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Abstract

Excessive tree mortality is a global concern and remains poorly understood as it is a com-

plex phenomenon. We lack global and temporally continuous coverage on tree mortality data.

Ground-based observations on tree mortality, e.g., derived from national inventories, are very

sparse, not standardized and not spatially explicit. Earth observation data, combined with super-

vised machine learning, offer a promising approach to map tree mortality over time. However,

global-scale machine learning requires broad training data covering a wide range of environmen-

tal settings and forest types. Drones provide a cost-effective source of training data by capturing

high-resolution orthophotos of tree mortality events at sub-centimeter resolution. Here, we intro-

duce deadtrees.earth, an open-access platform hosting more than a thousand centimeter-resolution

orthophotos, covering already more than 300,000 ha, of which more than 58,000 ha are fully an-

notated. This community-sourced and rigorously curated dataset shall serve as a foundation for

a global initiative to gather comprehensive reference data. In concert with Earth observation data

and machine learning it will serve to uncover tree mortality patterns from local to global scales.

This will provide the foundation to attribute tree mortality patterns to environmental changes

or project tree mortality dynamics to the future. Thus, the open and interactive nature of dead-

trees.earth together with the collective effort of the community is meant to continuously increase

our capacity to uncover and understand tree mortality patterns.

1 Introduction1

In recent decades, elevated tree mortality rates have been reported for many regions of the world2

(Hartmann et al. 2022). This phenomenon is attributed to climate change-induced more frequent and3

intense climate extremes such as droughts, heatwaves, and late frosts, that often trigger outbreaks of4
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damaging insects or epidemic diseases (Anderegg et al. 2013; Bauman et al. 2022; Gora and Esquivel-5

Muelbert 2021; Hartmann et al. 2022; Senf et al. 2020; Trumbore et al. 2015). Tree mortality is6

generally not driven by a single driver but by complex compound events, consisting of multiple biotic7

and abiotic agents and feedbacks (Allen et al. 2010; Bastos et al. 2023; Mahecha et al. 2024). This8

may include a combination of consecutive heatwaves, meteorological and soil droughts, followed by9

late frosts after leaf budding, and the infestation of already weakened trees by pest and pathogens10

(Coleman et al. 2018; Fettig et al. 2019; Stephenson et al. 2019; Trugman et al. 2021).11

Trees are long-lived and sessile organisms that cannot escape extreme conditions via migration,12

and their capacity to acclimate or adapt evolutionary to rapid environmental changes is slow (Allen13

et al. 2015). Accordingly, the spatio-temporal patterns of standing dead tree canopies are direct indi-14

cators of how different tree species, functional types, ages, or entire ecosystems cope with biotic and15

abiotic stressors (Anderegg et al. 2013; Hartmann et al. 2022). Moreover, timely information on tree16

mortality dynamics is urgently needed by decision-makers in forest management and nature conser-17

vation. Information on tree mortality patterns is required to identify adaptation strategies, including18

selecting tree species, optimizing harvesting cycle, managing pest and disease outbreaks (e.g., bark19

beetle), ensure the provision of ecosystem services and controlling fuel accumulation for wildfire risk20

reduction (Garrity et al. 2013; Moghaddas et al. 2018; Stephens et al. 2018, 2022; Vilanova et al.21

2023; Winter et al. 2024). Moreover, tracking tree mortality patterns helps indicate where ecosystems22

are undergoing rapid compositional transformations, i.e., shift in species and their role in the terres-23

trial carbon cycle, e.g., via declining net carbon sinks (Hill et al. 2023; Pan et al. 2011; Scheffer et al.24

2001; Stephens et al. 2022).25

Despite its importance, the extent and rate of tree mortality at the global scale remains largely26

unknown or imprecise (Allen et al. 2015). Although ground-based inventories are the gold standard27

in forestry, national forest inventories only sometimes record tree mortality, but usually have sparse28

spatial coverage (Puletti et al. 2019) and low temporal sampling frequencies (e.g., 10-year intervals),29

which do not align well with the rapid dynamics of environmental stressors. Therefore, these inven-30

tories provide limited assistance in attributing tree mortality to short-term environmental dynamics31

such as climate extremes or insect outbreaks (Hülsmann et al. 2017; Woodall et al. 2005). Conse-32

quently, meta-analyses based on such ground observations could be biased or underrepresented for33

recent elevated tree mortality (Hammond et al. 2022; Yan et al. 2024). The value of field inventories34

for global tree mortality studies is further complicated by the commonly low data accessibility and35
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heterogeneity in sampling protocols and data quality (McRoberts et al. 2010; Senf et al. 2018). Recent36

initiatives such as the global tree mortality database (Hammond et al. 2022) have gathered and har-37

