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We propose a quantum algorithm to simulate the dynamics in quantum chemistry problems. It is
based on adding fresh qubits at each Trotter step, which enables a simpler implementation of the
dynamics in the extended system. After each step, the extra qubits are recycled, so that the whole
process accurately approximates the correct unitary evolution. A key ingredient of the approach is
an isometry that maps a simple, diagonal Hamiltonian in the extended system to the original one.
We give a procedure to compute this isometry, while minimizing the number of extra qubits required.
We estimate the error at each time step, as well as the number of gates, which scales as O(N2),
where N is the number of orbitals. We illustrate our results with two examples: the Hydrogen chain
and the FeMoco molecule. In the Hydrogen chain we observe that the error scales in the same way
as the Trotter error. For FeMoco, we estimate the number of gates in a fault-tolerant setup.

I. INTRODUCTION

The simulation of quantum many-body systems has
been identified as one of the most natural applications
of quantum computing. Indeed, as envisioned by Feyn-
man [1], those simulations require enormous resources in
classical computers, while they could be very efficiently
carried out in quantum devices. Quantum simulations
are expected to provide novel perspectives in different
areas, like condensed matter and high energy physics, or
molecular quantum chemistry [2]. The latter is particu-
larly relevant since, apart from its scientific interest, it
may lead to industrial applications.

Many of the existing quantum algorithms for quantum
chemistry address the electronic structure problem [3, 4],
where one fixes the position of the nuclei and describes the
electrons quantum mechanically, using a basis of properly
chosen molecular basis set (or orbitals). This results in
a Hamiltonian, H = h + V , where h accounts for both
the kinetic and interaction energy with the nuclei, and V
for the electron-electron interactions. Those algorithms
aim at determining both static quantities related to the
ground or excited states of the electronic Hamiltonian,
and dynamical properties of the state evolved according
to that Hamiltonian. The latter can also be used to
obtain static properties by means of adiabatic evolution
or phase estimation, for instance. Most of the existing
quantum algorithms for dynamic simulation fall into two
categories [4]: product formulas [5, 6] and qubitization
algorithms [7–10]. Although the predicted complexity of
qubitization algorithms is usually better than the method
based on product formulas, the latter often has better
empirical gate counts and is easier to implement.

Simulating the Hamiltonian dynamics using product
formulas involves dividing the total simulation time into a
large number of short time intervals, called Trotter steps,
in which one alternatively evolves the state according
to different terms of the Hamiltonian. The two relevant
figures of merit are: (i) the Trotter error given that the
terms do not commute, and (ii) the number of elementary

gates required to implement one such a Trotter step. The
first one can be easily upper bounded or estimated [5, 11],
and depends on the commutators between the different
terms of the Hamiltonian and the Trotter time step τ .
This error, accumulated over the whole time evolution,
is required to be small, a fact that is used to choose τ .
The second scales as the number of elementary terms in
the Hamiltonian, since each of them requires one or few
quantum gates. For chemistry problems, this number is
O(N4) [4, 5], where N is the number of elements in the
basis set, and is dictated by the number of terms of the
so-called electron repulsion integral (ERI) tensor, which
appears in the electron-electron interaction Hamiltonian
V when written in terms of the chosen basis set.

In the last years, different methods have been developed
in order to decrease the gate complexity. One of the
most efficient uses the low-rank representation of the
ERI tensor. Motta et al. have proposed an algorithm
based on a double low-rank factorization [6], which has
a gate complexity O(N2Ξ) per Trotter step, where Ξ is
the rank of the second-tensor factorization of the ERI
tensor and typically scales as Ξ = O(N) [4, 10], yielding
a favorable scaling of O(N3). Another way of addressing
the gate complexity is based on using N ′ localized basis
sets, instead of the molecular ones. Specifically, in the
discrete grid basis [12, 13], the interaction Hamiltonian
only depends on the electron number in each element of
the basis set. Apart from yielding a simple interaction
Hamiltonian, where each term commutes with each other,
the number of terms is reduced to O(N ′2). However, in
practice, N ′/N ≫ 1 in order to achieve a comparable
accuracy as with the molecular basis set, which sheds
some doubts on the applicability in quantum simulation
as compared to the previous method.
In this paper, we propose an alternative approach to

reduce the gate complexity of a Trotter step. It con-
sists of adding some additional, fictitious elements to the
molecular basis set, and determining another interaction
Hamiltonian Ṽ , such that (i) in the appropriate basis,
it only depends on the electron number, as in the case
of localized basis sets, and (ii) it coincides with V when
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projected on the molecular basis set. The quantum algo-
rithm starts out with a state that is fully supported in the
molecular basis set; that is, only the fermionic modes cor-
responding to the molecular basis are occupied, while the
extra ones are in the vacuum. Then, the state is evolved
according to the new Hamiltonian H̃ = h+ Ṽ , for a short
time step τ , and then the extra modes are reinitialized
to the vacuum. On the one hand, this evolution is not
perfect since new errors are introduced given that the
extra modes may be occupied. However, as we will show,
they can be made small by adjusting the time step τ . In
fact, the error is basically compatible with the Trotter
error, so that this does not lead significant limitations.
On the other hand, the number of quantum gates scales
as O(M2), where M is the total number of elements in
the full basis set. The new elements are not associated to
any specific geometrical property, but are chosen in order
to minimize M , which we estimate, based on numerical
evidence, to be proportional to N , yielding a gate count
of O(N2).

The addition of new elements to the molecular basis
in order to simplify the interaction Hamiltonian is very
reminiscent of the tensor hypercontraction (THC) [14, 15],
a technique that is widely used in quantum chemistry.
The main difference is that in THC, the terms in the
interacting Hamiltonian do not commute with each other,
and thus they require a continuous changes of basis, that
significantly increases the number of gates. Nevertheless,
we will use THC as a starting point to determine the
extended basis set, since this yields much better results
than a brute-force optimization and, additionally, provides
a strong evidence of the scaling of M with N . It is worth-
mentioning that the THC technique has been proposed
for a quantum chemistry qubitization algorithm [10].

