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A B S T R A C T

Power-to-methanol processes use green hydrogen, which is generated by electrolysis using regenerative energy,
e.g. wind or solar energy. In this paper a novel control concept is proposed to handle fluctuations in the
hydrogen feed due to unavoidable fluctuations in the energy supply. Focus is on a robust multistage reactor,
with variable feed distribution as additional degrees of freedom. The controller uses dynamic optimization
with a hybrid model for feedforward control of the feed distribution and simple PI control of the total carbon
feed to compensate plant model mismatch and unforeseen disturbances. The hybrid model combines modeling
from first principles with a neural network to capture the influence of catalyst dynamics on the reaction rates.
The concept is validated with a simulation study using a detailed reference model.
1. Introduction

Methanol is an important starting material for many chemical pro-
cesses. Traditionally, it is produced in large scale from fossil resources
(natural gas and oil) and the resulting synthesis gas by hydrogenation of
CO/CO2 using a heterogeneous Cu/ZnO/Al2O3 catalyst under pressures
in the range of 50-80 bar and temperatures of 200–250 degree Celsius
(Asinger, 1986; Fiedler et al., 2000). Typically these processes are
operated under steady state conditions with only minor fluctuations
due to unforeseen disturbances.

Alternatively, power-to-methanol processes become more and more
important (Schlögel, 2015; Burre et al., 2020; Mucci et al., 2023). Here,
green hydrogen is obtained from water electrolysis with regenerative
energy (e.g. solar or wind energy) and can react with CO/CO2 from
various sources like biogas (Vita et al., 2018; Theuerl et al., 2019),
industrial exhaust gases (Nestler et al., 2018), or direct CO2 air capture
(Bos et al., 2020). Main objective of power-to-methanol processes is the
reduction of greenhouse gas emission compared to traditional processes
based on fossil feedstocks. However, utilization of regenerative energy
sources for water electrolysis introduces unavoidable fluctuations in the
hydrogen supply. To handle these fluctuations, different options are
available, e.g. using intermediate storage (e.g. Mucci et al. (2023)),
and/or robust reactor concepts, Fischer and Freund (2020) and Keßler
and Kienle (2023) and/or suitable control concepts to compensate
these fluctuations (e.g. Robinson and Luyben, 2011; Abrol and Hilton,
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2012; Martin, 2016; Allman et al., 2019; Beek and Sadlowski, 2020).
However, in most of these approaches linear models are applied and
nonlinear reactor dynamics, which is a particular focus of this paper,
are neglected.

This contribution is concerned with the multistage reactor which
was introduced for methanol production in Keßler and Kienle (2023).
The main idea in this concept is to handle fluctuations in the hydrogen
feed supply by flexible distribution of the feed to the different stages of
the reactor and thereby increase robustness. Since methanol synthesis
is an exothermic reaction, flexible distribution of the feed to different
reactors allows flexible heat management to avoid hot spot formation
and achieve the desired conversion. For that purpose, in a first step
a robust reactor design was proposed in Keßler and Kienle (2023)
based on simultaneous steady state optimization of 50 characteristic
disturbance scenarios. It was shown, that with this approach feasibility
could be achieved under steady state conditions for given disturbance
scenarios but not under transient dynamic conditions. Therefore, in
a second step an open loop optimal control problem was solved by
dynamic optimization to achieve feasibility for a given scenario also
under transient conditions. The study was based on a detailed physical
model of the methanol synthesis.

In the present paper, this strategy is extended in two directions.
First, a hybrid mathematical model is used for nonlinear dynamic
optimization. It is based on first principles using material and energy
balances and comprises an artificial neural network for the prediction
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Fig. 1. Process flowsheet of the multistage reactor considered in this paper and
in Keßler and Kienle (2023).

of the influence of the methanol catalyst dynamics on the reaction
inetics and thereby alleviates the modeling task. Second, to handle
lant model mismatch and additional unforeseen disturbances, feed-
ack control action is introduced with a simple PI controller, acting
n the carbon feed supply to maintain constraints on conversion of the
hemical reaction. The concept is evaluated step-by-step for a char-

acteristic scenario taken from our previous work (Keßler and Kienle,
2023).

