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SUMMARY
Concepts describe how instances of the same kind are related, enabling the categorization and interpretation
of new information.1,2 How concepts are represented is a longstanding question. Category boundaries have
been considered defining features of concept representations, which can guide categorical inference,3 with
fMRI evidence showing category-boundary signals in the hippocampus.4,5 The underlying neural mechanism
remains unclear. The hippocampal-entorhinal system, known for its spatially tuned neurons that form cogni-
tive maps of space,6,7 may support conceptual knowledge formation, with place cells encoding locations in
conceptual space.4,8–11 Physical boundaries anchor spatial representations and boundary shifts affect place
and grid fields,12–16 as well as human spatial memory,17–19 along manipulated dimensions. These place cell
responses are likely driven by boundary vector cells, which respond to boundaries at specific allocentric dis-
tances and directions,20–23 the neural correlates of which have been identified in the subiculum and entorhinal
cortex20,24,25. We hypothesize similar patterns of memory adaptations in response to shifting category
boundaries. Our findings show that after category boundary shifts, participants’ memory for category exem-
plars distorts along the changed dimension, mirroring place field deformations. We demonstrate that the
boundary vector cell model of place cell firing best accounts for these distortions compared with alternative
geometric explanations. Our study highlights a role of category boundaries in human cognition and estab-
lishes a new complementary link between hippocampal coding properties with respect to boundaries and
human concept representation, bridging spatial and conceptual domains.
RESULTS

Based on the notion that the place cell systemmay encode con-

ceptual knowledge, we tested whether memory of exemplars is

distorted by shifting category boundaries in a similar manner as

place cells and spatial memory by physical boundary changes

(Figure 1A). Category boundaries may shift when updating a

concept by new exemplars (e.g., from ‘‘flying’’ toward ‘‘flight-

less’’ animals when a new ‘‘flying’’ exemplar is heavier than pre-

vious category members). In our experiment (Figure 1B), partic-

ipants learned to categorize stimuli into two categories, which

were defined as a square enclosure (category A) and its sur-

rounding area (category B) in a two-dimensional feature space.

Five exemplars of category A were further associated with ob-

jects. In a second categorization task, participants encountered

that the category boundary had shifted in one dimension, trans-

forming category A into a rectangular shape. Critically, we

tested participants’ memory of the five object-cued exemplars

before and after the boundary shift.

Category and association learning
Participants learned and subsequently updated the concept of

two categories (category A being a delineated from B via
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square/rectangular boundaries; Figure 1B) via categorization

tasks. Stimuli varied in the frequency of dots and of stripes, and

the combination of these values defined category membership.

Participants responded to a single stimuli and received feedback

whether the selection (A or B)was correct. After aminimumof 400

trials (accuracy square: 88.2% ± 3.3% [mean ± SD; N = 46;

rectangle: 85.7% ± 4.4% [N = 46]; Figure 2A left), if accuracy

did not reach 85% in each region of the feature space, training

proceeded until the criterion was reached in the last 200 trials

(average accuracy: square: 90.16% ± 3.34% [N = 45; one

participant already reached the criterion in the first 400 trials];

rectangle: 89.09% ± 2.95% [N = 41; five participants already

reached the criterion in the first 400 trials]; Figure 2A right). The

final 50 test trials confirmed that participants learned the catego-

rization rule well (square: 83.00 ± 6.89 [N = 46]; rectangle: 83.16 ±

7.38 [N = 43]; three participants did not perform this test). Subse-

quent to the first categorization task (square), participants

learned to associate five objects with certain category A stimuli.

To ensure precise encoding, participants were trained to

generate the feature combinations (by upregulating and downre-

gulating dot and stripe frequency) associated with each object

until reaching a mean/maximal displacement of %2.5/3 steps in

the last two blocks (number of blocks: 20 ± 11, 6–50 blocks
Author(s). Published by Elsevier Inc.
eativecommons.org/licenses/by/4.0/).
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Figure 1. Background and experimental design

(A) Spatial and conceptual boundary changes. Left: deformations of place fields in response to changes of environmental geometry. Depicted are firing fields of

two place cells (delineated by the line) when the shape of a rodent’s recording box changes from a square (upper-left, respectively) to a rectangle or large square

(from O’Keefe and Burgess14). Place fields systematically adapted along the changed dimension. Middle: congruent with the idea that place cells serve as the

neural substrate for spatial memory17 demonstrated that corresponding boundary changes in a virtual arena produce similar distortions in human memory for

object locations (from Hartley et al.17). Right: illustrates prediction of a category extension. Category boundaries shift to include new members of category A. If

exemplar representations are sensitive to the geometry of the concept space, they might become distorted toward the new boundaries (e.g., memorize the chair

with lower than actual feature 1 values).