monized invaluable information towards a global assessment of tree mortality. However, they are still38

severely limited in their spatial and temporal coverage and are not based on a systematic assessment39

that would enable scaling to larger spatial scales. Uncovering global tree mortality patterns requires a40

multi-faceted approach that complements the ground-based assessments.41

Satellite-based Earth Observation offers a promising avenue, providing seamless spatial coverage42

and temporally consistent monitoring (The International Tree Mortality Network et al. 2024). Using43

data from the Landsat satellite mission, Hansen et al. created the prominent global forest loss map by44

applying a decision tree classifier on time series of spectral metrics (Hansen et al. 2013). However,45

this approach reveals a binary classification of forest loss, not tree mortality, and is restricted to 30 m46

spatial resolution and thus cannot detect the often scattered patterns of tree mortality (Cheng et al.47

2024; Espı́rito-Santo et al. 2014; Schiefer et al. 2024). Unsupervised approaches, that is analysis48

without labeled reference data, can reveal continuous forest responses using anomalies of vegetation49

indices, which are computed by combining multiple spectral bands for each pixel (Lange et al. 2024;50

Senf and Seidl 2021; Senf et al. 2018, 2020; Thonfeld et al. 2022). However, vegetation indices51

cannot directly reveal tree mortality and using such methods to uncover scattered and small-scale52

mortality remains a challenging task. Therefore, translating the complex Earth observation signals to53

tree mortality patterns requires a supervised approaches (Schiefer et al. 2023).54

The Earth observation community, thus, currently lacks a representative collection of reference55

data for training and validating supervised methods for monitoring tree mortality. Given the relatively56

coarse resolution, satellite data does not provide the necessary spatial detail to extract such reference57

data directly. Airplane aerial images typically have higher resolutions and are often freely available for58

regions or entire countries and, therefore, provide a promising source to map tree mortality (Cheng59

et al. 2024; Junttila et al. 2024; Schwarz et al. 2024). However, airplane imagery are only openly60

available in few countries and their spatial resolutions typically range from 20-60 cm, in rare cases up61

to 10 cm. This can be a critical constrain to uncover tree mortality, as an image resolution of 20 cm or62

less does not always enable most precise differentiation of dead from alive tree crowns and may lead63

to missing small dead trees (compare Figure 1). For some species, crown shapes, or sizes, mortality is64

still clearly visible at 60 cm and in studies that are limited to specific ecosystems, e.g., with dominantly65

coniferous species, coarse aerial images suffice (Junttila et al. 2024). Such resolution does not suffice,66
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Figure 1: Four forest sites, 15 m in width and height and at resolutions of 5 cm to 60 cm. From
top to bottom (A to C), the tree species are Picea abies, Fraxinus excelsior, and Pinus sylvestris.
Row D shows an example where rocks cannot be distinguished from deadwood in coarse-resolution
images. The original images have resolutions better than 5 cm and were resampled (nearest-neighbor)
for this visualization. Airplane images at the same resolution commonly appear less clear at similar
resolutions, hence these images are best-case scenarios.

to accurately reveal partial dieback of broadleaf trees (row B in Figure 1), mortality atop a bright67

forest floor (row C in Figure 1), or in the presence of objects such as rocks that have a geometry that68

is similar to tree crowns (e.g., rocks, row D in Figure 1). Hence, to achieve accurate reference data69

across all ecosystems and tree types a finer resolution in the centimeter range (≤ 10 cm) is needed,70

calling for a representative global collection of centimeter-scale imagery.71

Drones are becoming increasingly accessible and require minimal training for operation (P. John-72

son et al. 2017; Rossi and Wiesmann 2024; Tang and Shao 2015). Suitable orthophotos for precise tree73

mortality identification at the centimeter scale can be obtained by non-technical users with consumer-74

type drones and easy-to-use mapping apps. In a recent case study in Germany, Schiefer et al. (2023)75
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leveraged high-resolution drone aerial images (4 cm resolution) as reference to infer the fractional76

cover of standing deadwood [%] in pixels of satellite data (Sentinel-1 and -2). However, drones re-77

quire operators to go into the field, creating significant labor costs and time investment. Hence, lever-78

aging drone orthophotos for use in global tree mortality monitoring can only be achieved through a79

large collective effort across institutions, researchers, and citizens across the globe, to finally acquire80

a rich collection of orthophotos to represent all forest ecosystems.81

Here, we introduce deadtrees.earth, an open science, collaborative platform for accessing, shar-82

ing, analyzing, and visualizing a global database of orthophotos with labeled standing deadwood.83

