π̂), where π̂ is the
optimal action sequence. 	

5 In comparison to random serial dictatorship (RSD), which selects an action sequence from S[n] uni-
formly at random, the truthful algorithms Rand and Det+ achieve sublinear approximation ratio at the
expense of using payments. We can show that this is necessary: any (possibly randomized) mechanism for
OptimalSequence that is truthful without payments has an approximation ratio of at least n.
6 We remark that the argument in the proof of Theorem 28 can be used to show that RSD returns a
2-approximate solution too. Obviously, Bit is superior since it uses only a single random coin.
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Open Question 5: Is there an OSM algorithm that uses polynomially many
queries, achieves constant approximation ratio, and has a truthful implementa-
tion?

Recall that the existence of an algorithm that solves OSM exactly is open. In such
a case, VCG payments would provide a truthful implementation.

Finally, regarding OSS, Theorem 24 implies that any serial dictatorship is a 2-
approximate truthful mechanism without payments.
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