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Introduction

Humans build a mental model or a cognitive map of 
the environment to efficiently navigate within it. A cog-
nitive map is a useful framework that can describe 
many cognitive processes beyond physical navigation, 
such as categorization, concept learning, and planning 
(Behrens et al., 2018; Bellmund et al., 2018; Gärdenfors, 
2000; O’Keefe & Nadel, 1978). Exactly how humans 
develop cognitive maps and which form they take (e.g., 
metric, graph, hybrid format) are essential questions in 
cognitive science that still lack a definite answer.

When we explore our environment, we sequentially 
move from one location to another. Path integration is 
the ability to keep track of one’s location by integrating 
previous movements. Path integration serves as a basis 
for building cognitive maps, and it is universally 
observed from insects to mammals (McNaughton et al., 
2006; Wang, 2016). Importantly, the neural circuitry for 
path integration (e.g., head-direction cells, grid cells) 

has mainly been studied when animals navigate on flat 
2D surfaces, except for a few recent studies (Ginosar 
et al., 2021; Grieves et al., 2020; Ulsaker-Janke et al., 
2023). For accurate navigation in 3D space with undu-
lating terrain, one needs to integrate 3D movement 
directions and build a global 3D map. However, build-
ing a 3D map can be costly, and the neural circuitry for 
path integration may be optimized for 2D Euclidean 
geometry, particularly for surface-dwelling animals like 
humans. Nonetheless, relying on 2D path integration 
would result in systematic errors when people try to 
navigate a nonflat surface like a sphere. For instance, 
if people move straight from the North Pole to the 
equator, turn 90 degrees to the right, and then move 
the same distance (see the red line in Fig. 1a), they will 
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be on the equator. They could then turn 90 degrees 
again and move straight back to the North Pole (see 
the blue line in Fig. 1a). However, a path-integration 
system, optimized for a flat surface where the sum of 
angles of a triangle is 180 degrees, will tell the agents 
to turn with an inner angle of 45 degrees (see the green 
line in Fig. 1a).

If the path-integration system is predominantly 2D, 
people are likely to build multiple local planar maps 
that cover the curved surface (Fig. 1b), rather than 
building a global 3D map (Fig. 1b). Path planning 
would be particularly difficult for long distances on a 
sphere if participants use local planar maps, because 
planning a route across multiple regions could be more 
difficult than planning within a region (Montello & Pick, 
1993; Wiener & Mallot, 2003). In contrast, agents using 
a global 3D metric map should be able to draw a 
straight 3D shortcut and project it to the surface to find 
the optimal path, regardless of distance.

In this preregistered study we built spherical and 
planar virtual environments tightly matched in visual 
appearance and complexity. In an immersive virtual-
reality (VR) setting, participants performed a path- 
integration task known as a triangle completion (Chrastil 
& Warren, 2021) and spatial-memory tests with land-
marks. We examined whether participants relied on 2D 
path integration, consequently using planar maps 
instead of a global 3D map. We then simulated the 
efficacy of multiple planar maps for solving a naviga-
tion problem on a spherical surface.

Method

Participants

Twenty healthy young participants completed the exper-
iment (10 male, mean age = 26.4 years, SD = 4.8 years). 
This study was approved by a local ethics committee.

Justification for sample size

We determined this sample size on the basis of the pilot 
data, which are reported in preregistration (https://osf 
.io/hv29w). For the triangle-completion task, we gener-
ated 1,000 data sets for the turn angle and distance 
using either planar or spherical geometry prediction 
using the Mixedpower R package (Kreidler et al., 2021; 
Kumle et al., 2021). We then counted the number of 
simulations when the approximated Bayes factor (BF) 
for the true geometrical model was greater than another 
model by 10. With a sample size of 20, the power was 
100%. For the comparison of short and long trial errors 
in the object-location memory test, we used the Bayes 
factor design analysis R package to simulate the paired 

t test result for the effect size estimated from the pilot 
data (d = 1.9; Stefan et  al., 2019). Simulation (1,000 
iterations) with a sample size of 20 predicted that 100% 
would reach the sensitivity threshold (BF = 3) and a 
false positive rate was less than 1%.