(B) Experiment (task sequence from left to right): participants were trained to categorize stimuli as A or B based on the combination of their dot- and stripe-

frequencies (schematic illustration of feature space and boundaries), e.g., the depicted example stimulus with low dot- and high stripe-frequency belongs in

category B. Subsequently, participants learned to associate 5 objects with 5 category A stimuli (see Figure 3 for the 5 object positions). In a second categorization

task, boundaries were shifted. Onwhich dimension the shift occurred was counterbalanced across participants. Before and after the shift, the object associations

were tested by asking participants to generate the feature values for each object within the category A space. Related to Figure S1.
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[mean± SD, range]; final performance:mean error: 1.571 ± 0.347,

max error: 2.746 ± 0.454, [N = 46]; three participants who termi-

nated training due to timeconstraints but close tomeeting the cri-

terion [max error: 3.6; 4; 3.6] were included in the sample; Fig-

ure 2B). In sum, the training data show that participants learned

the categorization rule and the object associations well.

Mnemonic distortions following category boundary
changes
We tested participants’ memory of the object-associated

feature combinations before (pre) and after (post) the second

categorization task, to evaluate whether the category boundary

change distorted their memory of the cued exemplars. Partici-

pants had to reconstruct the feature combination of a cued

object within the category A space. In the pre-test, memory ac-

curacy was at a similar level as at the end of training (mean

displacement: 1.72 ± 0.38; N = 46). The main interest was

whether the memory of the cued exemplars is specifically dis-

torted (i.e., deviates from the learned features) along the

stretched as compared with the non-stretched dimension from

pre- to post-category boundary change. The effects of time

point (pre and post), dimension (stretched and non-stretched),

and their interaction on displacements were evaluated in a

two-factorial ANOVA. We found a main effect of time point

(F(1, 180) = 91.91, p < 0.00001), a main effect of dimension

(F(1, 180) = 22.88, p < 0.0000), and critically, a significant
interaction effect (F(1, 180) = 42.34, p < 0.00001) on displace-

ments (Figure 3C). In line with our hypothesis, post-hoc one-

sample t tests revealed no significant differences in displace-

ments between the stretched and non-stretched dimensions in

the pre-test (t(45) = �1.759, p = 0.089) but significantly larger

displacements in the stretched than the non-stretched dimen-

sion in the post-test (t(45) = 7, p < 0.0001; Bonferroni-adjusted

alpha level of 0.025; replication of results in uncorrected trials

in Figure S2). The test results indicate that mnemonic represen-

tations are sensitive to category boundaries.

A BVC population account of concept updating
We find that participants’ memory for the feature combinations

associated with the objects adapted to the new boundaries.

Similar to place fields, memory was specifically distorted along

the stretched as opposed to the non-stretched dimension. We

next askedwhether this pattern of memory distortions is best ac-

counted for by a boundary vector cell (BVC) model of place cell

population activity as compared with simple geometric ac-

counts, which predict remembered positions in the new environ-

ment maintain a fixed distance (FD) to the nearest two walls or a

fixed ratio (FR) to the opposing walls.22 The sensitivity of place

cells to the environmental geometry is assumed to be driven

by the integrated input of BVCs in the subiculum and entorhinal

cortex, that fire with a preferred distance and allocentric direc-

tion to environmental boundaries.14,20,25
Current Biology 34, 5546–5553, December 2, 2024 5547
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Figure 2. Training: Categorization and associative learning performance

(A) Mean categorization accuracy for the first 400 trials and the final 200 trials is displayed for the first (square category A) and second (rectangular category A)

categorization task.

(B) Learning associations between objects and category A stimuli (feature combinations). Displayed are the number of blocks participants required to reach the

criterion (left), the mean (middle), and the maximal displacement (right) in the last two blocks. Bars denote the mean, lines denote standard deviation, and circles

denote individuals.
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In brief, we generated population responses for 80 BVCs with

firing fields at different preferred distances and directions to walls

for each location in the square and in the rectangular environment.

