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Thermodynamic inference of correlations in nonequilibrium collective dynamics
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The theory of stochastic thermodynamics has revealed many useful fluctuation relations, with the thermody-
namic uncertainty relation (TUR) being a theorem of major interest. When many nonequilibrium currents interact
with each other, a naive application of the TUR to an individual current can result in an apparent violation of the
TUR bound. Here, we explore how such an apparent violation can be used to put a lower bound on the strength
of correlations C as well as the number N of interacting currents in collective dynamics. This lower bound is a
combined bound on C(N − 1) if only one current is measured, or a bound on N if two currents are measured.
Our proposed protocol allows for the inference of hidden correlations in experiment, for example when a team
of molecular motors pulls on the same cargo but only one or a subset of them is fluorescently tagged. By solving
analytically and numerically several models of many-body nonequilibrium dynamics, we ascertain under which
conditions this strategy can be applied and the inferred bound on correlations becomes tight.

DOI: 10.1103/PhysRevResearch.6.L042012

Introduction. Entropy production rate (EPR) is the mea-
sure of nonequilibrium activity in a stochastic system and
is tied to the existence of nonequilibrium currents in the
system [1,2]. The thermodynamic uncertainty relation (TUR)
[3] quantifies the tradeoff between EPR and the precision
of the nonequilibrium currents, where precision is related to
the ratio between the average and the standard deviation of
the fluctuating currents. The TUR, which has been proven
rigorously [4,5] and has been confirmed in experiments [6,7],
has found its most practical application in the inference of
(lower bounds for) nonequilibrium driving forces given exper-
imental measurements of fluctuating currents [8,9]. Relevant
experimental systems include active matter [10], molecu-
lar machines [11] such as motors [12] and enzymes [13],
stochastic oscillators [14–17], microscopic heat engines [18],
artificial nanorotors [19,20], and even in open quantum sys-
tems [21,22]. Additionally, the TUR has also inspired other
important thermodynamic relations [23–25], placing bounds
on, e.g., the extent of anomalous diffusion [26], the asymme-
try of crosscorrelations [27], and correlation times [28].

In its original form, the TUR for a nonequilibrium system
in steady state was proposed for a scalar (one dimensional)
fluctuating current and can be expressed as [3]

J 2/DJ � σ̇ /kB, (1)
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where J represents the steady state average of the scalar
observable current of interest, DJ the diffusion coefficient
associated to the corresponding fluctuating observable, σ̇ the
steady state average EPR, and kB the Boltzmann constant. An
important generalization to vectorial fluctuating currents, or
equivalently to several scalar currents that are simultaneously
observed, is the multidimensional thermodynamic uncertainty
relation (MTUR) given by [29]

J T · D−1 · J � σ̇ /kB, (2)

where J is now the steady state average of the vectorial
observable current and D is the covariance tensor associ-
ated with the fluctuating multidimensional observable. The
MTUR allows for the inference of tighter lower bounds on
the entropy production in systems with multiple degrees of
freedom, when more than one observable can be tracked si-
multaneously, for example, in interacting many-body systems
[30]. Alternatively, one may use the MTUR together with
known mechanistic information about the coupling between
degrees of freedom to obtain tighter bounds on dissipation
even when only one observable is tracked, as recently pro-
posed for stochastic swimmers with coupled chemical and
mechanical degrees of freedom [31].

In this Letter, we propose to turn the MTUR on its head
and exploit it to infer the existence of hidden correlations
in a system, even when only a single observable is ex-
perimentally accessible. We show that this is possible in
systems satisfying two simple conditions: (i) many statisti-
cally identical processes interact with each other, and (ii) the
observable quantities are tightly coupled to entropy produc-
tion, with a known rate of entropy production per step. This
may, for example, represent ensembles of identical molecular
motors walking on the same biofilament [32,33], clustered en-
zymes catalyzing chemical reactions in a metabolon [34,35],
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clustered rotors or channels in a membrane [36,37], or driven
colloids in an optical ring [38–40]. We will first introduce the
general strategy, valid for any system that satisfies the two
conditions just described. We will then study two toy models
that are analytically solvable, and two models that we solve
numerically, in order to ascertain under which conditions the
proposed strategy can be applied, and when does the inferred
bound on correlations become tight.