Virtual environment and equipment

We used Unity 2020.2.6.f1 (Unity Technologies, San 
Francisco, US) to implement the two virtual environ-
ments that contain either a planar or spherical surface 
(Fig. 2; see also Supplemental Videos S1 and S2 in the 
Supplemental Material available online). Participants 
walked on an omnidirectional treadmill (Virtualizer 2, 
Cyberith GmbH, Vienna, Austria) while wearing a head-
mounted display (Valve Index, Valve, Bellevue, US) to 
explore the virtual environments. Both environments 
had a moon-like appearance and the same starry sky 
as a background. The textured surface and sky pro-
vided optic flow and a sense of motion to participants. 
The radius of the sphere was 12.5 virtual units, and the 
camera height was 1.5 virtual units. On the sphere, arc 
lengths presented in degrees gave a more intuitive 
sense of the distance than the distance presented in the 
virtual units. For example, it is easier to know that 180° 
corresponds to half of the circumference, as opposed 
to 39.2 virtual units. Thus, we used degrees as the unit 
to describe both length and angular variables in this 
article. Maximum translational speed was 20°/s so that 

Statement of Relevance

Humans build mental models of their surround-
ings. The mental models are called cognitive 
maps, and they help us navigate the world. The 
neural underpinnings of such maps, and how 
humans build on them, have primarily been stud-
ied in flat 2D worlds. Little is known about how 
the process generalizes to more complex, high-
dimensional environments. Here, using virtual 
reality, we assessed how people form a map and 
navigate in a spherical environment. Participants 
walked on a small planet (as in The Little Prince) 
and searched for the optimal path on this curved 
surface. We found a strong Euclidean bias that 
leads to systematic errors on the sphere in all 
participants. Our results suggest that humans 
build multiple local planar maps to navigate in a 
complex environment by utilizing neural circuitry 
optimized for 2D navigation. This strategy might 
be useful for more general cognitive tasks beyond 
physical navigation.

https://osf.io/hv29w
https://osf.io/hv29w
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participants could complete the circle in about 18 s if 
they walked without stopping.

For the object-location tasks, we placed a unique set 
of 12 animals on the planar and spherical surfaces. On 
the plane, the animals were located at the vertices of 
triangular tessellation, and all faced toward a fixed point 
near the center (Fig. 2b). On the sphere, the animals 
were placed at the 12 vertices of a regular icosahedron, 
which corresponds to a triangular tessellation of a 
spherical surface. The animals faced toward the imagi-
nary north pole of the sphere (Fig. 2a). Participants were 
explicitly told that they could rely on the fixed-point-
facing animals to get oriented. These animals served as 
both local landmarks and global-orientation cues (e.g., 
an imaginary north-south axis). The geodesic distance 

between the neighboring animals on the plane and 
sphere was identical (63°).

Importantly, we also matched the visible distance of 
the two environments. In an open field, people can 
normally see things on the plane that are very far away 
from them. In contrast, people cannot see things that 
are positioned far away on the curved surface because 
the light travels straight and is obstructed by the surface 
itself. By adding fog, we matched the number of visible 
landmarks in the two environments.

Experiment

Task overview. Participants came to the laboratory on 
two separate days. Half were tested in the spherical 

Path Integration on Sphere and on Plane

3D Volumetric Map Local Planar Maps

a

b

Start

End End
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Fig. 1. Path integration and cognitive maps for a spherical and planar surface. If people rely on a path-integration 
mechanism built on a flat surface (a), they will make a systematic error (overturn and overshoot) on the sphere. Red 
lines represent the outbound journey; green lines represent the inbound journey for planar geometry; and blue lines 
represent the inbound journey for spherical geometry. Spatial layout on the spherical surface (b) can be encoded in a 
global 3D map or multiple patches of planar maps.
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environment on the first day and the plane on the second 
day, and the other half did the reverse. On the first day, 
via a desktop computer, participants were given detailed 
instructions about all the upcoming tasks. They then had 
a short movement-practice session on the VR treadmill 
before starting the main experiment. We warned partici-
pants of potential VR-related motion sickness and offered 
ginger tea and candies that might alleviate motion-
related nausea. The experiment stopped immediately if 
the participant felt uncomfortable. On each day, the 
same set of primary tasks was completed in the follow-
ing order: learning by free exploration, object-location 
memory training, object-location memory test, triangle-
completion tasks, and debriefing. In total, participants 
spent 2.5 to 3 hrs per day. To increase the motivation of 
participants, we offered a small monetary bonus at  
the end of the experiment, depending on the spatial-
memory performance.

Movement practice on the VR treadmill. The VR 
treadmill had optic sensors on the platform that recorded 
the movement of participants’ feet. A rotatable ring, at 

waist level, recorded any change in direction. Participants 
walked forward and rotated their bodies to change the 
direction of movement. Backward walking was not sup-
ported. When they moved “straight” on the sphere they 
followed a great circle such that they would return to 
where they started after walking for a while. While prac-
ticing the movement for a few minutes, participants col-
lected virtual traffic cones placed on the surface.