2. Mathematical models

2.1. Reactor model

In this paper a methanol reactor with three stages and a distributed
feed as illustrated in Fig. 1 is considered.

The individual stages are modeled in this conceptual study in first
approximation as well mixed diabatic CSTRs. Inside these reactors the
heterogeneously catalyzed hydrogenation of a mixed CO and CO2 feed
is taking place according to
CO + 2 H2 ←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←← CH3OH, (1)

CO2 + 3 H2 ←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←← CH3OH + H2O, (2)

In addition, chemical conversion between CO and CO2 following the
water gas shift reaction plays an important role

CO + H2O ←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←← CO2 + H2 ⋅ (3)

The reactions are catalyzed by a standard Cu/ZnO/Al2O3 catalyst.
The mathematical model of the individual stages assumes

• perfect mixing
• constant pressure
• thermodynamic equilibrium between the solid and the fluid phase

Under these assumptions the model equations of the individual
tages follow from the quasihomogeneous material and energy bal-

ances. The component material balances read
d
d𝑡

(

𝑛G𝑖 + 𝑛S𝑖
)

= 𝑛̇in ⋅ 𝑦𝑖,in − 𝑛̇out ⋅ 𝑦𝑖 + 𝑚cat ⋅
∑

𝑗
𝜈𝑖,𝑗 ⋅ 𝑟𝑗 , (4)

with

𝑛G𝑖 = 𝑛G ⋅ 𝑦𝑖, (5)

𝑛G =
p ⋅ V
R ⋅ 𝑇

, 𝑛̇out =
p ⋅ 𝑉̇out
R ⋅ 𝑇

, 𝑛̇in =
p ⋅ 𝑉̇in
R ⋅ 𝑇in

, (6)

𝑛S𝑖 = mcat ⋅ qsat ⋅ 𝛩𝑖, (7)

Therein, 𝛩𝑖 is the relative amount of all active sites of the catalyst
urface occupied by component ‘i’. It depends on the competitive

adsorption equilibrium and is a function of the partial pressures of all
components in the gas phase. A more detailed description is given in
the reaction kinetics section and in Nikolić et al. (2022).

The total material balance follows from the component material
balances by summation over all species ‘i’. The total material balance
2 
Table 1
Reactor parameters.

Parameter Value Unit

Vt ot 2.83 m3

mcat,t ot 2002 kg
ρcat 1770 kg m−3

P 70 bar
KW 250 W m−2 K −1

AW 18.85 m2

qsat 0.98 mol kg−1

ccatp 1063 J kg−1 K−1

is used to eliminate the molar flow rate of the outlet 𝑛̇out in Eq. (4). To-
gether with Eqs. (5)–(7) the component material balances are obtained
in final form as

𝑛G ⋅
d𝑦𝑖
d𝑡

+ mcat ⋅ qsat ⋅ p ⋅

(

∑

𝑘

𝜕 𝛩𝑖
𝜕 𝑝𝑘

⋅
d𝑦𝑘
d𝑡

−
∑

𝑖

∑

𝑘

(

𝜕 𝛩𝑖
𝜕 𝑝𝑘

⋅
d𝑦𝑘
d𝑡

)

⋅ 𝑦𝑖

)

=

𝑛̇in ⋅
(

𝑦𝑖,in − 𝑦𝑖
)

+ mcat ⋅

(

∑

𝑗
𝜈𝑖,𝑗 ⋅ 𝑟𝑗 −

∑

𝑖

∑

𝑗

(

𝜈𝑖,𝑗 ⋅ 𝑟𝑗
)

⋅ 𝑦𝑖

)

.

(8)

In a similar way the volumetric flow rate of the outlet is obtained
from the total material balance according to
𝑉̇out =

V
𝑇

⋅
d𝑇
d𝑡

+ 𝑇
𝑇in

𝑉̇in +
mcat ⋅ R ⋅ 𝑇

p

×

(

∑

𝑖

∑

𝑗
𝜈𝑖,𝑗 ⋅ 𝑟𝑗 − qsat ⋅ p ⋅

∑

𝑖

∑

𝑘

𝜕 𝛩𝑖
𝜕 𝑝𝑘

⋅
d𝑦𝑘
d𝑡

)

.
(9)