The deadtrees.earth platform features open-access interactive functionality, allowing users to upload84

and download images and labels through the website and an API. It also incorporates expert qual-85

ity control workflows to maintain high data standards. This collection, across spatial and temporal86

scales, offers unparalleled opportunities for researchers to advance satellite-based model training and87

validation. The platform’s backend is built with a scalable architecture to allow growth into a large88

machine learning model ecosystem. Beyond machine-learning applications, this database also enables89

verification of existing products. Contributors are acknowledged for their data contributions, fostering90

transparent community participation and acknowledgment.91

2 The deadtrees.earth platform92

deadtrees.earth is a dynamic, community-built, open-access database for aerial orthophotos of delin-93

eated standing deadwood. This section presents our definition of standing deadwood, the database94

structure, database statistics, and a web platform for the integration of the database into the commu-95

nity.96

2.1 Standing Deadwood97

We focus on standing deadwood, defined as woody material (twigs, branches, or stems) that has98

died off but has largely retained its original structure, including brown-stage mortality. For deciduous99

tree that is a lack of leafs in leaf-on season, that is either in summer or in wet season (Figure 2).100

Standing deadwood can be identified in centimeter-scale RGB images acquired by drones or airplanes101

by methods such as semantic segmentation, which involves the generic segmentation of any dead tree102

crown or branch (Schiefer et al. 2023), or instance segmentation, where each segment corresponds to103
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Germany Chile Iran Scotland

South Africa Spain Germany New Zealand

Argentina Taiwan Colombia Australia

Serbia Portugal Indonesia Chile

Italy Finland Germany Poland

Figure 2: Sample image sections of standing and lying deadwood in a variety of contexts. The caption
below each image denotes the acquisition location of the drone orthophoto. All images are available
in the database.

11

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 20, 2024. ; https://doi.org/10.1101/2024.10.18.619094doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.18.619094
http://creativecommons.org/licenses/by-nd/4.0/


an individual tree crown (Cheng et al. 2024).104

Information on lying deadwood is not considered for this database. In contrast to standing dead105

tree crowns, fallen tree stems are less likely to be detected in drone and airplane imagery, as they106

are readily occluded by surrounding tree crowns or are rapidly covered by understory. Additionally,107

fallen trees can be several decades old and are hence less interesting for studying tree mortality as a108

response to recent environmental changes, climate extremes, or pests and pathogens.109

Figure 3: Temporal signature of standing deadwood (red) in multiple scenarios. Climate extreme
events (blue) cause tree mortality to increase. Natural decomposition and/or harvesting/salvaging
decreases standing deadwood.

The amount of standing deadwood changes over time with different events (Figure 3). Climate110

extreme events, such as droughts, can cause tree mortality, increasing the amount of standing dead-111

wood. Standing deadwood is not limited to fully dying trees; partial dieback also affects the amount112

of standing deadwood. Explicitly including partial dieback is important, as it can be difficult to vi-113

sually separate trees in imagery of dense forests with complex crown structures (South Africa, Iran,114

and Australia in Figure 2). In subsequent years, standing dead trees decompose and the fraction of115

standing deadwood decreases. As soon as dead trees fall over, are felled, or are completely removed,116

they no longer count as standing deadwood.117

Although the concept of standing deadwood is simple, understanding its temporal dynamics re-118

quires several considerations. First, the falling of healthy trees does not affect the fraction of standing119

deadwood. This also includes removing unhealthy trees that have not yet changed their appearance120

from above and are removed before visible leaf loss. Secondly, a high amount of standing deadwood121

in one year does not imply that those trees died that year, but several years before that is also possi-122

ble. Note that the year of the first appearance can be extracted from a standing deadwood time series123
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Figure 4: Sample entry of orthophoto (Jena, Germany, centroid: 50.911271°N 11.509977°W) with
one label set for one area of interest (AOI) in the deadtrees.earth database. Only a simplified set of
attributes are shown, see Figure 8 for the precise database structure.

(Schiefer et al. 2024). Thirdly, drought or cold semi-deciduous species that shed their leaves during124

climate extremes or species that resprout epicormically after disturbances such as fire, may visually125

appear as standing deadwood at one time point but may regrow leaves at a later time, e.g., red needle126

cast (Watt et al. 2024).127

2.2 Database Structure128

The deadtrees.earth database is a collection of geo-referenced RGB orthophotos gathered over forests129

with optionally one or more sets of labels depicting standing deadwood. Our database focuses on130

airborne imagery better than 10 cm while also allowing submissions of up to 1 m for unrepresented131

regions or where validated tree mortality labels are provided.132

Each orthophoto comes with the following metadata: acquisition date, author(s), resolution, plat-133

form, resolution and license (compare Figure 4). The author(s) can be one or multiple individuals who134

contributed to capturing the orthophoto. The acquisition date is crucial for linking with environmen-135

tal conditions to validate whether the orthophoto was captured in leaf-on season because one cannot136

differentiate between dead and alive trees in orthophotos that were captured in leaf-off season. Given137

that data contributors track the acquisition date with different accuracy, we accommodate three levels138

of precision for the acquisition date, that is, accurate in days, months, or years. Noting the possi-139

ble temporal error is of utmost importance when combining these observations with other datasets,140

such as satellite time series (see Subsection 3.2). Also, for each orthophoto, the average ground sam-141

pling distance (GSD) is automatically calculated to allow users to filter data based on different spatial142
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resolutions (see Figure 4).143