Learning by free exploration. Participants were given 
15 min to freely explore the environment and learn the 
location of the 12 animals as precisely as they could. A 
list of all animals was shown at the top of the screen. This 
allowed participants to easily check whether they had 
found each animal in the foggy environments. On the 
plane, participants heard an alarm if they reached an 
invisible boundary of the environment. Participants were 
instructed to return to the center of the plane, where  
the animals were located, if they hear the alarm. On  
the sphere such an alarm was unnecessary, because the 
sphere does not have a boundary, and participants could 
always find animals in any direction. The task is shown 

b d

a c

f

e
Sphere

Plane

Fig. 2. Virtual environments. Bird’s-eye views of the sphere and planar environments are shown in (a) and (b), respectively. Both environ-
ments featured the same moon-like texture and a dark background. Twelve animal landmarks were positioned in a regular triangular lattice 
with the geodesic distance between the neighboring landmarks identical in the two environments. In (c) and (d) are example views from a 
first-person perspective during the object-location task on the sphere and planar surfaces. Visibility was matched in the two environments 
thanks to the fog. In (e) and (f) are shown example views of the corridor that participants walked along during the triangle-completion 
task. Of note, participants performed the tasks with a VR headset, and the field of view and depth perception were of higher quality than 
the current snapshots.
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in Supplemental Videos S1 (https://osf.io/2es6n) and S2 
(https://osf.io/jpm5a), and the actual trajectories of par-
ticipants are shown in Supplemental Figures S1 and S2. 
Participants tended to repeatedly walk along a great cir-
cle on a sphere, whereas the exploration pattern on a 
plane was more variable across participants.

Object-location memory training and test. After the 
initial learning task, participants were asked to find target 
animals from pseudorandom starting locations. At the 
beginning of each trial, a target animal was cued with a 
picture, and then participants had to indicate which 
direction would lead to the shortest path to the target. 
Once they had indicated the optimal direction with a but-
ton press, they could move freely to find the target ani-
mal. All animals, including the target, were present in the 
environment, so participants were able to change their 
trajectory after seeing other animals while on the move. 
Once they found the target, a corridor that linked the 
start and target location by the shortest path was shown. 
This corridor taught participants about the optimal route 
on the sphere. Thus, we gave participants a fair opportu-
nity to learn the spatial layout and to practice route plan-
ning in the unfamiliar spherical condition. Participants 
completed two runs of 12 training trials.

After the training, participants were given a similar 
target-searching task. This time, animals were visible 
only at the start, and the rest of the animals, including 
the target, were hidden after the participant began to 
move. This meant that participants had to accurately 
estimate the distance and direction to the target at the 
start of the trial and try to move straight thereafter. 
During movement they had to update their location on 
their mental map by integrating motion cues (e.g., pro-
prioception, optic flow from the floor texture and starry 
sky, and the passage of time). After participants indi-
cated the location of the hidden target with a button 
press, they received feedback on their performance, 
measured by the geodesic distance between the true 
location and indicated locations (on a 5-point smiley-
face scale ranging from a frowning face to a smiling 
face). Additionally, the optimal route was shown during 
feedback.

Critically, we varied the distance between the starting 
location and the target location to test whether path 
planning was more difficult, particularly for long- 
distance trials on the sphere. In half of the trials, targets 
were directly behind visible landmarks (short trials), 
whereas extra hidden landmarks were between the start 
and the target in the other half (long trials). Unbe-
knownst to participants, only 6 of the 12 animals were 
used as targets. This was done to increase the number 
of repetitions per target object within the limited experi-
ment duration. Because of the random starting location, 
a good knowledge of the layout of all 12 animals was 

required to perform well in this task. Each of the six 
target objects was presented twice in each run, and each 
participant completed two runs. The task is shown in 
Supplemental Videos S3 (https://osf.io/aux7s) and S4 
(https://osf.io/nw3mc).

Triangle-completion test. Last, participants were given 
a commonly used path-integration task called the triangle- 
completion task (Chrastil & Warren, 2021). During this 
task, all animal landmarks were removed, and participants 
saw only a narrow corridor consisting of two straight legs 
(Figs. 2e and 2f). Participants first walked straight until the 
end of the first leg of the corridor. Then the second leg of 
the corridor became visible, and participants turned and 
kept walking until the end of it. Upon arrival, they first 
indicated the optimal direction back to the starting loca-
tion. Subsequently, they walked straight to the remem-
bered starting location. During the response phase, the 
corridor was invisible so that participants could not rely 
on visual traces to find the starting location.