Placement predictions were derived by comparing the similarity

between the response vectors at each location in the rectangular

environment with the object-specific response vectors from the

square environment (Figure 4). We find that the BVC model

provides the overall best fit to placement responses, followed

by the FR and then the FD model. The BVC model consistently

provided themost likely fit to the behavior, bothwhen fitted across

all participants (Figures 4C and 5D; log-likelihood (LL) above uni-

form; BVC: 1,594, FR: 1,501, FD: 1,096) and when fit to individual

participants (Figure 4E; BVC: 34.67, FR: 32.64, FD: 23.83), as well

as the smallest mean distance between displacements and peak

prediction (Figure 4F; one-factorial ANOVA: F(2, 135) = 19.86,

p < 0.0001; one-sample t test: BVC vs. FR: t(45) = �5.06,

p < 0.0001; BVC vs. FD: t(45) =�11.7, p < 0.0001, Bonferroni-cor-

rected alpha = 0.025). The BVCmodel provided the best fit to four

out of five object locations, while the data for position 4 were best

accounted for by the FR model (Figure 4G).

DISCUSSION

This study shows that updating concepts by shifting category

boundaries can distort exemplar memory, and that the pattern

of distortions resembles the effects of environmental boundary

changes on place cell firing and spatial memory. We further

demonstrate formally that the pattern of memory changes after

category boundary shifts is predicted by a BVC model of place

cell population activity, providing a new complementary link be-

tween concept formation and representational mechanisms

arising from the tuning of hippocampal cells.

Howconcepts are represented is central to the study of human

cognition. Cognitive theories related to generalization and cate-

gorization inparticular posited the integration ofmultiple relations

between experiences in a common representational space, with

an appeal of vector space representations in capturing relational

similarity in a domain general manner.6,26,27 A potential neural

substrate for such representational formats might be provided

by spatially tuned cells such as place cells,7 grid cells,28 and

BVCs,20,24,25 which form cognitive maps of the environment.7
5548 Current Biology 34, 5546–5553, December 2, 2024
Recent studies have identified commonalities between spatial

and non-spatial relation representations in the hippocampal sys-

tem for both rodents and humans,4,8–11,29–32 including fMRI evi-

dence for a hippocampal role in the formation and representation

of knowledge structures, i.e., concepts, in category-learning

tasks.4,9,10,33–35 Specifically, hippocampal activation patterns

have been shown to reflect distances between exemplars as

well as decision boundaries along category-defining dimen-

sions.4,9 As a window into the potential neural mechanisms un-

derlying concept learning and its shared foundation with spatial

cognition, we compared the effects of category boundaries on

memory with neurobiologically inspired predictions from a place

cell model. We tested participants’ memory of category exem-

plars before and after updating the category boundaries in terms

of a one-dimensional stretch of the initial category space. Mem-

ory of cued exemplars was specifically distorted along the

stretched comparedwith the non-stretched dimension,mirroring

known patterns of place field deformations. This distortion was

not necessarily to beexpected, asparticipants could just have re-

called the absolute feature combination they had learned. The

specificity of the effect to the stretched dimension further dis-

counts the possibility that these changes are driven by general

repulsion ormemory dispersion effects over time.While previous

work established influences of category boundaries and long-

term semantic category structure on similarity judgements36 or

new learning37 (i.e., relative location of items on a screen were

better learned when congruent with their semantic similarity37),

we believe that these results provide a new demonstration of

how category boundary changes can shape memory.

The observed distortions were most accurately accounted for

by a BVC model, which outperformed simpler geometric models

that predicted replacements, either at FR to opposing boundaries

or at FD to neighboring boundaries, equally for all cue locations. In

contrast, the biological plausibility of the BVCmodel is underlined

by its ability to account for the influence of a cue’s proximity to

boundaries.17 Thus, our findings transfer and extend prior work

on the influence of environmental geometry on place and grid

cell firing14,38 and onhuman spatialmemory17,39 to the non-spatial

cognitive domain. Specifically, our model comparisons align

with the results of Hartley et al.,17 which demonstrated that envi-

ronmental boundary shifts in a virtual reality setting distort human
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Figure 3. Test: Memory distortions following category boundary change

Distribution of placements in the associative memory test before (pre) and after (post) recategorization.

(A) Responses of a single participant (x denote responses; circles denote true position).

(B) Response density map of all participants (dots denote true positions, color bar reflects total count, axes denote feature coordinates).

