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A twisted Bass-Heller-Swan decomposition

for localising invariants
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We generalise the classical Bass-Heller-Swan decomposition for theK-theory

of (twisted) Laurent algebras to a spli�ing for general localising invariants of cer-

tain categories of twisted automorphisms. As an application, we obtain spli�ing

formulas for Waldhausen’s A-theory of mapping tori and for the K-theory of

certain tensor algebras. We identify the Nil-terms appearing in this spli�ing

in two ways. Firstly, as the reduced K-theory of twisted endomorphisms. Sec-

ondly, as the reducedK-theory of twisted nilpotent endomorphisms. Finally, we

generalise classical vanishing results forNil-terms of regular rings to our se�ing.

Contents

1 Introduction 2

2 Recollections on K-theory of pushouts 6

3 The main theorem 8

3.1 Twisted endomorphisms and automorphisms . . . . . . . . . . . . . . . . . . 8

3.2 Twisted nilpotent endomorphisms . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 K-theory of twisted automorphisms . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 K-theory of twisted endomorphisms . . . . . . . . . . . . . . . . . . . . . . 16

4 Regularity 20

5 Applications and Examples 22

5.1 K-theory of tensor algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2 K-theory of mapping tori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3 A-theoreticNil-terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

∗kirstein@mpim-bonn.mpg.de
†kremer@mpim-bonn.mpg.de

1

http://arxiv.org/abs/2410.22877v1


1 Introduction

�e algebraicK-theory of polynomial- and Laurent extensions has been an object of interest

since the very beginnings of the subject. �e fundamental theorem of algebraic K-theory,

sometimes also called the Bass-Heller-Swan decomposition, states that for a ring R there is

a spli�ing

Kn(R[t, t−1]) ≃ Kn(R)⊕Kn−1(R)⊕NK+
n (R)⊕NK−

n (R).

�is result dates back to the very beginnings ofK-theory. It was first established for regular

rings and n = 1 by Bass-Heller-Swan [BHS64] and �illen later proved the general version

for connectiveK-theory [Gra]. �e numerous applications of algebraicK-theory to geomet-

ric topology, such as the s-cobordism theorem or Farrell’s fibering theorem [Far72], allowed

to extract concrete geometric applications. �e spli�ing also served as source for the first

constructions of negative algebraicK-theory.

�ere have been various generalisations of this result in two directions, and we give an

incomplete list here. In one direction, one replaces the ring R by a homotopy coherent ver-

sion. Hü�emann-Klein-Vogell-Waldhausen-Williams [HKV+01] prove an A-theoretic split-

ting for productsX×S1, which can be thought of as a spli�ing for the Laurent ring spectrum

S[ΩX][t, t−1]. Fontes-Ogle [FO20] prove a version for connective S-algebras, Hü�emann

[Hüt21] proves a version for Z-graded rings. Most recently, Saunier [Sau23] establishes

such a spli�ing for general localising invariants of stable∞-categories. In a different direc-

tion, generalisations allow for twisted Laurent extensions. �is was established by Grayson

[Gra88] for rings. Waldhausen [Wal78a] proves a version for his generalised Laurent exten-

sion and Lück-Steimle [LS16a] prove a version for additive categories. �ese results, com-

bined with the Farrell-Jones conjecture, provide a powerful tool for computational and qual-

itative results about the algebraicK-theory of group rings [LS16b].

�e goal of this work is to provide a common generalisation of most of the previously

mentioned results. We prove a general spli�ing result for the K-theory of certain categori-

cal mapping tori, with the essential ingredient being Land-Tamme’swork on theK-theory of

pushouts [LT23]. In contrast to most of the previous work, we also allow twists by noninvert-

ible endomorphisms. We work in the se�ing of localising invariants of stable∞-categories

as pioneered by Blumberg-Gepner-Tabuada [BGT13]. �is immediately proves the spli�ing

not only for nonconnective K-theory but also other localising invariants like topological

Hochschild homology and its cousins.

Main results

Let C be an idempotent complete stable∞-category togetherwith an exact functorα : C → C.

Denote by ChN its mapping torus, i.e. the pushout of the span C
id⊕α
←−−− C ⊕ C

id⊕id
−−−→ C in

Catperf , the∞-category of idempotent complete stable∞-categories. In the case where α is

an equivalence, this mapping torus (up to ignoring certain finiteness conditions) consists of

pairs (x, f) of an object x ∈ C together with an equivalence f : x
≃
−→ α−1(x). We also call
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ChN the category of twisted automorphisms. �e general description of ChN can be found in

Definition 3.2 and Lemma 3.9.

�eorem A. Let α : C → C be an exact endofunctor of an idempotent complete stable ∞-

category and E : Catperf → E a localising invariant. �e assembly map E(C)hN → E(ChN)

has a natural spli�ing

E(ChN) ≃ E(C)hN ⊕NEα(C)⊕NEα(C).

�e mapping torus E(C)hN fits into the cofiber sequence E(C)
id−α
−−−→ E(C)→ E(C)hN. If

E takes values in spectra, one obtains an associated long exact sequence of homotopy groups

relating the homotopy groups of E(C) and E(C)hN.

Let us explain theNil-terms appearing in this decomposition. �ere is a categoryEndα(C)

of twisted endomorphisms, which consists of pairs (x, f) of an object x ∈ C together with

a morphism f : x → α(x). Denote by Nilα(C) ⊆ Endα(C) the subcategory generated by

the trivial endomorphisms (x, 0: x → α(x)) under finite colimits and retracts. If α is an

equivalence, by Proposition 3.11 these are precisely the homotopy nilpotent endomorphisms

(x, f) such that the composite x
f
−→ α(x)

α(f)
−−−→ α2(x)→ · · · → αn(x) is trivial for large n.

�e inclusion triv : C → Nilα(C) of trivial endomorphisms admits a retraction andNEα(C)

is defined by the spli�ing

E(Nilα(C)) ≃ E(C) ⊕ ΩNEα(C). (1)

�e description ofNEα(C) is similar using twisted endomorphisms α(x)→ x instead.

�eNil-terms in (1) also arise in a different context. �ere is the categoryEndαR(Ind(C))ω

whose objects, up to a finiteness condition, are again pairs (x, f : α(x) → x). To any object

x ∈ C one can associate the free twisted endomorphism

free(x) =


⊕

n≥0

αn(x), shift


 ,

where shift denotes the composition α(
⊕

n≥0 α
n(x)) ≃

⊕
n≥1 α

n(x)→
⊕

n≥0 α
n(x). �e

map free : C → EndαR(Ind(C))ω again admits a retraction. Our secondmain result identifies

its cofiber with the Nil-term from above.

�eorem B. �e functor free induces a spli�ing

E(EndαR(Ind(C))ω) ≃ E(C)⊕NEα(C).

�ere is an analogous spli�ing for the NEα-term. �is result goes back to Waldhausen

[Wal78a, �eorem 13.5] in the se�ing of generalised polynomial extensions of discrete rings.

Land-Tamme [LT23, Corollary 4.5, Proposition 4.7] prove a version for tensor algebras. Our

result is a generalisation to the case of categories not generated by a single object.

Using a recent dévissage result of Burklund-Levy [BL23], we can prove vanishing of Nil-

terms under regularity assumptions, which generalises the classical vanishing result for reg-

ular rings.
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Corollary C. Suppose that α : C → C is a le� t-exact endofunctor of a stable category with a

bounded t-structure. �en the connective Nil-term τ≥0NKα(C) ≃ 0 vanishes. If C♥ is Noethe-

rian, then also the nonconnective Nil-term NKα(C) ≃ 0 vanishes.

Analogous vanishing results hold for NKα if we instead require α to be right t-exact.

Applications

For a ring spectrumR and a (R,R)-bimoduleM denote by TR(M) =
⊕

n≥0 M
⊗n

R its tensor

algebra. Suppose thatM admits a right dual M∨. Define the localised tensor algebra by

TR(M)[M−1] ≃ colim


⊕

n≥0

M⊗n
R

coev
−−−→

⊕

n≥0

M∨ ⊗R M⊗n
R

coev
−−−→ . . .


 .

�e bimodule M induces an endomorphism M ⊗R − : ModωR → ModωR of the category of

perfect le� R-modules. It turns out that (ModωR)hN ≃ ModωTR(M)[M−1]. �eorem A then

reduces to the following result.

�eorem D. �ere is a spli�ing

E(TR(M)[M−1]) ≃ E(R)hN ⊕NEM (R)⊕NEM (R).

In the case where R is discrete andM is the bimoduleR with trivial le� R-module struc-

ture and right R-module structure coming from a pure embedding α : R −→ R, the localised

tensor algebra TR(M)[M−1] ≃ Rα{t
±1} identifies with Waldhausen’s generalised Laurent

extension [Wal78a]. It is the universal ring containing R and an invertible element t which

satisfies tr = α(r)t. If α is an isomorphism, this is the classical ring of twisted Laurent

polynomials given by
⊕

n∈Z Rtn with multiplication rtm · stn = rαm(s)tm+n.