Regardless of the spatial resolution, the information quality of an orthophoto can be constrained144

by various factors. These constraints include poor lighting conditions (e.g., underexposure), recon-145

struction artifacts, motion blur, or data gaps (Dandois et al. 2015; Frey et al. 2018). The image con-146

dition can vary heavily across an orthophoto, e.g., image edges are often distorted. To account for147

this, we assign each orthophoto an area of interest (AOI) that is a multi-polygon. This AOI object148

includes a score noting the quality of the orthophoto inside the AOI (see Figure 4). The scoring sys-149

tem ranges from 1 to 3, with 3 indicating near-perfect image quality, where only small portions (up to150

5%) of the image are affected by constraints. A score of 2 is given if up to 25% of the AOI is affected,151

while a score of 1 is assigned when up to 50% of the orthoimage inside the AOI is constrained. Both152

the AOI and quality score are determined during a meticulous manual audit.153

Label sets are polygons or points located over standing deadwood in orthophotos identified154

through visual inspection or from automatic segmentation (Cheng et al. 2024; Junttila et al. 2024;155

Schiefer et al. 2023). More specifically, there are four types of labels: (i) centroids of individual dead156

tree crowns, (ii) bounding boxes of individual dead trees, (iii) delineations of individual dead tree157

crowns (instance segmentation), and (iv) delineations around a group of adjacent dead trees or dead158

tree parts (semantic segmentation). Each label set is associated with an AOI, that also acts as bound-159

ary of the labeling effort. This means area inside the AOI that was not marked as deadwood can be160

assumed to be alive or non-tree objects (see Figure 4). Lastly, there can be multiple sets of labels from161

different sources for the same orthophoto, e.g., one may have been created manually while a second162

set was machine-generated by a segmentation model.163

The quality of the labels will be assessed during an audit, where, again, a quality score between164

1 and 3 will be assigned. A score of 3/3 means accurately delineated standing deadwood and partial165

dieback (see Figure 4). In the score of 2/3 we include sets where the vast majority of deadwood is166

labeled and/or delineations have imperfections, e.g., partially include forest floor or disregard partial167

dieback. Label sets with a score 1/3 include all other sets and are recommended to be excluded in168

further analysis or machine learning applications.169

2.3 Platform architecture170

The deadtrees.earth platform is an integrated web-based system designed to facilitate visualization,171

participation, management, and access to the deadtrees.earth database. The platform architecture con-172

14

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 20, 2024. ; https://doi.org/10.1101/2024.10.18.619094doi: bioRxiv preprint 

https://deadtrees.earth/
https://doi.org/10.1101/2024.10.18.619094
http://creativecommons.org/licenses/by-nd/4.0/


www.deadtrees.earth

Query Dataset Query
Dataset Details

Storage ServerProcessing Server

Generate 
Cloud Optimize

GeoTIFFs
(COG)

Application
Programming

Interface
(API)

GeoTIFF

Request COG

COG

GeoTIFF

COG

Pull GeoTIFF

Push COG

Search and Filter
Database

Visualize and Download 
Imagery and Labels

Explore Large Scale 
Mortality Map

Metadata 
Database

Upload

Authentication

Upload and
Datamanagement

Figure 5: System diagram illustrating the main components of the deadtrees.earth platform and their
interactions. Users can search and filter the database, visualize and download orthophotos, and explore
a large-scale mortality map. The processing server generates Cloud Optimized GeoTIFFs (COGs) by
pulling GeoTIFF files and pushing processed COGs to the storage server.

sists of the following components: a user-facing front-end application, a cloud-hosted database for173

metadata and labels, a storage server for orthophotos and Cloud Optimized GeoTIFFs (COGs), a174

processing server for generating COGs, and user authentication (see Figure 5).175

The front-end of the platform includes a landing page introducing users to the platform’s features,176

and a dataset page for searching and filtering the database through a list or world map. Users can177

select a specific dataset to access the details page, which visualizes one orthophoto with correspond-178

ing labels and their metadata. From here, users can download datasets without needing an account.179

