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Supplementary Materials

I. CALCULATED ELECTRONIC STRUCTURE AND TOPOLOGICAL PROPER-

TIES OF RG USING THE SLONCZEWSKI-WEISS-MCCLURE MODEL.

Electronic structures of RG were calculated by utilizing the tight-binding Slonczewski-

Weiss-McClure model [1–3]. Here only the pz-orbitals of carbons are considered, and the

hopping terms mainly include intralayer and interlayer nearest-neighbor couplings, denoted

as t0 and γ0 respectively. Additionally, γ1 accounts for interlayer coupling between the next-

nearest layers, while γ2 and γ3 represent weaker interlayer hoppings between the nearest

layers. To reveal the low-energy physics near EF of finite N -layered RG, which is dominated

by the surface states, we use an effective k · p model incorporating the Slonczewski-Weiss-

McClure tight-binding parameters [4, 5]. The projection of this Hamiltonian onto the two-

band form within the basis of surface sites [3, 4] can be expressed as:

Ĥeff
N =

 p2

2m
X(p)

X†(p) p2

2m

 (1)

and the low energy dispersion is expressed by:

X(p) =
∑

{n1,n2,n3}

(n1 + n2 + n3)!

n1!n2!n3!

1

(−γ0)n1+n2+n3−1

×
(
v0pe

iηφ
)n1
(
v2pe

−iηφ)n2
(γ1

2

)n3

(2)

where η is the valley index and p = p(cos φ, sin φ) is measured from K or K′, v0 and v2 are

the Dirac velocity related to t0 and γ2. The summation is carried out under the constraint

n1+2n2+3n3 = N and ni ≥ 0. Given that γ1 and v2 are much weaker, X(p) can be simplified

to X(p) ≈ (v0pe
iηφ)N/(−γ0)N−1. Figure S1 shows the calculated electronic structure for N

= 4, 5, 8, 10 and 20, from which we see that the bandwidth of the flat band decreases with

increasing layer number.

Calculations for bulk RG, taking into account the dominant coupling terms t0 and γ0,

reveal the existence of degenerate nodal lines protected by PT symmetry. These nodal

lines rotate around the inequivalent corners K and K′ along the kz direction with opposite

chiralities, and the projection of each nodal line onto the 2D plane forms a circle. Moreover,

the PT symmetry quantizes the Zak phase to be either 0 or π, allowing for Z2 topological
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classification through the Wilson loop φ(k||) =
∑

n

∫
Ank · k⊥ perpendicular to a 2D plane

[6]. This expression involves a summation over the band index n, and the Berry connection

of the nth band is denoted as Ank = i〈unk|∂kunk〉 where |unk〉 represents the periodic part

of the electronic Bloch wavefunctions. The calculations of the Wilson loop demonstrate

that the nodal lines are topological, signifying that the quantized Zak phase changes by π

across the projection of the nodal lines. In the region enclosed by the topological nodal

line projections, the Zak phase value is π, indicating the existence of two zero-energy flat

band surface states according to the topological bulk-boundary correspondence. Outside

this region, the Zak phase is 0 and does not give surface states.
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FIG. S1: Calculated electronic structure for RG with varying number of layers. a-e,

Calculated electronic structure through the K point of RG with layer numbers N = 4, 5, 8, 10,

and 20. The arrows with colors ranging from black to red indicate the TFBs which narrow as N

increases. f, Comparison of the calculated density of states (DOS) for RG with N = 4, 5, 8, 10, and

20. The calculations were performed using the tight-binding Slonczewski-Weiss-McClure model.
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II. SAMPLE PREPARATION AND CHARACTERIZATION.

