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 2 

ABSTRACT 17 

Genomic sequences from rapidly evolving pathogens, sampled over time, hold information on 18 

disease origin, transmission, and evolution. Together with their sampling times, sequences can 19 

be used to estimate the rates of molecular evolution and date evolutionary events through 20 

molecular tip-dating. The validity of this approach, however, depends on whether detectable 21 

levels of genetic variation have accumulated over the given sampling interval, generating 22 

temporal signal. Moreover, different molecular dating methods have demonstrated varying 23 

degrees of systematic biases under different biologically realistic scenarios, such as the 24 

presence of phylo-temporal clustering. 25 

 26 

Chronic SARS-CoV-2 infection in immunocompromised patients has been linked to 27 

remarkably higher intra-host molecular rates than those of global lineages, facilitating the 28 

emergence of novel viral lineages. Yet, most studies reporting accelerated rates lack the 29 

evaluation of temporal signal or comparison of multiple methods of inference, both required to 30 

reliably estimate molecular rates. In this study, we use 26 previously published longitudinally 31 

sampled sequence series obtained from chronically infected immunocompromised patients to 32 

re-evaluate the rate of SARS-CoV-2 intrahost evolution. Using a range of methods, we analyse 33 

the strength of temporal signal and infer evolutionary rates from tip-calibrated phylogenies. 34 

Regardless of heterogeneity in rate estimates between sample series and methods, we find 35 

within-host rates to be in good agreement with rates derived from host-to-host transmission 36 

chains. 37 

 38 

Our findings suggest that when certain limitations of the methodology are disregarded, such as 39 

the underlying assumption of phylogenetic independence or the method's sensitivity to phylo-40 

temporal grouping, evolutionary rates can be substantially overestimated. We demonstrate that 41 
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estimating within-host rates is a challenging question necessitating careful interpretation of 42 

findings. While our results do not support faster evolution across the complete viral genome 43 

during chronic SARS-CoV-2 infection, prolonged viral shedding together with relapsing viral 44 

load dynamics may nevertheless promote the emergence of new viral variants in 45 

immunocompromised patients.  46 

 47 

AUTHOR SUMMARY 48 

The evolutionary origin of SARS-CoV-2 variants of concern (VOC) is a longstanding point of 49 

controversy, with multiple proposed explanations. Observations of immunocompromised 50 

individuals being at a greater risk of developing a prolonged SARS-CoV-2 infection have led 51 

to the ‘Chronic infection hypothesis’, suggesting that these cases may contribute to the 52 

emergence of VOCs. Correspondingly, many studies have reported accelerated viral evolution 53 

of SARS-CoV-2 within immunocompromised individuals with respect to the viral background 54 

population. However, many of these findings have not been validated with appropriate 55 

analytical methods. In this study we re-evaluate the rate of intrahost viral evolution of SARS-56 

CoV-2 within immunocompromised patients utilising a range of methods. We assess the 57 

performance of different methodologies and compare our results to published estimates of 58 

SARS-CoV-2 evolutionary rates. Our systematic comparison showed no evidence supporting 59 

the previous claims of elevated levels of intrahost evolution in immunocompromised patients 60 

with chronic SARS-CoV-2. Instead, our findings exemplify the complexity of within-host viral 61 

dynamics, suggesting that a more comprehensive understanding of SARS-CoV-2 evolutionary 62 

processes would be derived from concurrent evaluation of viral genomic data together with 63 

patients’ clinical information.  64 
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INTRODUCTION 65 

Molecular dating postulates that differences between two sequences are directly proportional 66 

to the time elapsed since they diverged [1], hence allowing an estimation of the timing of 67 

evolutionary events. Calibration of a molecular clock with independent temporal information 68 

is required to convert relative divergence times of a phylogenetic tree into absolute timescales. 69 

For serially sampled data sets, including those generated for rapidly evolving pathogens such 70 

as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), trees can be calibrated 71 

using the sampling times of genetic sequences [2,3] (for review see [4]). 72 

 73 

Whilst time stamped genealogies have become fundamental for understanding pathogen 74 

evolution, the accuracy of estimated evolutionary rates substantially influences the reliability 75 

of inferred time-scales (for definitions and discussion of different rates of evolution, see [5,6]). 76 

As a result, a large range of evolutionary models and methods have been developed, key 77 

distinctions between different methodologies relying on whether the method accommodates 78 

phylogenetic uncertainty and if rate heterogeneity amongst lineages can be modelled. In the 79 

simplest approach, a linear regression is fitted between sampling dates and corresponding root-80 

to-tip genetic distances [7,8]. In spite of root-to-tip (RTT) regression analysis being extensively 81 

used, its assumptions of statistical independence of the sequences and rate homogeneity among 82 

lineages can be considered as substantial limitations [4,9,10]. Alternatively, least-squares 83 

dating (LSD) is another widely used distance-based approach which provides estimations of 84 

evolutionary rates determined by maximising the likelihood of the rooted phylogeny [11]. 85 

Whereas LSD has been demonstrated to be somewhat robust to rate heterogeneity [11], the 86 

evolutionary patterns of most datasets are more accurately described by relaxing the 87 

assumption of strictly clock-like evolution (for review see for example [12]). In response, 88 

distance-based phylogenetic approaches, such as TreeDater [13], have been implemented to 89 
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explicitly account for branch specific evolutionary rates. Whereas all aforementioned distance-90 

based methods rely on user-supplied fixed tree topology facilitating only the estimation of the 91 

root placement, probabilistic models implemented in a Bayesian framework can be used for 92 

joint estimation of phylogenetic tree topology and evolutionary rates (for an introduction on 93 

Bayesian phylogenetic analysis, see for example [14,15]). Due to their broad applicability, 94 

Bayesian phylogenetic methods, such as BEAST2 [16] and RevBayes [17], have become 95 

widely utilised for molecular dating. In addition to tree uncertainty these methods can 96 

accommodate complex demographic and evolutionary models, such as an uncorrelated relaxed 97 

clock model where rate associated with each branch is independently drawn from a shared 98 

underlying distribution [18].  99 

 100 

Irrespective of the phylogenetic approach chosen, a prerequisite for molecular dating analysis 101 

of tip-calibrated phylogenies is that genetic changes can be considered to have accumulated 102 

rapidly enough relative to the available range of sequence sampling times. If measurable levels 103 

of genetic variation have accumulated over a given sampling interval, the population is 104 

considered as ‘measurably evolving’ [8]. Since insufficient temporal signal might lead to biased 105 

estimates of rates and timescales, determining the strength of temporal signal of 106 

heterochronously sampled data is an essential step prior to the estimation of evolutionary rates 107 

[19]. As a simplest interpretation of adequate temporal signal can be considered a positive 108 

correlation between sequence sampling times and their corresponding root-to-tip distances (see 109 

for example Fig.2 in [4]). However, since RTT can be viewed as a qualitative method that only 110 

provides visual evidence for sufficient temporal signal [9], more sophisticated approaches, such 111 

as the ‘Date-randomization test’ (DRT, [20]) and ‘Bayesian Evaluation of Temporal signal’ 112 

(BETS, [21]),  have been developed for enhanced temporal signal assessment.  113 

 114 
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Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, tip-calibrated 115 

phylogenies have been exploited extensively to gain insights into the origin and spread of 116 

SARS-CoV-2 (for review see [22]). Despite within-patient viral genetic diversity appearing to 117 

be quite limited over the duration of an acute infection [23–25] rather soon after the initial 118 

outbreak, the virus exhibited a significant number of genetic differences through time [10]. 119 

Consequently, a wealth of studies has estimated evolutionary rates for SARS-CoV-2 at the 120 

population level yielding mean estimates between 5.75e-04 and 1.60e-03 121 

substitutions/site/year converting to ~1.4–4.0 substitutions per genome per month (see Table 1 122 

in [22]). Whereas molecular dating approaches have been used rather routinely to infer 123 

molecular rates of between-host transmission chains, their full potential has not yet been 124 

exploited to evaluate intrahost evolution of SARS-CoV-2. In contrast to the majority of 125 

infected individuals with viral load cleared generally from 10 to 16 days after the onset of 126 

symptoms [26,27], numerous independent studies have shown that immunocompromised 127 

individuals with diverse clinical backgrounds are at greater risk of developing a prolonged 128 

SARS-CoV-2 infection (for references, see Table 1). This long-term viral shedding might 129 

provide favourable conditions for intrahost viral evolution [28,29] facilitating emergence of 130 

new variants that consequently can transmit to the general population. Accordingly, the 131 

‘Chronic Infection Hypothesis’ [30] states that prolonged infections in immunocompromised 132 

patients have shaped the evolution of SARS-CoV-2 by acting as a source of variants of concern. 133 

In agreement with the proposed hypothesis a large number of studies have reported accelerated 134 

SARS-CoV-2 evolution within immunocompromised individuals, suggesting up to two-fold 135 

higher molecular rates when accounting for the whole SARS-CoV-2 genome [30–37]. 136 

 137 

Intriguingly, while it has been asserted in a number of publications that intrahost evolutionary 138 

rates in immunocompromised patients are noticeably higher, most often the findings are not 139 
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being supported by any substantive analytical method. Instead, most commonly reported rates 140 

are determined by directly calculating the number of mutations accumulated [32,34,38] or 141 

through root-to-tip regression analysis [30,36]. While the latter's limitations have already been 142 

discussed, the former may result in an overestimation of the number of changes due to general 143 

assumption of changes accumulating over time in a single viral lineage. This contradicts 144 

observations of within-host SARS-CoV-2 viral populations being frequently a collection of 145 

genetically closely related lineages, i.e. coexisting quasispecies [30,37,39–41]. Furthermore, 146 

no comparison of different molecular dating methods has been performed, nor the degree to 147 

which they might be relied upon has been tested. More importantly, the strength of the temporal 148 

signal of within-host sample series has not been evaluated, leaving the conclusions rather 149 

speculative. However, as prolonged SARS-CoV-2 infections within immunocompromised 150 

individuals have supposedly played a key role in shaping the COVID-19 pandemic, compelling 151 

interests for public health exist to understand more thoroughly the interplay between chronic 152 

SARS-CoV-2 infection and viral evolution.  153 

 154 

In this study, we re-evaluate the rate of intrahost molecular evolution of SARS-CoV-2 within 155 

chronically infected immunocompromised patients. Our dataset consists of previously 156 

published SARS-CoV-2 sequences sampled from 26 patients at multiple time points over the 157 

course of infection. For each sample series, we evaluate the strength of the temporal signal and 158 

subsequently infer evolutionary rates based on tip-calibrated phylogenies using a variety of 159 

methods – including distance-based methods as well as Bayesian inference. We evaluate the 160 

performance of methods used and compare the results with earlier estimates. Through this 161 

systematic assessment our aim is to bring into the awareness of researchers aiming to infer 162 

within-host evolutionary dynamics through molecular dating the important limitations of some 163 

of the approaches used. Our results show that by ignoring the evaluation of temporal signal and 164 
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the constraints of the phylogenetic method used, inferred evolutionary rate estimates may be 165 

substantially distorted, while actual patterns of viral evolution may go undiscovered. Therefore, 166 

we propose that the framework developed in this study should be considered in future studies 167 

utilising phylogenetic inference to infer intrahost molecular rates. Furthermore, we explore 168 

novel methods of combining phylogenetic inference with published clinical metadata. Whereas 169 

our results in general do not lend support for accelerated intrahost viral evolution of SARS-170 

CoV-2 across the complete viral genome, prolonged viral shedding together with the relapsing 171 

viral load dynamics may nevertheless promote the emergence of novel viral variants, such as 172 

variants of concern. 173 

 174 

RESULTS 175 

Heterochronously sampled sequence series from immunocompromised patients were used to 176 

re-evaluate SARS-CoV-2 intrahost evolutionary rates over the course of chronic viral infection. 177 

Sample series were identified through a literature search and for all datasets genetic diversities 178 

were determined. Preliminary assessment of temporal signal was performed with RTT 179 

followed by evolutionary rate estimation with LSD2 and TreeDater. For those sample series, 180 

for which evidence of temporal signal was considered sufficient, rates were further inferred 181 

with Bayesian inference. For a subset of sample series, we additionally evaluated the temporal 182 

simultaneity of the changes in evolutionary rate across phylogenetic branches with changes in 183 

viral load dynamics and the timing of SARS-CoV-2 treatments administered (‘Patient case 184 

histories’). A schematic overview of the workflow is presented in Figure 1.  185 
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 186 
Figure 1. Schematic overview of the workflow. Number of sample series included in each step 187 

are given within the circles. Colouring of the number of the sample series corresponds to Figure 188 

2 (red = no temporal signal, grey = questionable temporal signal, green = sufficient temporal 189 

signal). Software/Method or statistics used are indicated with yellow boxes. Additional 190 

information is indicated with purple boxes.  191 

 192 

Data Collection  193 

All data analysed during this study were obtained through a literature search, resulting in the 194 

identification of 85 publications presenting chronic SARS-CoV-2 sample series (for details, 195 
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see Materials & Methods). In order to minimise the phylogenetic uncertainty and thus increase 196 

the precision of evolutionary rate estimates, we chose to include only sample series for which 197 

eight or more viral consensus sequences from unique collection dates were available. 198 