This paper is organized as follows. In Section II we
will describe the setup and briefly introduce the quantum
algorithm. In Section III we will introduce the method
to approximate Ṽ , and illustrate its performance with
two examples: a Hydrogen chain, for which we can bench-
mark the method through the density matrix renormal-
ization group (DMRG) computations [16, 17], and the
FeMoco [18, 19], which has served in many works as a
good case to investigate the performance of quantum al-
gorithms [5, 6, 8–10]. In Section IV we analyze the errors
incurred by the quantum algorithm in each step, and
propose some modifications to make them smaller. In the
Appendices, we provide mathematical details supporting
some of the statements in the main text.

II. STATEMENT OF THE PROBLEM

We consider a set of electrons and a basis set of N
modes, with corresponding fermionic annihilation opera-
tors ai (i = 1, . . . , N). The Hamiltonian can be expressed

as

H =h+ V

=
∑
ij

hija
†
iaj +

1

2

∑
ijkl

Vijkla
†
ia

†
kalaj ,

(1)

The coefficients hij and Vijkl build the one-body integral
and electron repulsion integral (ERI) tensors, respectively.
Here, we have omitted the spins, but it is straightforward
to include them (See App. A). It is always possible to
find a canonical transformation, so that h has the form

h =
∑
i

hini (2)

where ni = a†iai is the particle number operator. In the
following, w.l.o.g. we will assume that h has that form.
Also, operators that only depend on number operators
will be called diagonal.

Our objective is, starting from an arbitrary state |Ψ⟩, to
build a quantum circuit that prepares a state ρ′ sufficiently
close to |Ψ(τ)⟩ = e−iHτ |Ψ⟩, where τ is a small time
interval. In particular, we would like to achieve a small
error

ϵ =
1

2
|||Ψ(τ)⟩⟨Ψ(τ)| − ρ′||1 (3)

with a low number of quantum gates. This will allow us to
simulate the time evolution generated by Hamiltonian (1)
by dividing the evolution time in small time intervals τ ,
and applying the quantum circuit successively.
A naive Trotterization of e−iHτ will require O(N4)

steps, since this is the number of elementary terms in the
interaction Hamiltonian V (and they do not mutually com-
mute). For the purpose of an efficient quantum simulation,
one would like to reduce the number of terms. Addition-
ally, each term appearing in V requires to transform the
fermionic into qubit operators, which needs additional re-
sources. One way of circumventing this obstacle could be
to carry out a canonical transformations of the fermionic
operators ai to cα, such that V would only depend on
terms of the form nα = c†αcα, i.e., the Hamiltonian would
have a diagonal form. Canonical transformations can
be efficiently carried out, with a cost O(N2), so that
performing few of them will not add significant resources.
In general, it is not possible to express the two-body

operator V in a diagonal form. Our idea is to add addi-
tional (fictitious) modes, and diagonalize V in a larger
space. In fact, we know that, by adding a very large
number of elements to the basis set we could span the
grid basis, where V is diagonal. Our goal is, however, to
use as few extra modes as possible so that, apart from
having a simple form for the evolution dictated by V , the
number of gates is maximally reduced. In order to achieve
that, we will not impose that V is diagonal, but rather
that the diagonal counterpart Ṽ coincides with V when
projected into some specific subspace. This will add some
extra error, that can be made very small by adding an
extra quantum circuit which will not significantly affect
the gate count.



3

A. Diagonalizing the interaction Hamiltonian

To be specific, we aim at finding a diagonal operator,

Ṽ , by enlarging the number of modes from N to M with

(M > N), such that V is the projection of Ṽ onto a certain
subspace. In our approach, we addM−N fictitious modes,
associated to a set of annihilation operators, bm (with
m = 1, . . . ,M −N), define new modes

cα =
∑
i

uiαai +
∑
m

vmαbm (4)

through the canonical transformation defined by u and v,
and write

Ṽ =
∑
α̸=β

Ṽαβnαnβ (5)

where nα = c†αcα, so that Ṽ diagonal in those modes.
The number of added modes, as well as the canonical
transformation have to ensure that

V =b⟨0|Ṽ |0⟩b (6)

where |0⟩b is the vacuum state of the new modes, i.e., it
fulfills bm|0⟩b = 0 for all m = 1, . . . , (M −N) [20].
Mathematically, our approach amounts to finding an

isometry uiα diagonalizing the tensor Vijkl

Vijkl =

M∑
αβ=1

u∗
iαujαṼαβu

∗
kβulβ . (7)

The first question which arises is whether such an isom-
etry exits. Indeed, for M = N2, an exact factorization
is trivially achievable. Let us take an arbitrary isometry,
uiα, and define uij,α ≡ u∗

iαujα, which is a square matrix.
For a generic uiα, uij,α will be invertible. Then, we can
simply take

Ṽαβ = u−1
ij,αVij,klu

−1
kl,β (8)

which provides a valid exact solution.
Our first aim is to find more economical constructions

of the new Hamiltonian, Ṽ , with M ≪ N2, by lifting the
exact conditions Eq. (7). and let them be only approx-
imately correct. In that case, we will have to compute
the error in the approximation, ϵV , and make sure that
this error remains small during the whole process. In
Section III we will introduce and analyze a procedure for
that purpose.

B. Quantum algorithms

Let us denote by U the canonical transformation
(a, b) → c. The simplest version of our quantum algo-
rithm then proceeds in two steps: First we evolve under

h and Ṽ respectively

|Ψ⟩ → |Ψ′⟩ = U†e−iṼ τUe−ihτ |Ψ⟩ |0⟩b (9)

and then resets the state of the auxiliary modes to the
vacuum, i.e.,

|Ψ′⟩ → trb (|Ψ′⟩⟨Ψ′|)⊗ |0⟩b⟨0|. (10)

Apart from the error ϵV and the trotter error ϵPr, there
will be an additional error due to, e.g., the fact that the
dynamics under Ṽ creates particles in the b modes. In
Section IV we will estimate that error, the number of
gates, and give other procedures that do not significantly
increase the number of gates but that achieve a lower
error.