A second page visualizes large-scale satellite-based deadwood maps. Finally, a user-specific profile180

page, which requires login, enables users to upload orthophotos and labels and manage their data.181

Registered users can upload orthophotos, in the form of GeoTiffs, and labels to the system together182

with a set of metadata data that includes the author names and acquisition date per orthophoto. Upon183

successfull submission to the system, additional metadata is generated, that is administrative level, file184
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size, file type. All metadata, along with vector labels, is stored in a cloud-hosted Supabase database,185

which is accessible via Python and JavaScript client libraries. Data audit workflows require specific186

user access levels, which are assigned to the deadtrees.earth core team. For user authentication, we187

use Supabase Auth, which is based on JSON Web Tokens (JWTs). This ensures secure access while188

integrating with Supabase’s database features to implement Row Level Security (RLS), ensuring that189

each user can only access data they are authorized to view.190

To efficiently visualize a large collection of orthophotos with minimal resources, the platform191

uses Cloud Optimized GeoTIFFs (COGs). COGs allow users to view and work with large orthopho-192

tos quickly and efficiently, which is especially helpful when bandwidth or processing power is limited.193

COGs are internally tiled and include overviews, making them accessible via HTTP range requests194

without the need for server-side processing. This approach allows clients to fetch only the necessary195

data, optimizing transfer and reducing server load. As a result, COGs significantly improve perfor-196

mance compared to traditional Web Map Services (WMS) such as GeoServer or MapServer.197

The resource-intensive generation of COGs is performed on a separate processing server. The198

server periodically pulls user-uploaded GeoTIFF files from the storage server, performs the necessary199

processing, and pushes the generated COGs back to the storage server (see Figure 5). A Python-based200

REST API built with FastAPI manages processing tasks, user management, and resource allocation.201

The front-end initiates tasks such as uploading, downloading, metadata generation, and processing202

COGs through this REST API, which can also be used directly for programmatic data ingestion and203

processing. The deadtrees.earth API also employs a queuing system to manage processes and prevent204

downtime which ensures stability and scalability.205

Finally, the platform’s modular design allows for future integration of advanced workflows, such206

as machine learning models for automated deadwood segmentation from drone imagery. By leverag-207

ing powerful local processing servers, these workflows can be added seamlessly, making the platform208

adaptable and flexible to meet evolving needs.209

2.4 Data Sources and Current State of the Database210

The primary sources for the orthophotos and labels are community contributions, i.e., datasets that211

individuals or institutions actively contributed. Given the large interest in monitoring tree mortality212

dynamics worldwide, the deadtrees.earth database received tremendous support from a wide array of213

individuals and institutions. So far, 87 institutions shared data across 67 countries.214
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Crowd-Sourcing: In addition to community contributions, the database integrates crowd-sourced215

data, i.e., datasets already freely available online. Indeed despite extensive community efforts to date,216

significant portions of the Earth remain uncovered in our database. Therefore to maximize database217

coverage, we integrate publicly available databases that adhere to appropriate licensing schemes.218

While other initiatives, such as GeoNadir, OpenAerialMap, and OpenDroneMap, also collect219

drone orthophotos, only OpenAerialMap currently ensures that all contributions are licensed un-220

der CC BY, making them suitable for use in projects like deadtrees.earth. As of June 2024, Ope-221

nAerialMap hosts over 15,000 aerial orthophotos. We use this community-driven resource to expand222

the deadtrees.earth database. However, most of the contributions to OpenAerialMap do not meet our223

database criteria due to limitations in resolution, site relevance, quality, or acquisition timing. To be224

able to extract usable images, we downloaded a summary of the metadata on 24th April 2024 through225

their open API. Then we first filter the entries with where at least 30% is covered by forest accord-226

ing to ESA Worldcover (Zanaga et al. 2022). To then remove orthophotos that lack the necessary227

spatial resolution (Figure 1), we filtered images to include only resolutions better than 10 cm, yield-228

ing 1102 samples. To only include orthophotos of forests within the growing season, we filtered the229

months May to August for samples north of latitude 23.5°N, December to March for samples south of230

latitude 23.5°S, and included all images for latitudes in between. Note that at a later stage we will dif-231

ferentiate between wet and dry seasons for tropical region. Finally, we manually iterated through the232

thumbnails or the original GeoTIFF of every orthophoto to visually check their quality. This resulted233

in a final set of 448 (out of > 15,000 on OpenAerialMap) orthophotos with wide temporal (2007 to234