As another application, we can use �eorem A to obtain the following spli�ing for Wald-

hausen’s (finitely dominated) A-theory of mapping tori.

�eorem E. Let α : X → X be a selfmap of a space. �en there is a spli�ing

A(XhN) ≃ τ≥0(A(X)hN)⊕NAα(X) ⊕NAα(X).

We actually prove a version of this for a nonconnective deloopingA ofA-theory and obtain

�eorem E by passing to connective covers. In particular, on 1-connective covers one has

τ≥1(A(X)hN) ≃ τ≥1(A(X)hN). We also provide a guide to computations of the A-theoretic

Nil-terms by envoking the work of Bökstedt-Hsiang-Madsen [BHM93] on the topological

cyclic homology of spaces.

Outline of the proof

Most of the results in the literature only consider the case where the twistα is an equivalence.

�e proof usually follows the classical algebraic geometric approach and first establishes a
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spli�ing for versions of the (twisted) projective line over R glued from (twisted) polynomial

algebras Rα[t] and Rα−1 [t] along Rα[t
±1]. �is argument can not be extended to our set-

ting of noninvertible twists. We follow an approach which is more similar to Waldhausen’s

spli�ing for generalised Laurent extensions [Wal78a].

�e main tool we use in the proof is Land-Tamme’s theory ofK-theory of pushouts [LT23,

�eorem 3.2]. Starting from the pushout square

C ⊕ C C

C ChN

id⊕id

id⊕α

defining the categorical mapping torus, Land-Tamme show how to replace the upper le� cor-

ner by a different category Im(C ⊕C) such that the resulting commutative square becomes a

pushout a�er applying the localising invariantE. We show that Im(C⊕C) admits an orthog-

onal decomposition through the two Nil-categories Nilα(C) and Nilα(C). By employing the

spli�ing (1) and carefully analysing the resulting pushout square, we arrive at the claimed

spli�ing.

Structure of the article

We begin by recalling the necessary background on Land-Tamme’sK-theory of pushouts in

§2. Next, in §§3.1and 3.2 we introduce the categories of twisted endomorphisms, automor-

phisms and nilpotent endomorphisms and study their basic properties, which will be needed

later on. §3.3 contains a proof of �eorem A and §3.4 constains a proof of �eorem B. In §4

we construct a t-structure on the category of twisted endomorphisms and prove Corollary C.

In the first half of §5 we apply these results to obtain spli�ings for theK-theory tensor alge-

bras and various kinds of (twisted) polynomial rings, as well as for A-theory. In the second

half §5.3 we express some A-theoreticNil-terms through free loop spaces.

Conventions

�is article is wri�en in the language of∞–categories as set down in [Lur09; Lur17], and so

by a category we will always mean an∞–category unless stated otherwise. We also use the

following notations throughout:

• Cat denotes the category of small categories and S ⊆ Cat the category of spaces.

• Catperf denotes the category of small idempotent complete stable categories (some-

times called perfect categories) and exact functors.

• We denote by HomC(x, y) the mapping space between objects in a category C. If C is

stable, homC(x, y) denotes their mapping spectrum.

• E : Catperf → E denotes a localising invariant with values in a stable category.
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2 Recollections on K-theory of pushouts

In general, K-theory (or more general localising invariants) does not preserve pushouts of

stable categories. �is defect is studied in Land-Tamme’s article [LT23, Section 3]. We sum-

marise the results essential for our case, another exposition can also be found in [BL23, Sec-

tion 4]. Let us begin by recalling the notion of a localising invariant.

Recollections 2.1 (Localising invariants). A Karoubi sequence A
i
−→ B

p
−→ C in Catperf is a

sequence in Catperf together with a nullhomotopy h : pi ≃ 0 which exhibits the sequence as

both a fiber and a cofiber sequence in Catperf , see [CDH+23b, Appendix A] for a discussion.

For us, a localising invariant (sometimes also called Karoubi localising invariant) is a functor

E : Catperf → E with values in a stable category E with the following two properties. It

satisfies E(0) ≃ 0 and for any Karoubi sequence A
i
−→ B

p
−→ C in Catperf the nullhomotopy

E(h) : E(p)E(i) ≃ E(0) ≃ 0 exhibits the sequence E(A) → E(B) → E(C) as a fiber se-

quence in E . Equivalent characteristations of this notion can be found in [HLS23]. Examples

of localising invariants include nonconnective algebraic K-theory, topological Hochschild

homology and topological cyclic homology, see [BGT13] for a proof.

Essential for Land-Tamme’s construction is the concept of partially lax pullbacks as studied

studied in [Tam18]. Let us recall their definition.

Construction 2.2 (Partially lax pullback). For a cospan B
f
−→ D

g
←− C in Cat, the partially

lax pullbackB
−→
×C is the category with objects given by triples (b, c, r) of objects b ∈ B, c ∈ C

and a morphism r : f(b)→ g(c). Formally, it can be defined as the pullback

B
−→
×C D∆1

B × C D ×D.

y

(f,g)

Mapping spaces in B
−→
×C are given by the pullback

Hom
B
−→
×C

((b, c, r), (b′, c′, r′)) HomC(c, c
′)

HomB(b, b
′) HomD(f(b), g(c

′)).

y
r∗◦g

r′∗◦f

(2)

Note that the pullback B×DC ⊆ B
−→
×C identifies with the full subcategory on objects (b, c, r)

for which r : f(b)→ g(c) is an equivalence.
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Observation 2.3. If B
f
−→ D

g
←− C is a diagram in Catperf , then the partially lax pullback

B
−→
×C is again a perfect category. One essential property of the partially lax pullback is thatB

and C, included via the maps j1 : B → B
−→
×C, b 7→ (b, 0, 0) and j2 : C → B

−→
×C, c 7→ (0, c, 0),

form a semiorthogonal decomposition of B
−→
×C. In partiuclar, the projection B

−→
×C → B × C

becomes an equivalence a�er applying any localizing invariant.

Now consider a span B
b
←− A

c
−→ C in Catperf and let E be a localising invariant. �e

natural mapE(B)∐E(A) E(C)→ E(B∐A C) not an equivalence in general. �is defect can

be measured by the following construction.

Construction 2.4 (⊙-product). Consider a lax commutative diagram

A C

B D

c

b q

p

f (3)

in Catperf , meaning that f : pb → qc is a natural transformation. �e transformation f

induces amapA → B
−→
×C and Land-Tammedefine the⊙-productB⊙D

AC as the cofiber of this

map in Catperf . �e map B
−→
×C → B ⊙D

A C is a Verdier localisation (see e.g. [NS18, �eorem

I.3.3] for an explanation of this notion) and we denote by Im(A) its fiber. Equivalently, it

is the full perfect subcategory of B
−→
×C generated by the image of A. By the definition of

localising invariants we get a pushout diagram

E(Im(A)) E(C)

E(B) E(B ⊙D
A C).

p

(4)

�e difficulty in working with these construction lies in the identification of the categories

Im(A) and B ⊙D
A C.

Construction 2.5 (⊙-product associated to a pushout). To actually come back to our original

problem about theK-theory of pushouts, consider a spanB
b
←− A

c
−→ C inCatperf . Associated

to it, we can construct a diagram of the shape of diagram 3 as follows

A C

B Ind(B),

c

b b∗c∗
b∗ηc (5)

where B → Ind(B) is the Yoneda embedding, c∗ : Ind(C) → Ind(A) is a right adjoint to

c∗ = Ind(c) and ηc denotes the unit of this adjunction.

Now the main technical theorem in [LT23] shows that the⊙-product is actually a pushout

in this situation.

7



�eorem 2.6 ([LT23, �eorem 3.2]). In the situation of Construction 2.5, the square

A C

B B ⊙
Ind(B)
A C

c

b j2

Ωj1

is a pushout in Catperf .

3 The main theorem

We will now turn to our main subsect of interest: For an exact functor α : C → C we study

the category of twisted automorphisms ChN and prove thatE(ChN) naturally splits for every

localising invariant E. As useful companions, we will study categories of twisted endomor-

phisms and the notion of nilpotence for twisted endomorphisms.

3.1 Twisted endomorphisms and automorphisms

�is subsection contains the construction of twisted endomorphism and automorphism cat-

egories and some of their basic properties, which will be useful in applications. Let us begin

by recalling the construction of lax equalisers, whose basic properties can be found in [NS18,

Proposition II.1.5].

Construction 3.1 (Lax equaliser). Given two functors f, g : C → D, the lax equaliser

laxeq(f, g) consists of pairs (x, r) of an object x ∈ C and a map r : f(x) → g(x) in D.

Formally, it is defined as the pullback

laxeq(f, g) D∆1

C D × D

y

(f,g)

(6)

from which one obtains the formula for mapping spaces as the equaliser

Homlaxeq(f,g)((x, r), (y, s)) ≃ eq (s∗f, r
∗g : HomC(x, y)→ HomD(f(x), g(y))) . (7)

From now on, consider a category C together with an endofunctor α : C −→ C.