C. Additional remarks

Here, we have concentrated in making V diagonal by
adding extra modes. In principle, one could aim at di-
agonalizing the whole Hamiltonian H; that is, adding
M ′ −N modes and finding an isometry so that H̃ is di-
agonal. In that case, one would not need to carry out
the Trotterization, but just insert the operation (10) for
every time interval τ , and judiciously choose such an in-
terval so that the final error is sufficiently small. We do
not analyze it here since, in our numerical computations,
we have found that the method introduced in the next
section to diagonalize V achieves the goal with a much
lower number of extra modes, i.e. M ≪ M ′. Additionally,
despite its simplifications, the gate count would have a
similar scaling as the one analyzed here if we manage to
diagonilize H̃. Nevertheless, we believe that the approach
of diagonalizing H may be still appealing, specially if
one finds an efficient algorithm to do that while retaining
M ′ ∼ M .

III. CONSTRUCTION OF THE NEW
HAMILTONIAN

The problem of finding an approximate solution to
Eq. (7) can be reformulated as an optimization problem.
The objective thereby is to minimize the approximation
errors ϵV , which are defined as the relative differences
between the exact and approximate tensor (matrix) in
some norm which, for simplicity, we will choose as the L2

norm,

ϵV ≡

∥∥∥Vijkl −
∑M

α,β=1 u
∗
iαujαṼαβu

∗
kβulβ

∥∥∥
2

∥Vijkl∥2
. (11)

where we have used the notation ∥Vx∥2 =
√∑

x |Vx|2.
In (11), u and Ṽ are both free parameters to be op-

timized. In practice, we can reduce the number of free
parameters by noticing that, for fixed values of the u’s,

the Ṽ can be determined through Eq. (8), where u−1
ij,α now

implies the pseudoinverse. Thus, we can just optimize
with respect to the u’s.
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We also define the following quantities,

ϵh ≡

∥∥∥hij −
∑

α u∗
iαujαh̃α

∥∥∥
2

∥hij∥2
, h̃α =

∑
i,j

u−1
ij,αhij . (12)

In case this quantity is also small then it is possible to
use the simpler Hamiltonian encoding where the whole

H̃ is diagonal. As remarked in Section IIC, this would
avoid the need for Trotterization and would simplify the
scheme, although the scaling of the gate count would
not be significantly reduced. In the examples we have
analyzed, as we will see, it turns out that by minimizing
ϵV , we also obtain a small value of ϵh. While we do not
expect this to happen in general, there may be relevant
systems where this is the case. In the Appendix B 3 we
briefly discuss how parts of h will become diagonal in the
general case, which may give rise to further simplifications.
The minimization of ϵV in terms of the variables u

can be carried out, in principle, with a good numerical
optimization method. However, in the cases we have
studied, the method typically gets stuck in local minima
and one has to increase the value of M considerably in
order to obtain sufficiently small values of ϵV . In this
section we introduce a procedure which has proven very
successful in the examples we have tried.

A. Optimization via tensor hypercontraction

The question we want to address is very closely related
to a widely studied in computational chemistry, namely
tensor hypercontraction (THC) [14, 15, 21–24]. In fact,
that technique was originally introduced in order to reduce
the computation requirements related to evaluating the
ERI tensor, similar to our purpose. In THC, one aims at
finding X and W such that

Vijkl ≈
M∑

α,β=1

X∗
iαXjαWαβX

∗
kβXlβ , (13)

for all i, j, k, l = 1, . . . , N . In that context, M is called
the THC-rank, and through numerous studies it has been
verified that it typically scales linearly in N [21–24].

We want to use THC as a first step in determining the

isometriy u leading to a Ṽ in the form of Eq. (5). In
fact, Eq. (13) looks very similar to Eq. (7). The only
difference is that X can be any (usually real) matrix, and
not necessarily an isometry. This is why, in the following,
we will call Eq. (7) isometric THC.

The analogy between THC and the isometric case sug-
gests to define uiα = µαXiα and to determine µα such

that u is isometric. Then, we can simply take Ṽαβ =
Wαβ |µα|−2|µβ |−2. The isometric condition amounts to∑

α

uiαujα =
∑
α

Xij,αηα = δij . (14)

where we have the short-hand notation Xij,α = X∗
iαXjα,

and ηα = |µα|2. The goal is, thus, to solve Eq. (14)
imposing that ηα > 0.

As shown in App. B 2, relaxing the condition ηα > 0 it
is always possible to find a solution to (14). In practice,
ηα > 0 can be found by convex optimization, e.g., by
solving Eq. (14) while imposing that the solution is larger
than some small positive number δ, where this latter
quantity needs to be wisely chosen. If it is too large, then
the optimization algorithm might not find a good solution,

while if is too small, this will result in a large norm of Ṽ ,
which will lead to an enhancement of the error ϵV .

Our numerical procedure consists of three steps. Firstly,
we obtain a THC decomposition (and thus some matrix
X) using the interpolative separable density fitting (ISDF)
approach [21], which is an efficient heuristic algorithm.
The core of this algorithm is a pivoting QR decomposition
of the product of real-space orbitals. Secondly, we turn X
into an isometric u as described above, using the convex
optimization library Cvxpy [25, 26]. In practice we found
that δ = 0.2 is a good parameter. Finally, we optimize
u using the Adam optimizer implemented in Optax [27],
which is a stochastic gradient descent algorithm. In the
next subsection we give some specific problems where we
have tried this method.

B. Numerical illustrations

We have numerically investigated the performance of
the above procedure with two examples: The Hydrogen
chain (see, e.g., [16, 17]) and the FeMoco problem [5, 18,
19]. We display the errors ϵV and ϵh as a function of
M obtained with the procedure introduced above. Note
that the errors in estimating the ground state energy or
any other physical quantities do not need to be precisely
related to those quantities. This is why we also computed
the difference in the lowest energies computed with the

original Hamiltonian, H, and h+ b ⟨0| Ṽ |0⟩b (see Eq. (6)).
Furthermore, in order to analyze the scaling with N , we
have performed this computation in the Hydrogen chain
example, since there we can use DMRG [16, 17] in order
to obtain those energies for large number of atoms.
Hydrogen Chain. To benchmark the performance

of our numerical approach, we first consider a one-
dimensional hydrogen chain of 10 atoms separated by
1.4 Bohr. The basis set is STO-6G, which has N = 10
atomic orbitals. We perform the factorization for M val-
ues ranging from 10 to 27. As shown in Fig. 1(a), the
approximation error of ϵV decreases with M , as expected.
Furthermore, as anticipated, ϵh also shows the same pat-
tern. To verify that these errors induce a small inaccuracy
in the ground state energy, we perform a DMRG calcula-
tion, with a bond dimension of D = 50, which is sufficient
for our purposes. Fig. 1(b) illustrates that already with
M ≥ 20 one achieves the accuracy of 5 × 10−5 Hartree
per atom.