(C) Displacements (Euclidean distance from true position) significantly increase from PRE to POST on the stretched as compared with the non-stretched

dimension (bars reflect means, dots reflect individuals, asterisk denote significance at p = 0.001). Related to Figure S2.
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memory for object locations in a manner akin to rodent place cell

behavior. Likewise, Chen et al.39 showed that human self-location

estimates display biases aligned with the rescaling of grid code

observed in rodents. The parallelism between cell tuning effects

and spatial memory outcomes suggests that both are influenced

by similar underlying processes. Extending these findings to the

realm of concept learning, our study posits that such correlations

between cell tuning and behavior may also apply to higher-level

cognitive tasks.

Our findings shed new light on the mechanism underlying

concept learning bymanipulating and evaluating the representa-

tion of category boundaries. Classic models differed in which

feature of the representational space guides behavior: while pro-

totype and exemplar models emphasize the center, decision

bound theory suggests that category learningproceedsbydevel-

oping bounds between category regions, which then serve as

reference to interpret new exemplars.3,40 Howwell each account

describes behavior depends on task properties41 and, in linewith

the involvement ofmultiple systems in concept learning,42,43mul-

tiple formats may also coexist in different brain regions.43,44 A

question in this context is whether and how the respective fea-

tures are realized in neural processing, e.g., whether category

boundaries are featured in neural concept representations. In

fMRI studies, hippocampal activity tracked the distance to the

category boundary during categorization5 as well as during
passive viewing of exemplar-associates after categorization,4

whereby the latter representation is dissociated from task diffi-

culty (which inversely relates to boundary distance). The present

results support the idea that spatial cells in the hippocampal sys-

tem may encode category boundaries in a similar manner to

physical boundaries and may hint at a potential mechanism un-

derlying the reported fMRI-based boundary signals.

The BVC model most accurately accounted for the impact

of category boundaries on memory, except for object position

4 on which it performed less well. While this difference might

simply be a matter of chance, it is interesting to note that po-

sitions 4 and 5 (on which the BVC model performs well) have a

low/high combination of feature values but differ in whether

the low feature value lies on the stretched (x) or non-stretched

dimension (y). This difference might be important, as it is

possible that lower feature values are more attended to or bet-

ter encoded, making memory for those features less suscep-

tible to the stretch manipulation. Supporting this, we observed

lower pre-test memory errors for the x-feature compared with

the y-feature at position 4, with the reverse trend for position 5

(Figure S3). The key point is that feature spaces, unlike phys-

ical spaces, have dimensions with qualitative differences that

could interact with boundary-dependent memory adaptation

in ways that the BVC model does not capture. Therefore, the

interaction between potential boundary-sensitive codes and
Current Biology 34, 5546–5553, December 2, 2024 5549
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Figure 4. Modeling mnemonic distortions: Boundary vector cell model and displacement predictions

(A) Boundary vector cells (BVCs) fire at a preferred distance and allocentric direction to walls (left; adapted from Lever et al.25). We simulated the population

response of 80 BVCs for each location in each environment. Displacement predictions are based on the similarity between the response vectors for each location

in the square and each location in the rectangle (right).

(B) Response distribution of object placements in the POST memory test (first row) and displacement predictions of three models (second to last row: BVC, fixed

distance [FD], fixed ratio [FR]).

(C–E) The BVCmodel provides the overall best fit to the response distributions. Displayed are (C) the absolute loglikelihood and (D) the likelihood above a uniform

distribution when the models are fit to all data or (E) to single participants.

(F) Replacement distance from the peak predictions per participant.

(G) The BVC model (blue) provides the best fit to four of five object locations as compared with FR, FD, and a uniform distribution. Bars denote the mean; dots

denote single participants. Related to Figures S3 and S4.

ll
OPEN ACCESS Report
domain-specific mechanisms remains an area for future

research.