Inference of correlations. We consider N stochastic pro-
cesses that are identical, in the sense that they are governed
by the identical underlying stochastic dynamics, and are all to
all coupled in a statistical sense, i.e., will show identical pair
correlations with each other after a sufficiently long observa-
tion time (as expected in an ergodic system). Let us denote the
associated scalar observables as (φ1, ..., φN ). Quantitatively,
the conditions just described imply that all scalar observ-
ables have the same average current � ≡ limt→∞〈φi〉/t , the
same diffusion coefficient D ≡ limt→∞(〈φ2

i 〉 − 〈φi〉2)/(2t ),
and the same pair correlation strength C ≡ limt→∞(〈φiφ j〉 −
〈φi〉〈φ j〉)/

√
(〈φ2

i 〉 − 〈φi〉2)(〈φ2
j 〉 − 〈φ j〉2) (for i �= j). Note

that C is bounded between −1/(N − 1) for maximally
anticorrelated processes and +1 for perfectly correlated pro-
cesses. Lastly, we assume that the observable currents are
driven by energy dissipation (entropy production) through a
tightly coupled mechanism [3,16,17,30,41–43] so that, for
every individual current, we can write an average energy
dissipation rate that is proportional to the average current
σ̇ (1)T ≡ ��μ, with �μ the energy dissipated per step and
T the temperature of the bath. The total EPR in the system is
then σ̇ = N σ̇ (1).

With these choices, application of the MTUR [Eq. (2)] and
a rearrangement of the terms result in the inequality

�

D

kBT

�μ
− 1 � C(N − 1), (3)

which puts a lower bound on the correlation strength C (and
the number of interacting processes N) given a measurement
of the average current � and the diffusion coefficient D, and
provided that the dissipation per step �μ is known. We note
that Eq. (3) can also be obtained by applying the standard
TUR [Eq. (1)] to the observable corresponding to the total
sum

∑
i φi.

To get an intuition for the meaning of Eq. (3), it is useful to
note that its left hand side represents a measure of the violation
of a naively applied single-current TUR. Indeed, for a single
isolated or noninteracting current, the standard TUR [Eq. (1)]
gives �

D
kBT
�μ

� 1 [consistent with Eq. (3) with N = 1 or C =
0]. Thus, if measurement of a single observable appears to
violate (outperform) this naive TUR, it implies that the left
hand side of Eq. (3) is positive, and therefore that there must
be positive correlations in the system (C > 0 and N � 2). If,
on the other hand, the naive TUR is satisfied, it means that the
measurement is compatible with the absence of correlations
in the system, and Eq. (3) only serves to rule out negative
correlations stronger than those allowed by the bound.

When a single observable is tracked, e.g., when only one
molecular motor within a team is fluorescently labeled, Eq. (3)
puts a combined lower bound on the correlation strength C
and number of interacting processes N , see Fig. 1(a). If one

FIG. 1. (a) Measurement of a single observable (here, the posi-
tion of a fluorescently-tagged molecular motor) allows for inference
of a combined bound on the strength of correlations C and the
number of interacting processes N . (b) Simultaneous measurement of
two observables fixes the strength of correlations and places a bound
on the number of interacting processes N . (c) Examples of coupled
identical processes: two discrete biomolecular processes driven by a
cyclic affinity �μ; two colloids in an optical ring driven by a constant
force F ; two molecular gears driven by a constant force F .

can additionally measure the correlation strength, e.g., if two
or more motors within the team are labeled, one can infer a
lower bound on the number of processes N , see Fig. 1(b). In
the following, we present several minimal models [Fig. 1(c)]
that allow us to ascertain the conditions under which the naive
TUR is broken and the proposed strategy can be applied, and
those for which the inferred bound of Eq. (3) becomes tight.