In order to analyze the scaling behavior of M with N ,
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FIG. 1. Error versus the THC rank M . The system is a
Hydrogen chain of 10 atoms. (a) Approximation error for
Hamiltonian terms V and h. (b) Error in the DMRG energy.
The red dotted lines indicate the accuracy of 50 microhartree.
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FIG. 2. A comparison of the approximation error using generic
THC (dotted lines) and isometric THC (solid lines) for FeMoco
Hamiltonian.

we vary the number of atoms in the hydrogen chain from
10 to 80. We find M = 3N − 3 is sufficient to yield a
small approximation error: the error of both V and h is
smaller than 4× 10−4, and the error in energy is smaller
than 5× 10−6 Hartree per atom. The linear scaling of M
is illustrated in Fig. 4.

FeMoco. We have also tested our approach on a real
chemical system FeMoco (Fe7MoS9C) [18]. FeMoco is the
primary cofactor of nitrogenase, it is a potential use case
for quantum computing and was employed as a benchmark
for many previous quantum algorithms [5, 6, 8–10]. Li
et al. proposed an active space for FeMoco with N =
76 space orbitals and 113 electrons [19]. As the real-
space representation of orbitals is unavailable for this
Hamiltonian, we can not use ISDF to generate the initial
THC. Instead, we use the THC data in the literature [10]
for the initial matrix X, based on which we compute the
isometry u. We compare the approximation error of X
and u, as shown in Fig. 2. For both V and h, isometric
THC could achieve a similar accuracy as the generic THC
in [10].

IV. QUANTUM ALGORITHM

In this section we analyze the quantum algorithm in-
troduced in Section II, compute the error and estimate
the number of gates required for a time step. We also
introduce some modifications to improve the error scaling
without significantly affecting the gate count. Finally, we
estimate the quantum resources for the two cases analyzed
in the previous section, namely the Hydrogen chain and
the FeMoco.

A. Errors

As explained in Section II, we divide the total evolution
time t into a large number of short steps τ , and in each
Trotter step in we split the evolution into two parts,
Eqs. (9) and (10). There will be two sources of errors,
introduced by the THC approximation and the quantum
algorithm, respectively.
To be specific, the first error is due to replacing the

Hamiltonian H with the approximated one h+ ⟨0|Ṽ |0⟩b.
For the total evolution time t, this error will be (see
App. C)∥∥∥e−iHt − e−i(h+⟨0|Ṽ |0⟩b)t

∥∥∥ ≤ ∥V − ⟨0|Ṽ |0⟩b∥t = ϵ̃V ∥V ∥t
(15)

where we have defined ϵ̃V = ∥V − ⟨0|Ṽ |0⟩b∥/∥V ∥. This
quantity is hard to compute, even numerically. However,
it is closely related ϵV defined and analyzed in the pre-
vious section, which can be easily computed. Both of
them express the relative error incurred by replacing the
original interaction Hamiltonian by the approximated one,
although with different norms. In fact, we can simply
bound the latter expression by ϵ̃V ≤ ϵV N

2∥Vijkl∥2/∥V ∥
(see App. C). Even though we do not expect this bound
to be tight and rather ϵ̃V ≈ ϵV nevertheless, as sug-
gested by Figs. 1, 2 and other empirical studies [21–24],
ϵV goes down quickly when increasing the THC rank M ,
and therefore ϵ̃V can be sufficiently small by choosing a
proper M ≪ N2. Additionally, in case the quantum algo-
rithm is used to prepare the ground state of the original
Hamiltonian (by, for instance, adiabatic evolution), we
already gave evidence in the Hydrogen chain, for which
we can benchmark the final result by means of DMRG
computations, that M can be kept as small as O(N) (see
Section II).

The second error is induced by our quantum implemen-
tation. It can be written as (ϵTr + ϵPr)t/τ , where the
Trotter step has to be suitably chosen such that this is
sufficiently small. Here ϵTr and ϵPr are the errors per
time step, τ , related to the Trotter approximation and to
the projection onto the vacuum space of b′s, respectively.
These are expected to be the predominant errors in our
algorithm and, therefore, we will now mainly focus on
these two and provide their expressions.

The Trotter error ϵTr can be easily estimated. In fact,
as it is well established, by starting and finishing with an
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FIG. 3. Quantum circuits of one evolution step for (a) the basic algorithm and (b) the improved algorithm.

evolution according to h/2 [11, 28], it can be reduced to

ϵTr =
∥∥∥e−ihτ/2e−iV τe−ihτ/2 − e−iHτ

∥∥∥
≤τ3

12
∥[V, [V, h]]∥+ τ3

24
∥[h, [h, V ]]∥

=O
(
∥V ∥2∥h∥τ3 + ∥V ∥∥h∥2τ3

)
.

(16)

The error ϵPr is given by

ϵPr = max
ρ

1

2

∥∥∥trb (e−iṼ τ (ρ⊗ |0⟩b ⟨0|)eiṼ τ
)

−e−i⟨0|Ṽ |0⟩bτρei⟨0|Ṽ |0⟩bτ
∥∥∥
1
.

(17)

where the maximization is carried out over all density
operators ρ. In the following we will compute ϵPr for the
specific quantum algorithm introduced in this work.