The bulk RG samples were prepared using a clean dry transfer method. First, graphite

flakes were exfoliated by Polydimethylsiloxane (PDMS), and the stacking of RG was iden-

tified by Raman spectroscopy measurements (see Fig. S2f). Second, the RG flakes were

transferred onto substrates such as a gold-coated substrate (sample S1, sample S3 and sam-

ple S5), a p-type Si substrate (sample S2), or BN/Au/SiO2//Si (sample S4) to ensure good

electrical conductivity for ARPES measurements. Before ARPES measurements, the RG

stacking was further confirmed by spatially-resolved Raman spectroscopy to verify that the

stacking order did not change during the transfer process. Figure S2 shows an overview

of five representative RG samples that have been measured. Although these samples were

deposited on different substrates and with different thicknesses, they all show similar surface

TFBs near EF (indicated by red arrows in Fig. S2g-k).

Figure S3 shows more detailed characterizations of sample S5 by combining spatially-

resolved Raman spectroscopy, ARPES and atomic force microscopy (AFM) measurements.

Figure S3a shows an optical image of S5, and Raman spectra measured at a few representa-

tive positions are shown in Fig. S3b. According to previous reports [7], RG is characterized

by a stronger 2DL peak, and therefore the intensity ratio between 2DL and 2DR peaks,

I2DL
/I2DR

, can be used to distinguish RG from Bernal graphite. Figure S3c shows the

Raman intensity contrast map (I2DL
/I2DR

), where regions of RG and Bernal graphite are

clearly distinguishable. Figure S3e shows a spatially resolved NanoARPES intensity map

measured near EF , where RG and Bernal stacking regions are also resolved. Representative

NanoARPES dispersion images measured on RG (Fig. S3d) and Bernal graphite (Fig. S3f)

further confirm their distinctive dispersions, where the TFBs in RG lead to a stronger in-

tensity over the rectangular box near EF . Figure S3g,h shows AFM measurements. The

thickness of sample S5 is determined to be 10.4 nm, which corresponds to N = 31 layers.

We would like to note that this thickness is enough to be considered as a bulk sample, and

it shows overall similar experimental results with the other four thicker samples (Fig. S2).

By combining optical images, Raman spectroscopy, NanoARPES, and AFM measurements,

we are able to identify RG regions and obtain the intrinsic electronic structure from RG.
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FIG. S2: Surface TFBs observed on five representative RG samples. a-e, Optical images

of five representative RG samples. f, Raman spectra measured at colored spots from sample S1

to S5 to confirm the ABC stacking. The reference spectrum for Bernal (AB) stacking is measured

on sample S5 (marked by gray dot). g-k, ARPES dispersion images measured along the red line

indicated by the inset in g. Surface TFBs (indicated by red arrows) are observed in all samples.

III. ARPES MEASUREMENTS.

MicroARPES and NanoARPES measurements were performed at a vacuum better than

2×10−10 torr at beamline 4.0.3 of the Advanced Light Source at Lawrence Berkeley National

Laboratory (LBNL), ANTARES of the Synchrotron SOLEIL in France, and BL03U of the

Shanghai Synchrotron Radiation Facility (SSRF), with beam sizes of 30 µm, 500− 700 nm,

and 15− 20 µm, respectively. Before ARPES measurements, the RG samples were annealed

at 200◦C in ultrahigh vacuum (UHV) until sharp dispersions were observed. The surface

electron doping was achieved by in situ deposition of Rb through heating an SAES commer-

cial dispenser.
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FIG. S3: Characterization of RG stacking by Raman spectroscopy, AFM and

NanoARPES on sample S5. a, Optical image of RG sample S5 deposited on a Au/SiO2/Si

substrate. b, Raman spectrum taken from positions P1 to P6 as labeled by colored spots in c. c,

Raman intensity contrast by taking the intensity ratio of 2DL/2DR as indicated by color-shaded

regions in b. The spatial map is taken with the same range as a, where higher intensity corresponds

to RG and the substrate, and lower intensity corresponds to Bernal stacking region. d, Dispersion

image measured on the RG region (red dot in e). e, NanoARPES spatial intensity map obtained

by integrating over the black broken box in d. Higher intensity corresponds to RG regions with

surface TFBs, while lower intensity corresponds to Bernal stacking regions and the substrate. f,

Dispersion image measured on a Bernal graphite sample. g, h, AFM image and the height line

profile to show the thickness of 10.4 nm which corresponds to RG with N = 31 layers.