Additionally, inclusion criteria required evidence in the original publication confirming the 199 

immunocompromised status of the patient and the occurrence of a long-term infection, hence 200 

excluding multiple independent infections or superinfection. Following the procedure 201 

presented in [41] an individual was considered to have a chronic SARS-CoV-2 infection if 202 

there was evidence of sustained high viral loads for a period of at least 20 days. In total, 26 203 

patients met all criteria. Clinical metadata and sequence accession information are reported 204 

within the Supplementary Materials (Supplementary tables S1–S7).   205 

 206 

The final data, comprising 304 sequences from 26 patients, included one sample obtained from 207 

the gastrointestinal tract (Kemp-pt-1 Day85 stool sample) and one sample obtained from serum 208 

(Pérez-Lago-pt-2 Day40). The remaining samples were derived from the respiratory tract 209 

including nasopharyngeal, oropharyngeal, combined nasopharyngeal/oropharyngeal, sputum, 210 

bronchoalveolar lavage and tracheal aspirate specimen types. The number of sequences per 211 

sample series varied from eight up to 30 sequences (Table 1). The sampling windows, i.e. the 212 

days between the first and last sequence sampling point for each sample series, ranged from 22 213 

days (Jensen-pt-2) to 392 days (Chaguza-pt-1) (Table 1, Figure 2A). Collection date 214 

information was available in calendar units for 22 sample series and altogether these covered 215 

a time period from February 2020 to June 2022 (Figure 2B). Sample series represented in total 216 

16 different Pango lineages [42]. Lineages B, B.1, B.1.1, B.1.1.7 and B.1.576 were observed 217 

more than once (Table 1, Supplementary table S8). Seven of the patients carried lineages 218 

identified as variants of concern: Alpha (Riddell-pt-2 and Riddell-pt-3), Delta (Brandolini-pt-219 

1, Rockett-pt-2, Rockett-pt-4 and Rockett-pt-8) and Omicron (Huygens-pt-2) (Supplementary 220 
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table S8). The assignment of Pango lineages to Li-pt-1 sample series with Nextclade version 221 

v2.14.1 suggested that samples reflected distinct lineages (Supplementary table S1). However, 222 

since the original paper [43] regarded strong sequence similarity as evidence against 223 

reinfection, we decided to include the sample series in the subsequent study. Nevertheless, 224 

results should be interpreted with caution.  225 

 226 

18 of the patients were receiving treatment for B-cell neoplasm (including B-cell lymphoma 227 

and B-cell leukemia), 3 each for primary immunodeficiency (PID) and for HIV/AIDS, 1 for 228 

myelodysplastic syndrome/myeloproliferative disorder and 1 for rheumatological/autoimmune 229 

disease as well as 3 patients with other forms of immunodeficiency (Table 1). Some of the 230 

patients had more than one disease associated with immunodeficiency (Supplementary table 231 

S2). Due to highly unequal representation of distinct underlying clinical condition categories, 232 

analytical comparisons between categories were not feasible. Therefore, the potential 233 

differences in how different underlying clinical conditions may influence the intrahost 234 

evolution of SARS-CoV-2 were not further explored nor discussed within this study.  235 
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Table 1. Overview of sample series included in this study. * Defined with Nextclade v2.14.1. 236 

** For details, see supplementary table S2.  237 

Sample series 
Number of 

sequences included 
in the analysis 

Sampling 
window 
(days) 

Pango lineage * Patient’s underlying 
clinical condition ** Reference 

Baang-pt-1 9 99 B.1.576 B-cell neoplasm [44] 
Brandolini-pt-1 8 86 AY.122 B-cell neoplasm [37] 

Caccuri-pt-1 12 222 B.1.1 B-cell neoplasm [45] 
Chaguza-pt-1 30 392 B.1.517 B-cell neoplasm [30] 

Choi-pt-1 9 134 B.1.576 Rheumatological/ 
autoimmune disease 

[31] 

Ciuffreda-pt-1 16 129 A.2 PID [32] 
Gandhi-pt-1 15 141 B.1.576 B-cell neoplasm [46] 

Halfmann-pt-1 12 373 B.1.2 B-cell neoplasm  
and PID 

[47] 

Harari-pt-5 9 75 B.1.1.50 B-cell neoplasm [41] 
Huygens-pt-2 13 160 BA.1.1 B-cell neoplasm [48] 
Jensen-pt-2 8 22 B.1.1 HIV/AIDS [49] 
Kemp-pt-1 16 100 B.1.1.1 B-cell neoplasm [39] 

Khatamzas-pt-1 21 149 B.1.1 B-cell neoplasm [50] 
Lee-pt-11 11 64 B.1 B-cell neoplasm [51] 
Lee-pt-4 8 342 B.1.576 B-cell neoplasm [51] 

Li-pt-1 10 140 B Multiple clinical 
conditions 

[43] 

Lynch-pt-1 8 77 B.1.1 B-cell neoplasm [52] 
Pérez-Lago-pt-1 9 123 B B-cell neoplasm [40] 
Pérez-Lago-pt-2 10 117 B.1 B-cell neoplasm [40] 

Riddell-pt-2 9 111 B.1.1.7 B-cell neoplasm and 
HIV/AIDS 

[53] 

Riddell-pt-3 15 255 B.1.1.7 HIV/AIDS [53] 
Rockett-pt-2 8 31 AY.39.1.2 PID [54] 

Rockett-pt-4 8 40 AY.39.1.3 

Myeolodysplastic 
syndrome/ 

myeloproliferative 
disorder 

[54] 

Rockett-pt-8 12 34 AY.39.1 
B-cell neoplasm and 

multiple other clinical 
conditions 

[54] 

Sonnleitner-pt-1 10 98 B.1.1.232 B-cell neoplasm [38] 

Weigang-pt-1 9 140 B.1.1 Multiple clinical 
conditions 

[55] 

 238 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 2, 2023. ; https://doi.org/10.1101/2023.11.01.565087doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.01.565087
http://creativecommons.org/licenses/by/4.0/


 13 

 239 

Figure 2. Temporal distribution of sample collection points. In figure 2A collection dates are 240 

given relative to the first sample of each sample series (Day0) whereas in figure 2B collection 241 

dates are represented in calendar years. Sample series are colour coded according to their 242 

temporal signal: Red indicates patients with no temporal signal, grey indicates poor 243 

(‘Questionable’) temporal signal whereas green denotes patients with sufficient temporal signal 244 

(evaluated based on analysis with RTT, LSD2 and TreeDater). As for the following patients 245 

the collection dates were not given as calendar units, they are omitted from figure 2B: Baang-246 

pt-1, Gandhi-pt-1, Jensen-pt-2 and Kemp-pt-1. 247 

  248 

Assessment of genetic diversity among sample series and temporal signal with RTT 249 

To approximate the genetic diversity of each sample series we determined the mean number of 250 

pairwise differences between sequence pairs within each dataset (Supplementary table S9). 251 

Whereas approximately half of the sample series displayed low levels of genetic diversity with 252 

observed mean pairwise differences being less than 5.0, for some of the sample series 253 

differences were notably higher, yielding mean values above 10.0. As we detected genetic 254 

changes within all sample series, the strength of the temporal signal was firstly assessed with 255 

the regression of root-to-tip distances (RTT). RTT indicated a positive correlation between the 256 
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genetic root-to-tip distances and the sampling times for all sample series (Supplementary figure 257 

S1). However, assuming that the strength of the temporal signal can be evaluated based on RTT 258 

plots and correlation coefficient values, the sample series displayed highly variable levels of 259 

temporal signal, with R2 values ranging between 0.23 and 0.99. The low R2 value of 0.23 and 260 

p-value of 6.45e-02 observed for sample series Lee-pt-11 was considered to indicate inadequate 261 

temporal signal, and we chose to exclude this data from subsequent analyses. For all the 262 

remaining sample series p-values were below the assumed threshold of 0.05, despite the R2 263 

values being rather low, Riddell-pt-3 displaying the lowest value of 0.39 (Supplementary figure 264 

S1). Based on positive correlation between genetic differences and sequence sampling dates 265 

observed alone, 25 of the sample series included in this study would be suitable for 266 

phylogenetic molecular clock analysis [9]. However, subsequent analyses with LSD2 and 267 

TreeDater excluded many of these, showing adequate temporal signal for only nine sample 268 

series (Figure 2). For the remaining 16 sample series a lack of sufficient temporal signal was 269 

detected and therefore the temporal signal was considered as ‘Questionable’ (for details, see 270 

Methods). Among these 16 datasets, for one dataset the rate estimate was successfully 271 

determined only with RTT (Rockett-pt-4) whereas for three sample series estimates were 272 

obtained with RTT and TreeDater but not with LSD2 (Riddell-pt-3, Sonnleitner-pt-1 and 273 

Weigang-pt-1). 274 

 275 

The majority of the sample series for which LSD2 and TreeDater exhibited poor performance 276 

displayed rather low genetic diversities (i.e. Baang-pt-1, Jensen-pt-2, Lynch-pt-1, Pérez-Lago-277 

pt-1, Pérez-Lago-pt-2, Riddell-pt-2, Riddell-pt-3, Rocket-pt-2, Rocket-pt-4, Weigang-pt-1) 278 

(Supplementary table S9). For some sample series with higher diversity the absence of strong 279 

temporal signal might be explained by highly skewed temporal distributions of sampling points 280 

(i.e. Gandhi-pt-1, Kemp-pt-1 and Li-pt-1, Figure 2). Genetic diversities for sample series with 281 
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questionable and sufficient temporal signals showed positive correlations between sampling 282 

windows with correlation coefficient values of R2=0.42 and R2=0.84 (Figure 3). However, for 283 

sample series with questionable temporal signal correlation was not statistically significant 284 

(p=0.11). This indicates that the duration of infection can explain only some of the observed 285 

genetic diversity, meaning that novel mutations emerge with highly variable patterns among 286 

sample series. 287 

 288 

 289 

Figure 3. Mean number of pairwise differences between sequence pairs within each sample 290 

series plotted against the sampling window. Circles represent mean estimates and vertical lines 291 

standard deviations for each sample series. Green colour denotes sample series for which 292 

temporal signal was considered sufficient based on LSD2 and TreeDater analysis whereas grey 293 

colour denotes sample series for which temporal signal was not adequately assigned. Based on 294 

a linear regression model statistically significant indications of strong correlations between 295 

sampling window and mean number of pairwise distances was found only for a group of sample 296 

series exhibiting adequate temporal signal.  297 

 298 

Evolutionary rate estimates – RTT, LSD2 and TreeDater 299 
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Comparison of evolutionary rates obtained with RTT, LSD2 and TreeDater, reveals notable 300 

discrepancies across the estimates between different sample series as well as between different 301 

methods (Figures 4 and 5). Inconsistencies among methods were observed for sample series 302 

with and without adequate temporal signal. For the nine sample series with sufficient temporal 303 

signal LSD2 and TreeDater yielded comparable mean rate estimates within each dataset 304 

(Figure 4, Supplementary table S10). Estimates obtained with RTT were consistently higher 305 

than either of these. A similar pattern of elevated RTT estimates was seen also for the 15 sample 306 

series with modest temporal signal (Figure 5, Rockett-pt-4 excluded as no estimates were 307 

obtained with LSD2 nor with TreeDater). Within each dataset no significant differences were 308 

detected between estimates produced with TreeDater by assuming strict or relaxed clock 309 

models. Similarly, LSD2 produced highly congruent estimates with and without collapsing the 310 

short branches of the tree. For LSD2 we additionally evaluated the possible impact of an 311 

outgroup inclusion and re-inferred rate estimates for trees rooted with the SARS-CoV-2 312 

reference sequence (GenBankID: NC_045512.2 [56]). As shown in Supplementary figure S2, 313 

usage of an outgroup taxon did not have a significant impact on the inferred rates.  314 

 315 

In figures 4 and 5 we compared the rates obtained within this study with three types of 316 

previously published estimates. Firstly, the grey dashed line represents a commonly used point 317 

estimate of 8.00e-04 substitutions/site/year reconstructed based on host-to-host transmission 318 

chains [57]. Secondly, the grey shaded area denotes the lowest and highest mean estimates 319 

collected from various publications describing evolutionary rates for SARS-CoV-2 host-to-320 

host acute infections (5.75e-04 – 1.60e-03 subst./site/year, see Supplementary table S11). 321 

Thirdly, for those sample series for which a within-host rate was estimated in the source 322 

publication, this original estimate is indicated with a blue dashed line. This comparison 323 

revealed that for six out of nine patients with sufficient temporal signal the RTT estimate was 324 
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higher than the point estimate of 8.00e-04 substitutions/site/year, whereas only for Harari-pt-5 325 

the RTT estimate of 1.97e-03 exceeded all mean substitution rate estimates obtained from the 326 

literature (Figure 4). While some of the mean estimates from LSD2 or TreeDater analysis were 327 

higher than 8.00e-04, none of them exceeded the collection of mean estimates. However, for 328 

four of the sample series (Brandolini-pt-1, Halfmann-pt-1, Harari-pt-5 and Lee-pt-4) the widths 329 

of the confidence intervals revealed a considerable uncertainty in LSD2 and TreeDater 330 

estimates. Among these nine sample series, a previous intrahost rate estimate was available for 331 