Basic algorithm. As explained in Section II, the quan-
tum algorithm consists of two steps. In the first one, the
unitary transformation

U†e−iṼ τUe−ihτ (18)

is applied, whereas in the second, the b modes are reset
to the vacuum state. In App. D we show

ϵPr = O(∥Ṽ ∥2τ2), (19)

We note that one would obtain the same result in case
one measures the number occupation in the b, instead
of discarding them, which could then be interpreted as
a result of the Quantum Zeno dynamics (QZD) [29–32].
However, the resetting method is conceptually simpler
and also easier to implement.
Improved algorithm. While the Trotter error scales

as O(τ3), ϵPr does as O(τ2). Here we show how, with
a simple modification, one can get the same scaling as
well in τ . The idea is to insert some simple unitary
transformations which just add a phase between successive
actions of the evolution operator, so that the second order
in τ cancels out in the error. More specifically, let us
denote by

V = U†e−iṼ τ/4U (20)

The improved quantum algorithm just replaces e−iṼ τ in
the first step (21) by

Veiϕ1NbVeiϕ2NbVeiϕ3NbV (21)

where Nb =
∑

i b
†
i bi. Here we choose ϕ1,2,3 = −π

2 , π,
π
2 .

In Appendix D we show that the error in this case is

ϵPr = O(∥Ṽ ∥3τ3). (22)

B. Gate counts and circuit depth per step

In this subsection we give a detailed estimation of the
number of gates and circuit depth for both the basic and
the improved quantum algorithm. According to Subsec-
tion II B, the basic algorithm is composed of four unitary
operations, followed by the reset operation.

The reset operation entails preparing the qubits in the
|0⟩ state, which requires M −N operations but that can
be fully parallelizable, and thus it has circuit depth equal
to 1.

As for the single-particle basis rotation U which maps
(a, b) → c, there is a freedom of unitary transformation
among the b’s, which makes it possible to reduce the num-
ber of gates [6]. The same is true for the U appearing in
the improved algorithm. In either case, those transforma-
tions can be implemented using

(
M
2

)
−
(
M−N

2

)
= O(MN)

Givens rotations with M +N circuit depth [6, 33]. Each
Givens rotation is a two-qubit gate acting on adjacent
qubits. If consider a spinful Hamiltonian with Sz spin
symmetry, the basis rotations can be implement sepa-
rately for different spin sectors, which gives a count of
2
(
M
2

)
− 2

(
M−N

2

)
Givens rotations.

The unitary operations e−ihτ and e−iṼ τ are both diag-
onal, which means that they can be directly expressed in
terms of qubits using nα = (1 + σz

α)/2. Additionally, the
different terms commute with each other, so that they
can be parallelized. For the first one, they just need N
single-qubit gates, with a circuit depth of 1. The second
one involves a layer of M single-qubit Z-rotations and
M(M − 1)/2 all-to-all ZZ two-qubit gates. If the archi-
tecture is linear, one can use a swap network [33], which
requires additional M(M − 1)/2 swap gates. In either
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architecture, the circuit depth is M . If include the spins,
the gate count is given by taking M → 2M .
We conclude that the number of gates in both algo-

rithms is O(M2) and the circuit depth as O(M). In case
M is proportional to N , as argued in Section II, one
obtains an O(N2) and O(N) scaling, respectively.

C. Resource estimation for specific problems

In this section, we provide an estimation of the resources
needed for the two chemical systems studied in Section III.
For the Hydrogen chain molecules, we focus on the gate
complexity and the error in the thermodynamic limit.
We also estimate the resources needed for simulating the
FeMoco Hamiltonian on fault-tolerant devices, which is
often used as a benchmark for quantum algorithms.

1. Scaling Analysis for Hydrogen chains

Regarding the scaling of the gate count, notice that
our algorithms requires O(M2) gates per time step. For
the Hydrogen chain molecules with varying number of
atoms, in the numerical study performed above, M was
shown to scale linearly with N , as illustrated in Fig. 4(a).
Therefore, we expect the number of gates to scale as
O(N2) with system size.
Now let us analyze the scaling of the error. We will

focus on the Trotter error ϵTr and the projection error
ϵPr as they are the dominant ones. Eqs. (16, 17) show

that ϵTr and ϵPr are determined by ∥Ṽ ∥, ∥h∥ and ∥V ∥.
Those operator norms can be further upper bounded by
the summation of the norm of individual terms, that is

∥Ṽ ∥ ≤ 2∥Vαβ∥1, ∥h∥ ≤ 2∥hij∥1, ∥V ∥ ≤ 2∥Vijkl∥1. (23)

where ∥Vx∥1 =
∑

x |Vx| is the L1 norm. Fig. 4(b) shows

∥Ṽαβ∥1, ∥hij∥1 and ∥Vijkl∥1 versus the number of Hydro-
gen atoms NH (which equals to the number of orbitals
N) on a log scale. In the plots, We use a linear fit for the

last 6 data points, resulting in slopes for Ṽ , h and V of
1.20, 1.21 and 1.23, respectively. This results in a Trotter
error of O(N3.7τ3), and an algorithm error of O(N2.4τ2)
for the basic algorithm, while for the improved algorithm
ϵPr will be O(N3.6τ3), very similar to the Trotter one.

2. Gate counts for FeMoco

In analogy to previous studies [5, 8–10], here we care-
fully estimate the resources required for simulating the
FeMoco Hamiltonian fault-tolerantly. Firstly, we need to
determine the parameter M . In [10] the authors bench-
marked the THC error of this Hamiltonian based on
CCSD(T) calculation for high spin (S = 35/2) states.
They observed an improvement in CCSD(T) correlation
energy with the increasing THC rank. They recommended

20 40 60 80
NH

50

100

150

200

M

(a)

10 30 80
NH

102

103

104

no
rm

(b)
V, k = 1.20
h, k = 1.21
V, k = 1.23

FIG. 4. (a) The linear scaling of M with the number of atoms

NH in Hydrogen chains. (b) Scaling of ∥Ṽ ∥, ∥h∥ and ∥V ∥ vs.
NH in log scale, estimated by the summation of the absolute
matrix elements. The linear fits are for the last 6 points. The
upper left legend lists the slope k of the linear fit for each plot.

a THC rank of M = 450, for which the CCSD(T) error is
−0.18mEh. Although we did not compute the CCSD(T)
energy for our approximated Hamiltonians, we observe
that the error in Hamiltonian terms ϵV is close to that
of [10], as illustrated in Fig. 2. Therefore we also use
M = 450 for our resource estimation.
We consider the implementation of a single time step.