To motivate the participants, we gave feedback on 
the geodesic-distance error between the true starting 
location and their response location, using a 5-point 
smiley-face scale ranging from frowning to smiling. 
However, we kept the corridor invisible during feed-
back. Therefore, it was not possible for participants to 
notice if they made a systematic error (e.g., overturning 
on the sphere) and simply adjust their response strat-
egy. In this way, we could probe their pure path- 
integration ability and their sense of geometry on the 
novel spherical and planar surfaces.

We used seven triangle shapes (see Supplemental 
Fig. S3). We carefully selected the triangle-shape param-
eters to have a large range of inbound turn angle and 
distance. This was to prevent participants from follow-
ing a stereotypical response that was insensitive to the 
exact shape of the triangles. Insensitive responses were 
a concern in a previous study (Kearns et al., 2002). The 
shape parameters—the lengths of the two legs and the 
angle between them—were identical for the planar and 
spherical conditions, but the ideal inbound turn angle 
and length were different because of geometry. This 
allowed us to test whether participants’ responses were 
closer to the planar or spherical solution. We presented 
each triangle shape four times across the two runs. Each 
triangle shape was presented with left/right symmetry; 
that means that participants turned left on half of the 
trials and turned right on the other half of the trials. 
The trial order was randomized. The task is shown in 
Supplemental Videos S5 (https://osf.io/ks639) and S6 
(https://osf.io/y75nu).

Debriefing. Each day, at the end of the experiment, we 
asked participants about their strategy (e.g., first-person, 
bird’s-eye view) for each task. For the triangle-completion 

https://osf.io/2es6n
https://osf.io/jpm5a
https://osf.io/aux7s
https://osf.io/nw3mc
https://osf.io/ks639
https://osf.io/y75nu
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task on the sphere, we asked whether they had thought 
about how much they moved on the sphere, in terms of 
absolute length (such as 90°). We also asked whether par-
ticipants had any knowledge about the difference between 
planar and spherical geometry (e.g., that the sum of the 
angles of a triangle is not 180° on the sphere).

Analysis

Triangle-completion task: main hypothesis testing.  
We examined whether participants used planar or 3D 
path integration on the sphere using two types of mea-
surements: inbound turn angle and distance. As a prepro-
cessing step, the left and right symmetric triangles were 
pooled. This restricted the ideal turn angle to a range of 
0° to 180°, rather than −180° to 180°. Thus, we could 
treat the turn angle like a linear variable. Previous studies 
have also treated the turn angle as a linear variable by 
following the same procedure (Chrastil & Warren, 2021; 
Kearns et al., 2002; Tcheang et al., 2011). We defined tri-
als as outliers when either the inbound turn angle or 
distance was outside 1.5 times the interquartile range of 
all participants’ data, within each triangle type. Outlier 
trials were excluded from further analysis (52 out of 1,119 
trials in total). We built two simple linear mixed models 
with the main predictors being, respectively, the ideal 
turn angle by planar or spherical geometry. All partici-
pants’ turn angles were the dependent variable. Given 
that each participant could have shown different sensitiv-
ity to the ideal turn angle, as well as a different intercept, 
we included the random intercept and slope for each 
participant. We then compared whether the spherical or 
planar model fitted the data better by comparing the 
associated Bayesian information criteria (BICs). The BF 
was approximated as exp(difference in BIC/2) (Raftery, 
1999). A large BF for the planar model (BF > 3) would 
suggest that people rely on a 2D path-integration system, 
even when they are on the sphere. In contrast, a small BF 
(BF < 1/3) would suggest that people can use a volumet-
ric map and 3D path-integration system on the sphere. In 
addition to the BF for the linear mixed model, we report 
the mean R2 for the linear model of each participant. This 
can help readers understand how well the planar and 
spherical geometry models fitted the actual data at the 
individual participant level. We repeated the analysis 
process for the inbound distance variable. As a quality 
check, we also ran the same analysis for the data from 
the plane condition, in which the planar-geometry model 
should obviously fit the data better.