Chaguza-pt-1. This estimate of 1.2e-03 substitutions/site/year was obtained with a root-to-tip 332 

regression approach and was therefore equal to our RTT estimate. 333 

  334 

Figure 5 shows that for the majority of the datasets representing lower degrees of temporal 335 

signal the evolutionary rates obtained in this study were generally in good accordance with 336 

published host-to-host estimates: for most of the sample series the confidence intervals overlap 337 

with the grey shaded area representing the mean estimates from literature. Among these sample 338 

series with ‘Questionable’ temporal signal, within-host rates have been previously determined 339 

for Ciuffreda-pt-1 and Sonnleitner-pt-1. The reported rate of 0.09 mutations/day for Ciuffreda-340 

pt-1 [32] translates into 1.1e-03 mutations/site/year, which is notably higher than estimates 341 

obtained in this study. On the contrary, the reported rate of 7.5e-4 substitutions/site/year for 342 

Sonnleitner-pt-1 [38], is considerably lower than RTT and TreeDater estimates derived in this 343 

study. However, the results should be interpreted cautiously since the genetic diversity and 344 

temporal spread of samples may not be sufficient to inform the molecular clock adequately.  345 
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 346 

Figure 4. Evolutionary rate estimates determined for nine patients with sufficient temporal 347 

signal (strength of temporal signal defined here based on RTT as well as TreeDater and LSD2 348 

results). For all sample series, rates were determined with following methods: BEAST2 (by 349 

assuming relaxed and strict clock models), LSD2 (with and without collapsing short branches), 350 

root-to-tip and TreeDater (by assuming relaxed and strict clock models). In each panel, the Y 351 

axis denotes the evolutionary rate in substitutions/site/year. For estimates inferred with 352 

BEAST, diamonds represent median estimates and associated vertical lines correspond to 95% 353 

highest posterior density intervals (HPDI). For RTT only point estimates are represented. For 354 

other distance-based methods (i.e. LSD2 and TreeDater) diamonds represent mean estimates 355 

and bars illustrate confidence intervals. Grey dashed line represents the commonly used SARS-356 
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CoV-2 substitution rate estimate of 8.00e-04 substitutions/site/year. The grey shaded area 357 

denotes the lowest and highest mean evolutionary rate estimates for SARS-CoV-2 collected 358 

from various publications (5.75e-04 – 1.60e-03 subst./site/year, see Supplementary table S11). 359 

For Chaguza-pt-1 a previous estimate of 1.2e-03 substitutions/site/year is indicated with a blue 360 

dashed line.  361 

 362 

 363 

Figure 5. Substitution rate estimates for patients with ‘Questionable’ temporal signal. For all, 364 

rates were determined with following methods: LSD2 (with and without collapsing branches 365 

with short lengths), root-to-tip and TreeDater (by assuming relaxed and strict clock models). 366 

In each panel, the Y axis denotes the evolutionary rate in substitutions/site/year. For RTT only 367 
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point estimates are represented. For other distance-based methods (i.e. LSD2 and TreeDater) 368 

diamonds represent mean estimates and horizontal lines illustrate confidence intervals. 369 

Rockett-pt-4 was removed as only RTT was successful (with rate estimate of 9.9e-03 370 

substitutions/site/year). For Riddell-pt-3 and Sonnleitner-pt-1 evolutionary rate estimates could 371 

not be determined with LSD2. Similarly, for Weigang-pt-1 LSD2 analysis by assuming default 372 

node collapse value did not produce any results. Grey dashed line represents the commonly 373 

used SARS-CoV-2 substitution rate estimate of 8.00e-04 substitutions/site/year. The grey 374 

shaded area denotes the lowest and highest mean evolutionary rate estimates for SARS-CoV-375 

2 collected from various publications (5.75e-04 – 1.60e-03 subst./site/year, see Supplementary 376 

table S11). For Ciuffreda-pt-1 and Sonnleitner-pt-1 previously reported estimates of 1.1e-03 377 

and 7.5e-4 substitutions/site/year, respectively, are indicated with a blue dashed line.  378 

 379 

Evolutionary rate estimates – BEAST2 380 

For the nine sample series exhibiting stronger temporal signals, evolutionary rates were also 381 

determined with BEAST v.2.6.7. The temporal signal, an essential prerequisite for Bayesian 382 

rate estimates [9,58], was additionally assessed with a date-randomization test (DRT) for these 383 

nine sample series. DRT results are presented in supplementary figures S3 and S4 for strict and 384 

uncorrelated relaxed clock models, respectively. Two criteria have been proposed for sufficient 385 

temporal signal in DRT results: 1) there is no overlap between posterior distributions of true 386 

and randomised [59], and 2) the true mean value is not contained in any of the randomised 387 

posterior distributions [19]. By assuming the Ramsden et al. 2009 criterion, DRT analysis of a 388 

strict clock model displayed strong evidence for sufficient temporal signal in four of the data 389 

series (Caccuri-pt-1, Chaguza-pt1, Halfmann-pt-1 and Khatamzas-pt-1). When assuming the 390 

more lenient criterion by Firth et al. 2010, datasets Choi-pt-1 and Lee-pt-4 were also included. 391 

Considering the uncorrelated relaxed lognormal clock model, strong temporal signal was 392 
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observed only for Chaguza-pt-1 (Ramsden et al. 2009 criterion) or Chaguza-pt-1 and 393 

Khatamzas-pt-1 (Firth et al. 2010 criterion). For the rest of the sample series, as the 95% highest 394 

posterior density intervals (95% HPDIs) for the randomised datasets were somewhat 395 

overlapping with the real rate estimates, the strength of the temporal signal might not be 396 

sufficient to infer evolutionary rates with high confidence within a Bayesian framework.  397 

 398 

Despite the DRT analysis not indicating a strong temporal signal particularly when assuming 399 

a relaxed clock model, evolutionary rates generated with BEAST2 were compared with 400 

estimates retrieved by other methods. For three sample series BEAST2 median estimates were 401 

in accordance with mean values obtained with LSD2 and TreeDater (Brandolini-pt-1, 402 

Huygens-pt-2 and Lee-pt-4), while for the rest of the sample series the median estimates 403 

inferred with BEAST2 were higher (Figure 4). Furthermore, for three sample series BEAST2 404 

estimates exceeded the generally high RTT point estimates (Caccuri-pt-1, Choi-pt-1 and 405 

Khatamzas-pt-1). Overall, BEAST2 estimates showed less consistency than LSD2 and 406 

TreeDater relative to RTT. However, despite BEAST2 producing sporadically higher rates than 407 

other methods, similarly to RTT only Harari-pt-5 displayed a Bayesian median estimate 408 

exceeding the literature reference values used.  409 

 410 

Whereas BEAST2 estimates obtained with strict and relaxed clock models were in good 411 

accordance within each sample series, evaluation of the estimated coefficient of rate variation 412 

alluded that for none of the nine sample series the evolutionary rate can be considered strictly 413 

constant through time (Supplementary figure S5). Although no precise criteria have been 414 

established in the literature, concentration of marginal posterior distribution of coefficient of 415 

rate variation below the value 0.1 can be considered sufficient to warrant the use of a strict 416 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 2, 2023. ; https://doi.org/10.1101/2023.11.01.565087doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.01.565087
http://creativecommons.org/licenses/by/4.0/


 22 

clock model [60]. Thus, posterior distributions presented in Supplementary figure S5 support 417 

less clock-like evolution across branches of all nine datasets.  418 

 419 

Evaluating phylogenetic tree topologies and degrees of phylo-temporal clustering 420 

To further examine the possible causes of the evolutionary rate estimate inconsistencies 421 

observed principally between BEAST2 vs. LSD2 and TreeDater, we inspected the topologies 422 

of SARS-CoV-2 phylogenetic trees. For each of the nine sample series topological distances 423 

between pairs of phylogenetic trees were calculated based on three comparisons: LSD2 vs. 424 

BEAST2 strict clock maximum clade credibility (MCC) tree, LSD2 vs. BEAST2 relaxed clock 425 

MCC tree, and BEAST2 strict clock MCC tree vs. BEAST2 relaxed clock MCC tree. Results 426 

are presented in Supplementary table S12. For the majority of the sample series, modest split 427 

differences were observed between LSD2 and both BEAST2 MCC trees. For two of the sample 428 

series, Caccuri-pt-1 and Huygens-pt-2, the score for conflicting splits exceeded the score for 429 

shared splits for comparisons between LSD2 vs. BEAST2 strict clock and LSD2 vs. BEAST2 430 

relaxed clock. In contrast, tree topologies obtained with BEAST2 strict and BEAST2 relaxed 431 

clock models were identical for five of the sample series (Choi-pt-1, Halfmann-pt-1, Huygens-432 

pt-2, Khatamzas-pt-1 and Lee-pt-4) and for the remaining four sample series only modest 433 

differences were detected between BEAST2 trees.  434 

 435 

Further visual evaluation of the MCC trees generated with BEAST2 revealed a ‘ladder-like’ 436 

topology for the majority of the nine sample series (Supplementary figures S6–S14). This type 437 

of tree topology is considered indicative of excessive phylo-temporal clustering [61], which 438 

we further assessed by calculating temporal clustering (TC) statistics for all nine datasets. For 439 

four of the sample series – Chaguza-pt-1, Halfmann-pt-1, Harari-pt-5 and Khatamzas-pt-1 – 440 

we observed TC scores ranging between ~0.3 and ~0.5 (Supplementary table S13). Similar 441 
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values have been interpreted to indicate a high degree of temporal clustering [62]. For these 442 

four datasets evolutionary rate estimates obtained with BEAST2 were notably higher than 443 

corresponding estimates produced with LSD2 or TreeDater. For Caccuri-pt-1 and Choi-pt-1 444 

TC scores were less than 0.1, presumably indicating a lesser degree of phylo-temporal 445 

clustering. Whereas for Caccuri-pt-1 similar rate estimates were obtained with all methods, for 446 

Choi-pt-1 BEAST2 estimates are greater than LSD2 or TreeDater estimates. However, TC 447 

statistics are reported to be sensitive to small sizes below 20 [62] and thus a small sample size 448 

of nine sequences for Choi-pt-1 might affect its TC score. For the remaining three sample series 449 

(Brandolini-pt-1, Huygens-pt-2 and Lee-pt-4) we were not able to resolve the TC score 450 

unambiguously (for details, see Methods). 451 

 452 

For Huygens-pt-2 a closer evaluation of MCC tree topologies (Supplementary figure 12), 453 

revealed significant substructure of the viral population. Whereas the first sequence for the 454 

sample series was obtained on the same day as the reported onset of symptoms (2022-01-06), 455 

the median estimates for the tree height date two months earlier with both clock models (2021-456 

11-07). Similar estimates for the most recent common ancestor were obtained with LSD2 457 

(collapse none: 2021-11-03, collapse default: 2021-11-15), and TreeDater yielded even older 458 

estimates (strict clock: 2021-08-18, relaxed clock: 2021-09-17). Based on this, it is plausible 459 

that the patient has been superinfected with two SARS-CoV-2 strains representing the same 460 

Pango lineage (BA.1.1), and thus results for Huygens-pt-2 have been interpreted with caution. 461 

 462 

Patient case histories 463 

We obtained evidence of non-clocklike evolution in nine sample series (Supplementary figure 464 

S5). Considering these, we were further interested in contrasting the timing of evolutionary 465 

rate changes with the temporal fluctuations in the viral load and the timing of SARS-CoV-2 466 
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treatments administered. As a proxy for viral load we used Ct values, information available for 467 

six of the patients (Brandolini-pt-1, Chaguza-pt-1, Choi-pt-1, Halfmann-pt-1, Harari-pt-5 and 468 

Huygens-pt-2). Additionally, direct estimates of viral load were given for Huygens-pt-2 and 469 

Khatamzas-pt-1. For these seven patients we additionally collected the SARS-CoV-2 treatment 470 

information, if any, from the original publications. Ct values, viral load estimates and timing 471 

points of SARS-CoV-2 treatments are given in Supplementary tables S2 and S4.     472 

 473 

Changes in evolutionary rates through time were characterised by visualising MCC trees 474 

reconstructed with BEAST2 by assuming an uncorrelated relaxed clock model. However, as 475 

the BEAST2 estimates appeared biased towards higher rates, we further evaluated if the 476 

observed temporal oscillations in evolutionary rates hold when fixing the mean rate of relaxed 477 

clock model to a commonly used substitution rate reference estimate of 8.00e-04 478 

substitutions/site/year. As shown in Supplementary figures S15–S21, when the inferred mean 479 

rate estimate is close to the fixed rate used, patterns of rate changes through time are highly 480 

similar between trees with fixed and unfixed clock rates (Brandolini-pt-1, Chaguza-pt-1 and 481 