For a time evolution, this procedure will have to be re-
peated a number of times which will depend on the error
required. With an error-correction code, such as the
surface-code [34], one needs to compile the quantum cir-
cuit corresponding to our algorithm into a discrete uni-
versal gate set, Clifford+T. The cost is dominated by
the number of T gates, which is in turn majored by the
number of single-qubit rotations. One could decompose
each Givens rotation gate in two arbitrary single-qubit
rotations and each ZZ-rotation gate in one single-qubit ro-
tation [6]. Thus the total number of single-qubit rotations
for one step is (2M2+M +4MN −2N2) ≈ 5.3×105. Us-
ing the synthesis approach in [35], the number of T gates
needed for a single-qubit rotation is 1.15 log2(1/ϵrot)+9.2,
where ϵrot is the error of synthesis. This will have to be
chosen according to the whole dynamics, but to give an
example, for ϵrot = 10−6, the number of T gates would
be approximately 30 times that of single-qubit rotations.

V. CONCLUSION AND OUTLOOK

We have introduced a quantum algorithm for the effi-
cient quantum simulation of the dynamics in quantum
chemistry problems. It is based on splitting the time in
small intervals, in the same way as it is done in other
algorithms relying on product formulas. We have com-
puted the gate complexity and estimated the error in a
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single time interval, and expressed the scalings in terms
of the number of orbitals, N .
The main idea of our algorithm is, first, to enlarge

the number of modes and, then, find a simpler electron

interaction Hamiltonian Ṽ for all the modes which encodes
the original Hamiltonian in a subspace. By evolving under

the Hamiltonian Ṽ and resetting the additional modes,
one can recover the desired quantum evolution e−iV τ as
long as τ is sufficiently small.

Determining the new Hamiltonian Ṽ with the lowest
number of additional modes is a nontrivial task that
requires a suitable optimization method. We show that
this problem can be reformulated as finding an isometric
THC, with the THC rank equal to the number of modes

in H̃. We then extend existing THC algorithms to our
problem and apply it to real chemical systems. The
numerical study on a Hydrogen chain gives a linear scaling
of the THC rank, so that our quantum algorithms require
only O(N) ancillary qubits and O(N2) gates. For the
FeMoco system, we observed that isometric THC has
similar accuracy as generic THC. Based on this we give a
detailed estimation of quantum resources.
According to those estimations, for a single time step

the gate complexity scales favorably in comparison to
other product formula-based quantum algorithms. How-
ever, the following points have to be taken into account.
First, our method requires additional qubits, which may
be difficult to obtain in the first generations of quantum
devices. Second, for the practical application to specific
problems one will have determine the size of the time
intervals so that the error is sufficiently small, which may
differ in different quantum algorithms, something that
will need to be taken into account. Third, other quantum
algorithms for quantum chemistry based on qubitization
that aim at the preparation of eigenstates may be turned
into a quantum simulation algorithm when combined with
quantum signal processing techniques [7]. In fact, the gen-
eral THC technique (without the isometry) was already
used in a quantum chemistry algorithm based on qubitiza-
tion [10], which through quantum signal processing leads
a gate count of O(N) for each time step. While this
gives a better asymptotic performance than our quantum
algorithm, due to its complexity and the questions raised
above, there may be specific problems where our method
is more convenient in practice.

Finally, we believe that the technique of adding modes
and obtaining a diagonal Hamiltonian in the extended
basis may also find applications in classical simulation
methods. In fact, one can view our method as an inter-
polation between the original basis set of orbitals and
the grid basis, where one tries to get a diagonal form
(as in the latter) but saving as many orbitals as possible.
Additionally, it may be possible to perform the whole
procedure not only with V but with the complete Hamil-
tonian H. In that context, in our numerical examples we
have found that by dealing with the first, the latter was
also converted to a diagonal form withing a surprisingly
good fidelity. While this will not be true in general, this

may be an additional leverage to optimize our method,
both in the classical and the quantum domain.

A. Data availability

The THC data and the integrals for systems studied in
this work can be found in [36].
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Appendix A: Spinful Hamiltonian

In the main text we have omitted the spins for readabil-
ity. Here we will demonstrate how our method is applied
to the cases where the spin degrees of freedom is present.
The spinful chemistry Hamiltonian reads

H =h+ V

=
∑
ij,σ

hija
†
iσajσ +

1

2

∑
ijkl,σγ

Vijkla
†
iσa

†
kγalγajσ.

(A1)

In analogy with the spinless case, to diagonalize V we
should add 2(M − N) fictitious modes bmσ, and define
new modes through the canonical transformation defined
by u and v

cασ =
∑
i

uiαaiσ +
∑
m

vmαbmσ. (A2)

The canonical transformation have to ensure that

Ṽ =
∑

αβ,σγ,
(α,σ) ̸=(β,γ)

Ṽαβnασnβγ , V =b⟨0|Ṽ |0⟩b. (A3)

The necessary condition for Eq. (A3) is still Eq. (7). To

show this we first write Ṽ in the normal order

Ṽ =
1

2

∑
αβ,σγ,

(α,σ)̸=(β,γ)

Ṽαβnασnβγ

=
1

2

∑
αβ,σγ

Ṽαβc
†
ασc

†
βγcβγcασ.

(A4)
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Then, we obtain

b⟨0|Ṽ |0⟩b
=
1

2

∑
αβ,σγ

Ṽαβ b⟨0|c†ασc†βγcβγcασ|0⟩b

=
1

2

∑
αβ,σγ

∑
ijkl

Ṽαβ(u
∗
iαa

†
iσ)(u

∗
kβa

†
kγ)(ulβalγ)(ujαajσ)

(A5)
Equating Eq. (A5) and Eq. (A1) leads to Eq. (7).

Appendix B: Tensor Hypercontraction and Density
Fitting

In this Appendix we explain why, if we are able to

express Ṽ in a diagonal form, we also diagonilize the part
of h that describes the interaction of the electrons with
the nuclei. For that, we show that the existence of a
non-trivial THC implies density fitting, a property that
enables a low-rank representation of products of a set of
orbitals ϕi(x). This last fact may be of interest on its
own, and this is why we start our appendix with that
proof. Additionally, we also use that result to show that
Eq. (14) always possesses many solutions, in case we do
not impose ηα > 0 and argue that this may be the reason
why we always found one fulfilling that condition in our
numerical examples.