Definition 3.2 (Twisted endormophisms and automorphisms). We define the category

Endα(C) of twisted endomorphisms as the lax equaliser Endα(C) = laxeq(id, α : C → C).

Objects consist of pairs (x, f) of objects x ∈ C and maps f : x → α(x) in C. Similarly, de-

fine Endα(C) = laxeq(α, id : C → C) with objects pairs (x, f) of objects x ∈ C and maps

f : α(x)→ x in C.

We also define the categoryAutα(C) of twisted automorphisms as the equaliserAutα(C) =

eq(id, α : C → C). Objects consist of pairs (x, f) of objects x ∈ C and equivalences f : x
≃
−→

α(x) in C.

8



We will relate these notions to categories of modules over tensor algebras and twisted

polynomial rings in Construction 5.1.

Observation 3.3. �e map D
id(−)
−−−→ D∆1

induces a natural map Autα(C) ⊆ Endα(C),

identifying the source as the full subcategory on all pairs (x, f) for which f : x → α(x) is

an equivalence.

Denote by fgt : Endα(C)→ C, (x, f) 7→ x the forgetful funtor. It is conservative by [NS18,

Proposition II.1.5 (ii)]. If C is a perfect (resp. presentable) category and α is exact (resp. a

le� adjoint, resp. a right adjoint), then Endα(C) and Autα(C) are perfect (resp. presentable)

categories and the functors Autα(C) → Endα(C) and fgt : Endα(C) → C are exact (resp.

a le� adjoint, resp. a right adjoint). �is directly follows from the fact that the forgetful

functors Catperf ,PrL,PrR → Cat preserve limits.

Construction 3.4 (Twisted powers). �e functos α induces an endofunctor α : Endα(C)→

Endα(C), (x, f) 7→ (αx, αf), which formally can be constructed using the functoriality of

lax equalisers: �ere is a natural transformation [1] : id → α of endofunctors of Endα(C)

given on objects by the commutative square

x αx

αx α2f,

f

f αf

αf

see e.g. [NS18, Construction II.5.2] for a formal construction. We can define the n-fold com-

posite [n] = (αn−1[1]) ◦ (αn−2[1]) · · · ◦ [1] : id→ αn of [1]. We denote the image of the map

[n] : (x, f)→ αn(x, f) in C by

f (n) :=

(
x

f
−→ α(x)

α(f)
−−−→ . . .

αn−1(f)
−−−−−→ αn(f)

)
.

Construction 3.5 (Localisation and free twisted endomorphisms). Suppose that C is pre-

sentable and that α : C → C is a right adjoint. �en the inclusion Autα(C) ⊆ Endα(C)

admits a le� adjoint locα : Endα(C)→ Autα(C). It is explicitly given by the formula

locα = colim

(
id

[1]
−→ α

α[1]
−−→ α2 α2[1]

−−−→ . . .

)

as shown in the proof of [NS18, Proposition II.5.3]. Similarly, the forgetful functor

fgt : Endα(C) → C admits a le� adjoint freeα : C → Endα(C), the free twisted endomor-

phism, and the forgetful functor fgt Endα(C)→ C admits a le� adjoint freeα : C → Endα(C)

As an illustration of the previous construction the reader should keep induction along the

ring homomorphisms R[t] → R[t, t−1] and R → R[t] in mind. An explicit description of

freeα is as follows.

9



Proposition 3.6. Let C be presentable and suppose that α : C → C admits a le� adjoint αL.

�en freeα(x) = (
∐

n≥0(α
L)n(x), shift), where shift is given on the n-th summand by the

adjunction unit η : (αL)n(x)→ ααL(αL)n(x) = α(αL)n+1(x).

If α additionally preserves countable coproducts, then freeα(x) = (
∐

n≥0 α
n(x), shift),

where shift : α(
∐

n≥0 α
n(x)) ≃

∐
n≥1 α

n(x)→
∐

n≥0 α
n(x) is the inclusion.

Proof. We only prove the formula for freeα, the proof of the formula for freeα being similar.

Denote F (x) = (
∐

n≥0(α
L)n(x), shift). �e inclusion x →

∐
n≥0(α

L)n(x) of the zeroth

summand induces by adjunction a map freeα(x) → F (x). We claim that this is an equiv-

alence. Denote by i : x → fgt freeα(x) the map adjoint to the identity on freeα(x). �e

maps

(αL)n(x)
i
−→ (αL)n fgt freeα(x)

[n]
−→ (αL)nαn fgt freeα(x)

εn
−→ fgt freeα(x)

assemble into a map
∐

n≥0(α
L)n(x) → fgt freeα(x). We want to enhance this to a map

a : F (x)→ freeα(x). Note that we have the commutative diagram

(αL)n(x) (αL)n fgt freeα(x) (αL)nαn fgt freeα(x) fgt freeα(x)

(αL)nαn+1 fgt freeα(x)

α(αL)n+1(x) α(αL)n+1 fgt freeα(x) α(αL)n+1
α
n+1 fgt freeα(x) α fgt freeα(x),

i

η

[n]

η

εn

[1]

[1]

εnη

i [n+1]

εn+1

where the bo�om right triangle commutes via the triangle identities. �e outer commuta-

tive rectangle provides a map F (x) → freeα(x). We show these two maps are inverse to

each other. By construction, the composite x → fgtF (x) → fgt freeα(x) is i which, by

adjunction, shows that the composite freeα(x) → F (x) → freeα(x) is the identiy. We can

show that the composite F (x) → freeα(x) → F (x) is an equivalence a�er applying the

conservative functor fgt. Note that in the commutative diagram

(αL)nx (αL)n fgt freeα(x) (αL)nαn fgt freeα(x) fgt freeα(x)

(αL)n fgtF (x) (αL)nαn fgtF (x) fgtF (x)

i [n]

a

εn

a a

[n] εn

the composite (αL)nx → fgtF (x) taking the bo�om route is equivalent to the inclusion of

then-th summand in fgtF (x). �is shows that themap fgtF (x)→ fgt freeα(x)→ fgtF (x)

is equivalent to the identity.

Recall that if C is a presentable stable ∞-category, then Cω , its subcategory of compact

objects, is perfect.

Lemma 3.7. Suppose that C is a compactly generated stable presentable category and that

α : C → C preserves limits and colimits. �en Endα(C) and Autα(C) are compactly generated.

�e image of Cω under freeα : C → Endα(C) and locα ◦ freeα : C → Autα(C) are families of

compact generators.
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Proof. By construction, freeα admits a colimit preserving right adjoint and thus preserves

compact objects. To show that the image of Cω under freeα generates Endα(C) it suffices to

show that if (y, f) ∈ Endα(C) such that HomEndα(C)(freeα(x), (y, f)) ≃ 0 for all x ∈ Cω ,

then (y, f) ≃ 0. But as HomEndα(C)(freeα(x), (y, f)) ≃ HomC(x, y) this follows from C

being compactly generated. �e argument for Autα is analogous.

Finally, let us define the notion of N-orbits (−)hN appearing in �eorem 3.15 and relate

them to twisted automorphisms.

Observation 3.8 ((Co)limits overBN). LetD be a category with finite colimits and consider

an object x ∈ D together with an endomorphism f : x → x. Denote by BN the category

with a single object and N as its endomorpism monoid. �e endomorphism f corresponds

to a diagram F : BN→ D with F (∗) = x and F (1) = f . �e colimit xhN := colimBNF in

D then fits into the pushout

x∐ x x

x xhN.

id∐id

id∐f
p

(8)

One way to see this is to represent BN as the pushout of the span ∗ ← ∗ ∐ ∗ → ∆1 and to

apply [HY17, Corollary 1.3]. �is has a dual version if D has finite limits. �e limit of the

diagram F is then given by the pullback

xhN x

x x× x.

y
(id,α)

(id,id)

(9)

Lemma 3.9. Let α : C → C be an exact endofunctor of a perfect category. �en there is an

equivalence ChN ≃ (AutαR(Ind(C)))ω , where αR : Ind(C)→ Ind(C) denotes the right adjoint

to Ind(α).

Proof. Recall that colimits in Catperf are computed by taking compact objects in the colimit

of the Ind-completed diagram inPrL, or equivalently in the limit of the right adjoint diagram

in PrR. We obtain

ChN ≃ (Ind(C)hN)
ω ≃

(
Ind(C)hN

)ω

where the limit in the last step is formed over the diagram BN → Cat classified by

αR : Ind(C)→ Ind(C). Observation 3.8 identifies Ind(C)hN ≃ AutαR(Ind(C)).

3.2 Twisted nilpotent endomorphisms

In this subsection we define twisted nilpotent endomorphisms and prove some of their al-

ternative characterisations. Let α : C → C is an exact endomorphism of a perfect category.

�ere are maps

triv : C → Endα(C), x 7→ (x, 0: x→ α(x)) and triv : C → Endα(C), x 7→ (x, 0)

sending an object to the zero endomorphism on that object.

