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Supplementary Texts 

1. Global annual growth rates of atmospheric CO2 from different atmospheric 
observations and bottom-up models  

We compared the atmospheric CO2 growth rate from 2010 to 2023 based on in-situ 
observations from 40 marine boundary layer background stations, calculated by NOAA 
ESRL[1,2] as the year on year difference between smoothed observations between 
November-February averaged across all the stations (blue bars), from the Mauna Loa station 
(purple squares), from the assimilation of global OCO-2 satellite observations of column CO2 
concentration measurements, about 300,000 10-second-averaged retrievals each year, by the 
inversion used in this study (brown dots), and by the bottom-up approach, that is, not using 
atmospheric measurements and the growth rate is predicted from the difference between fossil 
fuel CO2 emissions minus the land sink from three DGVM models, minus the ocean sink 
from ocean model emulators (red dots) (Supplementary Figure 1). 

2. Maps of monthly air-sea CO2 fluxes from emulators of biogeochemical and 
data driven ocean models 

We utilized a deep learning technique for near-real-time estimation of oceanic carbon monthly 
gridded fluxes. This method integrates year, month, latitude, longitude, and nine environmental 
factors as predictors, targeting predictions for each GOBM model or ocean data product. We 
use monthly data from 5 GOBMs and 8 data products from the Global Carbon Budget 2022[3], 
covering data up to the end of 2021. The fCO2 output from each GOBM or data product is 
provided at a 1° × 1° monthly resolution. Our predictive variables include a range of biological, 
chemical, and physical factors typically linked to fluctuations in fCO2. These variables are sea 
surface temperature (SST), sea ice fraction (ICE), sea surface salinity (SSS), atmospheric CO2 
mole fraction (xCO2), mixed-layer depth (MLD), sea surface height (SSH), chlorophyll a (chl 
a), sea level pressure (SLP), and wind speed. All data are bilinearly interpolated to a 1° × 1° 
monthly resolution to align with our fCO2 targets and updated to Dec. 2023. Since the xCO2 
data is only available up to the end of 2022, and to meet the requirement for near-real-time data, 
we gather global average marine boundary layer surface monthly mean atmospheric CO2 data 
updated to Dec. 2023. We use a light gradient boosting machine (LightGBM)[4] model to 
establish a relationship between the year, month, latitude, longitude, mean atmospheric CO2 
data, and xCO2. We used data from 1979-2021, divided into training and validation datasets in 
an 8:2 ratio. Early stopping was implemented with LightGBM, and testing on 2022 data yielded 
a test RMSE of 1.74, reflecting roughly a 0.5% prediction error. This approach allows us to 
extend the xCO2 data to near-real-time.  
The data are formatted into a 180x360 grid and subdivided into 18x18 patches for 
computational efficiency. We trained the model on labeled data points, calculating the Root 
Mean Square Error (RMSE) between labels and predictions as the supervised loss (LsL_sLs). 
To ensure prediction stability on unlabeled data, we used pseudo-labeling by predicting with 
10% of features removed as pseudo-labels, then predicting again with 30% of features removed, 
calculating the RMSE as the unsupervised loss (LuL_uLu). The model was updated using the 
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weighted sum of LsL_sLs and LuL_uLu through backward propagation. Our model 
architecture combines a multi-layered Convolutional Neural Network (CNN)[5] and linear 
models[6], designed to process the input data efficiently. The input layer has a dimension of 
18x18x13, maintained across all CNN and linear layers. The CNN hidden layers have 
dimensions of 13, 64, and 64, learning spatial hierarchies, while the linear layers have 
dimensions of 64, 64, and 1, performing linear transformations for predictions. The output layer 
has a dimension of 1, representing the predicted oceanic carbon fCO2 value. CNNs, inspired by 
human visual perception, consist of Convolutional Layers, Rectified Linear Unit (ReLU) 
Layers, and Fully Connected Layers, which work together to process and transform input data 
into predictions. This architecture ensures accurate and efficient prediction of oceanic carbon 
fluxes. 
 