To describe the temperature dynamics a quasihomogeneous energy
alance is considered

d
d𝑡

(

∑

𝑖
𝑛G𝑖 ℎ

G
𝑖 +

∑

𝑖
𝑛S𝑖 ℎ

S
𝑖 + 𝑚catℎ

∗
cat

)

=

̇ in
∑

𝑖
⋅𝑦𝑖,inℎ

G
𝑖,in − 𝑛̇out

∑

𝑖
⋅𝑦𝑖ℎ

G
𝑖 + 𝑄̇c,

(10)

with enthalpies ℎ and cooling rate 𝑄̇c. After differentiation and inser-
tion of the above material balances the following differential equation
for the reactor temperature is obtained
⎛

⎜

⎜

⎜

⎜

⎝

𝑛G ⋅ 𝑐Gp
⏟⏟⏟

gaseous species

+������⁓ 0
mcat ⋅ 𝑞sat ⋅ 𝑐

S
p

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
adsorbed species

+ mcat ⋅ 𝑐
cat
p

⏟⏞⏞⏟⏞⏞⏟
"dead" catalyst

⎞

⎟

⎟

⎟

⎟

⎠

⋅
d𝑇
d𝑡

= − 𝑛̇in ⋅
∑

𝑖 ∫

𝑇

𝑇in
𝑐Gp,𝑖 d𝑇 ⋅ 𝑦𝑖,in

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
heat of transport

− mcat
∑

𝑗
𝛥ℎR,𝑗 ⋅ 𝑟𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
heat of reaction

− KW ⋅ AW ⋅
(

𝑇 − 𝑇c
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
heat of cooling

−
∑

𝑖

d𝑛S𝑖
d𝑡

⋅ 𝛥hads,𝑖
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
heat of adsorption

,

(11)

with

̄Gp =
∑

𝑖
𝑐Gp,𝑖 ⋅ 𝑦𝑖, 𝛥hads,𝑖 = ℎS𝑖 − ℎ

G
𝑖 . (12)

The heat capacity of the adsorbed phase is neglected as indicated on
he left hand side of the above equation and the adsorption enthalpies
re assumed to be constant. Caloric data can be found in Keßler and

Kienle (2023).
For a detailed derivation of the quasihomogeneous model equations

the reader is also referred to Keßler and Kienle (2023).
Reactor parameters used in this study are summarized in Table 1

for an industrial scale reactor according to Keßler and Kienle (2023).
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2.2. Mechanistic model of the reaction kinetics

The mechanistic model of the reaction kinetics was taken from
Seidel et al. (2018, 2020) with parameters from Seidel et al. (2021).
The model used in the present paper represents the Langmuir Hin-
shelwood kinetics in Ref. Seidel et al. (2018) with lumped reactions
steps for the reactions (1)–(3). It is based on a comprehensive set of
experimental steady state and dynamic data provided in the PhD Thesis
of Vollbrecht (2007). The experiments were performed in an isothermal
isobaric well-mixed micro Berty reactor. The model assumes three
different active centers on the surface of the considered Cu/ZnO/Al2O3
catalyst, namely, reduced centers (superscript ‘red’), oxidized centers
(superscript ‘oxi’) and active centers for heterolytic decomposition of
hydrogen (superscript ‘het’). The resulting expressions for the reaction
rates are

𝑟CO = (1 − 𝜙) ⋅ 𝑘1 ⋅
(

𝑝CO ⋅ 𝑝2H2
−
𝑝CH3OH

𝐾1

)

⋅ 𝛩(oxi) ⋅ 𝛩(het )4, (13)

𝑟CO2
= 𝜙2 ⋅ 𝑘2 ⋅

(

𝑝CO2
⋅ 𝑝H2

−
𝑝CH3OH ⋅ 𝑝H2O

𝐾2 ⋅ 𝑝H2

)

⋅ 𝛩(r ed)2 ⋅ 𝛩(het )4, (14)

WGS =
𝜙

1 − 𝜙 ⋅ 𝑘3 ⋅

(

𝑝CO2
−
𝑝CO ⋅ 𝑝H2O

𝐾3 ⋅ 𝑝H2

)

⋅ 𝛩(r ed) ⋅ 𝛩(oxi), (15)

with equilibrium constants 𝐊 according to
log(𝑲) = 𝛂𝟏 + 𝛂𝟐∕𝑇 + 𝛂𝟑 ⋅ log(𝑇 ) + 𝛂𝟒 ⋅ 𝑇 + 𝛂𝟓 ⋅ 𝑇

2, (16)

and rate constants 𝑘𝑗 .