11



Definition 3.10. We define the category Nilα(C) of twisted nilpotent endomorphisms as the

full perfect subcategory of Endα(C) generated by the image of triv : C → Endα(C). Simi-

larly, we define the category Nilα(C) as the full perfect subcategory of Endα(C) generated

by the image of triv : C → Endα(C).

Next we investigate how objects inNilα(C) are related to actual nilpotent endomorphisms.

Note that the condition on α in the following is in particular satsified if α is an equivalence.

Proposition 3.11. Suppose that α has a le� adjoint αL. �en following categories agree:

(1) Nilα(C);

(2) �e full subcategory ofEndα(C) on those objects (x, f) for which there exists some n ∈ N

with f (n) ≃ 0 (see Construction 3.4 for this notation);

(3) the kernel ker(locα : Endα(Ind(C))
ω → Autα(Ind(C))

ω).

Proof. For the inclusion (2) ⊆ (3), consider (x, f) ∈ Endα(C) and n ∈ N such that f (n) ≃ 0.

Using cofinality of nN ⊂ N as posets and the formula for locα from Construction 3.5, we

obtain

locα(x, f) = colim
(
(x, f)

f
−→ α(x, f)

αf
−−→ . . .

)

≃ colim

(
(x, f)

f(n)

−−→ αn(x, f)
αnf(n)

−−−−→ . . .

)
≃ 0.

For (1) ⊆ (3), note that the category described in (3) is a perfect subcategory ofEndα(C)
ω

which contains the image of triv by the argument above. �us it also contains Nilα(C).

For the inclusion (3) ⊆ (1), we first claim that for (x, f) ∈ Endα(Ind(C))
ω and k ≥ 1,

the object fib([k] : (x, f) → αn(x, f)) lies in Nilα(C). For k = 1, recall from Lemma 3.7

that Endα(Ind(C))
ω is generated by the elements freeα(z) for z ∈ C. As the claim is stable

under retracts, shi�s and fiber sequences, it suffices to consider (x, f) of this form. By the

explicit formula freeα(z) = (
⊕

n≥0(α
L)n(z), shift) from Proposition 3.6 and the fact that

α : Ind(C)→ Ind(C) preserves colimits, it is easy to see that

fib([1] : freeα(z)→ αfreeα(z)) ≃ triv(Ωα(z)).

�e case of general k follows by induction using the fiber sequence fib([k−1])→ fib([k])→

fib(αk−1[1]) coming from [k] ≃ αk−1[1] ◦ [k − 1].

We can now show (3) ⊆ (1). Let (x, f) ∈ ker(locα : Endα(Ind(C))
ω → Autα(Ind(C))

ω).

By compactness of (x, f) and the formula for locα from Construction 3.5 we obtain

0 ≃ HomAutα(Ind(C))(locα(x, f), locα(x, f)) ≃ HomEndα(Ind(C))((x, f), locα(x, f))

≃ colim

(
HomEndα(Ind(C))((x, f), (x, f))

[1]
−→ HomEndα(Ind(C))((x, f), α(x, f))

α[1]
−−→ . . .

)
.
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In particular, id(x,f) vanishes in a finite stage of the colimit showing that for large n we have

0 ≃ [n] : (x, f) → αn(x, f). Its fiber, which lies in (1) by the previous claim, is given by

(x, f)⊕ αn(x, f) and contains (x, f) as a retract showing (x, f) ∈ Nilα(C).

�is also proves (3) ⊆ (2): We just saw that for (x, f) in the kernel in (3) and large n

we have with 0 ≃ [n] : (x, f) → αn(x, f), which reduces to 0 ≃ f (n) : x → αn(x) on

underlying objects. It remains to argue that x ∈ C. But this follows from (3) ⊆ (1) as it

implies (x, f) ∈ Nilα(C) ⊆ Endα(C).

3.3 K-theory of twisted automorphisms

In this subsection we will prove the main result of this article,�eorem A, about the spli�ing

ofE(ChN) for an exact endofunctor α : C → C of a perfect category and a localising invariant

E. By Observation 3.8 we have the pushout

C ⊕ C C

C ChN

id⊕id

id⊕α
p

in Catperf . Applying Land-Tamme’s theory of K-theory of pushouts, more precisely Con-

structions 2.4 and 2.5 and �eorem 2.6, we obtain the commutative square

Im(C ⊕ C) C

C ChN

id⊕id

id⊕α (10)

which becomes a pushout a�er applying any localising invariant. For the proof of �eo-

rem 3.15 it remains to understand E(Im(C ⊕ C)). We will show that it admits an orthogonal

decomposition by the categories Nilα(C) and Nilα(C) from Definition 3.10.

Note that in the given situation, the right adjoint to id ⊕ id : C ⊕ C → C already exists

before Ind-completion and is given by the diagonal functor∆: C → C⊕C. �e corresponding

square in (5) is thus given by

C ⊕ C C

C C,

id⊕id

id⊕α id+α

id

f

where the homotopy f at an object (x, y) ∈ C ⊕ C is the transformation

f = idx + idα(y) : x⊕ αy → x⊕ y ⊕ αx⊕ αy.

�e partially lax pullback C
−→
×C then has objects given by triples (x, y, r) consisting of objects

x, y ∈ C and a map r : x→ y ⊕ α(y). �e induced map (i1, i2) : C ⊕ C → C
−→
×C is given by

i1(x) = (x, x, (id, 0): x→ x⊕ α(x)) and (11)

i2(y) = (α(y), y, (0, id) : α(y)→ y ⊕ α(y)).
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�ere are also maps

j1 : Endα(C)→ C
−→
×C, (x, r : x→ α(x)) 7→ (x, x, (id, r) : x→ x⊕ α(x)),

j2 : Endα(C)→ C
−→
×C, (y, s : α(y)→ y) 7→ (α(y), y, (s, id) : α(y)→ y ⊕ α(y)).

Lemma 3.12. �e functors j1 and j2 are full inclusions which identifyEndα(C) (andEndα(C))

with the full subcategory of C
−→
×C on objects (x, y, r) for which the first (resp. second) component

of r : x→ y ⊕ α(y) is an equivalence.

Proof. We only prove the statement about j1 with the other case being analogous. �e pull-

back square in diagram 2,

Hom
C
−→
×C

(j1(x, f), j1(y, g)) HomC(x, y)

HomC(x, y) HomC(x, y)×HomC(x, α(y)),

y
(id,g∗)

(id,f∗α)

identifies with

eq(f∗α, g∗ : Hom(x, y)→ Hom(x, α(y))) ≃ HomEndα(C)((x, f), (y, g)).

Let us briefly recall the notion of a semiorthogonal decomposition.

Recollections 3.13 (Semiorthogonal decomposition). Recall that an semiorthogonal decom-

position of a perfect category D consists of two full perfect subcategories D0,D1 ⊆ D such

that D0 ∪ D1 generates D as a perfect category and HomD(x1, x0) ≃ 0 for all xi ∈ Di. In

this situation, the inclusion D1 ⊆ D admits a right adjoint p1 and the inclusion D1 ⊆ D

admits a le� adjoint p0. Importantly, the sequence D0 →֒ D
p1
−→ D1 is a Karoubi sequence.

AsD0 →֒ D admits the retraction p1, we even see that for any localising invariantE the map

E(D0) ⊕ E(D1) → E(D) induced by the inclusions is an equivalence. More information

on (semi)orthogonal decompositions can be found in [Lur18, Section II.7.2] or [Lur17, Sec-

tion A.8]. �ere is also the notion of an orthogonal decomposition where one additionally

requires that HomD(x0, x1) ≃ 0

Lemma 3.14. �e subcategories Nilα(C) and Nilα(C) (included via j1 and j2) form an orthog-

onal decomposition of Im(C ⊕ C).

Proof. By definition, Im(C ⊕ C) is the perfect subcategory of C
−→
×C generated by the images

of the functors i1, i2 : C → C
−→
×C from (11). Notice that i1 factors as the composite C

triv
−−→

Nilα(C) ֒
j1
−→ C

−→
×C. Similarly, i2 factors throughNilα(C). �us,Nilα(C) andNilα(C) generate

Im(C ⊕ C)

To prove orthogonality, note that the vanishing of HomD(x0, x1) is stable under colimits

and retracts in the first variable and under limits and retracts in the second variable, so it

suffices to check it for the generating sets given by the image of i1 and i2. �e pullback
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diagram 2 for mapping spaces in partially lax pullbacks specialises for objects x, y ∈ C to the

pullback

Hom
C
−→
×C

(i1(x), i2(y)) HomC(x, y)

HomC(x, αy) HomC(x, y ⊕ αy)

y
i1

i2

(12)

with the lower and right maps induced by the inclusions of the summands of y ⊕ α(y).

But as the pullback of the cospan y → y ⊕ α(y) ← α(y) is trivial, this shows that

Hom
C
−→
×C

(i1(x), i2(y)) ≃ 0. Analogously one shows Hom
C
−→
×C

(i2(y), i1(x)) ≃ 0.