1. THC and density fitting

Given a set of orbitals, ϕi(x), (i = 1, . . . , N and x ∈
R3), we say that they admit a separable density fitting
if there is some M < N2, a matrices Xiα and functions
Ψα(x) with α = 1, . . . ,M , so that

ϕi(x)ϕj(x) =
∑
α

XiαXjαΨα(x). (B1)

It is well known that separable density fitting implies
THC [14], which is the core of many efficient algorithms
for finding THC decompositions [21–24]. Here we will
show that the reverse is also true.
In order to simplify the notation, we combine the in-

dices I = (i, j) and K = (k, l), define XIα ≡ Xij,α, and
ΦI(x) ≡ ϕi(x)ϕj(x). The definition of the ERI tensor is

VIK =

∫
dxdy

ΦI(x)ΦK(y)

|x− y| = (ΦI |ΦK), (B2)

where we use the shorthand notation (·|·) to denote the
inner product under the Coulomb metric, as the Coulomb
kernel is positive definite. We have that

CV CT = 0 ⇒ (CΦ|CΦ) = 0 ⇒ CΦ = 0. (B3)

for any matrix C.

FIG. 5. A graphical illustration of the tensor formulas. (a)
The THC approximation of V . Here X−1 stands for X−1

ij,α. (b)
The real space integral form of V . (c) The separable density
fitting induced by THC.

Let us assume that there is a non-trivial THC, i.e. (see
Eq. (13))

V = XWXT . (B4)

Then W = X−1V (X−1)T with X−1 the Pseudoinverse
(XX−1 = P, X−1X = 11). That means,

V = XX−1V (X−1)TXT = PV P (B5)

Notice that

(1− P )V (1− P ) = (1− P )PV P (1− P ) = 0, (B6)

Thus, according to (B3), (1− P )Φ = 0 and therefore

Φ = PΦ = XX−1Φ = XΨ, (B7)

where Ψ ≡ X−1Φ. That is exactly the density fitting in
Eq. (B1).

2. Existence of the solution for Eq. (14)

Using the above statement, we now show that it is
always possible to find a positive solution for Eq. (14).
To see this, we integrate Eq. (B1) over space,∑

α

Xi,αXj,α

∫
dxΨα(x) =

∫
dxϕi(x)ϕj(x) = δij . (B8)

Therefore ηα ≡
∫
dxΨα(x) is a solution. If it happens

that ηα > 0, then it is a valid solution. If that is not
the case, notice that the matrix XIα is in general highly
degenerate [24], meaning that it possesses many small
singular values. We can add any vector ζ in the space
Z spanned by the right-singular vectors of those small
singular values, so that η + ζ is approximately a solution
to Eq. (14). This gives us a way of finding solutions by
finding a vector ζ ∈ Z such that

η + ζ > 0. (B9)

which is a standard problem in linear programming and
for which there are very efficient methods.
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3. Smallness of ϵh

In the numerical experiments, we experienced that the
uiα found by minimizing ϵV also results in a small value
for ϵh. While this does not occur in other examples, we
show here that the part of the Hamiltonian h which is
related to the potential energy of the electrons, becomes
diagonal whenever we diagonalize Ṽ .
The one-body integral h consists of two terms: the

kinetic energy and the nuclear potential term. The latter
is defined as

Nij = −
∫

dxϕ∗
i (x)ϕj(x)

Nnuc∑
a=1

Zα

|x− ra|
(B10)

Here, ra denotes the position of the nuclei, and Za their
quantum numbers.
Given that (for ϵV = 0) uiα provides a THC then,

according to the results of App. B 1, it should also give
a density fitting. Applying Eq. (B1) to Eq. (B10) we
immediately obtain

Nij = uiαujαÑα, (B11)

where

Ñα =

∫
dxΨα(x)

Nnuc∑
a=1

Za

|x− ra|
. (B12)

Appendix C: Derivation of Eq. (15)

In this appendix we will derive the upper bound for

∥e−iHt − e−i(h+⟨0|Ṽ |0⟩b)t∥. For simply we denote V ′ =
⟨0|Ṽ |0⟩b and H ′ = h+ V ′. Consider the unitary operator

U(t) = eiH
′te−iHt. Its derivative is

d

dt
U(t) = ieiH

′t(H ′ −H)e−iHt = ieiH
′t(V ′ − V )e−iHt

(C1)

Then we obtain that

∥e−iHt − e−iH′t∥ ≤∥U(t)− U(0)∥

≤
∫ t

0

∥∥∥∥ d

ds
U(s)

∥∥∥∥
≤∥V − V ′∥t.

(C2)

∥V − V ′∥ can be further bounded by ϵV defined in Sec-
tion III

∥V − V ′∥ ≤∥Vijkl −
∑
αβ

u∗
iαujαṼαβu

∗
kβulβ∥1

≤N2∥Vijkl −
∑
αβ

u∗
iαujαṼαβu

∗
kβulβ∥2

≤N2∥Vijkl∥2ϵV ,

(C3)

where we have used the inequality ∥x∥1 ≤
√
d∥x∥2 with

d the dimension of the vector x.

Appendix D: The projection error

In this appendix we will estimate the projection error
ϵPr. We consider the general scenario where one evolve
an input state ρ ⊗ |0⟩b ⟨0| under some unitary U , and
then reset the ancillary qubits. The error we would like
to characterize is

ϵPr = max
ρ

ϵ(ρ), (D1)

where

ϵ(ρ) =
1

2

∥∥trb [U(ρ⊗ |0⟩b ⟨0|)U†]
−e−ib⟨0|Ṽ |0⟩bτρeib⟨0|Ṽ |0⟩bτ

∥∥∥
1

.
(D2)

In order to simplify the notation, we simply write ρ ⊗
|0⟩b ⟨0| as ρ, and O⊗11b as O, whenever the context is clear.

We also denote V ′ = ⟨0|Ṽ |0⟩b. Using these notations, ϵ(ρ)
is simplified to

ϵ(ρ) =
1

2

∥∥∥trb [UρU†]− e−iV ′τρeiV
′τ
∥∥∥
1

=
1

2

∥∥∥trb [UρU† − e−iV ′τρeiV
′τ
]∥∥∥

1
.