In this experiment, the suspected mechanism becomes visible

through erroneous behavior (memory distortions), which may

spark consideration of its cognitive relevance. Similar to fMRI

studies on hippocampal contributions to concept learning, we

evaluated the early stage of concept formation. In the early stage,

when updates occur frequently, adjusting formedmaps (i.e., pop-

ulationcodeofgrid-andplacecells) tocovermoderatevariationsof
5550 Current Biology 34, 5546–5553, December 2, 2024
the original space, can provide a dynamic and flexible approxima-

tion. Thus, the coding regime of the hippocampal-entorhinal sys-

temmay afford rapid formation and dynamic updating of new con-

cepts at thecostofbeingaccompaniedby transient imprecision. In

the spatial domain, boundaries comparably serve as cues for reor-

ientation and are thought to anchor and update spatial representa-

tions.45–50 While the concept participants learned was defined

along two perceptual feature dimensions, real-world concepts

can be higher-dimensional and defining features derived from
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different content domains, including non-perceptual features. The

design did not aim to explain the long-term representation of con-

ceptual knowledge but to provide a methodological window into

the mechanisms underlying its formation. As there is a limit to the

number of new (uncorrelated) dimensions that can be considered

at the same time, we consider the present findings as principally

generalizable in this respect. Furthermore, the firing properties of

BVCs and place cells are theoretically not restricted to two dimen-

sions; in particular empirical evidence for place cells extends to

3D.51 Lastly, hippocampal and entorhinal cells have been shown

to encode relationships in non-spatial domains30 and abstract

task variables,52,53 and corresponding representational signatures

have been observed via human fMRI including perceptual31 and

non-perceptual abstract29,32 (e.g., social) dimensions.

Our approachbuilds onprior parallels betweenhumanmemory

responses and firing patterns of rodent place and grid cells in

response togeometric deformationsof theenvironment.15,17,18,39

We testedpredictions derived from the similarity ofmodeledBVC

population activity in the original anddeformed space, as respec-

tive predictions have been shown to account for the pattern of

place field and human spatial memory distortions in response

to environmental geometry changes.17 Intracranial recording

and neuroimaging studies of the human medial temporal lobe

have further revealed neural tuning and populational-level repre-

sentations of cognitive spaces paralleling those observed in ro-

dents.8,9,54–57 A contribution of place field deformations to this

category-boundary anchoredmemoryshifts is therefore conceiv-

able. Yet, alternative neural implementations of the observed

behavior cannot be excluded. Given the qualitative differences

between feature-based and spatial relations, future work might

further explore the interaction of potential place field deforma-

tions and additional domain-specific mechanisms in generating

the observed behavior.

In sum, this study offers insights in how category boundaries

can shape memory and suggests a biological account in form

of a place cell model. The results support the notion of shared

representational mechanisms underlying spatial and non-spatial

cognition and demonstrate a novel link between properties of

hippocampal coding and concept learning. This might open up

new avenues for further in-depth investigations of elementary

neural mechanisms underlying higher-level cognition in humans.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Sixty-eight participants gave written informed consent and were compensated for participation as agreed by the local Research

Ethics Committee (Medical University Leipzig). Thirteen participants did either not reach the performance criteria of the training phase

(see below; associative learning and categorization tasks) or did not finish the entire experiment. Nine participants had to be excluded

due to an initial error in the task script. Thus, forty-six participants (age: 25.7 ± 3.6 years; 26 female) entered the main analysis to

evaluate category boundary effects on memory.

METHOD DETAILS

Experimental procedure
Participants performed five behavioural tasks on the same day. In a first categorization task, they acquired the concept of two stim-

ulus categories, which were defined as a square enclosure (category A) and its surrounding (category B) in a two-dimensional feature

space. Participants learned to categorize stimuli with varying number of dots & stripes based on the combination of these features (1).

Subsequently, they learned to associate five category-A stimuli with everyday objects (2). As the key manipulation, we then relocated

the category boundaries, such that the shape of category A changed from a square to a rectangle (Figure 1). Participants encountered

this change in a second recategorization task (4). We then probed participants memory of the stimuli associated with the objects

before (3) and after (5) the recategorization task (i.e., they had to reconstruct the feature-combination associated with each object).

As knowledge of the category boundaries and the associations was a precondition to test for effects of boundary updates onmemory

(3, 5), we set rather high performance criteria for the training tasks to inform inclusion in the test (approximated based on previous

experience with these tasks14,15). As the experiment took several hours (including breaks) with variance among participants, partic-

ipants that terminated a task due to time constraints or fatigue but performed close to the criterion were included.