Let us come back to determiningE(ChN). Note that the functor triv : C → Nilα(C) admits

a retraction given by the forgetful functor fgt : Nilα(C) → C. Defining the Nil-term as

NEα(C) := Σ cofib(triv : E(C)→ E(Nilα(C)), the retraction fgt induces a spli�ing

E(Nilα(C)) ≃ E(C) ⊕ ΩNEα(C). (13)

Similarly, the functor triv : C → Nilα(C) admits a retraction fgt : Nilα(C) → C which in-

duces a spli�ing E(Nilα(C)) ≃ E(C)⊕ ΩNEα(C).

�eorem 3.15. �e assembly mapE(C)hN → E(ChN) splits and there is a natural equivalence

E(ChN) ≃ E(C)hN ⊕NEα(C)⊕NEα(C).

Proof. From �eorem 2.6 we obtain a fiber sequence

E(Im(C ⊕ C))→ E(C
−→
×C)→ E(ChN). (14)

Recall that the two projections pri : C
−→
×C → C induce a spli�ing

pr1⊕ pr2 : E(C
−→
×C)

≃
−→ E(C)⊕ E(C).

Furthermore, by the orthogonal decomposition in Lemma 3.14, the inclusions induce an

equivalenceE(Nilα(C))⊕E(Nilα−1(C))
≃
−→ E(Im(C⊕C)) so the fiber sequence (14) reduces

to the fiber sequence

E(Nilα(C))⊕ E(Nilα(C))→ E(C)⊕ E(C)→ E(ChN). (15)

Note that the composite Nilα(C)
j1
−→ C

−→
×C

pri−−→ C is given by fgt for i = 1, 2 and the

composite Nilα(C)
j2
−→ C

−→
×C

pri−−→ C is given by α fgt for i = 1 and fgt for i = 2. Using the

spli�ing (13) we obtain the fiber sequence

E(C)⊕ E(C) ⊕ ΩNEα(C)⊕ ΩNEα(C)
(id,id)⊕(α,id)⊕0⊕0
−−−−−−−−−−−−→ E(C) ⊕ E(C)→ E(ChN).

Note that it contains the fiber sequence

E(C) ⊕ E(C)
(id,id)⊕(α,id)
−−−−−−−−→ E(C)⊕ E(C)→ E(C)hN

as a retract, which proves the claimed spli�ing.
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3.4 K-theory of twisted endomorphisms

In this section we will explain how theNE-terms appearing in the spli�ing in �eorem 3.15

are related to E(Endα(Ind(C))
ω). Land-Tamme showed a variant of this for the E-theory

of tensor algebras in [LT23, Corollary 4.5, Proposition 4.7]. �eir proof relies on the compu-

tation of certain endomorphism rings using their work on theory of K-theory of pullbacks

[LT19]. We give a more direct argument by working on the categorical level. �is also ex-

tends �eorem 3.16 to categories not generated by a single element.

Let us again consider an exact endofunctor α : C → C of a perfect category and denote by

αR : Ind(C) → Ind(C) the right adjoint to Ind(α). By abuse of notation, we will o�en not

distinguish between Ind(α) and α.

�eorem 3.16. �e map freeαR : C → EndαR(Ind(C))ω induces a spli�ing

E(EndαR(Ind(C))ω) ≃ E(C)⊕NEα(C).

Similarly, the map freeαR : C → EndαR(Ind(C))ω induces a spli�ing

E(EndαR(Ind(C))ω) ≃ E(C) ⊕NEα(C).

Note that the main result in �eorem 3.16 is not the existence of a spli�ing for

E(EndαR(Ind(C))ω), but rather that (up to a shi�) the error terms are the same as those

appearing in the spli�ing for E(Nilα(C)).

We will only prove the spli�ing for E(EndαR(Ind(C))ω), the argument for the spli�ing

of E(EndαR(Ind(C))ω) being analogous. Our approach is similar to the proof of �eo-

rem 3.15 by first presenting EndαR(Ind(C))ω as a pushout in Catperf and then applying

Land-Tamme’s machinery from §2 to it. Let us begin by recalling the tensoring construction

for perfect categories.

Recollections 3.17 (Tensoring of Catperf over Cat). Given a category I , the functor

Fun(I,−) : Catperf → Catperf admits a le� adjoint − ⊗ I , the tensoring of Catperf over

Cat. It is the initial perfect category together with a functor C × I → C⊗ I which is exact in

the first variable and has an explicit description given by C ⊗ I = Fun(Iop, Ind(C))ω . Under

this identification, for an object i ∈ I the inclusion ai : C × {i} → C ⊗ I is le� adjoint to

evaluation evi : Fun(Iop, Ind(C)) → Ind(C). More details on the non idempotent complete

version of this construction can be found in [CDH+23a, Remark 6.4.2] or [Sau23, Section 2].

We are only be interested in the case I = ∆1 so that C ⊗ ∆1 ≃ Fun((∆1)op, Ind(C))ω .

�e le� adjoints to the evaluation functors are explicitly given by a0(x) = (x ← 0) and

a1(x) = (x
id
←− x), where we use le�wards pointing arrows to indicate that we are working

in (∆1)op. We can now give a presentation of EndαR(Ind(C))ω as a pushout.

Lemma 3.18. �ere is a pushout square in Catperf of the form

C ⊕ C C ⊗∆1

C EndαR(Ind(C))ω .

a0⊕a1

α⊕id
pfree

αR

(16)
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Proof. To calculate the pushout of the upper le� span in (16) one instead passes to right

adjoints a�er Ind completion and forms the pullback. �e upper le� span then becomes the

cospan

Ind(C)
(αR,id)
−−−−→ Ind(C)× Ind(C)

(ev0,ev1)
←−−−−− Fun((∆1)op, Ind(C)).

A�er the identification∆1 ≃ (∆1)op this becomes the usual pullback square from (6) defining

the lax equaliser

EndαR(Ind(C)) Ind(C)∆
1

Ind(C) Ind(C)× Ind(C).

y
(ev0,ev1)

(id,αR)

�e le� vertical arrow here is given by fgt, so its le� adjoint freeαR appears in the diagram

in the statement.

Applying Land-Tamme’s theory ofK-theoryof pushouts, more preciselyConstructions 2.4

and 2.5 and �eorem 2.6, we obtain the commutative square

Im(C ⊕ C) C ⊗∆1

C EndαR(Ind(C))ω

i0⊕i1

α⊕id (17)

which becomes an equivalence a�er applying any localising invariant. We again use the

notation Im(C⊕C) even though it is different from the category denoted by the same symbol

in §3.3. As before, the main difficulty is the description of this category. �e lax square in (5)

associated to the pushout (16) is given by

C ⊕ C C ⊗∆1

C C.

a0⊕a1

α⊕id αev0⊕ev1

id

f

Note here that the right adjoint (ev0, ev1) to a0 ⊕ a1 preserves compact objects as it sends

the generators a0(x) and a1(x) of C ⊗∆1 to compact objects in Ind(C). �e transformation

f is given on (x, y) by the map idα(x)+idy : α(x)⊕y → α(x)⊕α(y)⊕y. �e corresponding

partially lax pullback C
−→
×(C ⊗∆1) then has objects (x, y

f
←− z, r : x→ α(y)⊕ z)with x ∈ C

and f ∈ C ⊗∆1. �e induced functor (i1, i2) : C ⊕ C → C
−→
×(C ⊗∆1) is given by

i1(x) = (α(x), a0(x), (id, 0): α(x)→ α(x) ⊕ 0),

i2(x) = (x, a1(x), (0, id) : x→ α(x)⊕ x).

�ere is also a functor

j : Endα(C)→ C
−→
×(C ⊗∆1), (x, f : x→ α(x)) 7→ (x, a1(x), (f, id) : x→ α(x)⊕ x).
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Lemma 3.19. �e functors i1 and j are fully faithful.

Proof. From diagram 2 we have the pullback square

Hom
C
−→
×(C⊗∆1)

(i1(x), i1(y)) HomC⊗∆1(a0(x), a0(y))

HomC(α(x), α(y)) HomC(α(x), α(y)).

y
αev0

id

Note that ev0 : HomC⊗∆1(a0(x), a0(y)) → HomC(x, y) is an equivalence from which the

claim about i1 follows. Similarly, we have the pullback square

Hom
C
−→
×(C⊗∆1)

(j(x, f), j(y, g)) HomC⊗∆1(a1(x), a1(y))

HomC(x, y) HomC(x, α(y) ⊕ y).

y
(f∗αev0)+ev1

g∗+id

As ev0, ev1 : HomC⊗∆1(a1(x), a1(y)) → HomC(x, y) are equivalences, this pullback

identifies with eq(f∗α, g∗ : HomC(x, y) → HomC(x, α(y)) ≃ HomEndα(C)((x, f), (y, g)).

Lemma 3.20. �e subcategories Nilα(C) and C (included via j and i1) form a semiorthogonal

decomposition of Im(C ⊕ C).