Triangle-completion task: additional analysis. In 
addition to the preregistered main hypothesis testing, we 
conducted the following exploratory analyses. First, we 
built a model that contains both planar and spherical 

predictors and tested whether this combined model could 
explain the data better than the planar model alone, using 
the BIC. Second, we constructed spherical models with 
various radii, ranging from 1 to 3 times the original radius, 
to determine the best-fitting radius (Supplemental Fig. 
S4). We then evaluated whether the larger-radius spheri-
cal model provided a better fit to the actual data than the 
planar model at both the group and single-subject levels. 
A radius three times the original was large enough to 
make the spherical model’s predictions indistinguishable 
from those of the planar model, eliminating the need to 
simulate larger radii. At both group level and single- 
subject level, we checked whether the larger-radius spher-
ical model could fit the actual data better than the planar 
model. Third, we tested whether participants may have 
tried to adjust their path-integration system to the curved 
surface by using more cognitive resources (through an 
analysis of reaction time) or a bird’s-eye-view perspective, 
compared to when they were doing the same task in the 
plane condition. We performed a t test on the mean reac-
tion time and McNemar’s test on the proportion of partici-
pants who used the bird’s-eye-view strategy in the plane 
and sphere conditions. Last, we divided the participants 
into two groups on the basis of their self-reported prior 
knowledge of spherical geometry and tested whether 
those with geometrical knowledge also showed a planar 
bias on the sphere.

Object-location memory test. Our main hypothesis 
concerned the optimal route-planning ability that depends 
on whether participants use a 3D Euclidean map or mul-
tiple planar maps. There were two types of errors reflect-
ing the optimal route-planning ability: a direction error, 
which is an angular deviation of a participant’s initial 
route from the ideal route to the target, and a position 
error, which is a geodesic distance between the recalled 
location and the true location of the target.

As a first step of the analysis, we defined outlying 
trials (position error beyond 1.5 times the interquartile 
range within each participant) and removed them. A 
few large positional errors could occur if participants 
swapped the identity of landmarks. We then grouped 
trials into short or long on the basis of the geodesic 
distance between the start and target locations, with 
the distance threshold of 110°. Next, the mean direction 
error for the short and long trials in the plane and 
sphere conditions was computed for each participant 
(2 × 2 factors). Long-distance trials could generally be 
harder (main effect of distance). However, if partici-
pants used multiple planar maps instead of building a 
global 3D map, the direction error was expected to be 
particularly large for long-distance trials on the sphere 
(interaction effect). Thus, we tested for this interaction 
effect using a Bayesian t test on the difference between 
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the long- and short-distance trials on the sphere and 
on the plane. We performed the t test using the Bayes 
factor R package and JASP with the default objective 
prior (Cauchy distribution with a scale parameter of r = 
2 2/ ). We also report the statistics from a classical  

t test for completeness, but our conclusion was based 
on the BF.

Simulation of route planning based on multiple 
planar maps. To simulate the route-planning perfor-
mance, we sampled random start locations with varying 
distance from one fixed target location on the sphere 
(Supplemental Fig. S7). Because of the rotation symmetry 
of a sphere, it is sufficient to use one fixed target. A 
spherical surface could be divided into triangular patches 
using 12 landmark animals that were evenly distributed 
on the surface (i.e., vertices of icosahedron). When mul-
tiple planar maps are used to approximate the spherical 
surface, triangular patches could be arranged on a hypo-
thetical plane optimally or suboptimally (see the Results 
section). Every start location on a spherical surface was 
projected to a location on a triangular patch. We then 
computed the direction and distance of a path from each 
start location to the target on the plane. Next, we drew a 
path on the sphere using the direction and distance com-
puted on the plane; we then measured angular and loca-
tion errors on the sphere.

Results

Path integration on the sphere is better 
explained by a planar geometry model

Participants performed a triangle-completion task on 
both the sphere and plane. Figure 3b and 3c shows the 
raw data from three example shapes (all shapes are 
shown in Supplemental Fig. S3). It is apparent that 
participants’ trajectories (black lines) were closer to the 
ideal response for planar geometry (green line) than 
those for spherical geometry (blue line). This was true 
in both the plane and sphere conditions. A comparison 
of two linear mixed models revealed strong evidence 
for the planar-geometry model over the spherical model 
when people were on the sphere (approximated BF for 
the planar vs. sphere model: turn angle, BF = 3.5e54; 
distance, BF = 2.6e23). Supplemental Tables S1 through 
S4 contain a detailed report on the fixed and random 
effects for each model. Next, we report how well indi-
vidual participants’ turn angles and distances were fit-
ted to the ideal turn angle and distance for the planar 
and spherical geometry. A strong linear relationship 
between the actual data and predictors were observed 
in most participants, and R2 values for individual par-
ticipants were higher for the plane model than the 

sphere model for the turn angle (the planar geometry 
model = 0.67 ± 0.19 vs. sphere model = 0.50 ± 0.18) as 
well as for distance (the planar geometry model = 0.36 ± 
0.13 vs. sphere model = 0.23 ± 0.15; Figs. 3d and 3e). 
These results imply that participants used a 2D path-
integration system rather than a precise 3D path- 
integration system based on a volumetric map.