Halfmann-pt-1). Conversely, when the inferred rate estimate is somewhat lower or higher than 482 

the fixed rate, minor scale differences can be detected between the corresponding trees (Choi-483 

pt-1, Harari-pt-5, Huygens-pt-2 and Khatamzas-pt-1). Nonetheless, the broad patterns of 484 

evolutionary rate changes remain comparable, allowing for further examinations of temporal 485 

concurrencies. 486 

 487 

‘Patient case histories’ for Chaguza-pt-1 and Khatamzas-pt-1, the only sample series for which 488 

temporal signal was adequate for relaxed clock analysis, are characterised in figures 6 and 7, 489 

respectively. For the rest of the sample series results are presented in Supplementary figures 490 

S22–S26. These seven patients displayed numerous different clinical conditions leading to a 491 
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severely immunosuppressed condition (Table 1). Altogether the sample series covered a 492 

lengthy period of time from April 2020 to July 2022, during which new therapeutics for SARS-493 

CoV-2 infection were developed. As a consequence, a notable variation in the treatment types 494 

can be detected among patients, antibody-based treatments targeting the spike protein – i.e. 495 

convalescent plasma, bamlanivimab, intravenous immunoglobulin and sotrovimab – being the 496 

most commonly used therapeutic agents. Two of the patients also received remdesivir with a 497 

direct antiviral activity targeting RNA polymerase. Moreover, the half-lives of different 498 

treatments vary greatly, ranging from a few hours for remdesivir [63,64] to nearly seven weeks 499 

for sotrovimab [65] (https://www.ema.europa.eu/en/medicines/human/EPAR/xevudy, last 500 

visited 20.10.2023). Convoluted cycling patterns of viral load were found in all nine patients, 501 

complicating a systematic comparison even further (Supplementary figure S27). While a visual 502 

examination revealed no strong evidence of temporal correspondences between molecular rate 503 

variation, viral loads, and the various SARS-CoV-2 treatments administered, adequate 504 

statistical testing was not possible due to the limited sample size and the reasons stated above.  505 

 506 
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 507 

Figure 6. Patient case history for Chaguza-pt-1 patient, with advanced lymphocytic leukemia 508 

and B-cell lymphoma as underlying clinical conditions. Figure describes through time the 509 

changes in the evolutionary rates (by assuming an uncorrelated lognormal relaxed clock 510 

model), Ct values and SARS-CoV-2 treatments administered within the sampling window. For 511 

Chaguza-pt-1 sample series the first viral sequence was obtained 79 days after the onset of 512 

symptoms. Patient was treated with Bamlanivimab which targets spike-protein and has a half-513 

time of approximately 17 days. Colouring of the branches within the phylogenetic tree 514 

represents evolutionary rate estimates (in substitutions/site/year) obtained with BEAST2, lower 515 

values indicated with blue and higher rates with red colour. Open circles denote samples for 516 

which only Ct values were available and coloured circles denote samples which were 517 

sequenced. 518 

 519 

 520 
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 521 

Figure 7. Patient case history for Khatamzas-pt-1 patient, with follicular lymphoma as 522 

underlying clinical condition. Figure describes through time the changes in the evolutionary 523 

rates (by assuming an uncorrelated lognormal relaxed clock model), viral load on a logarithmic 524 

scale and SARS-CoV-2 treatments administered within the sampling window. For the 525 

Khatamzas-pt-1 sample series the first viral sequence was obtained five days after the onset of 526 

symptoms. Patient was treated with convalescent plasma (CP) multiple times within the 527 

sampling window: on days 20, 30, 45-90 and 103 after the first sequenced sample (i.e. Day0). 528 

Convalescent plasma targets spike-protein and has a half-time of approximately 26 days with 529 

notable variation. Colouring of the branches within the phylogenetic tree represents 530 

evolutionary rate estimates (in substitutions/site/year) obtained with BEAST2, lower values 531 

indicated with blue and higher rates with red colour. For the viral load SARS-CoV-2 RNA 532 

copy numbers per ml of endotracheal aspirates are presented (See Khatamzas et al. 2022 Figure 533 

1b) [50].  Open circles denote samples for which only viral load estimates were available and 534 

coloured circles denote samples which were sequenced.  535 
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 536 

DISCUSSION 537 

Chronic SARS-CoV-2 infections among immunocompromised individuals have been 538 

considered facilitative of an accelerated accumulation of mutations within a relatively short 539 

time window due to clinical conditions which are limiting the host's immune response to the 540 

virus. However, most studies suggesting this lack the evaluation of temporal signal and the use 541 

of multiple methods of inference – two main principles for reliable tip-calibrated phylogenetic 542 

analyses. In this study we sought to fill in this gap by exploring intrahost dynamics of SARS-543 

CoV-2 based on 26 viral sample series obtained from chronically infected individuals with a 544 

compromised immune system. The primary objective of this study is to evaluate the intrahost 545 

viral evolution from the molecular dating standpoint by inferring molecular rate estimates 546 

across the whole viral genome. We utilise a collection of commonly used phylogenetic 547 

approaches while simultaneously assessing the applicability and robustness of the methods and 548 

data utilised. In particular, our results exemplify the complexity of intrahost viral evolution.  549 

 550 

Low genetic diversity leading to insufficient temporal signal 551 

The evaluation of within sample series’ genetic diversity revealed highly variable SARS-CoV-552 

2 diversity patterns among patients. Sample series showing lower genetic diversity despite long 553 

sampling window, such as Riddle-pt-3 with 225 days between first and last sample, 554 

conceivably indicate extremely low levels of viral replication for a lengthy period of time, as 555 

reported also in [66]. However, all 26 sample series included in this study exhibited genetic 556 

changes on a consensus sequence level over the course of infection. This is in contrast with the 557 

findings in [66], showing within-patient genetic variation in only around 30% of chronic 558 

infections. Differences between this study and [66] could be attributed to data discrepancies: 559 

whereas our dataset comprises viral sequences exclusively from patients with 560 
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immunocompromised conditions, [66] included data from a large community-based 561 

surveillance study, likely containing individuals with a variety of clinical backgrounds 562 

including immunocompetent individuals. Nonetheless, given that no clinical metadata from 563 

[66] is publicly available, the true reasons for the observed disparities are unknown.  564 

 565 

The low levels of genetic diversity observed were subsequently reflected in molecular dating 566 

analyses: whereas root-to-tip regression analysis suggested adequate temporal structure for all 567 

but one sample series (Lee-pt-11), a more rigorous evaluation through LSD2 and TreeDater 568 

analyses suggested sufficient temporal signal only for nine sample series. This exemplifies that 569 

RTT should be used only as an informal method for temporal signal assessment, as previously 570 

discussed for example in [9,10]. In addition, our results further confirm the previous statements 571 

proclaiming the problematic usage of root-to-tip regression as an explicit approach for 572 

molecular dating. Firstly, RTT assumes a strict clock model, whereas for all nine sample series 573 

for which rate heterogeneity was evaluated (through posterior distribution of the relaxed clock 574 

model’s rate parameter), the rate of evolution cannot be considered strictly constant through 575 

time. Secondly, even more severe biases might arise due to RTT’s simplified assumption of 576 

statistical independence of the sequences. The samples within the tree cannot be considered 577 

phylogenetically independent, instead they exhibit variable levels of shared ancestry. This leads 578 

to a pseudoreplication, where particularly the mutations occurring at the deeper branches of the 579 

tree are contributing to multiple root-to-tip distances. Supposedly sequences acquired from a 580 

prolonged intrahost infection are evolutionarily more closely related than a small collection of 581 

sequences randomly drawn from a large background population. This in turn will lead to more 582 

pronounced phylogenetic dependency for the intrahost sample series. As the RTT regression 583 

method accounts only for the absolute number of differences without explicitly modelling the 584 

shared ancestry of the sequences, estimates of the intrahost evolutionary rates can be highly 585 
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inflated, as seen for the majority of the sample series included in this study. These varying 586 

degrees of phylogenetic dependence between a within-host and a population sample sets could 587 

potentially explain the notably higher intrahost evolutionary rates reported by Chaguza et al. 588 

2023 and Stanevich et al. 2023 [30,36], as estimates were retrieved solely through root-to-tip 589 

regression analysis in these two studies. 590 

 591 

Notable variation in the rate estimates caused by the method-specific limitations 592 

In order to evaluate whether previously reported accelerated intrahost evolutionary rates of 593 

SARS-CoV-2 can be seen as an artefact raised by the method applied, we exploited two 594 

additional distance-based methods: LSD2 and TreeDater. For the majority of sample series, the 595 

low phylogenetic signal produced high uncertainty in the parameter estimates resulting in wide 596 

confidence intervals seen particularly for TreeDater. In general, estimates generated using RTT 597 

tend to be consistently higher than rates obtained with LSD2 and TreeDater, which yielded 598 

rather similar results within each sample series. This applies also to the Chaguza-pt-1 sample 599 

series, for which RTT yielded a point estimate of 1.2e-03 substitutions/site/year (both this study 600 

and [30]) whereas LSD2 and TreeDater mean estimates were significantly lower, ranking from 601 

4.6e-04 to 9.0e-04 substitutions/site/year. Mean estimates obtained with LSD2 and TreeDater 602 

were not overlapping with RTT 95% confidence interval reported in [30] (1.1e-03 – 1.3e-03 603 

substitutions/site/year). This further supports our hypothesis of RTT introducing a noteworthy 604 

upward bias when employed on a dataset of evolutionary closely related sequences. It should 605 

be noted that the study by Stanevich et al. (2023), which reported within-host evolutionary rate 606 

of 1.53e-03 substitutions/site/year by utilising RTT method, was not part of this study. Sample 607 

series contained in total six sequences, two samples from August 2020 and four from January-608 

February 2021, hence failing to meet our inclusion minimum of eight sequences. Despite data 609 

from Stanevich et al. 2023 was not included in this study, we would like to emphasise that rate 610 
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estimations based upon small sample sizes with highly uneven temporal distribution should be 611 

interpreted with caution.  612 

 613 

As a shared property of RTT, LSD2 and TreeDater is that they rely upon a user-specified 614 

substitution tree for which the optimal root position is estimated based on software specific 615 

algorithms. In the absence of a predefined outgroup, root estimation among genetically highly 616 

similar sequences can be challenging and may result in topological errors and biased rate 617 

estimates. To exclude the possibility of topological errors being the cause of the lower 618 

molecular rates obtained, we re-assessed rate estimates with LSD2 by utilising a SARS-CoV-619 

2 reference sequence as an outgroup. No significant differences were detected between the 620 

estimates reconstructed with and without an outgroup, suggesting that possible topological 621 

errors have only a modest impact on the inferred LSD2 rate estimates, if any, as also indicated 622 

by [11].  623 

 624 

Despite molecular rate estimates being relatively robust for topological errors, we further 625 

exploited BEAST2 which, in contrast to distance-based methods, estimates probability 626 

distributions over parameters of interest, including the phylogenetic tree topology and 627 

evolutionary rate estimates. As Bayesian analyses have been considered rather sensitive to 628 

inadequate temporal signal [9,58] we chose to utilise only the nine sample series for which 629 

analysis with LSD2 and TreeDater suggested more discernible levels of temporal structure. 630 

Additional assessment of temporal signal through date-randomization test revealed that only 631 

for two of the sample series with the largest number sequences, Chaguza-pt-1 and Khatamzas-632 

pt-1, accumulation of genetic diversity through time can be considered sufficient to allow the 633 

molecular rate to be inferred accurately with both strict and uncorrelated relaxed clock models 634 

(Table 2). For the rest of the datasets the strength of the temporal structure remains dubious 635 
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particularly under the assumption of rate heterogeneity, suggesting that despite prolonged 636 

periods of infection somewhat low mutational rates of SARS-CoV-2 might not leave genetic 637 

signals strong enough for reliable molecular dating based on tip-calibration only.   638 
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Table 2. Summary of the results for nine sample series for which evolutionary rates were 639 

determined with LSD2, TreeDater and BEAST2. * Estimated based coefficient of rate variation 640 

(Supplementary figure S5). ** Estimated based on TC statistics (detailed values for three 641 

parallel runs are presented in Supplementary table S13). *** Comparison of point estimates 642 

(BEAST2 median estimates vs. LSD2 & TreeDater mean estimates) (see Figure 4 and 643 

Supplementary table S10). **** Estimated based on tree similarity and distance measures as 644 

proposed in Smith 2020 (detailed values presented in Supplementary table S12, see also 645 

Supplementary figures S6–S14). 646 

 647 

Sample series 
(Number of 
sequences) 

Temporal 
signal 
strict clock 
(DTR) 

Temporal 
signal 
relaxed 
clock 
(DTR) 

Deviation 
from a 
clock-like 
evolution*  

Degree of 
temporal 
clustering ** 

Rate estimates 
BEAST2 vs.  
LSD2 & 
TreeDater *** 

Tree 
topology 
BEAST2 vs. 
LSD2 **** 

Tree topology 
BEAST2 
strict vs. 
relaxed **** 

Brandolini-pt-1 
(N=8) 