Proof. It is clear that the perfect subcategory generated byNilα(C) and C contains Im(C⊕C)

as i2 ≃ j ◦ triv. But Nilα(C) is also contained in Im(C ⊕C) as it is generated by C. Together,

this shows that Nilα(C) and C generate Im(C ⊕ C). For semiorthogonality, diagram 2 gives

us the pullback

Hom
C
−→
×(C⊗∆1)

(j(x, f), i1(y)) HomC⊗∆1(a1(x), a0(y))

HomC(x, α(y)) HomC(x, α(y)).

y
f∗αev0

id

We have HomC⊗∆1(a1(x), a0(y)) ≃ HomC(x, 0) ≃ 0, using that a1 is le� adjoint to ev1,

which proves the desired vanishing.

As a final step towards the identification of Nil-terms, we need to show a spli�ing for the

K-theory of C ⊗∆1.

Lemma 3.21. �e functors a0, a1 : C →֒ C ⊗ ∆1 form a semiorthogonal decomposition of

C ⊗∆1

Proof. Recall that a0 and a1 are le� adjoint to ev0 and ev1. From this it is easy to see that

a0 and a1 are fully faithful. �ey generate C ⊗∆1 as their images are compact generators of

the stable presentable category Fun((∆1)op, Ind(C)), again using that they are le� adjoint

to ev. Semiorthogonality follows from HomC⊗∆1(a1(x), a0(y)) ≃ HomC(x, 0) ≃ 0.
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Proof of �eorem 3.16. By �eorem 2.6, applying E to the commutative square (17) gives the

pushout

E(Im(C ⊕ C)) E(C ⊗∆1)

E(C) E(EndαR(Ind(C))ω).

i0⊕i1

α⊕id
pfree

αR

Spli�ing the top terms using the semiorthogonal decompositions from Lemmas 3.20 and 3.21

together with the spli�ing E(Nilα(C)) ≃ E(C) ⊕ ΩNEα(C) from (13), we arrive at the

pushout square

E(C)⊕ ΩNEα(C)⊕ E(C) E(C)⊕ E(C)

E(C) E(EndαR(Ind(C))ω).

(id,0)⊕0⊕(0,id)

id⊕0⊕id
pfree

αR

(18)

�e component E(C) ⊕ E(C) → E(C) ⊕ E(C) of the upper horizontal map is the identity.

To check this, note that by construction the composite Nilα(C)
j
−→ C
−→
×(C ⊗∆1)→ C ⊗∆1

is equivalent to a1 fgt and the composite C
i1−→ C
−→
×(C ⊗ ∆1) → C ⊗ ∆1 is equialent to a0.

Furthermore, the cofibers of the upper and lower horizontal maps in the pushout square (18)

are equivalent, from which we obtain

cofib(freeαR : E(C)→ E(EndαR(Ind(C))ω) ≃ NEα(C).

As the final step in proving the claimed spli�ing, note that freeα has a retraction, sending a

twisted endomorphism f : x→ αR(x) to the fiber fib(fL : α(x)→ x) of the adjoint twisted

endomorphism. To be precise, this only defines a functor fib: EndαR(Ind(C)) → Ind(C).

Using the formula for freeαR in Proposition 3.6, we see that fib is a retraction of freeαR on the

large level. But fib sends the generators freeαR(x) for x ∈ C of EndαR(Ind(C))ω to compact

objects and thus preserves all compact objects.

An analogous argument, using the pushout

C ⊕ C C ⊗∆1

C EndαR(Ind(C))ω

a0⊕a1

id⊕α
p

free
αR

instead of (16), proves

cofib(freeαR : E(C)→ E(EndαR(Ind(C))ω) ≃ NEα(C).

To obtain the retraction of freeαR in the final step, one has to note that the right adjoint

αR : Ind(C) → Ind(C) preserves colimits as its le� adjoint Ind(α) preserves compact ob-

jects. �en one can apply Proposition 3.6 for an explicit formula for freeαR to see that

cofib: EndαR(Ind(C))ω → C, (x, f : α(x)→ x) 7→ cofib(f) is a retraction of freeαR .
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4 Regularity

In this section we want to generalise the classical vanishing result for Nil-terms saying that

NKα(R) ≃ 0 if R is a regular ring and α : R→ R an automorphism, as shown for example

in [Wal78a, �eorem 4]. When passing from rings to (derived) categories of modules, the

analogue of regularity is the notion of a t-structure. Let us recall its definition.

Recollections 4.1 (t-structure). A t-structure on a stable C consists of two full subcategories

C≤0, C≥0 ⊆ C satisfying the following properties:

(1) for all x ∈ C≥0 and y ∈ C≤0 one has HomC(x,Ωy) ≃ 0;

(2) C≥0 is closed under Σ and C≤0 is closed under Ω;

(3) for any x ∈ C there is a fiber sequence x′ → x→ x′′ with x′ ∈ C≥0 and x′′ ∈ ΩC≤0.

In this situation, the inclusion C≤0 ⊆ C has a le� adjoint τ≤0 and the inclusion C≥0 ⊆ C has

a right adjoint τ≥0. A t-structure is bounded if for any x ∈ C there is k ∈ N with Σkx ∈ C≥0

and Ωkx ∈ C≤0. �e heart of C is defined by C♥ = C≥0 ∩ C≤0. More details on t-structures

on stable categories can be found in [Lur17, Section 1.2.1].

As an important class of examples of bounded t-structures, consider a regular coherent

discrete ring R. �is means that any finitely generated le� R-module is finitely presented.

In this situation, the perfect derived category ModωR admits a bounded t-structure with

(co)connective objects given by precisely those R-modules with homology in nonnegative

(resp. nonpositive) degrees. For more details and examples of t-structures on module cate-

gories of ring spectra we refer the reader to [BL22].

Let us now state the general vanishing result for Nil-terms. It can be easily deduced

Burklund-Levy’s abstract dévissage result [BL23, �eorem 1.3]. Land-Tamme show the anal-

ogous result for tensor algebras in the case where C has a single generator in [LT23, Corollary

4.13].

Corollary 4.2. Consider an exact endofunctor α : C → C of a perfect category and assume

that C admits a bounded t-structure. If α is le� t-exact, meaning that α(C≤0) ⊆ C≤0, then

τ≥0NKα(C) ≃ 0. If the heart C♥ is aditionally Noetherian, thenNKα(C) ≃ 0. �e analougous

vanishing results hold forNKα(C) if α is right t-exact.

Proof. We want to apply [BL23, �eorem 1.3] to the functor triv : C → Nilα(C). By

definition, the image of triv generates Nilα(C) under finite colimits and retracts. It re-

mains to check that the restriction of triv to C♥ is fully faithful. For x, y ∈ C♥ one has

HomEndα(C)((x, 0), (y, 0)) ≃ HomC(x, y) × ΩHomC(x, α(y)) ≃ HomC(x, y), where the

last step we uses that α is le� t-exact.

�e t-structure constructed on Nilα(C) in the proof of [BL23, �eorem 1.3] is very inex-

plicit. We can give a more direct construction of a t-structure onEndα(C) andNilα(C)which

might be of independent interest.
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Proposition 4.3. Suppose that C ∈ Catperf admits a t-structure and that α : C → C is le�

t-exact. �en the full subcategories Endα(C)≥0 (resp. Endα(C)≤0) on those objects (x, f) with

x ∈ C≥0 (resp. x ∈ C≤0) define a t-structure on Endα(C), called the pointwise t-structure.

Proof. We have to verify the properties from Recollection 4.1. Recall that for objects

(x, f), (y, g) ∈ Endα(C) we have

HomEndα(C)((x, f), (y, g)) ≃ eq(f∗ ◦ α, g∗ : HomC(x, y)→ HomC(x, α(y))).

Now if x ∈ C≥0 and y ∈ C≤−1, then α(y) ∈ C≤−1 showing that HomC(x, y) ≃

HomC(x, α(y)) ≃ 0. �is also impliesHomEndα(C)((x, f), (y, g)) ≃ 0 and verifies condition

(1). As Σ(x, f) ≃ (Σx,Σf) it follows that Endα(C)≥0 is closed under Σ and Endα(C)≤0 is

closed under Ω which shows (2).

Finally, for (3) we have to show that every object (x, f) ∈ Endα(C) sits in a fiber sequence

with a 1-connective and 0-coconnective object. As α is only le� t-exact, it generally does not

commutewith the truncation τ≤0. However, there is always a Beck-Chevalley transformation

β : τ≤0α→ ατ≤0 associated to the commutative square

C≤0 C

C≤0 C,

α α

where the horizontal le� adjoints are precisely the truncations τ≤0. Denoting by η : id→ τ≤0

the adjunction unit, we obtain the commutative diagram

x τ≤0x

α(x) τ≤0α(x) α(τ≤0x).

f

ηx

τ≤0f

ηα(x) β

(19)

It follows from [CSY22, Lemma 2.2.4(3)] that β ◦ ηα(x) ≃ αηx. �e outer quadrilateral of (19)

defines a map (x, f) → (τ≤0x, β ◦ τ≤0f) in Endα(C) with underlying map ηx : x → τ≤0x.