Categorization task
Participants were presented one stimulus at a time and had to indicate via button press (response time limit: 10 s) whether it belongs

to category A or B and subsequently received feedback (500 ms) whether the response was correct. Stimuli were grey squares with

varying numbers of red dots and purple stripes in the lower and upper part of the grey square, respectively (example stimulus Figure 1

left). Category membership was determined by the combination of dot- and stripe-frequency. Specifically, the category boundary

was defined by a square-shaped category A within a surrounding category B in a two-dimensional feature space (dimensions:

dot- and stripe-frequency). The size of the feature-space was 21x21 steps in dot- and stripe-frequency (the size of the steps was

adjusted using Maximum Likelihood Difference Scaling58 to achieve equal psychophysical discriminability; dimensions ranged be-

tween 16-190 dots and 6-64 stripes). The boundaries of category A changed from 5:15/5:15 (square) in the first categorization task to

1:19/5:15 (rectangle) in the second categorization task. Response button to category mapping was balanced across participants.

The categorization phase proceeded as follows: Participants performed a minimum of 400 trials, in which A and B stimuli appeared

with an equal probability (on average 317±3 (mean±std) different stimuli sampled). If participants did not reach 85% accuracy in all

sectors of the feature space (evaluated for eight sectors: left and right to category A within the y-axis limit of A, above and below A

within the x-axis limit of A, and accordingly four remaining corner spaces), then training continued for at least 200 trials with sampling

adapted to sectors below 85% until the criterion was reached for the last 200 trials. To aid initial learning, in the experiment the four

feature values that demark the boundaries (i.e., stimuli displaying only the stripes or only the dots at either the minimal or maximal

frequency, respectively) were displayed in a horizontal arrangement at the bottom of the screen. In a final test this display was

removed and participants performed 50 unique trials without repetition. The recategorization task (rectangular category A) was alike

to the first categorization task (square category A) in all aspects except the category boundary values. Participants were informed

that they perform the same task but that the categorization rule might have changed to some extent. The assignment of feature

dimension (dots/stripes) to manipulation (stretched/non-stretched dimension) was counterbalanced across participants.

Associative learning task
The five associations of object and stimulus (dot-stripe feature combination) were randomized across participants. All five associa-

tions were presented once. In subsequent trials, participants had to construct the stimulus associated with a given object by up- and

down-regulating the dot- and stripe-frequency of a random start stimulus via four adjacent keys (stripes up, stripes down, dots up,
e1 Current Biology 34, 5546–5553.e1–e3, December 2, 2024
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dots down). To avoid that participants consider specific perceptual patterns (rather than frequency), the stimuli were generated by

randomly distributing dots and stripes within a given area of the stimulus. Accordingly, a certain position in concept space (e.g., co-

ordinate 15(dots)/10(stripes)) never looked exactly the same, except that the number of dots and stripes was identical between two

iterations of this position. Upon editing the stimulus associated to the object cue, participants confirmed their choice via button press.

If the response was not correct, they were presented with the correct stimulus before being asked to repeat the trial until the correct

combination was generated. The five associations (1 block) were iterated until participants reached an average deviation below 2.5

steps and a maximal deviation below 3 steps in the 21x21 steps sized feature space within the last 2 blocks.

Associative memory test
The associative memory test followed the same procedure as associative learning, except that upon confirmation of the generated

stimulus, no feedback was provided. Participants performed five iterations of each association (in total 25 trials). The associative

memory test was performed immediately before and after the recategorization task. All objects were positionedwithin the initial cate-

gory A. In both tests, responses that were outside the initial or stretched category A respectively, had to be adjusted. This was done,

because the model analysis required responses to be inside the boundaries. The overall number of corrected trials was relatively low

(number of corrected trials in POST: 3,6 ± 2,7 trials, median: 3 trials). The effects of dimension (stretched/ non-stretched) and time

(pre / post-stretch) on displacement error were evaluated in a two-factorial ANOVA. As control analyses (Figure S2), the ANOVA was

repeated using only trials in which participants received no correction, and when additionally excluding participants that received

more than 2 corrections in the session to avoid general influences on behavior.

QUANTIFICATION AND STATISTICAL ANALYSIS

We evaluated whether memory responses following category boundary changes are explained by a model of boundary vector cell

(BVC) population activity. BVCs are cells in the subiculum that fire with a preferred distance and allocentric direction to a wall and are

assumed to drive the geometry-sensitivity of place cells.20,25 We compare this model to two alternative geometric accounts, that

predict that remembered positions in the rectangular environment maintain either a fixed distance to the nearest two walls (FD) or

a fixed ratio (FR) to the opposing walls,17 respectively. For this purpose, we fitted three models to the distribution of displacements

in the post-recategorization memory test.