𝑘𝑗 = exp
(

A𝑗 − B𝑗 ⋅
(

Tr ef
𝑇

− 1
))

. (17)

Parameters 𝛂𝒊 in the above expression for the equilibrium constants
ave been taken from Skrzipek et al. (1994).

The relative amount of free oxidized surface centers 𝛩(oxi), free
educed surface centers 𝛩(r ed), and free surface centers for heterolytic

hydrogen decomposition 𝛩(het ) follow from

𝛩(oxi) =
(

1 + 𝛃(oxi)CO ⋅ 𝑝CO
)−1

, (18)

𝛩(r ed) =
(

1 + 𝛃(r ed)H2
⋅ 𝑝0.5H2

)−1
, (19)

𝛩(het ) =
(

1 + 𝛃(het )CO2
⋅ 𝑝CO2

)−1
. (20)

It should be noted, that the above expressions are a reduced version
of the full model in Seidel et al. (2018, 2020, 2021). Expressions corre-
sponding to zero 𝛃 parameters obtained from the parameter fit over a
wide range of operating conditions in Seidel et al. (2021), i.e. pressures
0–60 bar, temperatures 500–530 K and various compositions, were
eglected for simplicity. For refitting the model to other, entirely
ifferent data e.g. in terms of pressures, temperatures or catalyst, the
riginal full model should be taken into account.

In contrast, to traditional kinetic models for methanol synthesis
(Graaf et al., 1986, 1988; Bussche and Froment, 1996), dynamic
hanges of the oxidation state of the catalyst depending on the reducing
nd oxidizing potential of the gas phase is taken into account. This is
escribed by the following differential equation
d𝜙
d𝑡

= k+1 ⋅
(

𝑦CO ⋅ 𝛥𝜙 −𝐾+−1
1 ⋅ 𝑦CO2

⋅ 𝜙
)

+ k+2 ⋅
(

𝑦H2
⋅ 𝛥𝜙 −𝐾+−1

2 ⋅ 𝑦H2O ⋅ 𝜙
)

,

(21)

where 𝑦𝑖 are the mole fractions of the different components in the gas
phase, 𝛥𝜙 = 𝜙𝑚𝑎𝑥 − 𝜙, and

𝑲+ = exp
(−𝜟𝐆
R ⋅ 𝑇

)

. (22)

All parameters of the reaction kinetics used in this paper are given
in the present nomenclature in Table 2.

Finally, it is important to note that the model is clearly nonlinear,
mainly due to the exponential temperature dependence of the reaction
ate constants according to Arrhenius.
3 
2.3. Hybrid model of the reaction kinetics

The influence of the catalyst dynamics on the reaction rates in the
bove model was described by prefactors

𝜸 =
[

1 − 𝜙, 𝜙2,
𝜙

1 − 𝜙
]

. (23)

in the rate expressions (13)–(15). They were derived based on
euristic assumptions and empirical testing in Seidel et al. (2018,

2020). Accordingly, the reaction rate vector can be expressed as

̄𝑖 = 𝛾𝑖 (𝐱) 𝑟𝑖, 𝑖 ∈
(

CO,CO2,RWGS
)

(24)

A detailed derivation of the 𝜸 functions from extended experimen-
tal data and/or microkinetic models would be extremely challenging.
Further it is assumed that such level of detail is not required for
applications in process control to be considered in this paper. It has
therefore been suggested (Martensen et al., 2023), to replace (23) with
an artificial neural network (ANN) that is in the end directly trained

ith dynamic data. Such a hybrid model structure should combine
ood predictability due to the inclusion of physico-chemical a priori
nowledge with reduced effort for model generation due to modeling
he influence of partly unknown kinetics with a data driven approach.
o test this hypothesis, the neural network is trained in a first step
ith data generated by the mechanistic model of a single CSTR under