2024) and geographic coverage (see Figure 6).235

It is worth noting that the dataset extracted from OpenAerialMap has a bias towards forests near236

human settlements, potentially over-representing ecosystems that might not be representative of the237

region. For example, an orthophoto may contain 20 ha of a relevant forest, but another 100 ha of the238

image contains a building site that the drone operator originally planned to capture. Nevertheless, this239

crowd-sourced dataset provides valuable, high-resolution imagery of forests in ecosystems that would240

otherwise not be part of our database. Additionally, this bias may provide an opportunity for studies241

focusing on studying forest fragments and urban forests. As OpenAerialMap grows in the future, we242

will continuously monitor their database for relevant submissions. Also, other relevant sources with a243

CC-BY license will be integrated.244

Database Statistics: We launch the seed database with 1,390 centimeter-scale orthophotos cover-245
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Figure 6: Initial statistics of the database upon launch depicting geographical, temporal, and resolution
diversity. In the two bottom panels, drone orthophotos are accumulated by area (light blue) and count
(dark gray). Different colors in the background depict different biomes (Olson et al. 2001).

ing 345,595 ha and spanning all continents (except Antarctica) through community contributions and246

crowd-sourced data. By the time of submission (Oct. 2024), the database consists of 998 (71%) drone247

orthophotos from community contributions and 392 (28%) crowd-sourced orthophotos extracted from248

OpenAerialMap (Figure 6). The increasing ease of use of drones within the last decade is reflected249

in the greater number of unique orthophotos in recent years. Additionally, the database includes 140250

aerial images with resolutions less than 10 cm (Figure 6). Beyond local forest plots, we provide ac-251

cess to aerial images with machine-learning generated tree mortality labels that were published on252

our platform as the result of several studies (Cheng et al. 2024; Schwarz et al. 2024; Weinstein et al.253

2024). These products cover the state of California (USA), Luxembourg, and 23 NEON sites in the254

USA (not shown in Figure 6).255

Notable Collections: Although a large part of the database consists of individual locations that256

have been captured, it also features noteworthy collections that provide independent value, for exam-257

ple through temporal coverage across multiple months or years. Notable collections include:258

• Barro Colorado Island (Panama) 90 orthophotos capturing the same 50 ha plot across 6 years259
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(Vasquez et al. 2023).260

• Quebec (Canada) Seven consecutive orthophotos of the same lake area from May to October261

2021 (Cloutier et al. 2023, September).262

• Nationalpark Black Forest (Germany) A 10-year timeseries covering the entire national park263

(Christoph Dreiser).264

• Baden Wuerttemberg (Germany) 135 unique plots (> 1 ha) in southwest Germany captured265

in up to three different years, respectively (ConFoBi).266

• Andalucia (Spain) 60 tree mortality sites (>15 ha) in otherwise protected national parks in267

2023 (Clemens Mosig and Oscar Pérez-Priego).268

• Eastern Cape (South Africa) 35 tree mortality sites captured between 2022 and 2024 provid-269

ing unique data from Africa (Alastair Potts).270

• Zagros Forests (Iran) 16 RGB Orthophotos captured in ca. 1 ha sample plots representing271

Quercus brantii (oak) decline. Distributed over the large latitudinal gradient of semiarid Zagros272

Forests in western Iran (Ghasemi et al. 2022, 2024a,b).273

• NIBIO UAV archive (Norway): 50 UAV RGB orthophotos captured by NIBIO’s Forest and274

Forest Resource division between 2017 - 2022 using a variety of DJI drones. These data were275

in collected primarily in south eastern Norway (Bhatnagar et al. 2022; Puliti et al. 2019, 2020).276

The latter six collections have not been available to the public until now.277

Labels: The database contains 54,320 manually delineated polygons delineating partial dieback,278

individual trees or multiple dead tree crowns. In total, 493 orthophotos and 58,219 ha are fully la-279

beled, of which 245 have quality 3/3, 231 have quality 2/3, and 5 orthophotos have quality 1/3 (see280

Subsection 2.2 for quality definition). These datasets will soon be available as machine learning ready281

datasets (see Section Section 3) to support the community with training semantic or instance segmen-282

tation models. At present, this unique data collection would result in more than 600.000 labeled283