�e underlying object of the fiber of (x, f) → (τ≤0x, β ◦ τ≤0f) is τ≥1x ≃ fib(x → τ≤0x)

and thus 1-connective.

Let us now show that the pointwise t-structure on Endα(C) restricts to a t-structure on

Nilα(C) in many situations. Note that the condition of the following result is in particular

satisfied if α is a le� t-exact automorphism of C.

Corollary 4.4. Suppose that C ∈ Catperf admits a bounded t-structure and that α : C → C is

le� t-exact and admits a le� adjoint. �en the pointwise t-structure on Endα(C) restricts to a

t-structure on Nilα(C).

Proof. We only have to show that Nilα(C) is closed under truncation. Recall from Proposi-

tion 3.11 that Nilα(C) is the full subcategory of Endα(C) consisting of those objects (x, f)
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for which f (n) ≃ 0 for large n. In the proof of Proposition 4.3 we saw the explicit formula

for truncation τ≤0(x, f) = (τ≤0x, β ◦ τ≤0f), where β : τ≤0α→ ατ≤0 is the Beck-Chevalley

transformation. Now note that by naturality of β the composite

τ≤0x
τ≤0f
−−−→ τ≤0α(x)

β
−→ ατ≤0x

ατ≤0f
−−−−→ . . .

αn−1τ≤0f
−−−−−−→ αn−1τ≤0α(x)

αn−1β
−−−−→ αnτ≤0x

defining (β ◦ τ≤0f)
(n) is equivalent to the composite

τ≤0x
τ≤0f
−−−→ τ≤0α(x)

τ≤0α(f)
−−−−−→ . . .

αn−2β
−−−−→ αn−1τ≤0α(x)

αn−1β
−−−−→ αnτ≤0x

given by β(n) ◦ τ≤0f
(n) which vanishes for large n. �is shows τ≤0(x, f) ∈ Nilα(C).

5 Applications and Examples

5.1 K-theory of tensor algebras

In this section we will study various applications of �eorem 3.15 to obtain spli�ings for the

K-theory of certain rings. Let us begin with a very general consideration.

Construction 5.1 (Tensor algebras). For a ring spectrumR ∈ Alg(Sp) denote byModR the

category of le� R-modules (in spectra). Consider an endomorphism α : ModωR → ModωR.

Note that, equivalently, α ≃ M ⊗R − for a (R,R)-bimodule M which is compact as a le�

R-module by [Lur17, Remark 4.8.4.9]. Denote by αR : ModR → ModR the Ind-right adjoint

to α. As explained in Lemma 3.7, the categories EndαR(ModR) and AutαR(ModR) are

compactly generated by the elements freeαR(R) and locαR freeαR(R), respectively. Lurie’s

version of the Schwede-Shipley theorem [Lur17, �eorem 7.1.2.1, Remark 7.1.2.3] shows that

EndαR(ModR) ≃ ModTR(M)(Sp) and AutαR(ModR) ≃ ModTR(M)[M−1](Sp), where

TR(M) := endEnd
αR (ModR)(freeαR(R)) and

TR(M)[M−1] := endAut
αR (ModR)(locαfreeαR(R))

are the endomorphism ring spectra. We call them the tensor algebra and localised tensor

algebra. Using the description of free endomorpisms in Proposition 3.6, we can caluclate the

underlying spectrum of the tensor algebra by

endEnd
αR (ModR)(freeαR(R)) ≃ homModR(R, fgt freeαR(R)) ≃

⊕

n≥0

M⊗n
R ,

where the first equivalence is given by restriction along the unit R → fgt freeαR(R). �e

inverse sends a map f : R→
⊕

n≥0M
⊗n

R to the map

⊕

k≥0

M⊗k
R ⊗R f :

⊕

k≥0

M⊗k
R →

⊕

l≥0

M⊗l
R .

We thus see that multiplication on TR(M) is componentwise given by the map

M⊗n
R ×M⊗m

R →M⊗n
R ⊗R M⊗m

R ≃M⊗n+m
R .
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Let us now turn to the localised tensor algebra. Construction 3.5 gives us the formula

TR(M)[M−1] ≃ locα(TR(M))

≃ colim


⊕

k≥0

M⊗k
R

coev
−−−→

⊕

k≥0

M∨ ⊗R M⊗k
R

coev
−−−→

⊕

k≥0

(M∨)⊗
2
R ⊗R M⊗k

R
coev
−−−→ . . .


 ,

where M∨ denotes the right dual (R,R)-bimodule to M (such that M ⊗R − is le� adjoint

toM∨ ⊗R −), which exists asM is compact as a le� R-module. �e maps in the colimit are

induced by the coevaluation coev : R→M∨ ⊗R M .

Example 5.2. LetR ∈ Alg(Sp) be a ring spectrum togetherwith an endomorphismα : R→

R. Induction induces an endomorphism α! : ModωR → ModωR. In that case, the bimoduleM

from Construction 5.1 is given by M = R with trivial le� R-module structre and right R-

module structure given by α. We write Rα[t] := TR(M) and obtain as a le� R-module

Rα[t] ≃ fgt freeαR(R) ≃
⊕

n≥0

αn
! R ≃

⊕

n≥0

R.

�e multiplication αn
! R × αm

! R → αn+m
! R identifies with R × R

id⊗αn

−−−−→ R × R
⊗
−→ R. In

particular, if the ring R is discrete, this recovers the classical twisted polynomial ring.

If α is an automorphism, the module M∨ is given by the (R,R)-bimodule R with trivial

right R-module structure and le� R-module structure given by α−1. In that case, we write

Rα[t
±1] = TR(M)[M−1] and can identify

Rα[t
±1] ≃ colim


⊕

k≥0

R
shift
−−→

⊕

k≥0

R
shift
−−→ . . .


 ≃

⊕

n∈Z

R.

Multiplication is again given on component n ×m by R × R
id⊗αn

−−−−→ R × R
⊗
−→ R. If R is

discrete, this recovers the classical ring of twisted Laurent polynomials.

�eorem 3.15 immediately specialises to the following result.

Corollary 5.3. Let R ∈ Alg(Sp) and M a (R,R)-bimodule which is compact as a le� R-

module. �en there is a spli�ing

E(TR(M)[M−1]) ≃ E(R)hN ⊕NEM (R)⊕NEM (R).

If M is induced by an automorphism α of R, this reduces to a spli�ing

E(Rα[t
±1]) ≃ E(R)hN ⊕NEα(R)⊕NEα(R).

Example 5.4 (Generators in nonzero degree). Consider the action α = Σk : C
≃
−→ C through

suspension on a perfect category C for some k ∈ Z. Note that E(Σk) ≃ idE(C) if k is even

and E(Σk) ≃ −idE(C) if k is odd. From this we obtain

E(C)hZ ≃

{
E(C) ⊕ΣE(C), k even;

E(C)/2, k odd
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for the middle term in the spli�ing in �eorem 3.15. If C = ModωR for some R ∈ Alg(Sp),

then (ModωR)hN ≃ ModωR[x±1], where R[x±1] is the free associative algebra over R with an

invertible generator in degree |x| = k.

If C admits a bounded t-structure and k ≤ 0, then Σk is le� t-exact. Corollary 4.2 shows

that in this case τ≥0NKΣk(C) ≃ 0. It turns out that the other Nil-term NKΣk(C) is gen-

erally not trivial, not even rationally. As an example, consider C = ModωR for a discrete

ring R, which admits a bounded t-structure if R is regular. Land-Tamme compute in [LT23,

Proposition 4.11]

NKΣk(R)Q ≃

{⊕
n≥1 Σ

|k|n+1HH(R⊗ Q), k even;
⊕

n≥1 Σ
|k|(2n−1)+1HH(R⊗ Q), k odd.

For example, for R = Z one obtains HH(Z⊗ Q) ≃ Q[0]. �is shows that the two Nil-terms

NEα(C) and NEα(C) are generally not isomorphic.

5.2 K-theory of mapping tori

As promised in the introduction, we can prove a spli�ing of Waldhausen’s A-theory of map-

ping tori. Let us first recall the definition.

Recollections 5.5 (Waldhausen’s A-theory). For C ∈ Catperf and a space X ∈ S , denote

by CX = colimX C ∈ Catperf the colimit over the constant X-shaped diagram with value

X . �ere is an equivalence CX ≃ Fun(X, Ind(C))ω as colimits in Catperf are computed

by taking compact objects in the colimit of the Ind-completed diagram in PrL, or equiva-

lently as limits in the right adjoint diagram in PrR, and using the equivalence X ≃ Xop.

We define the nonconnective A-theory of X as A(X) = K(SpωX). If X is connected, then

SpωX ≃ ModωS[ΩX] so that A(X) ≃ K(S[ΩX]). �e classical (finitely dominated) version

of A-theory constructed in [HKV+01] can be recovered from this as the connective cover

A(X) = τ≥0A(X). It differs from Waldhausen’s original definition of A theory in [Wal78b]

only by π0.

We obtain the following spli�ing result for mapping tori.