Weak Weak Modest Unresolved BEAST2 ≈ 
others 

Modest 
variation   

Modest 
variation 

Caccuri-pt-1 
(N=12) 

Strong Weak Modest Low BEAST2 ≈ 
others 

Notable 
variation 

Modest 
variation 

Chaguza-pt-1 
(N=30) 

Strong Strong Notable High BEAST2 > 
others 

Modest 
variation 

Modest 
variation 

Choi-pt-1  
(N=9) 

Weak Weak Modest Low BEAST2 > 
others 

Modest 
variation 

Identical 

Halfmann-pt-1 
(N=12) 

Strong Weak Notable High BEAST2 > 
others 

Modest 
variation 

Identical 

Harari-pt-5  
(N=9) 

Weak Weak Notable High BEAST2 > 
others 

Modest 
variation 

Modest 
variation 

Huygens-pt-2 
(N=13) 

Weak Weak Modest Unresolved BEAST2 ≈ 
others  

Notable 
variation 

Identical 

Khatamzas-pt-1 
(N=21) 

Strong Strong Modest High BEAST2 > 
others  

Modest 
variation 

Identical 

Lee-pt-4  
(N=8) 

Weak Weak Notable Unresolved BEAST2 ≈ 
others  

Modest 
variation 

Identical 

 648 
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In comparison to LSD2 and TreeDater results, rate estimates obtained using BEAST2 showed 649 

lesser degrees of consistency. We explored possible reasons for this variation by contrasting 650 

time-tree topologies generated with BEAST2 and LSD2 (Table 2, Supplementary table S12, 651 

Supplementary figures S6–S14). Whereas for some of the sample series distinctive structural 652 

disparities were observed between the trees, we couldn’t detect any systematic correlations 653 

between topological differences and inflated BEAST2 rate estimates explaining the variation 654 

(Table 2). A further evaluation of the underlying tree topology, however, revealed that the most 655 

plausible explanation for the high Bayesian rate estimates is temporal clustering of the samples. 656 

Ladder-like tree topology, where sequences obtained at similar times cluster together, tends to 657 

bear a strong phylo-temporal clustering [61]. Previous studies have demonstrated BEAST2 658 

being profoundly sensitive to strong phylo-temporal clustering [58,67] as it decreases the 659 

number of independent calibration points, resulting in lower information content and increased 660 

uncertainty. This has been shown to yield an upward bias in Bayesian posterior estimates [67–661 

69]. In contrast, LSD2 and TreeDater have shown to be less vulnerable for the presence of 662 

temporal clustering [11,13,67]. Although visual inspection of MCC trees indicated somewhat 663 

increased levels of phylo-temporal clustering for all nine sample series, reliable quantification 664 

of the temporal clustering statistic was only possible for the larger datasets, Chaguza-pt-1 and 665 

Khatamzas-pt-1. The clear indication of strong phylo-temporal clustering for Chaguza-pt-1 and 666 

Khatamzas-pt-1, plausibly explains high BEAST2 rate estimates for both sample series. 667 

Moreover, elevated levels of spatiotemporal clustering were presumably also reflected in poor 668 

convergence of the Bayesian analyses when uninformative clock rate prior was used (see 669 

Methods). Consequently, estimates derived with LSD2 and TreeDater are presumably closer 670 

to the true rates than those obtained with BEAST2.  671 

 672 
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For the Bayesian approach we chose to utilise as an underlying tree prior distribution a 673 

deterministic coalescent based Bayesian skyline plot (BSP) model [70] over the birth-death-674 

sampling models. Despite the latter being considered more suitable for processes with 675 

stochastic population size changes including the emergence of a viral outbreak [71] modelling 676 

the within-host sampling process through time might be challenging, if not impossible. Given 677 

that poor characterization of the sampling process may lead to severely biased results within 678 

the birth-death-sampling framework [72] we considered a coalescent based approach being less 679 

vulnerable for misspecified sampling schemes. Moreover, we would like to point out that a 680 

comprehensive Bayesian analysis would also involve proper model selection to evaluate the 681 

best-fit clock and tree prior models, as well as sample-from-prior analysis, as discussed for 682 

example in [73,74]. However, given the vast number of sample series and various combinations 683 

of clock (strict vs. relaxed) and tree prior models (BSP vs. coalescent constant population size 684 

vs. coalescent exponential growth) to be tested, we chose to omit these further steps. 685 

Nonetheless, since misspecified tree prior may lead to increased rate estimates [75], we 686 

performed additional analyses for Chaguza-pt-1 and Khatamzas-pt-1 with coalescent constant 687 

size and exponential population growth models to ensure that elevated BEAST2 estimates are 688 

not a product of a tree prior used. Rate estimates inferred with these two additional tree prior 689 

models are greatly similar to estimates derived with BSP, as shown in Supplementary figure 690 

S28.  691 

 692 

Comparison with rate estimates obtained from acute infections provides no evidence for 693 

elevated intrahost rates  694 

In previous studies, intrahost molecular rate estimates have been brought to a broader context 695 

through comparison with either 1) RTT estimates obtained from a randomly sampled 696 

background population [30,36] or with 2) a point estimate obtained from the literature 697 
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[32,34,37]. In the latter case, the number of mutations accumulated is usually considered to 698 

directly reflect the within-host rate which is subsequently contrasted with a global rate estimate 699 

obtained at the early stages of the pandemic (i.e. ~8.00e-04 substitutions/site/year). Later 700 

studies, however, have reported highly variable rates of SARS-CoV-2 evolution on a 701 

population scale, with mean estimates ranging from 5.75e-04 to 1.60e-03 substitutions/site/year 702 

[22], making inferences derived from a single point estimate somewhat ambiguous. 703 

Furthermore, the simplified assumption of genetic changes accumulating over a single viral 704 

lineage contradicts previous observations of chronic SARS-CoV-2 infection leading to the 705 

coexistence of genetically distinct viral populations, which could also be seen in some of the 706 

sample series included in this study (Brandolini-pt-1, Chaguza-pt-1, Huygens-pt-2, 707 

Khatamzas-pt-1).  708 

 709 

Principally, a direct comparison of within-host and between-host rates may not be 710 

straightforward since molecular rate variation is not solely dependent on the rate of new 711 

mutations arising. Instead, the demographic history of the population has been found to alter 712 

the strength of genetic drift and selection, subsequently introducing rate variation through time 713 

[76–78] (for review see [79]). Patterns of rate variability have in addition shown to emerge due 714 

to ‘time-dependency’, proposing that molecular rate estimates rely on the length of the 715 

sampling window in question, with longer time intervals producing lower evolutionary rates 716 

[6,80]. Moreover, the degree of phylogenetic tree imbalance [81], the presence of a pronounced 717 

population structure [82] and the temporal distribution of sampling dates [83] have similarly 718 

been shown to impact the accuracy of inferred rate estimates. To mitigate the plausible biases 719 

introduced by demographic processes, we chose to compare rates derived in this study to a 720 

variety of previously published estimates which have been retrieved by using diverse 721 

methodologies and obtained from different datasets representing different timescales and 722 
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phases of the pandemic (Supplementary table S11). Despite substantial discrepancies between 723 

sample series and methods used, intrahost evolutionary rates obtained in this study are 724 

generally consistent with rates reported from transmission chains of acutely infected 725 

individuals (Figure 4) and therefore our results do not support accelerated SARS-CoV-2 726 

molecular rates within chronically infected immunocompromised individuals.  Instead, our 727 

findings strongly suggest that within-host evolution across the whole SARS-CoV-2 genome is 728 

occurring at roughly the same rate as the background population.  729 

 730 

Fluctuations in the viral population size shaping the rate of molecular evolution? 731 

A previous study by Chaguza et al. (2023) interpreted the elevated intrahost rates to reflect 732 

differences in viral population sizes. Unlike in host-to-host transmissions, the within-host 733 

pathogen population is not subject to transmission bottlenecks and thus intrahost SARS-CoV-734 

2 dynamics can result in faster evolutionary rates. However, since our results do not suggest 735 

notable differences between host-to-host and within-host rates, we further explored the 736 

possibility of changes in the viral population size leading to intrahost molecular rates 737 

comparable to estimates obtained from acute infections. Whereas serially sampled genealogies 738 

displaying excessive degrees of phylo-temporal clustering are traditionally thought to originate 739 

from viral populations under strong selective pressure [61], higher degrees of temporal 740 

clustering can also occur under neutral evolution as a result of repeated genetic bottlenecks 741 

[62]. Changes in the viral population size can be approximated, at least to some degree, either 742 

by directly expressing the amount of virus per unit volume of sample (i.e. viral load) or by test-743 

specific cycle threshold (Ct) values, although both are sensitive to inconsistencies in sampling 744 

method (for a review see [26]). For the seven sample series with available data, frequent 745 

fluctuations in Ct or viral load estimates are apparent (Supplementary figure S27). Assuming 746 

that these reflect real changes in viral population sizes, these successive intrahost genetic 747 
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bottlenecks might have caused a significant loss in genetic diversity, as shown also for example 748 

for Staphylococcus aureus [84]. Intriguingly, genetic diversity of intrahost respiratory tract 749 

samples – which comprised the majority of sample series used in this study – was found to be 750 

significantly lower when compared to other anatomic sites presumably leading to a more 751 

pronounced genetic drift [85]. Whereas the size of the intrahost genetic bottleneck is 752 

undoubtedly less stringent than what has been observed for host-to-host SARS-CoV-2 753 

transmissions with one to 1000 viral particles transmitted between consecutive infections 754 

[24,86], repeated bottlenecks combined with a small effective population size and thus a greater 755 

impact of random sampling might temporarily affect the frequency of novel mutations 756 

emerging subsequently leading to lower molecular rates. 757 

 758 

However, given that Ct values cannot be considered as a direct measurement of the viral 759 

population size, we further evaluated the signals of selection. Among nine of the sample series, 760 

only Lee-pt-4 showed evidence of positive selection across all functionally important proteins, 761 

albeit this was presumably driven by strong positive selection on ORF1ab which constitutes 762 

the vast majority of the SARS-CoV-2 genome (Supplementary table S14). For four of the 763 

sample series positive selection was detected on the S gene whereas the remaining four datasets 764 

showed no signals of selection. It is essential to note, however, that here the signals of the 765 

selection are tested by averaging over the entire length of a gene or genome. This implies that 766 

despite our findings not showing strong evidence of positive selection for entire genes or 767 

genomes, novel non-synonymous mutations, such as E484K and del144, have emerged and 768 

subsequently become fixed within sample series included in this study, indicating an excessive 769 

positive selection of individual antibody escape mutations. However, positive selection alone 770 

might be inefficient to produce the elevated levels of phylo-temporal clustering when 771 

accounting for the whole SARS-CoV-2 genome, leaving fluctuations in the population sizes as 772 
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a plausible reason for the ladder-like tree topologies. As a result, we anticipate that intrahost 773 

population size variations can explain, at least to some extent, molecular rates analogous to 774 

host-to-host rates. Similar conclusions have been made for HIV in [87]. We acknowledge, 775 

however, the complexity of intrahost evolution of SARS-CoV-2. Whereas within-host 776 

population dynamics might partially explain the results observed in this study, more 777 

comprehensive understanding would require development of models accounting jointly for 778 

multiple evolutionary processes as discussed in [88] and as already available for instance for 779 

primary HIV infection [89]. 780 

 781 

Complex patterns of non-clocklike evolution 782 

As our findings indicate departures from the strictly clocklike evolution for all nine datasets 783 

investigated more thoroughly, we explored the possible factors causing episodic evolution 784 

through ‘Patient case histories’. Temporal correspondences of mutational patterns, viral loads 785 

and antibody-based treatments have previously been investigated, for example, by [41], where 786 

findings suggested strong evidence for a correlation between viral rebound and the emergence 787 

of antibody evasion mutations. We build upon the framework presented in [41], but instead of 788 

focusing on the emergence of individual mutations, our approach intends to explore mutational 789 

patterns on a more generic scale. Incorporating rate variation across branches could help us to 790 

comprehend evolutionary changes occurring between sampling points, providing insights into 791 

the general pace of viral evolution. This can provide information even for the unsampled parts 792 

of the phylogenetic tree. It is essential to note, however, that neither the approach used in this 793 

study nor the one exploited in [41] can reveal the exact timing of novel mutations emerging. 794 

More dense sampling over the course of infection would be required to be able to distinguish 795 

if certain antibody evasion mutations arose at the time of viral rebound or already during the 796 

preceding stages characterised by decreasing or undetectable levels of viral load. However, 797 
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whereas proper statistical testing was not feasible due to numerous reasons (i.e. small sample 798 

size, complex cycling patterns of viral load and wide variation in clinical conditions as well as 799 

in SARS-CoV-2 treatments given) a visual examination of the 'Patient case histories' does not 800 

explicitly reveal temporal simultaneity of viral rebound and elevated levels of viral evolution. 801 