IV. EXTRACTION OF THE BANDWIDTH AND MOMENTUM RANGE OF

THE TFBS.

Figure S4 shows a comparison of ARPES spectrum with calculated dispersion. The

ARPES data reveals the topological flat bands, plus bulk Dirac cone at one kz value corre-

sponding to the photon energy used. Here the photon energy is 70 eV, corresponding to kz

= 2.28c∗ (here c∗ = 2π/c), and the experimental bulk Dirac cone is in good agreement with
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FIG. S4: Comparison between ARPES data with calculated dispersion. a, ARPES data

taken under 70 eV with the measurement direction indicated by the inset. b, Calculated dispersion

with the same direction as a. Different colors indicate bands from different kz, and the red curves

indicates the surface state band.

the calculation.

The momentum range of the TFBs is determined from the parallel cuts along kx and

ky directions as shown in Fig. S5, from which a momentum range of 0.10 ± 0.02�A−1
is

determined. The bandwidth of the TFBs is extracted by performing the energy distribution

curve (EDC) analysis. Figure S5i,j shows the EDC analysis, from which the bandwidth is

extracted to be 32± 7 meV.

V. COMPARISON OF DISPERSION IMAGES BETWEEN RHOMBOHEDRAL

GRAPHITE AND BERNAL GRAPHITE.

Figure S6 shows a comparison of dispersion images measured on RG and Bernal graphite

with photon energy from 35 eV to 80 eV (corresponding kz changes from 1.61c∗ to 2.43c∗)

by cutting through the K point. The RG shows a coexistence of a flat band and a Dirac

node rotating from the right side of the flat band to the left side, while in contrast, Bernal

graphite shows a spectral weight transfer between the outer and inner bands, and there

is an evolution from electron pockets at 35 eV to hole pockets at 80 eV near EF for the

outer band, similar to previous results [9]. The above comparison shows that RG shows

distinctive electronic structure from Bernal graphite, and that the topological flat bands

and bulk helical Dirac nodal lines are intrinsic only to bulk RG.

9



TFBs

K

TFBs

i

j

FIG. S5: Extraction of the bandwidth and momentum range of the TFBs. a, b, Fermi

surface map measured at 60 eV photon energy on sample S1. The gray lines mark the momentum

directions for data shown in c-e and f-h respectively. c-e, Dispersion images measured by cutting

along the vertical directions (gray lines in a). f-h, Dispersion images measured by cutting along

the horizontal directions (along the gray lines in b). The momentum range is ∆k = 0.10±0.02 �A−1

along both horizontal and vertical directions. i, Dispersion image measured along the black line

indicated by the inset. j, EDCs extracted from k1 to k13 as indicated by red curve in i, from which

the bandwidth of the TFBs is extracted to be 32± 7 meV.

VI. HELICAL DIRAC NODES WITH OPPOSITE CHIRALITIES AT K AND K′.

The Dirac node rotates around the K and K′ when changing kz, with the period of the

kz Brillouin zone of rhombohedral graphite. Figure S7 shows the rotation of helical Dirac

nodes, which rotates 90◦ when the kz changes from 0 to c∗/4. The opposite helicities for

the Helical DNLs near the K and K′ points are confirmed by Fig. S8,9. Figure S8 shows

the helical Dirac nodal lines from ARPES measurements and calculation, which shows good

agreement that the nodal lines rotate along opposite directions at K and K′ point. The Dirac

node rotates 360◦ within one kz Brillouin zone (Fig. S7a) [8]. To directly compare between

the experiments and calculations, we show in Fig. S7b the calculated Dirac nodes at kz =
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FIG. S6: Comparison between the dispersion images of Rhombohedral and Bernal

graphite measured at different photon energies (corresponding to different kz values).

a-g, Dispersion images of Rhombohedral graphite measured under photon energy from 35 eV to

80 eV. The measurement direction is perpendicular to the Γ-K direction as indicated by the inset

in a. h-n, Dispersion images of Bernal graphite corresponding the same photon energies and

measurement direction as a-g. All dispersion images show mirror symmetry with respect to the

black dotted lines.