512x512 patches or 170.000 labeled 1024x1024 patches.284

For this data collection we strictly adhere to the FAIR principle (Wilkinson et al. 2016). All data285

is Findable, i.e., has a unique identifier, is described with metadata, and thus searchable. Access is286

provided through industry-standard and authentication-free HTTP requests on the website or pro-287

grammatically (compare Subsection 2.3). We provide data Interoperability by using GeoTIFF format288
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and standard datatypes for metadata (see Figure 8). Lastly, all data is Reusable as it is published under289

a Creative Commons license.290

In summary, through community efforts and crowd-sourcing of data, and to the best of our knowl-291

edge, the deadtrees.earth database curates an unprecedented amount of super-resolution optical im-292

agery and corresponding labels. With the increasing recognition of this database and the general293

growing willingness for open data in science and the public, we expect this database to continue294

expanding rapidly.295

3 Outlook and Perspective296

3.1 Database Expansion Through Community Contribution297

Excess tree mortality is a global phenomenon whose underlying complexity can only be effectively298

assessed through community effort (The International Tree Mortality Network et al. 2024). The299

deadtrees.earth platform initiates with a collection of centimeter-scale forest orthophotos that is al-300

ready orders of magnitude larger in spatial coverage and diversity than in any mortality-related study301

used. However, this collection is biased towards the Global North, and regions in Asia and Africa are302

particularly underrepresented (see Figure 6). As we aim to grow into a representative collection of303

tree mortality in the World’s forest ecosystems, we require a more diverse collection of orthophotos.304

We therefore encourage everyone in every community to take the opportunity to participate in this305

global initiative.306

In the primary use case, a contributor submits an orthophoto covering any forest with a resolution307

better than 10 cm. Optionally, delineated standing deadwood can be submitted as shapefiles or sim-308

ilar formats. Beyond that, we also welcome lower-resolution aerial images with already delineated309

standing deadwood. These delineations can be manually obtained or also the product of automated310

segmentation, and need to be declared as such, e.g., the results of Cheng et al. 2024 are available in311

the database. The orthophotos do not necessarily need to contain large or any fractions of standing312

deadwood, as the machine learning models have to be trained on alive and dead trees. Since anyone313

can submit data to the database, a database manager manually reviews the supplied metadata and the314

geolocation of the orthophoto and, if available, grades the quality of the submitted label set. This315

ensures that the database continues to grow without barriers while maintaining the highest possible316

quality.317
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Figure 7: Generalized workflow to derive a global tree mortality product through the deadtrees.earth
database.

Newly submitted orthophotos of local tree mortality events bolster the global and temporal repre-318

sentativeness of the database. This is critical for training models that aim for a global transferability319

(Kattenborn et al. 2022; Meyer and Pebesma 2022), be it computer vision models that segment dead320

trees in drone data or satellite-based models. Hence, an individual submission of a user’s local forest321

can be an important missing puzzle piece in creating a representative training dataset. Subsequently,322

machine-learning models will improve in the user’s local region, providing a strong incentive to con-323

tribute their data as they indirectly benefit.324

3.2 Towards Tree Mortality Models and Products from Local to Global Scale325

Delineated standing deadwood identified from large amounts of centimeter-scale orthophotos is a326

powerful data source for creating high-precision training data. Deadtrees.earth provides a unique327

dataset that will enable the machine-learning community to create models and maps that are transfer-328

able at a global scale and robust across the diversity of forest ecosystems (Figure 7).329

Given the rich database presented here, users can train various types of computer vision models330

for identifying standing deadwood in drone orthoimagery, e.g., in the form of semantic segmen-331

tation (polygons of dead crowns, twigs or branches), object detection (bounding boxes of individ-332

ual trees), or instance segmentation (precise crowns of individual trees). With such models, one can333

perform inference on all orthophotos in the database to automatically reveal the local distributions334

of standing deadwood. This is particularly relevant for orthophotos that do not have labels from a335

human interpreter. Machine-learning-based predictions may even be advantageous over labels from336

human interpreters as they might be more standardized and objective (in contrast to manually delin-337

eated polygons from different human interpreters). This automated mapping of standing deadwood338
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is also meant to be one of the core incentives for users interacting with the deadtrees.earth. Thus,339

deadtrees.earth will provide a hub for making machine-learning-based technology developed by the340

community accessible for non-experts (e.g., practitioners, citizens, Non-government organizations)341

or people with limited resources.342

The local patterns of standing deadwood derived from orthophotos can be used as a reference343

for large-scale machine-learning-based mapping using satellite data from Sentinel, Landsat, or344

future satellite missions. While Landsat and Sentinel data are much coarser in resolution than drone345

data, approximately 10 m to 30 m, respectively, they have the advantage of having global coverage346

and being multi-spectral data. The temporal continuity of Sentinel or Landsat data supports the cre-347

ation of accurate global products, as machine-learning models can harness the temporal and spectral348

patterns. For example, in optical satellite imagery, standing deadwood may look visually similar to a349

grayish forest floor or rocks (Figure 1). However, in a time series of multiple years, a dead tree can be350

differentiated from a forest floor or rocks based on its spectral history (Schiefer et al. 2023). This way,351

deadtrees.earth will provide satellite-based models and predictions at a global scale in the future.352