Instead, our findings emphasise the complexities of the interplay between intrahost viral 802 

bottlenecks, molecular rate variation, and therapies targeting the virus, which are undoubtedly 803 

influenced by factors not explored here. Therefore, despite ‘Patient case histories’ being able 804 

to introduce an additional layer of information on intrahost viral evolution, larger cohorts and 805 

more samples as well as improved metadata documentation would be needed for statistically 806 

validated conclusions. 807 

 808 

Standardised framework for intrahost viral molecular rate inference needed 809 

Whereas for SARS-CoV-2 the majority of molecular rate research has focused on rate variation 810 

at the population level, for other viruses, such as HIV, research on intrahost variation has been 811 

undertaken more extensively. Over the past three decades, a wide range of studies have reported 812 

within-host evolutionary rates for HIV (see for example references in Table 6 in [90]), intrahost 813 

estimates being consistently elevated compared to rates obtained from population scale 814 

phylogenies [91,92]. However, most of these estimates have been derived by depending solely 815 

on one dating method and, to the best of our knowledge, no systematic comparison of different 816 

approaches has been undertaken. Given that our findings clearly demonstrate the importance 817 

of comparing the results of multiple methods, we propose that studies estimating intrahost 818 

evolutionary rates of any virus could use the workflow established within this study. We 819 

recommend the following steps for robust tip-calibrated molecular dating inference of within-820 

host sample series: 1) determination of genetic diversity, 2) evaluation of temporal signal, 3) 821 

exploration of the tree topology and 4) comparison of different molecular dating methods. This 822 
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approach is particularly important when the phylogenies show strong signals of temporal 823 

clustering of the samples. We further note that the fundamental work established in 824 

[11,13,58,67,69], comparing distinct frameworks for molecular dating through simulation 825 

studies should be explored within intrahost datasets to gain more comprehensive understanding 826 

of method specific limitations.  827 

 828 

Limitations of the study – Sequence analysis related constraints 829 

Our study has several limitations, the most prominent of which arise from the data itself. 830 

Despite the fact that we utilised a collection of 26 sample series, the date-randomisation test 831 

showed that the lack of phylogenetic signal hampered adequate assessment of molecular rates 832 

for all except two of the largest datasets (Chaguza-pt-1 and Khatamzas-pt-1). While our data 833 

inclusion criteria of at least eight sequences was arbitrarily chosen, our findings suggest that 834 

with lower numbers of sampled genomes all the genetic variants and thus the entire viral 835 

diversity may not be well represented and temporal differences of the evolutionary response 836 

may go undetected. However, minimum sample size used in this study should not be referred 837 

to as a generally recognised threshold, instead each dataset’s eligibility for molecular dating 838 

analysis should be assessed individually. Furthermore, we utilised consensus sequences as 839 

provided by the original publications implying that distinct methodologies as well as different 840 

variant calling thresholds have been used for consensus sequence reconstruction among sample 841 

series (see Supplementary table S6 for details). However, since we mainly focus on molecular 842 

dating method comparison on a within sample series level, possible biases introduced by 843 

differences between consensus sequence reconstruction methods can be considered negligible. 844 

As a more general complication it should be noted that when utilising only consensus sequences 845 

single nucleotide variants (SNPs) prevalent at low frequencies are ignored and the data do not 846 

represent the full genetic diversity of the intrahost viral population, as shown for example in 847 
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[85]. However, based on our literature and database searches, the availability of raw sequence 848 

data in public repositories is even more restricted than what is seen for consensus sequences. 849 

As a further limitation can be seen that we chose to derive rate estimates for the entire SARS-850 

CoV-2 genome, as is standard practice for both inter- and intra-host sample series. However, 851 

studies have reported evolutionary rate variation between different genomic regions [93,94], 852 

leaving the characterisation of gene-specific rate differentiations between within-host and host-853 

to-host viral evolution an open question for future research. Despite occurrences of intrahost 854 

recombination of two distinct viral variants being reported [95,96] we didn’t explore the 855 

possibility of prolonged SARS-CoV-2 infection facilitating recombination either 1) between 856 

intrahost viral variants and lineages circulating in the background population or 2) between 857 

coexisting within-host quasispecies. To minimise the possibility of sequences being 858 

recombinants of two different viral variants we required as an inclusion criteria evidence in the 859 

original publication confirming the occurrence of a long-term infection (i.e. not multiple 860 

independent infections or superinfection) and further verified that all sequences within a 861 

sample series represented the same Pango lineage. For the latter, the possible recombination 862 

events are likely to remain undetected due to the high consensus sequence similarity of 863 

coexisting quasispecies and the low overall genetic diversity resulting in too few polymorphic 864 

sites for reliable recombination analysis.  865 

 866 

Limitations of the study – Metadata-related constraints 867 

Despite a large number of published SARS-CoV-2 sequences collected from 868 

immunocompromised patients globally, our finding that only 26 individuals had a series of at 869 

least eight sequences available demonstrates the relative scarcity of high-resolution genetic 870 

analyses. Furthermore, we observed a substantial degree of variation in data collection 871 

practices, which serves to hinder the direct comparison of multiple datasets. Moreover, as we 872 
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show here, the viral phylogenies are not sufficient alone to inform us on within-host dynamics 873 

of SARS-CoV-2. Instead, joint analysis of multiple non-mutually exclusive processes, 874 

including the host’s immune system, viral population dynamics and administered treatments, 875 

is required to understand the underlying drivers shaping the phylogenetic tree. Through our 876 

exploration of ‘Patient case histories’ we develop a framework for simultaneously evaluating 877 

both genetic and clinical datasets. We thus propose that samples, as well as associated patient 878 

metadata, should be collected systematically over the course of infection. To model better the 879 

interplay between genetic drift and adaptive selection, one would need metadata that 880 

characterises viral population size changes (i.e. viral load estimates or Ct values) as well as 881 

information on factors possibly impacting the selection (i.e. information on underlying clinical 882 

conditions, treatments and vaccination status). Whereas the overwhelming majority of 883 

sequences used in this study were derived from either oropharyngeal or nasopharyngeal swabs 884 

(258/323), the lack of gastrointestinal or serological specimens collected reveals an important 885 

underexploited avenue of research. Indeed, consistent practices of sampling multiple tissue 886 

types would likely be informative for our understanding of intrahost disease dynamics 887 

including viral reservoirs, which have been hypothesised to play a role within long COVID 888 

[97], impacting millions of people and causing a huge economical. We believe that the 889 

imposition of minimum standards for metadata collection, as well as the incentivisation and 890 

enforcement of data sharing will be important steps in facilitating improved interdisciplinarity 891 

in the future. 892 

 893 

Conclusions 894 

Our findings have two types of implications: firstly, the results of this study emphasise the 895 

complexity of determining the within-host evolutionary rates, not restricted only to intrahost 896 

evolution of SARS-CoV-2 but generalised also for other pathogens. By neglecting the 897 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 2, 2023. ; https://doi.org/10.1101/2023.11.01.565087doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.01.565087
http://creativecommons.org/licenses/by/4.0/


 44 

limitations of the data or the method used, it is possible to derive highly biased rate estimates 898 

and to draw invalid conclusions. Our findings highlight the significance of conducting a 899 

systematic study of several sample series using different approaches in order to support reliable 900 

estimations. In the absence of previously established standards, we propose that future studies 901 

estimating within-host viral molecular rates could follow, when applicable, the workflow 902 

established within this study. Secondly, in terms of SARS-CoV-2, our findings provide no 903 

evidence of greater levels of viral evolution in immunocompromised patients with chronic 904 

SARS-CoV-2 infection when considering the complete viral genome. Instead, within-host 905 

molecular rates are comparable with rate estimates derived from host-to-host transmission 906 

chains not restricted to immunocompromised individuals. While our findings challenge 907 

previous claims of increased intrahost evolutionary rates, they do not refute the generally 908 

recognised theory of immunocompromised individuals serving as a source for emergence of 909 

new viral variants. Whereas for the sample series included in this study the intrahost evolution 910 

likely proceeds at a rate similar to that of the background population, a prolonged SARS-CoV-911 

2 infection within an immunodeficient patient might promote the appearance of novel antibody 912 

escape mutations. Furthermore, our findings do not preclude the possibility of increased 913 

evolutionary rates among immunocompromised individuals, however, no viral data from such 914 

a chronic infection was identified within this study. 915 

 916 

MATERIALS AND METHODS 917 

Data collection  918 

All data used within this study was obtained through a literature search conducted between 919 

15.08.2022 - 15.03.2023, according to the search terms: Case study; longitudinal; SARS-CoV-920 

2; COVID; immunocompromised; persistent; prolonged; viral evolution; intra-host; long-921 

term. The resulting dataset of 1,029 longitudinally sampled consensus sequences from 255 922 
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patients and 53 publications was then filtered according to the following criteria: (i) given 923 

evidence within the original publication of the immunocompromised status of the individual, 924 

(ii) confirmation that the infection was the result of a single, long-term infection, i.e. excluding 925 

multiple consecutive infections, or a superinfection, (iii) that at least 8 sequences with unique 926 

collection dates were available from the patient, with the aim of minimising phylogenetic 927 

uncertainty and thus increasing the precision of parameter estimates. We furthermore followed 928 

the procedure presented in Harari et al 2022 and considered an individual to have a chronic 929 

SARS-CoV-2 infection if there was evidence of persistent viral shedding for a period of at least 930 

20 days. The removal of all patients not fulfilling these criteria resulted in a final dataset of 323 931 

consensus sequences from 26 patients and 21 publications. For the sample series obtained from 932 

[52], the last sample (EPI_ISL_2484152, 2020-07-08) was excluded from all the analyses since 933 

in the original publication authors suspected a superinfection with a second strain of the virus.  934 

 935 

In parallel to sequence data collection, clinical metadata obtained from the original publications 936 

or via correspondence with the authors are provided within supplementary tables S1-S6. For 937 

consistency, all sample series were renamed according to the first author of the source 938 

publication, followed by ‘pt’ and the patient number. This labelling is used throughout the 939 

manuscript and the original patient identifiers are listed in supplementary table S7. Sequence 940 

identifiers were renamed according to the day of collection, where in each case ‘day 0’ 941 

represented the earliest sequence available for the patient. In some instances, multiple samples 942 

were collected on the same day, representing different specimen types (e.g. Baang-pt-1_22a 943 

and Baang-pt-1_22b). In such cases, only one sample was considered for a given collection 944 

date and preference was given to respiratory tract samples, since within-host populations from 945 

different tissue types have been shown to be genetically highly distinctive [85]. Pango lineages 946 
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were obtained from original publications and were further confirmed with Nextclade v2.14.1 947 

[98].   948 

 949 

Genetic diversity 950 

Sequences were aligned to the SARS-CoV-2 reference genome (NC_045512.2) in MAFFT 951 

v7.475 [99] with the --keeplength option. Within the group mean number of pairwise 952 

differences were determined with MEGA 11 [100]. Distances were estimated by calculating 953 

the absolute number of differences by assuming uniform rates among sites and treating gaps 954 

and missing data as pairwise deletion. As a variance estimation method we assumed bootstrap 955 

with 100 replications.   956 

 957 

Evolutionary rate estimates – RTT, LSD2 and TreeDater 958 

For each sampling series, consensus sequences were aligned as described previously and 959 

alignment ends as well as other possibly problematic positions were masked, as suggested in 960 

[101]. For each sample series we assessed the strength of temporal signal with root-to-tip linear 961 

regression with the R package BactDating [102]. For BactDating, the input substitution trees 962 

were generated with IQ-Tree v2.1.2 [103] simultaneously estimating the best-fit substitution 963 

model with ModelFinder [104] (iqtree2 -s input.fasta -m MFP). At this point, the temporal 964 

signal was considered sufficient for the downstream analysis if the p-value of R2 was less than 965 

0.05.  966 

 967 

Subsequently, for sample series with RTT confirmed temporal signal, evolutionary rate 968 

estimates were assessed with Least-Squares Dating (LSD2) method integrated in IQ-TREE 969 

v2.1.2 as well as with. For both methods, the maximum likelihood substitution tree inferred 970 

with IQ-Tree was provided as an input. Time trees were inferred by using sampling dates as tip 971 
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dates and the root position was estimated as a part of the analyses. For LSD2 the best-fit 972 

substitution model was estimated with ModelFinder, as described previously. Regarding the 973 

tree we chose to use two different approaches: Within the first approach we followed the LSD2 974 

default values and collapsed all internal branches having branch length less than 1.67e-05 (= 975 

0.5/sequence length). Within the second approach, none of the branches were collapsed 976 

implying that null branches were allowed. For the output tree branch lengths were resampled 977 

in total 100 times to determine the confidence intervals (with --date-ci option). With TreeDater 978 

the molecular rates were determined by assuming a strict and relaxed clock. For both, 979 

confidence intervals for the rate estimates were estimated with a parametric bootstrap with 100 980 

replicates.  981 

 982 

Based on the results obtained from LSD2 and TreeDater, the strength of temporal signal of 983 

each sample series was re-evaluated: If LSD2 and/or TreeDater analysis yielded error messages 984 