0 and kz = c∗/4 (indicated by red spots), which rotates along the projected surface state

(gray curve). The energy contours measured at −100 meV using probe photon energies of

40, 50, and 70 eV are shown in Fig. S9b, from which we see that the nodal point rotates in

opposite directions in the plane at the same kz. The opposite chiralities are also confirmed

in the dispersion images measured by cutting through the nodal points around the K and

K′ points, reflecting the C3 symmetry of RG.

VII. HARTREE-FOCK CALCULATIONS.

We now give a brief explanation of the projected Hartree-Fock calculations performed

for Fig. 5 and Fig. S10. We consider a semi-infinite RG system with periodic boundary

conditions in each layer. We label the layers l = 0, 1, 2, . . . where l = 0 is the top layer. We

11



a b Cal.

kz = 0

kz = c*/4

DN

kz = 0 kz = c*/4c d

1

0

2 3 4
5

6
7

8910
11

-0.05 eV
Exp. Exp.

FIG. S7: Comparison between the experimental and calculated helical Dirac node at

kz = 0 and kz = c∗/4. a, Rotation of the Dirac node with changing of kz, adapted from (Phys.

Rev. B 93, 075437 (2016) [8]). b, Calculated Dirac node (red points) at kz = 0 and kz = c∗/4. The

gray circle indicates the projection of Dirac nodes from all kz. c,d, Energy contours at -0.05 eV

to show the rotation of Dirac node (indicated by pink dots) at kz = 0 and kz = c∗/4, respectively.

Here c and d are measured under photon energy of 50 eV and 70 eV, corresponding to kz = 1.93c∗

(close to kz = 0 in the reduced Brillouin zone) and kz = 2.28c∗ (close to kz = c∗/4 in the reduced

Brillouin zone), respectively. The spot at the center K point is the intensity tail of the bottom of

TFB.

define the operator c†p,s,η,l,α which creates an electron in valley η ∈ {+,−} with momentum

ηK + p, spin s ∈ {↑, ↓}, layer l ≥ 0, and sublattice α ∈ {A,B}. The non-interacting

Hamiltonian is

H0 =
∑
p,s,η

∞∑
l′,l=0

(fp,ηδl′,l + γ0δl′,l−1)c†p,s,η,l′,Bcp,s,η,l,A + h.c. (3)

where fp,η = ~vF (ηpx + ipy) is the Dirac cone dispersion and γ0 = 0.33 eV is the out-of-

plane hopping. Here, vF = at0
√

3
2~ is the Fermi velocity, a = 0.246 nm is the intralayer lattice

constant, and −t0 is the intralayer hopping, where t0 = 2.8 eV.

For fixed values of p, s, and η, the Hamiltonian H0 is a semi-infinite SSH model [10] with

hopping parameters fp,η and γ0. As a result, there is an exponentially decaying surface mode

with energy 0 when |fp,η| < γ0, or equivalently when |p| < p0 = γ0/(~vF ). Additionally, for

such momenta, there are no other surface modes, and the bulk modes have a gap around

12
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FIG. S8: Comparison between the experimental and calculated helical Dirac nodal lines

at K and K′. a, Energy contours at K and K′ points measured at 100 meV with photon energies

from 40 eV (bottom panel) to 100 eV (top panel), which correspond to kz = 1.72c∗ and 2.72c∗. b,

Calculated Dirac nodal lines at K and K′ points from kz = 1.70c∗ to kz = 2.70c∗.

energy 0. The surface mode has creation operator

ψ†p,s,η =
√

1− |p/p0|2
∞∑
l=0

(−fp,η/γ0)lc†p,s,η,l,A (4)

which is polarized on the A sublattice.