Discrete coupled processes. We first consider a rather
generic example of coupled discrete Markov processes, which
might represent various interacting or coupled biomolecular
processes such as molecular motors walking on a track, or
chemical reactions catalyzed by nearby enzymes or differ-
ent monomers in a multimeric enzyme. As an example, in
Fig. 2(a) we show two identical one-dimensional processes
where the red (orange) arrow indicates the forward (back-
ward) rate k+ (k−). For local detailed balance to be satisfied,
one must impose that k+/k− = e�μ/kBT , where �μ represents
the energy dissipated per transition. The simultaneous dy-
namics of the two processes can alternatively be viewed as
taking place on a two-dimensional lattice of Markov states
as shown in Fig. 2(b), where transitions of one process or
the other correspond to hopping horizontally or vertically
on the two-dimensional lattice. To include interactions be-
tween the two processes, coupling rates h± are introduced
which are represented by the green and blue squiggles in
Fig. 2(a) and arrows in Fig. 2(b). These correspond to diagonal
jumps in the lattice, which imply a forward or backward

L042012-2



THERMODYNAMIC INFERENCE OF CORRELATIONS IN … PHYSICAL REVIEW RESEARCH 6, L042012 (2024)

FIG. 2. (a) Two identical discrete processes modeled as biased one-dimensional random walks, with red (orange) arrows indicating forward
(backward) transitions with rates k±. Interactions between the two processes are represented by the green and blue squiggles. (b) The “outer
product” of the two one-dimensional processes corresponds to a two-dimensional lattice, where the tuples indicate the internal state of the
whole system. Interactions are governed by the green and blue arrows, representing simultaneous forward and backward transitions for both
processes with rates h±. (c) Parameter space spanned by the nonequilibrium driving force μ̃ ≡ �μ/kBT and the coupling strength h̃ ≡ h+/k+,
showing the regime in which the naive TUR is broken, and thus the existence of nonzero correlations could be inferred in experiment, for a
large number of interacting processes (N 	 1). The corresponding boundary for N = 2 is shown as the dashed line.

transition taking place simultaneously for both processes.
Since two steps are performed during a coupled transition,
detailed balance demands h+/h− = e2�μ/kBT .

The dynamics just illustrated for two coupled processes are
straightforwardly extended to N coupled processes, where we
assume an all-to-all coupling, such that with rate h+ (h−) all
N processes undergo a simultaneous forward (backward) step.
In this case, detailed balance demands h+/h− = eN�μ/kBT .
Following an analytical derivation (Appendix A), we find that
the correlation strength is

C = h̃(1 + e−Nμ̃)

1 + e−μ̃ + h̃(1 + e−Nμ̃)
, (4)

where h̃ ≡ h+/k+ is the dimensionless coupling strength and
μ̃ ≡ �μ/kBT . As may be expected, we find that C → 1 as
h̃ → ∞ and C = 0 when h̃ = 0. In turn, the ratio of average
current to diffusion coefficient can be written as

�

D
= 2

1 − e−μ̃ + h̃(1 − e−Nμ̃)

1 + e−μ̃ + h̃(1 + e−Nμ̃)
. (5)

Combining both expressions, we obtain an exact relation be-
tween �/D, C, and the energy dissipation per step μ̃, with the
form

�

D
= 2

1 − e−μ̃ + 2C e−μ̃−e−Nμ̃

1+e−Nμ̃

1 + e−μ̃
. (6)

This expression can be shown to always satisfy the bound
in Eq. (3), which it saturates in the near-equilibrium limit
�μ → 0. In the case where C = 0 (or N = 1), the right hand
side becomes 2 tanh(μ̃/2), and we recover the relation for the
single biased random walk which was used to conjecture the
original TUR [3]. Our model thus represents the minimal ex-
tension of this basic toy model to the case of many interacting
processes.