Corollary 5.6. Let C ∈ Catperf and X be a space together with a selfmap α : X → X . For

any localising invariant E, there is an equivalence

E(CXhN
) ≃ E(CX)hN ⊕NEα(CX)⊕NEα(CX).

In particular, there is a spli�ing

A(XhN) ≃ τ≥0(A(X)hN)⊕NAα(X) ⊕NAα(X),

with Nil-terms NAα(X) := τ≥0NAα(X). On 1-connective covers one has τ≥1(A(X)hN) ≃

τ≥1(A(X)hN)
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Proof. �e first statement is a consequence of �eorem 3.15 together with the equivalence

CXhN
≃ (CX)hN coming from the usual composition formula for colimits. �e statement

about A-theory follows from this by taking E = K and C = Spω and passing to connective

covers. �e equivalence τ≥1(A(X)hN) ≃ τ≥1(A(X)hN) follows from the fact that for a span

T1 ← T0 → T2 of spectra, the map τ≥0T1 ⊕τ≥0T0 τ≥0T2 → T1 ⊕T0 T2 of pushouts is an

equivalence a�er passing to 1-connective covers.

Example 5.7 (HNN-extensions). LetG be a discrete group and f : G→ G a homomorphism.

One has (BG)hN ≃ B(G∗f ), where G∗f is a generalised HNN extension, explicitly given

by the presentationG∗f = 〈G, t|gt = tf(g) for g ∈ G〉.

As a special case of Corollary 5.6 we obtain the following.

Corollary 5.8. Let R ∈ Alg(Sp) be a ring spectrum, G a group and f : G → G a homomor-

phism. �en there is an equivalence

E(R[G∗f ]) ≃ E(R[G])hN ⊕NEf (R[G]) ⊕NEf (R[G]).

Proof. �is is a combination of Corollary 5.6 and Example 5.7.

5.3 A-theoretic Nil-terms

�e goal of this subsection is to provide a guide to the computation of certain A-theoretic

twistedNil-terms, applying the work of Bökstedt-Hsiang-Madsen [BHM93]. We will achieve

this through a comparison with topological cyclic homology. Let us first recall the situation

for X = ∗. By work of Waldhausen [Wal78b], the map

NA(∗) = τ≥0NK(Spω)→ τ≥0NK(ModωZ)

is a rational equivalence, but the target is rationally trivial as Z is a regular ring. On the

other hand, lots is known about interesting torsion in the homotopy groups of NK(Spω)

[GKM08].

For a spaceX we denote

TC(X) := TC(SpωX).

From now on, we will assume thatX is connected and thatX comes with a selfequivalence

α : X
≃
−→ X . Consider the following cube. To shorten notation, we will write NA

+/−
α (X)

and NTC
+/−
α (X) for the cofiber of the respective horizontal assembly maps in the cube.

A(X)hZ A(XhZ)

A(∗)hZ A(S1)

TC(X)hZ TC(XhZ)

TC(∗)hZ TC(S1)
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From Corollary 5.6 we see that NA
+/−
α (X) ≃ NAα(C) ⊕ NAα(C) a�er passing to 1-

connective covers. Notice thatXhZ → ∗hZ ≃ S1 and X → ∗ induce π0-isomorphisms a�er

passing to spherical group rings, so the celebrated Dundas-Goodwillie-McCarthy-theorem

[DGM13, �eorem 7.2.2.1] applies to show that the le� face and the right face are cartesian.

�us, the whole cube is cartesian and the map

cofib(NA+/−
α (X)→ NA+/−(∗))→ cofib(NTC+/−

α (X)→ NTC+/−(∗))

is an equivalence. Surpsisingly, the NTC-terms are quite accessible for computation.

For a space Y , denote by LY = Map(S1, Y ) its free loop space. It carries a natural S1-

action. Now suppose that Y comes with a map f : Y → S1. �e typical example here will

be a space of homotopy orbits with respect to a Z-action. It induces a map Lf : LY → LS1.

Note that the degree identifies π0LS
1 with Z. Let us denote L(k)Y = LY ×π0(LS1) {k} and

L(6= k)Y =
∐

n 6=k L(n)Y . �e main result of this subsection is the following.

�eorem 5.9. For a connected based space X together with a self equivalence X
≃
−→ X , there

is a natural equivalence

NTC+/−
α (X) ≃ Σ(Σ∞

+ L(6= 0)(XhZ))hS1

a�er p-completion at an arbitrary prime p.

A useful observation is that �eorem 5.9 can be reformulated as a spli�ing as an infinite

direct sum a�er p-completion

NTC+/−
α (X) ≃

⊕

k 6=0

Σ(Σ∞L(k)(XhZ))hS1 .

�e main ingredient is the following theorem of Bökstedt-Hsiang-Madsen [BHM93], which

can also be found in [NS18, �m. IV.3.6].

�eorem 5.10. For a connected based space X , there is a natural pullback square

TC(S[ΩX]) Σ(Σ∞
+ LX)hS1

Σ∞
+ LX Σ∞

+ LX
1−ϕ̃p

a�er p-completion at an arbitrary prime p.

In the above theorem, the map ϕ̃p is induced by the map LX → LX which precomposes

with the p-fold covering of S1. Our goal is to understand how the pullback in �eorem 5.10

behaves with taking Z-orbits. We will start with an easy observation about loop spaces.

Lemma 5.11. Let X be a space with Z-action. �en the assembly map

(LX)hZ → L(XhZ)

can be identified with the inclusion of the path component

L(XhZ)(0)→ L(XhZ).
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Proof. We have the following commutative diagram of fibre sequences

LX (LX)hZ S1

LX L(XhZ) LS1

where the right vertical map is the corresponding assembly map for X = {∗}. �ere is an

equivalence LS1 ≃ S1 × Z, induced by the evaluation at 1 ∈ S1 and the degree. Under this

identification, the right vertical map is the inclusion of S1 × {0}.

We need one further observation about loop spaces for the proof of �eorem 5.9. Namely,

we show that the square in �eorem 5.10 can be simplified dramatically for spaces of the

form XhZ.

Lemma 5.12. �e projection to the summandΣ∞
+ LXhZ→ Σ∞

+ LXhZ(0) induces the following

pullback square.

Σ∞
+ LXhZ Σ∞

+ LXhZ

Σ∞
+ LXhZ(0) Σ∞

+ LXhZ(0)

1−ϕ̃p

1−ϕ̃p

Proof. Using the decomposition Σ∞
+ LXhZ =

⊕
n∈Z Σ∞

+ LXhZ(n) and the order 0 < 1 <

−1 < 2 < . . . on Z, the map 1− ϕ̃p is a triangular matrix whose diagonal entries are 1− ϕ̃p

at (0, 0) and 1 everywhere else. �us, 1 − ϕ̃p is an equivalence when restricted to the fiber

of the projection Σ∞
+ LXhZ → Σ∞

+ LXhZ(0).

Remark 5.13. Note that the proof of Lemma 5.12 goes through even if XhZ is replaced by

some space Y which merely possesses a map to S1. Some generalizations are possible. For

example, let G be a group, whose conjugacy classes of elements admit a total order ≤ for

which [g] ≤ [h] implies [gp] ≤ [hp]. Suppose, X comes with a map to BG. Consider the

collection LX(1G) of components of LX of loops mapping to the nullhomotopic loops in

BG. �en we have a pullback square of the following form.

Σ∞
+ LX Σ∞

+ LX

Σ∞
+ LX(1G) Σ∞

+ LX(1G)

1−ϕ̃p

1−ϕ̃p

Note that groups with a total order as required have to be p-torsion free. An obvious candi-

date for a map as above is the map Y → Bπ1(Y, y).
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Proof of �eorem 5.9. We start by considering the following diagram

TC(X)hZ (Σ(Σ∞
+ LX)hS1)hZ

TC(XhZ) Σ(Σ∞
+ LXhZ)hS1

Σ∞
+ (LX)hZ Σ∞

+ (LX)hZ

Σ∞
+ L(XhZ) Σ∞

+ L(XhZ)

Σ∞
+ (LX)hZ Σ∞

+ (LX)hZ

Σ∞
+ L(0)(XhZ) Σ∞

+ L(0)(XhZ)

(20)

and note that the bo�om cube is cartesian, as its front and back faces are pullbacks as the

vertical maps of the back face are identities and the front face is the square from Lemma 5.12.

�e top cube is cartesian a�er p-completion, as its front and back faces are cartesian by

�eorem 5.10. �e lowermost face of the diagram is cartesian using Lemma 5.11. �us, as the

outermost cube is cartesian, the top face is cartesian as well, which identifies the cofiber of

TC(X)hZ → TC(XhZ)

with the cofiber of

(Σ(Σ∞
+ LX)hS1)hZ → Σ(Σ∞

+ LXhZ)hS1 .

Using that colimits commute together with Lemma 5.11, this cofiber is equivalent to that of

(Σ(Σ∞
+ (LX)hZ)hS1) ≃ (Σ(Σ∞

+ L(0)X)hS1)→ Σ(Σ∞
+ LXhZ)hS1 .

�is completes the proof.
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