(D3)

We define Pb = 11a ⊗ |0⟩b ⟨0| as the projector onto the
vacuum space of b, as well as its complement P⊥

b = 11−Pb.
Notice that for any operator O, we have

∥trb[O]∥1 =∥trb[PbOPb +P⊥
b OP⊥

b ]∥1
≤∥PbOPb +P⊥

b OP⊥
b ∥1

≤∥PbOPb∥1 + ∥P⊥
b OP⊥

b ∥1,
(D4)

where we have used the fact that trb[·] is a quantum
channel, and quantum channels do not increase the trace
norm. Apply this to Eq. (D3), we achieve

ϵ(ρ) ≤1

2

(
∥PbUρU†Pb − e−iV ′τρeiV

′τ∥1 + ∥P⊥
b UρU†P⊥

b ∥1
)
.

(D5)
As ∥AρB∥1 ≤ ∥A∥∥B∥∥ρ∥1 and ρ = PbρPb, the second
term is bounded by ∥P⊥

b UPb∥2, while the first term is

∥PbUρU†Pb − e−iV ′τρeiV
′τ∥1

≤∥PbUρ(U†Pb − eiV
′τ )∥1 + ∥(PbU − e−iV ′τ )ρeiV

′τ∥1
≤2∥PbUPb − e−iV ′τPb∥.

(D6)
To summarize, the error ϵPr is bounded by

ϵPr = max
ρ

ϵ(ρ) ≤ ∥PbUPb − e−iV ′τPb∥+
1

2
∥P⊥

b UPb∥2.
(D7)

1. The basic algorithm

In our basic algorithm, the unitary between reset oper-

ations is U1 = e−iṼ t. We calculate the terms in Eq. (D7)
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up to the lowest order,

PbU1Pb − e−iV ′τPb = −1

2
PbṼP⊥

b ṼPbτ
2, (D8)

P⊥
b U1Pb = −iP⊥

b VPbτ. (D9)

Applying them to Eq. (D7), we get

ϵPr = O(∥Ṽ ∥2τ2). (D10)

2. The improved algorithm

In the improved method, the unitary is defined as

U2 = e−iṼ τ/4eiϕ1ne−iṼ τ/4eiϕ2ne−iṼ τ/4eiϕ3ne−iṼ τ/4.
(D11)

where ϕ1 = −π
2 , ϕ2 = π, ϕ3 = π

2 and n =
∑

m b†mbm. We

expand e−iṼ τ/4 as 1 − iṼ τ/4 − Ṽ 2τ2/32, and compute
the expression of U2 up to the second order. The zeroth
order of U2 is

U
(0)
2 = ei(ϕ1+ϕ2+ϕ3)n, (D12)

the first order is

U
(1)
2 = −i

τ

4

[
Ṽ ei(ϕ1+ϕ2+ϕ3)n + eiϕ1nṼ ei(ϕ2+ϕ3)n

+ei(ϕ1+ϕ2)nṼ eicn + ei(ϕ1+ϕ2+ϕ3)nṼ
]
,
(D13)

and the second order is

U
(2)
2

=− τ2

16

[
1

2
Ṽ 2ei(ϕ1+ϕ2+ϕ3)n +

1

2
eianṼ 2ei(ϕ2+ϕ3)n

+
1

2
ei(ϕ1+ϕ2)nṼ 2eicn +

1

2
ei(ϕ1+ϕ2+ϕ3)nṼ 2

+ Ṽ eiϕ1nṼ ei(ϕ2+ϕ3)n + eiϕ1nṼ eiϕ2nṼ eiϕ3n

+ ei(ϕ1+ϕ2)nṼ eiϕ3nṼ + Ṽ ei(ϕ1+ϕ2)nṼ eiϕ3n

+ eiϕ1nṼ ei(ϕ2+ϕ3)nṼ + Ṽ ei(ϕ1+ϕ2+ϕ3)nṼ ].

(D14)

Now let’s study P⊥
b U2Pb. Using the fact that eiϕnPb =

Pbe
iϕn = Pb, we know the zeroth order vanishes

P⊥
b U

(0)
2 Pb = 0. (D15)

Regarding the first order, notice that Ṽ is a two body
operator, only the terms looks like b†a†aa or b†b†aa can

contribute to P⊥
b U

(1)
2 Pb. The coefficient before b†a†aa is

1 + eiϕ1 + ei(ϕ1+ϕ2) + ei(ϕ1+ϕ2+ϕ3) = 0, (D16)

while the coefficient before b†b†aa is

1 + e2iϕ1 + e2i(ϕ1+ϕ2) + e2i(ϕ1+ϕ2+ϕ3) = 0, (D17)

showing that P⊥
b U

(1)
2 Pb also vanishes. Therefore we ex-

pect

∥P⊥
b U2Pb∥ = O(∥Ṽ ∥2τ2). (D18)

Now let’s turn to PbU2Pb − e−iV ′τPb. It is easy to
show the first two orders

PbU
(0)
2 Pb = Pb, PbU

(1)
2 Pb = −iV ′τ. (D19)

As for the second order in Eq. (D14), there are two cases

contributing to PbU
(2)
2 Pb − 1

2V
2τ2. The first case is, the

first Ṽ create one b mode, which is latter annihilated by

the second Ṽ . The coefficient will be

2 + eiϕ1 + eiϕ2 + eiϕ3 + ei(ϕ1+ϕ2) + ei(ϕ2+ϕ3)

+ei(ϕ1+ϕ2+ϕ3) = 0.
(D20)

The other possibility is creating and annihilating two b
modes, for which the coefficient is

2 + e2iϕ1 + e2iϕ2 + e2iϕ3 + e2i(ϕ1+ϕ2) + e2i(ϕ2+ϕ3)

+e2i(ϕ1+ϕ2+ϕ3) = 0.
(D21)

Therefore we expect∥∥∥PbU
(2)
2 Pb − e−iV τPb

∥∥∥ = O(∥Ṽ ∥3τ3). (D22)

Substituting Eqs. (D18, D22) to Eq. (D7) results in

ϵPr = O(∥Ṽ ∥3τ3).
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