Using Eq. (5), we can investigate under which conditions
the naive TUR is violated and D

�

�μ

kBT < 1. For such parameter
values, the inference strategies proposed in Figs. 1(a) and 1(b)
can be used to infer the existence of nonzero correlations

in the system and put a lower bound on them. We find that
this is possible when the coupling h̃ is larger than a critical
coupling strength h̃(μ̃), see Fig. 2(c). Interestingly, this is only
possible if the driving forces are weak, with |μ̃| < μ̃∗ where
μ̃∗ � 1.915 for N = 2 and μ̃∗ → 2 as N → ∞. Indeed, the
critical coupling strength diverges as μ̃ approaches ±μ̃∗.

Even further, using Eqs. (4) and (5) we can characterize
how close to saturation the bound in Eq. (3) can get, as shown
in Fig. 3(a) where we plot D

�

�μ

kBT against C(N − 1) for a range

of parameter values in 0 � h̃ � 1, −1 � μ̃ � 2, and 2 � N �
21. The black solid line represents the equality in Eq. (3). For
all values of N , there are parameter values for which the bound
in Eq. (3) is close to saturated. Parameter values that violate
the naive TUR, for which the correlation inference strategy
can be applied, correspond to points that fall to the left of the
vertical line in Fig. 3(a).

Continuous coupled processes. We next consider several
examples that involve N continuous phases φα with α =
1, ..., N , described by systems of coupled Langevin dynamics
in the overdamped regime, with the general form

φ̇α =
N∑

β=1

{Mαβ (−∂βU ) +
√

2kBT 	αβξβ}, (7)

with U a generic potential, Mαβ a mobility matrix with con-
stant coefficients (i.e., independent of φα), 	αβ the square
root of the mobility matrix satisfying 	αν	βν = Mαβ , and ξβ

a white noise of unit strength. For the mobility matrix, we
set all diagonal coefficients to Mαα = M and all off-diagonal
coefficients to Mαβ = h/(N − 1) (α �= β), so that h̃ ≡ h/M is
a dimensionless measure of the strength of coupling mediated
by the mobility matrix.

We first consider a minimal model of N = 2 coupled
phases that can be treated analytically. This model could de-
scribe two driven stochastic gears or rotors, as represented by
the entrained gears in Fig. 1(c), in which case the phases φ1

and φ2 represent the internal state (angular position) of these
rotors. The potential U , is chosen as U (φ1, φ2) = −F (φ1 +
φ2) − K cos(φ1 − φ2) − v cos(φ1 + φ2) where F , K , and v
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FIG. 3. Scatter plots of D
�

�μ

kBT against C(N − 1) for the four different models described in the main text, showing how the bound in
Eq. (3) is satisfied and can be close to saturated. Points to the left of the vertical black dashed line correspond to parameter choices for
which D

�

�μ

kBT < 1 and thus the naive TUR is saturated, allowing for the thermodynamic inference of correlations. (a) Discrete model of Fig. 2;
(b) analytically solvable continuous model; (c) thermally activated oscillators with dissipative coupling; (d) thermally activated oscillators with
Kuramoto coupling. Parameter choices for each of the four models are described in the text. Simulations in (c) and (d) were performed using
Euler-Maruyama integration.

are arbitrary constants. The first term is the nonequilibrium
drive, with a driving force F which is related to the energy
dissipation per cycle (when a phase has advanced by 2π ),
given by �μ = 2πF . The second term is a Kuramoto-type
coupling that favors synchronization of the two phases [14].
Finally, the third term is an antisynchronizing coupling that
favors opposite rotation of the phases and creates energy bar-
riers for the synchronized advances of the two phases. The
problem can be solved analytically by a change of variables
to the average phase  = (φ1 + φ2)/2 and phase difference
� = φ1 − φ2 (see Appendix B). Analytically calculated re-
sults for 0 < F/kBT < 1, 0 < v/kBT < 2, 0 < K/kBT < 4,
and h̃ = 0.3 are shown in Fig. 3(b).