To stimulate the development of machine-learning models for analyzing drone and satellite data,353

deadtrees.earth will provide ML-ready datasets, e.g., integrated into the torchgeo library (Stewart et354

al. 2022). This will enable the community to develop and benchmark different methods effectively.355

Incentives for this might be further propelled by related coding competitions. Moreover, the machine-356

learning-ready datasets will enable the development of workflows that are directly compatible with357

the deadtrees.earth ecosystem, so that models and workflows developed in the community can be358

directly integrated as an application.359

With the launch of deadtrees.earth we aim to attract a variety of communities to this multi-360

faceted platform. Through simple, interactive visualizations of orthophotos together with labels and361

satellite-derived products on the website, we truly enable anyone to explore our and others’ tree362

mortality-related products. Viewing centimeter-scale imagery and satellite products side-by-side will363

enable benchmarks, validation, and finally an understanding of large-scale patterns of forest mortal-364

ity. In a citizen science approach, non-specialists can also contribute data without prior knowledge365

of machine-learning methods used for further processing by us and the broad scientific community.366

In the future, we aim to further increase participation on deadtrees.earth by enabling users to delin-367

eate standing deadwood manually, correct AI segmentation outputs, and flag faulty predictions in the368

satellite data.369
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3.3 Applications of Global Tree Mortality Products370

Global, high-quality tree mortality products can be used with environmental layers to attribute mor-371

tality dynamics to respective drivers and understand the variation in tree mortality dynamics. The372

variety of global tree mortality products that can be derived from the database will be a key compo-373

nent in enabling researchers to answer pressing questions: Why are trees dying in the first place and374

how do the drivers (co)vary across tree species, ecosystems, or biomes? Why do some areas experi-375

ence excess tree mortality while similar areas experience greening? Is tree mortality dependent upon376

the species or diversity of neighboring trees? What is the anthropogenic contribution to excess tree377

mortality? How long does standing deadwood remain in different ecosystems and does this relate to378

large-scale carbon balances? Where can tree mortality be attributed to global warming and climate379

extremes? Do the latter factors facilitate (invasive) pests and pathogens? Given high product quality380

and increasing global coverage, we hope to support research on tree mortality from a local to a global381

scale and across biomes.382

For example, one can combine standing deadwood maps with large-scale biomass maps (San-383

toro et al. 2020; Shendryk 2022) to facilitate our understanding of carbon fluxes. Given the tem-384

poral dynamics of standing deadwood, we can compare results to the outputs of vegetation models385

(e.g., (Köhler and Huth 1998)). Thereby, using remote sensing derived products to evaluate and also386

fine-tune or initialize parameterizations of vegetation models. Beyond Now- and Hindcasting, Fore-387

casting of tree mortality should be possible if the community finds effective environmental predictors388

such that tree mortality dynamics for the subsequent year can be modeled.389

Beyond tree mortality applications, we envision the orthophoto database to be used in a variety390

of other use cases. Since in general, this is a centimeter-scale orthophoto database of forests, one can391

also attempt to detect tree species, analyze tree line patterns, derive tree/non-tree products, pioneer392

studies on tree health, tree phenology, or attempt to track forest cover dynamics. Broadly speaking the393

general workflow (see Figure 7) of upscaling to global products can also be attempted for the same394

use cases. Especially suited may be forest cover products, tree species distribution maps, or revealing395

tree loss by forest management or windthrows.396
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4 Conclusions397

The deadtrees.earth database is a centimeter-scale orthophoto collection with standing deadwood de-398

lineations. Already, it comprises 1,390 centimeter-scale orthophotos with more than 55,000 deadwood399

labels from the last decade distributed across the entire globe. The dataset has unprecedented cover-400

age, and through machine learning methods and global remote sensing satellite missions, the scientific401

community can leverage this dataset to create models and global datasets, unlocking the potential to402

effectively track tree mortality dynamics. Ultimately, these data in concert with environmental layers403

will enable the scientific community to answer pressing questions on tree mortality. To reach this goal,404

the platform www.deadtrees.earth encompasses an interactive online system that aims to exploit aerial405

and satellite imagery for uncovering spatial and temporal patterns of tree mortality at a global scale.406

The web platform supports and encourages uploading and downloading user-generated orthophotos407

optionally together with labeled standing deadwood. The vision of this platform is an improved un-408

derstanding of tree mortality patterns and processes from local to global scales. And this vision can409

only be accomplished through the collective effort of citizens and researchers. The dynamic nature of410

this database is meant to continuously increase our capacity to detect and understand tree mortality411

patterns. We hope that through the services of deadtrees.earth, we can attract ample data input from412

geographic regions that are currently still underrepresented (e.g., the global south). Finally, with this413

initiative, we support the paradigm shift in data-sharing practices in the scientific community.414
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