(see below) indicating a poor temporal signal, the temporal signal for the sample series under 985 

scrutiny was considered as ‘Questionable’. The software specific error messages considered 986 

were: 987 

1. LSD2: The estimated rate reaches the given lower bound (1e-10). 988 

2. TreeDater: Warning: Root to tip regression predicts a substitution rate less than zero. 989 

Tree may be poorly rooted or there may be small temporal signal. 990 

 991 

Evolutionary rate estimates – BEAST2 992 

For the sample series passing the re-evaluation of the temporal signal the evolutionary rates 993 

were additionally determined with BEAST v.2.6.7. Evolutionary rates were inferred with strict 994 

and uncorrelated relaxed lognormal clock models by assuming a Bayesian Skyline Plot (BSP) 995 

as an underlying tree model. Due to small sample sizes, dimensions for BSP model parameters 996 
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bPopSize and bGroupSize were set to 3–5, depending on the data set. As a substitution model 997 

HKY + Γ was used. As a prior distribution for a strict clock rate parameter (clockRate) an 998 

uniform distribution (0,1) was used. Same uniform distribution of (0,1) was originally used 999 

also for relaxed clock rate parameter (ucldMean). However, Markov Chain Monte Carlo 1000 

(MCMC) chains were not reaching convergence. Therefore, we chose to use more stringent 1001 

prior and set normal distribution with mean of 0.0008 and standard deviation of 0.0016. No 1002 

additional modifications were made to the default prior distributions. The temporal signal was 1003 

assessed with a date-randomization test (DRT) implemented in R package 1004 

TIPDATINGBEAST [105]. For the DRT, for each sample series for both clock models 20 1005 

randomised data sets were generated as recommended in [69].  1006 

 1007 

The MCMC chain length was set to 10–50 million steps for all MCMC analyses. For real data 1008 

analysis the posterior distributions of parameters were estimated based on two parallel MCMC 1009 

chains. After confirming the sufficient convergence of each chain (effective sample sizes for 1010 

each parameter > 200), the samples from two runs were combined after discarding the first 1011 

10% of each chain as a burn-in. Maximum clade credibility trees with median node heights 1012 

were reconstructed with TreeAnnotator by assuming 10% as a burn-in. MCC trees were 1013 

visualised with FigTree v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/, last visited 1014 

20.10.2023).  1015 

 1016 

Estimating topological distances 1017 

The topological distances between pairs of phylogenetic trees were estimated with the R 1018 

package ‘TreeDist’ v.2.6.3 [106] (https://zenodo.org/records/3528124, last visited 1019 

26.10.2023), which is an information-based generalised Robinson-Foulds metric that defines 1020 

the overall similarity between two trees. For each sample series three comparisons were 1021 
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performed: LSD2 vs. BEAST2 strict clock MCC tree, LSD2 vs. BEAST2 relaxed clock MCC 1022 

tree, and BEAST2 strict clock MCC tree vs. BEAST2 relaxed clock MCC tree. According to 1023 

[106], ‘SharedPhylogeneticInfo’ metrics describes the amount of phylogenetic information in 1024 

common between two trees, whereas ‘DifferentPhylogeneticInfo’ metrics describes the 1025 

distance between trees under scrutiny i.e. how much information is different in the splits of 1026 

these two trees. Regarding LSD2, comparisons were performed with allowing zero length 1027 

branches and collapsing short branches. Results for the latter are presented in parenthesis. 1028 

When ‘DifferentPhylogeneticInfo’yielded a value of 0, trees were considered identical. When 1029 

the score for shared splits exceeded the score for conflicting splits (‘SharedPhylogeneticInfo’ 1030 

> ‘DifferentPhylogeneticInfo’), two trees were considered to exhibit modest variation in the 1031 

tree topology. When the score for conflicting splits exceeded the score for shared splits 1032 

(‘SharedPhylogeneticInfo’ < ‘DifferentPhylogeneticInfo’), trees were considered to exhibit 1033 

notable variation in the tree topology.  1034 

 1035 

Evaluating the degree of phylo-temporal clustering 1036 

The degree of temporal clustering was estimated by calculating temporal clustering (TC) 1037 

statistics [62] implemented in R package PhyloTempo [107]. As an input, we used the same 1038 

unrooted substitution trees generated with IQ-Tree which we used as input also for BactDating, 1039 

LSD2 and TreeDater. For each sample series the TC score was defined with three independent 1040 

runs by setting the number of randomizations to 500. In case these three separate analyses 1041 

produced highly divergent TC score estimates, we considered the degree of temporal clustering 1042 

as unresolved.  1043 

 1044 

Test of positive selection  1045 
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The presence of positive selection was evaluated through a codon-based Z-test of selection 1046 

averaging over all sequence pairs within the dataset for nine of the sample series. As a null 1047 

hypothesis we assumed a strict-neutrality (dN = dS) and as an alternative hypothesis positive 1048 

selection (dN > dS). All calculations were conducted with MEGA 11 [100] by using Pamilo-1049 

Bianchi-Li method by assuming a pairwise deletion. 1050 
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SUPPORTING INFORMATION 1410 
 1411 
Supplementary table S1. Sequence metadata. 1412 
 1413 
Supplementary table S2. Patient metadata. 1414 
 1415 
Supplementary table S3. Sequence accession information. 1416 
 1417 
Supplementary table S4. All Reported Ct Values / Viral Loads of Patient Viral Specimens. 1418 
 1419 
Supplementary table S5. List of supporting publications. 1420 
 1421 
Supplementary table S6. Information on bioinformatics procedures used in each supporting 1422 
publication. 1423 
 1424 
Supplementary table S7. Patient list. 1425 
 1426 
Supplementary table S8. Nextstrain clades, Pango lineages and WHO variant of concern 1427 
(VOC) statuses for sample series included in this study.  1428 
 1429 
Supplementary table S9. Mean number of pairwise differences between sequence pairs. See 1430 
also Figure 3. 1431 
 1432 
Supplementary table S10. Evolutionary rate estimates reconstructed with RTT, LSD2, 1433 
TreeDater and BEAST2. Evolutionary rates are given in substitutions/site/year. For LSD2 and 1434 
TreeDater mean estimates are given with lower and upper bounds of confidence intervals. For 1435 
estimates inferred with BEAST2 median estimates with 95% highest posterior density intervals 1436 
(HPDI) are presented.  1437 
 1438 
Supplementary table S11. Evolutionary rates obtained from literature and used as a reference. 1439 
Table is an extension to the table presented in Attwood et al. 2022 (Table 1). Abbreviations as 1440 
in Attwood et al. 2022: BCP = Bayesian coalescent phylodynamic, MTBD = Multi-type birth-1441 
death, SC = Structured coalescent, BC + EG = Bayesian coalescent with exponential growth.  1442 
 1443 
Supplementary table S12. Topological distances between pairs of phylogenetic trees. For 1444 
each sample series, three comparisons were performed with R package ‘TreeDist’: LSD2 vs. 1445 
BEAST2 strict clock MCC tree, LSD2 vs. BEAST2 relaxed clock MCC tree, and BEAST2 1446 
strict clock MCC tree vs. BEAST2 relaxed clock MCC tree. According to Smith 2020, 1447 
‘SharedPhylogeneticInfo’ metrics describes the amount of phylogenetic information in 1448 
common between two trees, whereas ‘DifferentPhylogeneticInfo’ metrics describes the 1449 
distance between trees under scrutiny i.e. how much information is different in the splits of 1450 
these two trees. Regarding LSD2, comparisons were performed with allowing zero length 1451 
branches and collapsing short branches. Results for the latter are presented in parenthesis. 1452 
When ‘DifferentPhylogeneticInfo’yielded a value of 0, trees were considered identical. When 1453 
the score for shared splits exceeded the score for conflicting splits (‘SharedPhylogeneticInfo’> 1454 
‘DifferentPhylogeneticInfo’), two trees were considered to exhibit modest variation in the tree 1455 
topology. When the score for conflicting splits exceeded the score for shared splits 1456 
(‘SharedPhylogeneticInfo’<‘DifferentPhylogeneticInfo’), trees were considered to exhibit 1457 
notable variation in the tree topology (highlighted with red colour).  1458 
 1459 
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Supplementary table S13. Results from the PhyloTempo analysis performed for nine sample 1460 
series. The temporal clustering (TC) statistics can get values between 0 and 1, TC=0 indicating 1461 
a complete absence of temporal clustering (Gray et al. 2011, Nordström et al. 2012). In Gray 1462 
et al. 2011 TC values of ~ 0.3 and above are considered to indicate a high degree of TC. 1463 
‘Staircase-ness’ statistic describes the proportion of imbalanced subtrees (Nordström et al. 1464 
2012) and values of zero indicate a perfectly balanced binary tree whereas values of one 1465 
indicate a perfectly imbalanced tree (Nordström et al. 2012). Degree of temporal clustering was 1466 
considered as ‘Unresolved’ for those sample series for which TC scores obtained from three 1467 
independent runs were highly divergent. Under the TC scores, the optimal number of time 1468 
intervals as well as number of leaves assigned to each bin, are reported for each parallel run.  1469 
 1470 
Supplementary table S14. Results from Z-test of positive selection. Table cells represent the 1471 
test statistic (dN - dS) and green colour demonstrates statistically significant indication of 1472 
positive selection (i.e. p values < 0.05). * All =   ORF1ab, S, E, M and N.  1473 
 1474 
Supplementary figure S1. Root-to-tip regression plots for 25 sample series included in this 1475 
study (Lee-pt-11 omitted due to lack of temporal signal). R package BactDating was used to 1476 
perform regression of root-to-tip analysis and to generate the figures. Note, that as BactDating 1477 
requires sampling dates in calendar units, for sample series lacking collection dates in calendar 1478 
years (i.e. Baang-pt-1, Gandhi-pt-1, Jensen-pt-2 and Kemp-pt-1) the collection day for Day0 1479 
sequence was arbitrarily set to 2020-01-01 and collection dates for the rest of the sequences 1480 
were calculated accordingly (for example for Baang-pt-1: Day5 sample → 2020-01-06, Day15 1481 
sample → 2020-01-16, etc.). Therefore, for these four sample series the timescales on the x 1482 
axis do not indicate the actual sampling window.  1483 
 1484 
Supplementary figure S2. Testing the impact of inclusion of an outgroup for evolutionary rate 1485 
estimates inferred with LSD2. As an outgroup reference sequence NC_045512.2 was used. In 1486 
each panel, the Y axis denotes the evolutionary rate in substitutions/site/year. Diamonds 1487 
represent mean estimates obtained without an outgroup (i.e. the best-fit root position is 1488 
estimated according to LSD criteria) whereas triangles represent mean estimates obtained when 1489 
a tree is being rooted with a known outgroup. Grey dashed line represents the commonly used 1490 
SARS-CoV-2 substitution rate estimate of 8.00e-04 substitutions/site/year. The grey shaded 1491 
area denotes the lowest and highest mean evolutionary rate estimates for SARS-CoV-2 1492 
collected from various publications (5.75e-04 – 1.60e-03 subst./site/year, see Supplementary 1493 
table S11). 1494 
 1495 
Supplementary figure S3. Date-randomisation test (DRT) performed on clockRate parameter 1496 
of the strict clock model. Each panel corresponds to estimates obtained from one sample series. 1497 
Within each panel, an estimate indicated with red colour represents the real estimate whereas 1498 
black colour denotes estimates obtained from date-randomized data sets. For each sample series 1499 
date-randomization was performed twenty times. For clarity, on the Y axis evolutionary rate 1500 
estimates are reported on a logarithmic scale. Overlapping 95% highest posterior density 1501 
(HPD) distributions of real and randomized estimates might indicate that the strength of the 1502 
temporal signal might not be sufficient enough to infer evolutionary rates with high confidence 1503 
only based on tip-dating.  1504 
 1505 
Supplementary figure S4. Date-randomisation test (DRT) performed on ucldMean parameter 1506 
of the uncorrelated relaxed lognormal clock model. Each panel corresponds to estimates 1507 
obtained from one sample series. Within each panel, an estimate indicated with red colour 1508 
represents the real estimate whereas black colour denotes estimates obtained from date-1509 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 2, 2023. ; https://doi.org/10.1101/2023.11.01.565087doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.01.565087
http://creativecommons.org/licenses/by/4.0/