We next consider N thermally activated oscillators that
are coupled purely dissipatively, i.e., only through the
off-diagonal components of the mobility matrix, with di-
mensionless strength h̃. The potential U is set to U ({φα}) =∑N

α=1 V (φα ) with V (φ) = −Fφ − v cos(φ) a washboard po-
tential. This model has been shown to provide a description
of the dynamics of mechanically coupled enzymes, which
become effectively deterministic and synchronized at suffi-
ciently high h̃ [13,15,44]. The results of numerical simulations
of this model for N = 10, 0 < h̃ < 8, 0.4 < F/v < 0.9, and
kBT/v = 0.08, 0.15, 0.2 are shown in Fig. 3(c).

Finally, we consider the case of N thermally activated
oscillators with Kuramoto-type coupling [14], previously
studied in Ref. [45]. In this case, we set h̃ = 0 so that
the mobility matrix is diagonal, and we set U ({φα}) =∑N

α=1 V (φα ) − K
N

∑N
α=1

∑N
β=α+1 cos(φα − φβ ) where V (φ)

is the same washboard potential as above. The results of
numerical simulations of this model for N = 4, 0.1 < F/v <

0.9, 0.01 < kBT/v < 2, and K/v = 1, 6, 10 are shown in
Fig. 3(d).

For all three continuous models [Figs. 3(b)–3(d)], we find
that there are regions of parameter space where the naive
TUR is violated, i.e., D

�

�μ

kBT < 1, and the correlation inference
strategy can be applied. In all cases, saturation of the bound
in Eq. (3) is facilitated when the noise strength kBT is large
relatively to the energy barriers whose height is controlled by
v, as in this case the dynamics become analogous to those of
a particle under a constant force, which are known to saturate
the TUR. However, to ensure that nonzero correlations sur-
vive, the couplings must remain sufficiently strong relative to

thermal fluctuations. A notable exception is the case of dis-
sipatively coupled oscillators, Fig. 3(c), which can violate the
naive TUR and come close to saturating the bound even at low
noise strength. This can be understood as a consequence of the
fact that the dissipative coupling induces quasideterministic
dynamics even in the absence of noise [13,15].

Discussion. By applying the MTUR to an ensemble of
statistically identical coupled processes with tight-coupling
to entropy production, we have derived a bound [Eq. (3)]
that allows for thermodynamic inference of the strength of
correlations and the number of interacting processes in the
system, even when only one or a small subset of them is exper-
imentally accessible. In particular, when only a single current
is observed, our strategy provides a lower bound on C(N − 1),
where C is the strength of correlations and N the number of
interacting processes. When two currents are observed, and
thus C can be measured experimentally, our strategy provides
a lower bound on N . The inference strategy is applicable
when a “naive” application of the TUR to a single observable
(i.e., assuming that this observable is isolated or uncorrelated
to others) shows an apparent violation. By studying a number
of minimal toy models that we solved analytically and numer-
ically, we showed that the naive TUR is broken (and thus our
proposed inference strategy is applicable) in large portions of
parameter space.

One possible way of easily and directly testing the
proposed inference strategy experimentally would be in con-
trolled experiments using several driven colloids in an optical
ring [Fig. 1(c)]. This experimental setup can produce constant
driving forces [39,40] as well as washboardlike potentials
[38]. When two or more colloids are present in the ring, hydro-
dynamic interactions between them can lead to correlations
[39]. Otherwise, our proposed strategy could be applied to
experiments with teams of molecular motors pulling on the
same cargo [46] or clustered enzymes catalyzing chemical
reactions [47].

Finally, we note that, although we have focused here on the
inference of correlations provided that the energy dissipation
per step (�μ) is known, our results also have implications
for the experimental inference of �μ when it is unknown.
Indeed, Eq. (3) shows that, in an interacting system, indi-
vidual currents behave as if they were driven by an effective
energy dissipation per step �μeff = [1 + C(N − 1)]�μ, with
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�μeff > �μ when C > 0. In the limit of strong correlations
(C = 1), the system behaves as if every individual current
was driven by the total energy dissipation in the system,
i.e., �μeff = N�μ, as has been reported in previous studies
[16,33]. An inference strategy unaware of existing correla-
tions could therefore lead to a severe overestimation of (the
lower bound on) the true �μ. Our results thus suggest that one
must be very careful to experimentally rule out possible inter-
actions with other processes before applying thermodynamic
inference to entropy production, even when one can assume
tight coupling (i.e., a fixed amount of energy dissipation per
step) between the observed current and entropy production.

