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Supporting Information Text 1 

Data 2 

Methane mole fraction and δ13CCH4 data used to calculate global averages come from NOAA 3 
Global Monitoring Laboratory’s Global Greenhouse Gas Reference Network (1). 4 
 5 
To measure carbon isotopes of CH4, the INSTAAR Stable Isotope Lab uses the following steps in 6 
a “continuous flow” technique (which uses less air than dual inlet techniques): sample trapping 7 
onto a cold Hayesep-D (Restek) column; focusing on a cold PoraBond Q (Agilent) column; 8 
separation from other condensable compounds on a PoraBond Q column; combustion it at 1150 9 
°C; separation from the potentially interfering krypton molecule on Porabond Q; measurement on 10 
an (GV, now Elementar) Isoprime Isotope Ratio Mass Spectrometer (IRMS). Each sample is 11 
measured relative to a CO2 monitoring peak, and then samples are tied to the VPDB scale 12 
relative to CH4 in air standards that are treated identically to the sample (2). Carbon isotope 13 
values are expressed as δ13CCH4. the relative difference of 13C/12C to a standard, Vienna PeeDee 14 
Belemnite (VPDB). 15 
 16 
Data integration and extension methods (3, 4) are used to calculate trends, growth rates, and 17 
global annual averages from NOAA/INSTAAR data that are considered representative of the 18 
marine boundary layer (as well as South Pole Station). Uncertainties are calculated using a 19 
Monte-Carlo approach that considers error introduced by analysis, the distribution of sites, and 20 
atmospheric variability. These three sources of error are added in quadrature at each time step. 21 
The uncertainties in δ13CCH4 do not account for ties to VPDB. 22 
 23 
Several labs contributed data to the study to show the robustness of the trends seen at NOAA 24 
GGGRN stations. The Max Planck Institute for Biogeochemistry (MPI) in Germany contributed 25 
data from Alert Station (ALT, same site as GGGRN ALT station: Nunavut, Canada, 82.45° N); 26 
Tohoku University/National Institute of Polar Research (TU/NIPR) in Japan contributed data from 27 
Ny Ålesund (Svalbard, Norway, 78.93° N), close to Zeppelin Station (ZEP: 78.90° N); and the 28 
National Institute of Water and Atmospheric Research (NIWA) in New Zealand contributed data 29 
from Arrival Heights, Antarctica (ARH: 77.83° S) which we compared to NOAA’s South Pole 30 
station (SPO: 89.98° S). 31 
 32 
Isotopic measurements made by MPI are similarly made using continuous flow (5–7) as are those 33 
by TU/NIPR (Morimoto et al., 2017). NIWA uses a dual inlet technique with offline methane 34 
extraction that requires substantially more air, but is inherently more precise due to longer, 35 
repeated measurement cycles (9, 10). All laboratories have different ties to VPDB (11). Inter-36 
laboratory offsets were corrected for based on published (11) or direct comparisons between the 37 
labs and are 0.29, 0.13, and –0.18 ‰ for MPI, NIWA, and TU/NIPR respectively.  38 
 39 
We assess the model and data over four periods which have distinct methane growth rates: 40 
1999-2006, 2008-2014, 2014-2020, 2020-2022. We exclude 2007 because CH4 and δ13CCH4 have 41 
different inflection points. We calculated the growth rate at each site by each laboratory. SPO 42 
(INSTAAR) has the following growth rates for the four time periods: [0.006, –0.033, –0.031, –43 
0.097, all in units of ‰ yr-1] which are similar to ARH (NIWA): [0.001, –0.029, –0.034, –0.067]. 44 
Growth rates from INSTAAR data at ZEP [(not available), –0.022, –0.053, –0.089] are similar to 45 
those from TU/NIPR [0.005, –0.011, –0.036, –0.081]. INSTAAR data at ALT [–0.001, –0.016, –46 
0.043, –0.094] are similar to those from MPI [(not available) –0.063, –0.035, –0.092]. 47 
Uncertainties on the slope were assessed with a simple Monte Carlo analysis using analytical 48 
reproducibility of 0.06 ‰ and are all less than + 0.02 ‰ yr-1. 49 
 50 
Model Description 51 