sothermal isobaric conditions. Thereby it is assumed that the ANN may
epend not only on 𝜙 but all concentration variables. Later the resulting
ybrid model is used for optimization and control of the nonisothermal
ultistage reactor in Fig. 1. The control strategy based on the hybrid

model is then tested with the detailed mechanistic model.
The network is initially trained with a synthetic noise-containing

data set, following the approach described in Martensen et al. (2023)
and utilizing a likelihood objective of maximum a posteriori. Through

onte Carlo sampling, hyperparameter tuning has been conducted to
determine a suitable architecture of the neural network comprising the
hoice of activation function as well as the number/quantity of hidden
ayers and their respective sizes. The data set is divided into separate

training and testing sets. The most suitable architecture is chosen based
on the Bayesian Information Criterion, leading to the selection of a
neural network with one hidden layer and two neurons, employing the
selu activation function. The output layer is equipped with the softplus
activation function to enforce positive definite outputs. For the details
concerning the determination of the network structure the reader is
referred to Martensen et al. (2023).

Fig. 2 shows an exemplary trajectory of the hybrid model found,
illustrating a high level of agreement between the first-principle model
and the hybrid model.

Global sensitivity analysis (Dixit and Rackauckas, 2022) of the
mbedded neural network revealed high relevance of the input 𝜙, with
he other inputs being negligible, as shown in Fig. 3. This is expected

due to the structure of the mechanistic model. Minor dependence on
other state variables is mainly caused by noise. Due to this, we omit
the neural network’s dependency on the states other than 𝜙 and use
this smaller network for all control approaches in the following.

2.4. Multistage reactor

As illustrated in Fig. 1 we consider a flow sheet with 3 well mixed
iabatic reactors. They will be denoted in the following by the subscript
∈ [1, 2, 3]. It is assumed that all three reactors have equal volume with

equal amount of catalyst according to
V𝑟 =

Vt ot
3
, (25)

𝑚cat,𝑟 =
mcat,t ot

3
. (26)
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Table 2
Parameter values for reaction kinetics model (Seidel et al., 2021).

Parameter Value Parameter Value Parameter Value Unit

𝛼1,1 13.814 𝛼1,2 15.0921 𝛼1,3 1.2777 –
𝛼2,1 3784.4 𝛼2,2 1581.7 𝛼2,3 −2.167 –
𝛼3,1 −9.2833 𝛼3,2 −8.7639 𝛼3,3 0.5194 –
𝛼4,1 3.1475⋅10−3 𝛼4,2 2.1105⋅10−3 𝛼4,3 −1.037⋅10−3 –
𝛼5,1 −4.2613⋅10−7 𝛼5,2 −1.9303⋅10−7 𝛼5,3 2.331⋅10−7 –
ACO −5.001 ACO2

−3.145 AWGS −4.4526 mol bar−3 k g−1cat s−1
BCO 26.455 BCO2

1.5308 BWGS 15.615 –
β(r ed)H2

1.1064 – – – – bar−0.5

β(oxi)CO 0.14969 β(het )CO2
0.062881 – – bar−1

𝛥G1 335.7 𝛥G2 21 841.5 – – J mol−1

k+1 79.174⋅10−4 k+2 0.188⋅10−4 – – s−1

ϕmax 0.9 – – – – –
Fig. 2. Example trajectory comparing the first-principle (solid) and the hybrid model
(dotted).

Fig. 3. Global sensitivities of the found neural network with respect to its inputs. The
sensitivity analysis reveals a strong dependency on the state 𝜙, which is called 𝑥𝜙 in
this figure, while the other inputs are less influential on the output of the neural net.

𝑛̇in,t ot in Fig. 1 is the total inlet flow rate it consists of a fluctuating
hydrogen supply 𝜉 ⋅ 𝑛̇H2 ,in,t ot and a mixed CO, CO2 carbon supply 𝑛̇C,in,t ot ,
with 𝜓𝐶 being the molar ratio of CO2 to CO in the feed

𝑛̇in,t ot = 𝜉 ⋅ 𝑛̇H2 ,in,t ot + 𝑛̇C,in,t ot , (27)

𝑦H ,𝑖𝑛,𝑡𝑜𝑡 =
𝜉 ⋅ 𝑛̇H2 ,in,t ot , (28)
2 𝑛̇in,t ot

4 
Fig. 4. Hydrogen supply disturbance scenario taken from Keßler and Kienle (2023).
Left: Domain relevant for robust steady states design in Keßler and Kienle (2023).
Right: Specific scenario considered in this paper. 𝑛̇𝐻2 ,𝑡𝑜𝑡,𝑖𝑛 = 𝜉 ̇𝑛𝐻2 ,𝑟𝑒𝑓 .