 62 

randomized data sets. For each sample series date-randomization was performed twenty times. 1510 
For clarity, on the Y axis evolutionary rate estimates are reported on a logarithmic scale. 1511 
Overlapping 95% highest posterior density (HPD) distributions of real and randomized 1512 
estimates might indicate that the strength of the temporal signal might not be sufficient enough 1513 
to infer evolutionary rates with high confidence only based on tip-dating. 1514 
 1515 
Supplementary figure S5. Marginal posterior distributions for coefficient of rate variation 1516 
(uncorrelated lognormal relaxed clock model). This parameter characterises the clock-likeness 1517 
of the data, and values closer to zero suggest that a strict clock model might describe the data 1518 
better. Whereas no rigorous value threshold has been given in literature, most often the usage 1519 
of strict clock model is considered justified when majority of the probability mass is placed 1520 
below 0.1 (indicated with red dashed line). Posterior distributions for all nine sample series 1521 
illustrate signals of non-clocklike evolution, rate variation among branches being pronounced 1522 
especially in Chaguza-pt-1, Halfmann-pt-1, Harari-pt-5, Khatamzas-pt-1 and Lee-pt-4.  1523 
 1524 
Supplementary figure S6. Time-trees for Brandolini-pt-1. In the upper panel maximum clade 1525 
credibility (MCC) trees from BEAST2 strict (left) and relaxed (right) clock analysis are given. 1526 
In the lower panel a maximum likelihood tree generated with LSD2 is given. For the LSD2 1527 
tree, internal branches having branch length less than 1.67e-05 (= 0.5/sequence length) were 1528 
collapsed. For BEAST2 trees node posterior support values are presented, for LSD2 bootstrap 1529 
values. 1530 
 1531 
Supplementary figure S7. Time-trees for Caccuri-pt-1. In the upper panel maximum clade 1532 
credibility (MCC) trees from BEAST2 strict (left) and relaxed (right) clock analysis are given. 1533 
In the lower panel a maximum likelihood tree generated with LSD2 is given. For the LSD2 1534 
tree, internal branches having branch length less than 1.67e-05 (= 0.5/sequence length) were 1535 
collapsed. For BEAST2 trees node posterior support values are presented, for LSD2 bootstrap 1536 
values. 1537 
 1538 
Supplementary figure S8. Time-trees for Chaguza-pt-1. In the upper panel maximum clade 1539 
credibility (MCC) trees from BEAST2 strict (left) and relaxed (right) clock analysis are given. 1540 
In the lower panel a maximum likelihood tree generated with LSD2 is given. For the LSD2 1541 
tree, internal branches having branch length less than 1.67e-05 (= 0.5/sequence length) were 1542 
collapsed. For BEAST2 trees node posterior support values are presented, for LSD2 bootstrap 1543 
values. 1544 
 1545 
Supplementary figure S9. Time-trees for Choi-pt-1. In the upper panel maximum clade 1546 
credibility (MCC) trees from BEAST2 strict (left) and relaxed (right) clock analysis are given. 1547 
In the lower panel a maximum likelihood tree generated with LSD2 is given. For the LSD2 1548 
tree, internal branches having branch length less than 1.67e-05 (= 0.5/sequence length) were 1549 
collapsed. For BEAST2 trees node posterior support values are presented, for LSD2 bootstrap 1550 
values. 1551 
 1552 
Supplementary figure S10. Time-trees for Halfmann-pt-1. In the upper panel maximum clade 1553 
credibility (MCC) trees from BEAST2 strict (left) and relaxed (right) clock analysis are given. 1554 
In the lower panel a maximum likelihood tree generated with LSD2 is given. For the LSD2 1555 
tree, internal branches having branch length less than 1.67e-05 (= 0.5/sequence length) were 1556 
collapsed. For BEAST2 trees node posterior support values are presented, for LSD2 bootstrap 1557 
values. 1558 
 1559 
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Supplementary figure S11. Time-trees for Harari-pt-5. In the upper panel maximum clade 1560 
credibility (MCC) trees from BEAST2 strict (left) and relaxed (right) clock analysis are given. 1561 
In the lower panel a maximum likelihood tree generated with LSD2 is given. For the LSD2 1562 
tree, internal branches having branch length less than 1.67e-05 (= 0.5/sequence length) were 1563 
collapsed. For BEAST2 trees node posterior support values are presented, for LSD2 bootstrap 1564 
values. 1565 
 1566 
Supplementary figure S12. Time-trees for Huygens-pt-2. In the upper panel maximum clade 1567 
credibility (MCC) trees from BEAST2 strict (left) and relaxed (right) clock analysis are given. 1568 
In the lower panel a maximum likelihood tree generated with LSD2 is given. For the LSD2 1569 
tree, internal branches having branch length less than 1.67e-05 (= 0.5/sequence length) were 1570 
collapsed. For BEAST2 trees node posterior support values are presented, for LSD2 bootstrap 1571 
values. 1572 
 1573 
Supplementary figure S13. Time-trees for Khatamzas-pt-1. In the upper panel maximum 1574 
clade credibility (MCC) trees from BEAST2 strict (left) and relaxed (right) clock analysis are 1575 
given. In the lower panel a maximum likelihood tree generated with LSD2 is given. For the 1576 
LSD2 tree, internal branches having branch length less than 1.67e-05 (= 0.5/sequence length) 1577 
were collapsed. For BEAST2 trees node posterior support values are presented, for LSD2 1578 
bootstrap values. 1579 
 1580 
Supplementary figure S14. Time-trees for Lee-pt-4. In the upper panel maximum clade 1581 
credibility (MCC) trees from BEAST2 strict (left) and relaxed (right) clock analysis are given. 1582 
In the lower panel a maximum likelihood tree generated with LSD2 is given. For the LSD2 1583 
tree, internal branches having branch length less than 1.67e-05 (= 0.5/sequence length) were 1584 
collapsed. For BEAST2 trees node posterior support values are presented, for LSD2 bootstrap 1585 
values. 1586 
 1587 
Supplementary figure S15. Impact of fixing the mean rate of relaxed clock analysis for 1588 
Brandolini-pt-1. In the left, mean rate is estimated with prior N(0.0008, 0.0016) and in the right 1589 
mean rate is fixed to 8.00e-04 substitutions/site/year. 1590 
 1591 
Supplementary figure S16. Impact of fixing the mean rate of relaxed clock analysis for 1592 
Chaguza-pt-1. In the left, mean rate is estimated with prior N(0.0008, 0.0016) and in the right 1593 
mean rate is fixed to 8.00e-04 substitutions/site/year.  1594 
 1595 
Supplementary figure S17. Impact of fixing the mean rate of relaxed clock analysis for Choi-1596 
pt-1. In the left, mean rate is estimated with prior N(0.0008, 0.0016) and in the right mean rate 1597 
is fixed to 8.00e-04 substitutions/site/year.  1598 
 1599 
Supplementary figure S18. Impact of fixing the mean rate of relaxed clock analysis for 1600 
Halfmann-pt-1. In the left, mean rate is estimated with prior N(0.0008, 0.0016) and in the right 1601 
mean rate is fixed to 8.00e-04 substitutions/site/year. 1602 
 1603 
Supplementary figure S19. Impact of fixing the mean rate of relaxed clock analysis for 1604 
Harari-pt-5. In the left, mean rate is estimated with prior N(0.0008, 0.0016) and in the right 1605 
mean rate is fixed to 8.00e-04 substitutions/site/year.  1606 
 1607 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 2, 2023. ; https://doi.org/10.1101/2023.11.01.565087doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.01.565087
http://creativecommons.org/licenses/by/4.0/


 64 

Supplementary figure S20. Impact of fixing the mean rate of relaxed clock analysis for 1608 
Huygens-pt-2. In the left, mean rate is estimated with prior N(0.0008, 0.0016) and in the right 1609 
mean rate is fixed to 8.00e-04 substitutions/site/year. 1610 
 1611 
Supplementary figure S21. Impact of fixing the mean rate of relaxed clock analysis for 1612 
Khatamzas-pt-1. In the left, mean rate is estimated with prior N(0.0008, 0.0016) and in the 1613 
right mean rate is fixed to 8.00e-04 substitutions/site/year. 1614 
 1615 
Supplementary figure S22. Patient case history for Brandolini-pt-1 patient, with follicular 1616 
lymphoma as underlying clinical condition. Figure describes through time the changes in the 1617 
evolutionary rates (by assuming an uncorrelated lognormal relaxed clock model), Ct values 1618 
and SARS-CoV-2 treatments administered within the sampling window. For Brandolini-pt-1 1619 
the first viral sequence was obtained 132 days after the onset of symptoms. Patient was treated 1620 
with intravenous immunoglobulin (IVIG) which targets spike-protein and has a half-time of 1621 
approximately 26 days with notable variation. Colouring of the branches within the 1622 
phylogenetic tree represents evolutionary rate estimates (in substitutions/site/year) obtained 1623 
with BEAST2, lower values indicated with blue and higher rates with red colour. Open circles 1624 
denote samples for which only Ct values were available and coloured circles denote samples 1625 
which were sequenced. 1626 
 1627 
Supplementary figure S23. Patient case history for Choi-pt-1 patient, with catastrophic 1628 
antiphospholipid syndrome (CAPS) as underlying clinical condition. Figure describes through 1629 
time the changes in the evolutionary rates (by assuming an uncorrelated lognormal relaxed 1630 
clock model), Ct values and SARS-CoV-2 treatments administered within the sampling 1631 
window. For Choi-pt-1 the first viral sequence was obtained 18 days after the onset of 1632 
symptoms. Patient was treated twice with Remdesivir which targets polymerase and has a half-1633 
time of approximately 17 hours. Patient was also treated with an antibody cocktail against 1634 
SARS-CoV-2 (Regeneron, Baum et al. 2020).  Colouring of the branches within the 1635 
phylogenetic tree represents evolutionary rate estimates (in substitutions/site/year) obtained 1636 
with BEAST2, lower values indicated with blue and higher rates with red colour. Open circles 1637 
denote samples for which only Ct values were available and coloured circles denote samples 1638 
which were sequenced. 1639 
 1640 
Supplementary figure S24. Patient case history for Halfmann-pt-1 patient, with primary 1641 
immunodeficiency as underlying clinical condition. Figure describes through time the changes 1642 
in the evolutionary rates (by assuming an uncorrelated lognormal relaxed clock model), Ct 1643 
values and SARS-CoV-2 treatments administered within the sampling window. For Halfmann-1644 
pt-1 the first viral sequence was obtained 113 days after the onset of symptoms. Patient was 1645 
treated with multiple SARS-CoV-2 treatments within the sampling window. Colouring of the 1646 
branches within the phylogenetic tree represents evolutionary rate estimates (in 1647 
substitutions/site/year) obtained with BEAST2, lower values indicated with blue and higher 1648 
rates with red colour. Open circles denote samples for which only Ct values were available and 1649 
coloured circles denote samples which were sequenced. 1650 
 1651 
Supplementary figure S25. Patient case history for Harari-pt-5 patient, with acute 1652 
lymphoblastic leukemia (ALL) as underlying clinical condition. Figure describes through time 1653 
the changes in the evolutionary rates (by assuming an uncorrelated lognormal relaxed clock 1654 
model), Ct values and SARS-CoV-2 treatments administered within the sampling window. For 1655 
Harari-pt-5 the first viral sequence was obtained on the same day as the onset of symptoms. 1656 
Patient was treated with convalescent plasma (CP) in total four times: on days 33 & 34 and 42 1657 
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& 43 after the onset of symptoms. Convalescent plasma targets spike-protein and has a half-1658 
time of approximately 26 days with notable variation. Colouring of the branches within the 1659 
phylogenetic tree represents evolutionary rate estimates (in substitutions/site/year) obtained 1660 
with BEAST2, lower values indicated with blue and higher rates with red colour. Open circles 1661 
denote samples for which only Ct values were available and coloured circles denote samples 1662 
which were sequenced. 1663 
 1664 
Supplementary figure S26. Patient case history for Huygens-pt-2 patient, with lymphoma as 1665 
underlying clinical condition. Figure describes through time the changes in the evolutionary 1666 
rates (by assuming an uncorrelated lognormal relaxed clock model), Ct values and SARS-CoV-1667 
2 treatments administered within the sampling window. For Huygens-pt-2 the first viral 1668 
sequence was obtained on the same day as the onset of symptoms. Patient was treated with 1669 
Sotrovimab, which targets the spike-protein and has a half-time of approximately 49 days. 1670 
Additionally, the patient was treated with convalescent plasma (CP). Colouring of the branches 1671 
within the phylogenetic tree represents evolutionary rate estimates (in substitutions/site/year) 1672 
obtained with BEAST2, lower values indicated with blue and higher rates with red colour. 1673 
Open circles denote samples for which only Ct values were available and coloured circles 1674 
denote samples which were sequenced. 1675 
 1676 
Supplementary figure S27. Ct values (upper panel) and viral load (lower panel) for seven of 1677 
the sample series. Open circles denote samples for which only Ct values were available and 1678 
coloured circles denote samples which were sequenced. For Huygens-pt-2 both Ct values and 1679 
viral load estimates were available.  1680 
 1681 
Supplementary figure S28. Rate estimates for Chaguza-pt-1 and Khatamzas-pt-1 obtained 1682 
with alternative tree priors. For the results presented in the main text, for BEAST2 analysis the 1683 
Bayesian skyline plot (BSP) model was used as an underlying tree prior. For sample series 1684 
Chaguza-pt-1 and Khatamzas-pt-1 we performed additional analysis by assuming coalescent 1685 
constant size and coalescent exponential population growth models. For both tree priors, runs 1686 
were executed by assuming strict and uncorrelated lognormal relaxed clock models. Results 1687 
show that tree priors do not have a notable impact on the evolutionary rate estimates inferred. 1688 
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