The model is a forward two-box model in which time step is 0.2 year, and the simulation runs for 52 
500 years. Hemispheric exchange time is one year. Emissions are divided into microbial, fossil, 53 
and pyrogenic emission sources with δ13C values of –61.7 ‰, –44.8 ‰, and –24.3 ‰. These 54 
values are taken from Sherwood et al (2021), a large database of isotopic source signatures that 55 
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combines measurements with estimates of flux; therefore, this signal number is representative of 56 
a globally averaged signature. The Sherwood et al value of fossil fuels, which have the largest 57 
range in δ13C, is supported by a recent database (12), which has an average value of –44.6 ‰ for 58 
fossil sources in Europe.  59 
 60 
Sinks include destruction by OH (OH=10.9) (13), tropospheric chlorine (cl=376.6) (14), and 61 
chemical destruction in the stratosphere (strat=81.6) (15), all of which are first order. A zeroeth-62 
order soil sink is also included: 17.7 Tg yr-1 in the northern hemisphere, and 6.9 Tg yr-1 in the 63 
southern hemisphere (16). Default fractionation factors for these are 𝜀OH=3.9 ‰, 𝜀Cl=61.9 ‰ (17), 64 
𝜀strat=16.0 ‰ (15), and and 𝜀soil=24 ‰ (16). The proportion of emissions assumed to be in the 65 
Northern Hemisphere are 70% for microbial emissions, 90% for fossil fuels, and 50% for biomass 66 
burning.  67 
 68 
We set the emissions from various categories and let it reach steady state during 2000-2006 69 
period, and then initiate step changes in emissions at 2008, 2014, and 2020. Remarkably, simple 70 
step function changes in emissions allow us to fit our observations very well. 71 
 72 
Model results 73 
To meet the observations of CH4 and δ13CCH4, we set initial emissions values of 343 Tg yr-1 74 
microbial, 176 Tg yr-1 fossil fuel, and 30 Tg yr-1 biomass burning. For the FF simulation, we 75 
increased fossil fuel CH4 emissions to match the growth rate of CH4 mole fraction during 2008-76 
2014, 2014-2020, and 2020-2022, respectively. Our model suggests that fossil fuel CH4 77 
emissions need to increase by 24 Tg yr-1 in 2008, 25 Tg yr-1 in 2014, and 32 Tg yr-1 in 2020 to 78 
match the observed mole fraction of methane. As a result, the δ13CCH4 values increased by 79 
0.01 ‰ yr-1 during 2008-2014, 0.03 ‰ yr-1 during 2014-2020, and 0.04 ‰ yr-1 during 2020-2022.  80 
 81 
The OH simulation increased the lifetime of CH4 with respect to OH (OH) to match the growth rate 82 
of CH4 mole fractions during 2008-2014, 2014-2020, and 2020-2022. Our model suggests that 83 
increasing OH by 0.10 yr yr-1 starting in 2004 could reproduce the observed CH4 growth from 84 
2008-2022. As a result, the δ13CCH4 values increased by –0.006 ‰ yr-1 during 2008-2014, –85 
0.002 ‰ yr-1 during 2014-2020, and 0.003 ‰ yr-1 during 2020-2022. 86 
 87 
Our first MICR simulation increased only microbial CH4 emissions to match the growth rate of 88 
CH4 mole fraction during 2008-2014, 2014-2020, and 2020-2022. Similar to the FF simulation, 89 
our model suggests that microbial CH4 emissions need to increase by 24 Tg yr-1 in 2008, 25 Tg 90 
yr-1 in 2014, and 32 Tg yr-1 in 2020. As a result, the δ13CCH4 values decreased by –0.04 ‰ yr-1 91 
during 2008-2014, –0.06 ‰ yr-1 during 2014-2020, and –0.08 ‰ yr-1 during 2020-2022.  92 
 93 
Our best fit result of the MICR simulation, where the growth rate of δ13CCH4 matched the model, 94 
required an increase of microbial emissions by 14 Tg yr-1 in 2008 with a concurrent increase in 95 
fossil emissions of 10 Tg yr-1; then in 2014, the microbial emissions increased by an additional 22 96 
Tg yr-1, and fossil emissions increased by 3 Tg yr-1. In 2020, microbial emissions needed to 97 
increase by 32 Tg yr-1 while there was no necessary increase in fossil CH4 emissions.  98 
 99 
In addition to comparing the growth rates, we also calculated the root mean square deviation 100 
(RMSD) to assess the fit of the model simulations to the data. Emissions from fossil fuels and 101 