Planar bias prevails: exploratory 
analyses on mixed models, spherical 
models of various radii, reaction time, 
strategy, and previous knowledge of 
spherical geometry

As exploratory analyses, we tested whether participants 
tried to overcome the strong planar bias on the sphere. 
If that was the case, a mixed influence of planar and 
spherical geometry would be expected. We built a 
model that contains both planar and spherical geometry 
predictors and compared it to a model that contains 
only the planar predictor. The planar-geometry model 
remained the clear winner over the mixed-geometry 
model (BF = 1.3e4 for the turn angle, BF = 2.1e3 for 
distance). We also built the spherical models with vari-
ous radii to check whether participants overestimated 
the radius of the sphere and whether a larger-radius 
spherical model could fit the data better than a plane 
model. A group-level analysis showed that larger-radius 
models fitted the data better than smaller-radius mod-
els, and the plane model outperformed the spherical 
model of all radii we tested (Supplemental Fig. S4c). 
We also investigated the best-fitting radius at the single-
subject level. The model with the largest radius was 
often the best model (Supplemental Fig. S4d). Because 
of the small number of data points at the single-subject 
level and reduced model discriminability between 
larger radii, the best-fitting radius should be interpreted 
with caution.

Next, we compared the reaction time and self-reported 
strategy for the path-integration task in the sphere and 
plane conditions. We reasoned that if participants con-
sider the curvature of the surface and update their loca-
tion by using a 3D map, reaction time would be slower 
on the sphere and they would be more likely to use  
the bird’s-eye view (third-person perspective) than a 
first-person perspective on the sphere. Neither the reac-
tion time nor the proportion of bird’s-eye-view  
strategy use was larger for the sphere—mean time on 
sphere = 6.4 ± 2.5 s versus on plane = 7.0 ± 2.4 s, t(19) = 
1.1, p = .85, one-sided; proportion of bird’s-eye-view 
perspective on sphere = 7 out of 20 vs. on plane = 5 out 
of 20, McNemara test, p = .31. We also note that none of 
the participants reported paying attention to the absolute 
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traveled distance relative to the size of the sphere, which 
was necessary for path integration based on a 3D map.

Finally, we tested whether explicit knowledge of 
3D geometry helped people to overcome the planar-
geometry bias and to utilize a 3D map. Those who 
possessed geometrical knowledge of the sphere (n = 
9) showed a similarly strong planar bias on the sphere, 
as did those without the knowledge (n = 11; Supple-
mental Fig. S5).

In sum, participants performed the path-integration 
task on the sphere as if they were still on the plane. 
Thus, the planar bias cannot be readily eliminated by 
explicit knowledge of spherical geometry. In the next 
sections, we present how people with such planar bias 
performed in the object-location memory task.

Large direction error at the start, but 
small position error at the end

When participants rely on planar maps instead of a 3D 
map, path planning for long-distance trials on the 
sphere is expected to be particularly challenging. 

Indeed, we observed a significantly larger initial direc-
tion error on the sphere compared to the plane when 
the target was farther away (Figs. 4b and 4c). The angu-
lar difference between long and short trials was 2.5 ± 
4.8° on the plane, but a substantial 38.5 ± 19.4° on the 
sphere—BF = 1.1e5, interaction effect, t(19) = 7.7, p < 
.001, Cohen’s d = 1.7. We also found that the final posi-
tion error was larger for long-distance trials on both 
sphere and plane. However, no significant interaction 
effect was observed. The difference in error between 
long and short trials on the plane was 15.8 ± 10.4°, 
whereas on the sphere it was 21.3 ± 18.3°, BF = 0.8, 
t(19) = 1.3, p = .2, Cohen’s d = 0.3.

It is worth noting that participants achieved better 
accuracy than chance even in the long-distance trials 
on the sphere (mean position error for long trials on 
sphere = 50.6 ± 20.4°, chance = 90°; final errors for all 
targets are displayed in Supplemental Fig. S6). This dis-
sociated pattern of error for direction and position was 
possible because of the nonflat geometry of the sphere, 
where routes that initially deviate significantly from the 
shortest path can eventually converge near the target.
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multiple planar maps instead of a volumetric map, path planning would be particularly difficult for long trials on the sphere. Indeed, 
direction errors (c) were significantly larger for long trials on the sphere, and a significant interaction effect between the distance and 
environment type was observed. Position errors (c) were significantly larger for long-distance trials on both the plane and the sphere, 
without an interaction effect. Colored dots represent each participant’s mean error; error bars represent standard errors.
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Reasonable navigation performance  
can be achieved by using multiple  
planar maps