 
 
 
 

 
Supplementary Figure 1 Monthly CO2 growth rate from marine boundary layer surface 
stations (MBL) and the Mauna Loa Observatory (MLO) from January 2022 to July 
2024. 
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Supplementary Figure 2 Comparison of global net land CO2 fluxes between the 3 
DGVMs used in this study (black dots for NRT version, a red dot for NRT version in 
2023, gray squares for TRENDY version) and the distribution of 21 TRENDY models 
(green bars, with color intensity representing the number of DGVMs falling into each 
interval) used in latest Global Carbon Budget edition[7]. Note that the 3 DGVMs have 
been biased corrected to have the same net land sink than the average of TRENDY models 
during 2019-2022, but their anomalies are feely calculated for all years including in 2023. 
Positive values indicate flux from the atmosphere to the land (carbon sink). 
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Supplementary Figure 3 Comparison of global ocean CO2 fluxes between the emulators 
of ocean models used in this study (black dots for 2010-2022, red dots for 2023) and the 
distribution of 5 mechanistic ocean biogeochemistry models (a) and 8 data driven 
models (b) (blue bars, with color intensity representing the number of models falling 
into each interval) used in latest Global Carbon Budget edition[7]. Positive values 
indicate flux from the atmosphere to the ocean (carbon sink). 
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Supplementary Figure 4 Quarterly land and ocean fluxes for the RECCAP2 regions in 
2023 and the distributions during 2015-2022. (a) Quarterly land flux in 2023 from 3 NRT 
DGVMs (red dots) for each RECCAP2 land region in the distribution of the flux from the 
DGVM models. (b) Quarterly land flux in 2023 from the OCO-2 inversion (red dots) for each 
RECCAP2 land region in the distribution of the flux from the inversion models. (c) Quarterly 
ocean flux in 2023 from the ocean data products emulators (red dots) for each RECCAP2 
ocean region in the distribution of the flux from the data products models. (d) Quarterly ocean 
flux in 2023 from the ocean GOBMs emulators (red dots) for each RECCAP2 ocean region in 
the distribution of the flux from the GOBMs. (e) Quarterly ocean flux in 2023 from the OCO-
2 inversion for each RECCAP2 ocean region in the distribution of the flux from the inversion 
models. Distributions are calculated during all previous years in the period 2015-2022. 
Positive values indicate flux from the atmosphere to the land or the ocean (carbon sink). 
 



 
Supplementary Figure 5 Regional ocean fluxes for the RECCAP2 ocean regions from 
data products (left column), Global Ocean Biogeochemical Models (middle column) and 
inversion model (right column). The blue distribution is from the models used in latest 
Global Carbon Budget assessments (darker color means more models around a value). The 
median of models is the red line, the mean of the AI-based emulators or models used in this 
study is indicated by black dots and by a red dot in 2023. Positive values indicate flux from 
the atmosphere to the ocean (carbon sink). 



 



 



Supplementary Figure 6 Regional land fluxes for the RECCAP2 land regions from 
DGVMs (left) and inversion models (right). The green color distribution is from the 
TRENDY and inversion models used in latest Global Carbon Budget assessments (darker 
color means more models around a value). The median of TRENDY and inversion models is 
the red line, the mean of the 3 DGVMs and OCO-2 inversion used in this study is indicated 
by black dots and by a red dot in 2023. Positive values indicate flux from the atmosphere to 
the land (carbon sink). 
 

 

 

 

 

 

 

 

 

 

Supplementary Figure 7 Net land CO2 flux anomalies in 2023 compared with the 2015-
2022 average for the OCO-2 inversion and 3 near-real-time DGVMs. Positive values 
represent increased flux from the atmosphere to the land or ocean (carbon sink). 
 
 
 
 

 



 
Supplementary Figure 8 Comparison of global land (left) and ocean (right) CO2 fluxes 
between the OCO-2 inversion of this study (black dots, red dots for 2023) and the 
distribution of 14 inversion models (green bars for land, blue bars for ocean, with color 
intensity representing the number of models falling into each interval) used in ref.[7] 
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Supplementary Table 1 CO2 fluxes (2010–2022 average and 2023) for each land RECCAP2 region from DGVMs and inversion methods (2010–2022 from 
GCB 2023; 2023 from NRT methods; Unit: GtC/yr). 