Boundary vector cell model
Wegenerated response vectors of a BVC population (N=80) for each location in a square (100 x 100 virtual units) and rectangular (100

x 173) environment (see Figure S4). Displacement predictions were derived by calculating the dissimilarity in the BVC response vec-

tors across locations in the square and rectangle. Specifically, dissimilarity was calculated using the L2 norm between response vec-

tors. First, BVC response vectors corresponding to cued object locations in the square environment were stored as a reference. Next,

we calculated the dissimilarity (L2 norm) between these object-specific response vectors in the square environment, and each

possible location in the rectangular environment. Locations defined in a square, have no ‘true’ position defined in a rectangular

space. However, these dissimilarity scores can instead be used to map out which positions in the rectangular environments are

most dissimilar to the cued object locations in the square. Dissimilarity scores were then turned into similarity scores by subtracting

the dissimilarity from its maximum value across the rectangular environment, before down-sampling them onto the size of the

concept spaces (square: 11x11 grid, rectangle: 11x19 gid). Thus, predicted responses cluster around locations that minimize the

net change in activity from that seen at the cued locations in the square environment.

The population of BVCs were defined by a similar specification used in previous iterations of the BVC model.22,38 Specifically, a

boundary that is at distance r, direction q and subtending at an angle dq contributes to the firing rate fi of the ith BVC is according to:

dfi = giðr; qÞ dq
where:

giðr; qÞf
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Here, fi = ½0�;90�; 180�; 270�� are the BVC angular tunings and the 20 distal tunings were chosen to evenly span the stretched

space e.g. di = 173 � 8:87a virtual units, for a taking integer values ranging from 0 to 19 (inclusive). These 4 angular and 20 distal

tunings give rise to the N=80 BVCs defined above with sdist = 200 virtual units and sang = 11:25�. This instantiation of the BVCmodel

was adapted to the concept space implemented in this study by having preferred angular tunings defined by the axes of motion in the

concept space (i.e. f i = ½0�;90�;180�;270��Þ, as well as constant distal tuning widths across the population of BVCs. In particular,

the fixed distal tuning width was used because, unlike physical space, the precision of localisation in the concept space can depend

only on the conceptual cues themselves rather than the location of boundaries. This contrasts 2D physical spaces, where the pre-

cision with which sensory observations of boundaries can be used to accurately guide self-localisation diminishes with distance from

them21 - this is incorporated in the traditional BVC model by increasing BVC distal tuning widths with their preferred distal tuning to
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boundaries.22 Similar results are established when BVC distal tuning widths, sdis, increase with distal tuning di as in Hartley et al.17

(BVC model LL = -4556.4 for sdis= 200 + di/50).

Alternative geometric models: Fixed ratio
We generated replacement predictions in the updated concept space that maintains a fixed ratio to the boundaries in the environ-

ment. Here, each location in each environment is parameterised by a vector of length 2: [RNS, REW] where RNS and REW are the ratios

between the shortest distances to the North-South and East-West walls respectively. Displacement predictions were derived by first

calculating the dissimilarity between object locations in the square to all locations in the rectangle using the L2 norm between the

[RNS, REW] vectors at the two locations. Dissimilarity scores were then turned into similarity scores by subtracting the dissimilarity

from its maximum value across the rectangular environment.17 Fixed distance.Wegenerated replacement predictions in the updated

concept space that maintains a fixed distance to the two nearest boundaries in the environment.17 Here, each location in each envi-

ronment is parameterised by a vector of length 2: [DNS, DEW] where DNS and DEW are the shortest distances to the North-South and

East-West walls respectively. Displacement predictions were derived by first calculating the dissimilarity between object locations in

the square to all locations in the rectangle using the L2 norm between the [DNS, DEW] vectors at the two locations. Dissimilarity scores

were then turned into similarity scores by subtracting the dissimilarity from its maximum value across the rectangular environment.17

Model likelihood testing
The distribution of similarity scores Sxy for each model were converted into a probability distribution Pxy using a Softmax function

PXY = expð�SXY =tÞ=
P

XY expð�SXY =tÞ (Figure 4). The inverse temperature parameter t controls the sharpness of the distribution

and was fit to maximise the log-likelihood of each model given the participant replacement data across all object locations using the

fmincon function MATLAB 2022b. Model log-likelihoods were calculated using the natural logarithm loge(Pxy).
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