𝑦CO2 ,in,t ot =
𝑛̇C,in,t ot ⋅ 𝜓C

𝑛̇in,t ot
, (29)

𝑦CO,𝑖𝑛,𝑡𝑜𝑡 =
𝑛̇C,in,t ot ⋅

(

1 − 𝜓C
)

𝑛̇in,t ot
. (30)

The fresh feed is divided by split-ratios, 𝜅𝑟, to the three reactors with

𝑛̇in,1 = 𝜅1 ⋅ 𝑛̇in,t ot , (31)

𝑛̇in, ̄𝑟 = 𝜅𝑟̄ ⋅ 𝑛̇in,t ot + 𝑛̇out, ̄𝑟−1, 𝑟̄ ∈ [2, 3], (32)
∑

𝑟
𝜅𝑟 = 1. (33)

The inlet compositions and temperatures for reactors 2 and 3 are
calculated accordingly with

𝒚in, ̄𝑟 =
𝒚 𝑟̄−1 ⋅ 𝑛̇out, ̄𝑟−1 + 𝜅𝑟̄ ⋅ 𝑛̇in,t ot ⋅ 𝒚in,t ot

𝑛̇out, ̄𝑟−1 + 𝜅𝑟̄ ⋅ 𝑛̇in,t ot
, (34)

𝑇in, ̄𝑟 =
𝑇𝑟̄−1 ⋅ 𝑛̇out, ̄𝑟−1 + 𝜅𝑟̄ ⋅ 𝑛̇in,t ot ⋅ 𝑇in,t ot

𝑛̇out, ̄𝑟−1 + 𝜅𝑟̄ ⋅ 𝑛̇in,t ot
, (35)

where 𝑇in,t ot is the temperature of the inlet into the system.
Parameters 𝑛̇C,in,t ot , 𝜉 ⋅ 𝑛̇H2 ,in,t ot , 𝜓𝐶 , 𝑇in,t ot and cooling temperatures

of the reactors have been taken from the robust design in Keßler and
Kienle (2023).

3. Control concept

In this paper a two degrees of freedom (2 DOF) control strategy is
proposed to compensate unavoidable fluctuations in the feed supply.
Main source of disturbances is the hydrogen feed which is produced by
electrolysis with renewable energy (e.g. wind energy in our scenario).
It is assumed that fluctuations of the hydrogen supply can be well pre-
dicted over a time horizon of a few hours. A representative disturbance
scenario considered in this paper is shown in Fig. 4. It resembles a
typical wind scenario. For the details the reader is referred to Keßler
and Kienle (2023).
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Table 3
Variables and respective bounds. Variables below the mid rule are degrees of
reedom.
Variable Domain Unit

𝑻 [400, 600] K
𝑽̇ out [1⋅10−4 , 5⋅10−1] m3 s−1

𝑻 ∗
c [450, 550] K

𝑻 ∗
c,s [450, 550] K

𝜿∗ [0, 1] –
𝜿∗
𝑠 [0, 1] –
𝑠∗1 [0, 0.6] –
𝑠∗2 [0, 100] –

To counteract this disturbance, feedforward control action is cal-
ulated with dynamic optimization as described in Keßler and Kienle

(2023). However, in contrast to Keßler and Kienle (2023) we use
he hybrid model introduced in the previous section instead of the
echanistic model for dynamic optimization in the feed forward part.
anipulated variables of the feed forward controller are the feed splits

nd the shell temperatures of the different reactors. The corresponding
ynamic optimization problem is defined as:

max𝒙 𝐽 = ∫ 𝑆 𝑇 𝑌 (𝒙, 𝜉)2 ∕𝑡2end − U ⋅ (𝑠1 + 𝑠2) d𝑡
s. t. dy namic hy br id model equat ions,