microbial sources could vary by + 2 Tg yr -1 to maintain acceptable (less than 0.04 ‰ RMSD) fit to 102 
the data. Therefore, a modeled increase of up to 2 Tg yr-1 fossil emissions could also be an 103 
acceptable fit of our model to the observations from 2020-2022.  104 
 105 
Sensitivity Tests 106 
We tested the effect of using a more negative source signature for fossil fuels. If we used a δ13C 107 
value of –46.5 ‰, the partitioning of emissions between microbial and fossil were quite different; 108 
however, the model still required the same ratio of microbial/fossil increases to match the trends 109 
in observations as the best MICR simulation over the entire period 2006-2022. We also 110 
investigated the potential impact of reduced biomass burning CH4 emissions to our model results. 111 
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In the optimized MICR simulation, we reduced the biomass burning CH4 emissions, then 112 
calculated the emission increases from both fossil fuel and microbial sources which best fit the 113 
observed CH4 mole fractions and δ13CCH4 values. Since the biomass burning CH4 emissions are 114 
highly uncertain, we examined two scenarios: 1) ~10% reduction (from 30 Tg yr-1 to 27 Tg yr-1) of 115 
biomass burning from 2008-2022 (18) and 2) ~30% reduction (from 30 Tg yr-1 to 21 Tg yr-1) of 116 
biomass burning from 2008-2022 (19). At 10% reduction, our best fit result suggests an increase 117 
of microbial emissions by 12 Tg yr-1 in 2008, with a concurrent increase in fossil emissions of 17 118 
Tg yr-1; then in 2014, the microbial emissions increased by an additional 20 Tg yr-1, and fossil 119 
emissions increased by 3 Tg yr-1. In 2020, microbial emissions needed to increase by 32 Tg yr-1 120 
while no increase in fossil CH4 emission was required. At 30% reduction, our best fit result 121 
suggests an increase of microbial emissions by 7 Tg yr-1 in 2008, with a concurrent increase in 122 
fossil emissions of 26 Tg yr-1; then in 2014, the microbial emissions increased by an additional 16 123 
Tg yr-1, and fossil emissions increased by 9 Tg yr-1. In 2020, microbial emissions increased by 32 124 
Tg yr-1 and no increase in fossil emissions was required. In both cases, even though the 125 
decrease in biomass burning allowed for more fossil increases, microbial emissions dominated 126 
the increase in 2020. 127 
 128 
We tested the hypothesis of Zhao et al (20) where OH number density decreased from 2000-129 
2010 by 0.3% yr-1. With the increase in OH, we were able to match the data by increasing 130 
microbial emissions 26 Tg yr-1 in 2008 and fossil emissions by 22 Tg yr-1, increasing microbial 131 
emissions 12 Tg yr-1 in 2014 and fossil emissions by 1 Tg yr-1, and increasing only microbial 132 
emissions by 32 Tg yr-1 in 2020. Though the microbial emissions needed in 2014 were somewhat 133 
less than other scenarios, the microbial emissions needed to match the data in 2020-2022 were 134 
the same. We also tested the scenario of Peng et al. (21) where OH number density increased by 135 
1.6% between 2019-2020 (OH decreased); this scenario had negligible effect on the modelled 136 
CH4 and δ13CCH4, and no adjustments to emissions were needed. 137 
 138 
In all scenarios, the absolute values of the emissions are uncertain due to the uncertainties in the 139 
kinetic isotopic fractionation factors of the sink processes, but this has a much smaller influence 140 
on the changes in emissions or sinks needed to match the model to δ13CCH4. We tested the 141 
influence of using the Cantrell et al. (22) value of the OH fractionation factor and found no effect 142 
on the ratio of fossil to microbial emissions needed to match the observations.  143 
 144 
All data (including growth rates and comparison data) used in this study are available at 145 
https://doi.org/10.15138/JQEV-PF31.   146 
 147 
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