We conducted simulations to assess the accuracy of 
path planning on a sphere based on multiple planar 
maps. In this simulation, we divided the spherical sur-
face into triangular patches that can be dynamically 
aligned for path planning. In an optimal scenario, par-
ticipants would recall the minimal number of land-
marks between the start and target and align the map 
accordingly (e.g., if the start is between landmarks 1, 
2, and 3, the shortest route to the target, landmark 6, 
would include landmarks 4 and 5; see Fig. 5a, middle 
panel). The path direction and distance can then be 
estimated by drawing a straight line on an imaginary 
plane and executed on the sphere (see the red line in 
Fig. 5a). This path, based on the optimally arranged 
planar maps, closely approximates a true geodesic path 
on the sphere, resulting in a position and direction 
error of less than 20° for distant targets (Fig. 5b, red 
dots). Next, we simulated a scenario in which the agent 
recalls a suboptimal route and aligns the planar map 
differently. For example, the agent might first recall 
landmark 7, followed by 5, 4, and finally the target 6 
(see the blue line in Fig. 5a, right side). The direction 
and position error on the sphere are generally larger 

compared to the ideal case, reaching up to 60° of direc-
tion error and 40° of position error (Fig. 5b; see the 
blue dots). However, these errors still remain well 
below the chance level, indicating that reasonable navi-
gation on the sphere can be achieved using multiple 
planar maps.

Discussion

To understand the nature of cognitive maps, we exam-
ined how people navigated a novel spherical environ-
ment. The path-integration task revealed a strong bias 
for planar geometry. Despite this bias, participants 
achieved a reasonable level of accuracy in the object-
location memory test, potentially by utilizing multiple 
planar maps. In the following sections, we discuss our 
findings in relation to the existing literature, explore 
potential neural circuitry underlying the cognitive map, 
and speculate on the implications of multiple planar 
maps for solving broader cognitive tasks.

Our study highlights a pronounced planar geometry 
bias during path integration. This finding aligns with a 
recent study that also observed a dominance of Euclid-
ean geometry on spherical and hyperbolic space  
(Widdowson & Wang, 2022). However, it is important 
to note several critical differences between this previous 
study and ours. In Widdowson and Wang, participants 
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were immersed in a science-fiction-style warped uni-
verse, where light was curved and landmarks were 
absent. This means it was nearly impossible for partici-
pants to know whether they were walking in a curved 
world, potentially leading them to rely on familiar planar 
geometry for path integration. In contrast, the partici-
pants in our study were explicitly aware of the spherical 
surface on which they were walking. During the training 
phase, they encountered multiple landmarks along the 
great circle of the sphere. They also learned about the 
existence of multiple routes on the sphere. Half of par-
ticipants even possessed prior knowledge of spherical 
geometry. Nevertheless, they all performed the path-
integration task on the sphere as if they were on a plane, 
indicating a robust planar-geometry bias.

What could be the origin of this strong Euclidean 
bias in path integration? Is it hardwired in the brain, or 
acquired through experience or formal education? The 
philosopher Kant proposed that Euclidean geometry 
might be a priori knowledge in humans. Evidence from 
studies on individuals without formal math education, 
such as children and certain Amazonian indigenous 
groups, suggests an intuitive understanding of Euclidean 
geometrical concepts like line, right angle, and paral-
lelism (Dehaene et  al., 2006; Izard et  al., 2011). In  
the natural world that humans live in, surfaces often 
have modest curvature that can be closely approxi-
mated by Euclidean geometry. The brain contains  
multiple specialized cell types that encode spatial infor-
mation such as head direction, speed, and location—the 
basis of path integration (Moser et al., 2017; Wittmann 
& Schwegler, 1995). To test the impact of early geo-
metrical experience on the development of spatial cells, 
Ulsaker-Janke et al., 2023, raised rat pups in an opaque 
spherical cage. Unlike the human participants who 
freely explored the entire spherical surface in our VR 
experiment, because of gravity the rat’s movement was 
constrained to the bottom part of the spherical cage. 
The spherical cage was different from a typical rectan-
gular cage because it did not contain a vertical bound-
ary that defines geometry. When the rats were later 
placed in a typical 2D environment, normal grid cells 
were absent on the first day but quickly emerged within 
a few days. These findings imply that a minimal experi-
ence with a typical environment is necessary for matu-
ration of 2D grid fields that are anchored to an 
environment, but the topology of grid cells for a 2D 
flat surface is preconfigured independently of experi-
ence (Gardner et al., 2022; Ulsaker-Janke et al., 2023). 
Furthermore, studies on rodents walking on slopes or 
walls connected to a horizontal floor have shown that 
head-direction cells and grid cells continue to encode 
the direction and locations relative to a local surface, 
rather than a global 3D reference (Hayman et al., 2015; 

Stackman et  al., 2000). This suggests that the brain 
treats joined surfaces as a Euclidean plane, resembling 
a hypothetical plane where multiple planar maps could 
be arranged in our simulation. Taken together, these 
findings suggest that the neural circuitry for path inte-
gration in the human brain may also be optimized for 
a flat surface, leading to the construction of multiple 
planar maps.