𝒙lo ≤ 𝒙 ≤ 𝒙up,
𝑋C(𝒙, 𝜉) + 𝑠1 ≥ 0.6,
(

𝑻 (𝒙, 𝜉) − 𝑻 𝑐
)2 ≤ (30 + 𝑠2)2,

∑

𝑖 𝑦𝑖(𝒙, 𝜉) = 1,
∑

𝑖 𝑦𝑖,in = 1,

𝑻̇ 𝑐 =
−𝑻 𝑐 + 𝑻 𝑐 ,𝑠

50
,

𝜿̇ =
−𝜿 + 𝜿𝑠

20
,

(OP)

where the objective is the integral over time of 𝑆 𝑇 𝑌 , the space time
yield, which is defined as

𝑆 𝑇 𝑌 =
( 𝑛̇𝑜𝑢𝑡,3 ⋅ 𝑦CH3OH,3

𝑉𝑡𝑜𝑡

)

, (36)

and 𝑋𝐶 is the carbon conversion

𝑋𝐶 =
( 𝑛̇𝑜𝑢𝑡,3 ⋅ 𝑦CH3OH,3

𝑛̇𝐶 ,𝑖𝑛,𝑡𝑜𝑡

)

(37)

which should be at least 60%. Further, since the hydrogenation reac-
tions are exothermic, a constraint of 30 K between reactor and shell
emperatures is introduce to prevent hotspot formation (Fischer and
reund, 2020). 𝒔 are slack variables, and U = 100 is a penalty constant,

both of which have been chosen empirically. The slack variables allow
or the violation of the constraints at the expense of a highly reduced
ost function, which is therefore avoided as much as possible. Note,
hat the constraints are not violated in the final results, but the slack
ariables make it easier for the solver to find proper starting points
nd, hence, speed up the optimization process. To avoid spontaneous,
witching of control variables, which is not feasible in practice, addi-
ional first order lag systems were introduced for the feed split and the
hell temperatures according to the last two equations in the problem
efinition above. The variables and their bounds are listed in Table 3.

The optimization problem was implemented in Julia (Bezanson
et al., 2017), using the JuMP (Lubin et al., 2023) based package In-
initeOpt (Pulsipher et al., 2021). A forward finite difference approach

with 150 discretization points is used to discretize the time domain. The
roblem is solved using the NLP solver KNITRO (Byrd et al., 2006).

To compensate plant model mismatch (considered in this paper)
and additional unforeseen disturbances (not explicitly considered in
this paper), feedforward control action is complemented by a feedback
5 
Fig. 5. 2 DOF control scheme proposed in this paper. Feedforward control variables:
feed splits - 𝜅𝑖, cooling temperatures - 𝑇𝐶 ,𝑖, feedback control variable: fraction of
ominal carbon feed - 𝑢, output variable: Carbon conversion - 𝑋𝑐 .

controller. In particular, a simple PI controller is used

𝑢 = 1 + Kp

(

𝑒 + 1
Ti ∫

𝑒 d𝑡
)

(38)

with parameters Kp = 0.6 and Ti = 1 obtained empirically by the sta-
ility margin method (see e.g. Luyben and Luyben (1997)). Controlled

variable is the conversion 𝑋𝐶 . Manipulated variable is associated with
he carbon feed supply, which can be changed by a factor 𝑢, which is
ultiplied with 𝑛̇in,C. In the nominal case, with zero control error 𝑒, 𝑢

quals 1. The final control strategy is illustrated in Fig. 5.

4. Results and discussion

In this section the control strategy is implemented and tested step
by step by means of the detailed reference model to study also the effect
of plant model mismatch. In a first step, feedforward control action
is calculated by dynamic optimization with the hybrid model. Results
are illustrated in Fig. 6. Manipulated variables are the feed split and
he shell temperatures. In the beginning, fresh feed is mainly fed to
he first and the third reactor. Feed to the first reactor is increasing
ith decreasing hydrogen supply in Fig. 4, feed to the third reactor

is decreasing with decreasing hydrogen supply, and vice versa as the
hydrogen supply is increasing again. As the hydrogen supply is further
increasing beyond its initial value, the feed to the first reactor is step by
step redirected to the second reactor and back again to the first reactor
as the hydrogen supply is dropping in the end again. Shell temperatures
re at the lower bound for reduced hydrogen supply in the first phase
nd increase step by step with increasing hydrogen supply. The lag

becomes obvious in the final phase where hydrogen is decreasing again,
ut the temperatures are staying close to their upper bound. Carbon

conversion is most of the time close to the lower bound, with some
positive deviations at the beginning and the end.