We now consider a screened Coulomb interaction. For electrons in layers l′ and l separated

by a vector r in the xy plane, the interaction takes the form

Vl′,l(r) =
q2
e

4πε0

e−q0|r+(l′−l)cẑ|

|r + (l′ − l)cẑ|
(5)

where c = 0.334 nm is the interlayer lattice constant, qe is the electron charge, ε0 is the

vacuum permittivity, and q0 = 0.01 nm−1 determines the screening strength. The many-

body Hamiltonian is formed by projecting this interaction into the surface modes in Eq. (4)

and using the “average” or “infinite-temperature” subtraction scheme [11]. This Hamiltonian

commutes with the anti-unitary particle-hole symmetry Pψ†p,s,ηP
−1 = ψ−p,−s,−η.
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FIG. S9: Opposite chiralities for helical DNLs at K and K′. a, Schematic illustration to

show the opposite helical DNLs near K and K′. Enhanced red and blue shaded ovals indicate the

corresponding kz values with probing photon energies of 40, 50, and 70 eV, which correspond to

kz = -0.27c∗, -0.07c∗ and 0.28c∗ in the reduced BZ, respectively. b, Intensity maps at −100 meV

measured at photon energies of 40, 50, and 70 eV to reveal the opposite chiralities for DNLs between

K and K′ valleys. Note that the measurements in each valley were performed by rotating the

azimuthal angle of the sample to ensure exactly the same experimental geometry, and therefore the

observed symmetry reflects the intrinsic symmetry of the sample. The ARPES data are measured

on sample S2. c-f, Dispersion images measured at photon energies of 70 eV (c, e) and 40 eV (d,

f) by cutting through the Dirac nodes near the K point (c, d) and K′ point (e, f).

To calculate the doping evolution, we define the filling factor of the top surface topological

flat bands (TFBs) only. Note that here the TFBs do not cover the whole BZ, but rather the

drumhead TFBs are confined within a momentum boundary being the surface projection of

the bulk Dirac nodal line (the circle with momentum diameter of 2p0 = 2γ0/(~vF ) centered

at the K or K′ point). Since there are four TFBs corresponding to the two spins and two

valleys, the filling factor ν = -2, -1, 0, 1, 2 indicates that 0,1,2,3, or 4 TFBs are filled,

respectively, with ν = 0 defined as the particle-hole symmetric point of the top layer. Since

the Hartree-Fock calculations include only the TFB states, the surface flat band filling ν we

defined is the relevant quantity in this context. From the size of the flat band, the electron

density corresponding to full filling of 4 TFBs is 4πp2
0/(2π)2 ≈ 8 × 1012cm−2. For Fig. 5
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and Fig. S10, we ran self-consistent Hartree-Fock calculations for various filling factors ν,

where ν = −2 means the fully empty state and ν = 2 means the fully occupied state. We

assumed that continuous translation and rotation symmetries were preserved and used 9002

unit cells per graphene layer. In order to consider arbitrary fractional fillings, we used grand

canonical Hartree-Fock with a temperature of 1 neV/kB and converged on the free energy

to an absolute tolerance of 1 µeV.
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FIG. S10: Additional Hartree-Fock band structures. a-d, Self-consistent Hartree-Fock cal-

culations of the TFBs at fillings of ν = −1.0, −0.8, −0.4, and 0.0, respectively. Each panel shows

the four resulting Hartree-Fock bands. The top two bands are degenerate. As the filling increases,

the second lowest band (blue curve) is filled and eventually becomes degenerate with the lowest

band (red curve). The Hamiltonian has exact particle-hole symmetry, so the Hartree-Fock band

structure at filling ν is the same as that at filling −ν if the y axis is negated. See Fig. 5 for similar

plots at fillings of ν = −1.95, −1.85, −1.50, and −1.15.
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