Period Methods World Tropics North Africa East Asia Europe 
Latin 

America 

North 

America 
Oceania Russia South Asia 

Southeast 

Asia 

West  

Asia 

2010 

-2022 

average 

DGVMs 
1.65 ± 

2.76 
0.45 ± 0.94 

0.90 ± 

2.42 
0.24 ± 0.49 

0.09 ± 

0.36 

0.09 ± 

0.30 
0.17 ± 0.69 0.31 ± 0.81 0.06 ± 0.23 

0.30 ± 

0.76 

0.04 ± 

0.18 
0.01 ± 0.18 0.04 ± 0.07 

Inversions 
1.67 ± 

1.12 

-0.33 ± 

1.13 

1.89 ± 

0.39 

-0.26 ± 

0.71 

0.38 ± 

0.18 

0.24 ± 

0.41 
-0.14 ± 0.46 0.58 ± 0.12 0.09 ± 0.19 

0.64 ± 

0.17 

0.07 ± 

0.12 
0.03 ± 0.18 

-0.04 ± 

0.16 

2023 

DGVMs 
0.14 ± 

0.28 

-0.57 ± 

0.41 

0.78 ± 

0.46 

-0.11 ± 

0.45 

0.04 ± 

0.09 

0.11 ± 

0.12 
-0.73 ± 0.26 0.19 ± 0.25 0.07 ± 0.10 

0.44 ± 

0.09 

0.06 ± 

0.09 
-0.07 ± 0.11 0.08 ± 0.15 

Inversions 
0.73 ± 

0.30 

-0.54 ± 

0.20 

1.48 ± 

0.15 

-0.66 ± 

0.26 

0.05 ± 

0.17 

0.24 ± 

0.07 
-0.17 ± 0.26 1.24 ± 0.19 

-0.02 ± 

0.10 

0.54 ± 

0.12 

0.05 ± 

0.22 
-0.18 ± 0.22 

-0.26 ± 

0.17 

 

 

  



Supplementary Table 2 CO2 fluxes (2010–2022 average and 2023) for each ocean RECCAP2 region from bottom-up and inversion methods (2010–2022 
from GCB 2023; 2023 from NRT methods; Unit: GtC/yr). 

Period Methods World Arctic Atlantic Coast Indian Pacific Southern 

2010-2022 average 

GOBMs 2.48 ± 0.80 0.11 ± 0.06 0.51 ± 0.18 0.64 ± 0.22 0.27 ± 0.12 0.58 ± 0.24 0.97 ± 0.43 

Data products 2.46 ± 0.66 0.13 ± 0.09 0.52 ± 0.14 0.57 ± 0.13 0.18 ± 0.09 0.53 ± 0.27 1.06 ± 0.27 

Inversions 2.21 ± 0.17 0.08 ± 0.02 0.49 ± 0.07 0.44 ± 0.05 0.20 ± 0.11 0.40 ± 0.11 1.01 ± 0.20 

2023 

GOBMs 2.49 ± 0.79 0.11 ± 0.03 0.59 ± 0.26 0.66 ± 0.30 0.28 ± 0.22 0.71 ± 0.52 0.79 ± 0.38 

Data products 2.67 ± 0.60 0.11 ± 0.08 0.57 ± 0.16 0.62 ± 0.16 0.18 ± 0.09 0.58 ± 0.39 1.20 ± 0.16 

Inversions 2.33 ± 0.20 0.12 ± 0.20 0.51 ± 0.20 0.57 ± 0.20 0.10 ± 0.20 0.45 ± 0.20 1.13 ± 0.20 

 

  



Supplementary Table 3 Quarterly differences of four versions of OCO-2 inversions in 2023 compared to quarterly means from 2015 to 2022 (Unit: GtC/yr). 
Region  Quarter Inversion without fires Inversion with fires but regrowth Inversion with fires without regrowth 

World 

Q1 0.066 0.070 0.030 

Q2 0.070 0.050 0.115 

Q3 -0.229 -0.243 -0.248 

Q4 -0.290 -0.243 -0.252 

North America > 60°N 

Q1 0.000 0.009 0.000 

Q2 0.018 0.022 0.019 

Q3 0.005 -0.009 0.007 

Q4 0.000 0.011 0.003 

Europe > 60°N 

Q1 0.001 0.000 0.002 

Q2 0.012 0.014 0.007 

Q3 -0.009 -0.007 -0.008 

Q4 -0.004 -0.004 -0.004 

Siberia > 60°N 

Q1 -0.001 -0.006 0.000 

Q2 -0.032 -0.034 -0.002 

Q3 0.038 0.051 0.041 

Q4 0.001 -0.003 -0.004 
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