Acknowledgments. We acknowledge support from the Max
Planck School Matter to Life and the MaxSynBio Consortium
which are jointly funded by the Federal Ministry of Educa-
tion and Research (BMBF) of Germany and the Max Planck
Society.

Appendix A: Analytical solution of discrete model. To
construct the TUR for this coupled model, we consider the
number of steps φi of the ith process. This number can be
split into the simultaneous steps φd that have occurred for
all processes due to the diagonal transitions, and the individ-
ual steps φs,i taken by each process independently, so that
φi = φd + φs,i. Importantly, φd and all the different φs,i are
governed by one-dimensional biased random walks that are
statistically independent of each other. Using standard results
for the biased random walk, we can write 〈φs,i〉 = (k+ −
k−)t , 〈φd〉 = (h+ − h−)t , 〈φ2

s,i〉 − 〈φs,i〉2 = (k+ + k−)t , and
〈φ2

d〉 − 〈φd〉2 = (h+ + h−)t . Using the definitions of �, D,
and C given in the main text, and exploiting the statistical
independence of φd and all the different φs,i, we can straight-
forwardly obtain � = k+ + h+ − k− − h−, D = (k+ + h+ +
k− + h−)/2, and C = (h+ + h−)/(k+ + k− + h+ + h−). To-
gether with the detailed balance conditions, these expressions
are used to obtain Eqs. (4) and (5) in the main text.

Appendix B: Analytical solution of continuous model. The
Langevin equations in Eq. (7) are equivalent to the Fokker-
Planck equation

∂t P = ∂α[Mαβ ((∂βU )P + kBT ∂βP)], (B1)

for the probability P({φα}; t ), where Einstein summation
has been used. For the analytically solvable model, we

have N = 2 phases, U (φ1, φ2) = −F (φ1 + φ2) − K cos(φ1 −
φ2) − v cos(φ1 + φ2), M11 = M22 = M, and M12 = M21 = h
as described in the main text.

By performing a linear transformation we change variables
to go the average phase  = (φ1 + φ2)/2 and phase differ-
ence � = φ1 − φ2. The Fokker-Planck equation becomes

∂t P = ∂θ

[
M + h

2
((∂θU )P + kBT ∂θP)

]

+ ∂�[2(M − h)((∂�U )P + kBT ∂�P)], (B2)

where we have U (,�) = −2F − v cos 2 − K cos �.
Because the potential becomes separable in these coordi-
nates, we can obtain separate Fokker-Planck equations for the
marginal distributions

P =
∫

d�P(,�), P� =
∫

dP(,�), (B3)

given by

∂t P = ∂

[
M + h

2
([∂V()]P + kBT ∂P)

]
, (B4)

∂t P� = ∂�[2(M − h)([∂�V�(�)]P� + kBT ∂�P�)], (B5)

where V() = −2F − v cos 2 and V�(�) = −K cos �.
Equations (B4) and (B5) each represent the stochastic

dynamics of a (driven) particle in a one-dimensional peri-
odic potential. The average velocity and long-time effective
diffusion coefficient of a particle in such systems can be
calculated analytically, with closed form expressions given in
Refs. [48–50] which we do not reproduce here. In the case
of Eq. (B4), the particle is driven by a force 2F and one
obtains an average velocity 〈̇〉 �= 0 and an effective diffusion
coefficient D. In the case of Eq. (B5), the particle is not
driven and thus the average velocity vanishes, 〈�̇〉 = 0, while
the effective diffusion coefficient is denoted by D�.

As a final step, we note that φ1 and φ2 are related to
 and � by the inverse transformations φ1 =  + �/2 and
φ2 =  − �/2. Exploiting the fact that the dynamics of 

and � are statistically independent, we can use the definitions
of �, D, and C given in the main text to obtain � = 〈̇〉,
D = D + D�/4, and C = (D − D�/4)/(D + D�/4).
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