The dominance of the 2D path-integration system 
and the utilization of planar maps can be viewed as a 
useful feature rather than a limitation. Although path 
planning based on planar maps introduces some angu-
lar error at the start, our data and simulations have 
demonstrated that it is still possible to reach the target 
with a small overall error. This is because of the posi-
tive curvature of the sphere following Riemannian 
geometry. Building a precise map for high-dimensional 
space can be costly and inefficient when only a part of 
the space is relevant for behavior (e.g., walkable sur-
faces are 2D manifolds within a 3D world). If animals 
can achieve reasonable navigation accuracy by utilizing 
an existing path-integration system and multiple planar 
maps, there might be a limited demand for building 
more complex high-dimensional maps. It is also more 
ecological to use multiple small maps as opposed to 
building a single global map. Animals constantly inter-
act with their environment and update their estimates 
of location and direction. Thus, a dynamic and flexible 
arrangement of cognitive maps becomes more desirable 
(Kim & Doeller, 2022).

The utilization of multiple planar maps on a sphere 
provides new insights into the longstanding question 
regarding the nature of cognitive maps. An earlier the-
ory proposed a cognitive map that adheres to Euclidean 
geometry and contains precise metric information 
(O’Keefe & Nadel, 1978). However, it has been observed 
that people do not always rely on a coherent Euclidean 
map for navigation. Spatial memory and planning is 
strongly influenced by regional boundaries instead of 
Euclidean relations alone (Hirtle & Jonides, 1985; Kim 
& Maguire, 2018; Wiener & Mallot, 2003). Furthermore, 
in VR experiments in which the global adherence to 
Euclidean laws was broken through teleports, partici-
pants were still able to successfully navigate by attend-
ing to local spatial features (Warren et al., 2017). This 
suggests that cognitive maps may take on a graph or 
topographic form across multiple hierarchies (Chrastil 
& Warren, 2014; Peer et  al., 2020). We propose that 
cognitive maps are Euclidean at the local level and that 
multiple planar maps are flexibly combined to repre-
sent a large and complex environment. This idea is in 
line with the neurophysiological mechanisms of grid 
cells, initially believed to provide global metric informa-
tion but later proposed to encode spatial information 
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rather locally (Ginosar et al., 2023). It is also notewor-
thy that simulations of grid cells predict imperfect 
global-scale path integration on the sphere (Stella et al., 
2020).

Local planar maps might be useful for cognition 
beyond the physical navigation domain. There is abun-
dant evidence that neural circuitry for physical naviga-
tion can be used for organizing various types of 
information, including odors and social and visual fea-
tures (Aronov et al., 2017; Bao et al., 2019; Bellmund 
et al., 2018; Gärdenfors, 2000; Park et al., 2020). One 
limitation of the previous research is that the research-
ers used only 2D stimuli analogous to physical naviga-
tion on a flat surface. However, nonphysical information 
can be high-dimensional. Our findings of multiple pla-
nar maps for a spherical surface suggest that we can 
divide complex nonphysical space into multiple low-
dimensional patches. The projection of multidimen-
sional inputs onto low-dimensional vectors has been 
also proposed in the computational models of grid cells 
(Klukas et al., 2020).

We hope that some of the limitations in the current 
project can be addressed in future research. First, the 
vestibular and proprioceptive input in our setup was 
limited, because participants walked on a flat treadmill 
surface. It would be valuable to investigate whether 
additional 3D vestibular inputs, such as those experi-
enced in a large microgravity environment or through 
the use of a 3D motion simulator (Barnett-Cowan et al., 
2012), would result in the utilization of more volumetric 
cognitive maps. Second, exploring the impact of 
extended experience in nonflat environments on the 
format of cognitive maps would be intriguing. A recent 
experiment demonstrated that young children exhibited 
some understanding of a shortcut on spherical geom-
etry (Huey et al., 2023). Investigating learning processes 
and the adaptability of humans to novel environments 
would contribute to a deeper understanding of cognitive- 
map formation.
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