For validation of the optimization results, control profiles for the
eed split and the shell temperatures were simulated with the hybrid

model. As illustrated in Fig. 7. Simulated mole fractions of methanol,
reactor temperatures and molar outlet flows in Fig. 7 show good
agreement with the optimization results in Fig. 6. Minor deviations are
observed in view of the carbon conversion in both figures. This is due
to the larger integration error of the simpler finite difference method
applied for the dynamic optimization compared to the simulation. The
dynamic simulation was done with IDA from the SUNDIALS library,
which is a more advanced fully implicit BDF method (Hindmarsh et al.,
2005).

To demonstrate the effect of plant model mismatch between the
etailed mechanistic plant model and the hybrid model used for the
ynamic optimization, the optimal control profiles for the feed split and
he shell temperatures were next simulated with the reference model.
esults are illustrated in Fig. 8. Differences to Fig. 7 become most

obvious for the carbon conversion. It turns out that carbon conver-
sion predicted by the detailed model is violating the 60% constraint
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Fig. 6. Optimal control profiles for the feed split and the shell temperatures and corresponding temporal evolution of mole fractions of CH3OH, reactor temperatures and molar
outlets of all three reactors, and total carbon conversion of the multistage reactor. Results obtained by dynamic optimization of the hybrid model.
Fig. 7. Temporal evolution of mole fractions of CH3OH, reactor temperatures and molar outlets of all three reactors, and total carbon conversion of the multistage reactor.
Simulation results obtained with hybrid model and optimal control profiles for the feed split and the shell temperatures of the hybrid model from Fig. 6.
b

nearly over the entire time domain of the considered scenario. This
deviation is larger than what was expected in view of Fig. 2. This
difference can be explained in the following way. The hybrid model
was fitted for isothermal reactor operation, which was applied in Fig. 2.
In contrast to this, the control concepts in this chapter are evaluated
for nonisothermal (diabatic) reactor operation. Extrapolation of the
hybrid model to nonisothermal conditions and to the reactor cascade
introduces additional errors.
6 
To handle this plant model mismatch additional feedback control
is applied as described in the previous section. Carbon conversion is
thereby controlled with an additional handle, which is the fraction of
the carbon in the feed. With this combined strategy, the effect of plant
model mismatch is efficiently eliminated and carbon conversion can
e kept most of the time at its desired setpoint with only very minor

deviations as illustrated in Fig. 9. Convergence to the desired setpoint
is rapid and relatively smooth with only little overshoot.



T. Keßler et al.

a
s
p
m
f

Computers and Chemical Engineering 192 (2025) 108893 
Fig. 8. Temporal evolution of mole fractions of CH3OH, reactor temperatures and molar outlets of all three reactors, and total carbon conversion of the multistage reactor.
Simulation results obtained with the mechanistic reference model and optimal control profiles for the feed split and the shell temperatures of the hybrid model from Fig. 6.
Fig. 9. Temporal evolution of mole fractions of CH3OH, reactor temperatures and molar outlets of all three reactors, and total carbon conversion of the multistage reactor.
Simulation results obtained with the mechanistic reference model and optimal control profiles for the feed split and the shell temperatures of the hybrid from Fig. 6 and additional
feedback control according to Eq. (38) to track the desired carbon conversion of 60%.
b

t

c

The required control action for the carbon feed is illustrated in
Fig. 10. It is almost proportional to the deviation of the carbon con-
version from the 60% line in Fig. 8 with some deviations in particular
t later times due to integral action of the feed back controller. In
ummary, we conclude that the 2 DOF control strategy presented in this
aper is very well suited to compensate disturbances and plant model
ismatch. Main disturbance compensation is done by the nonlinear

eedforward control action, which is calculated by dynamic optimiza-
tion of the nonlinear hybrid model. Since the hybrid model is in relative
good agreement with the reference model as shown in Section 2.3, this
 r

7 
strategy works very well and compensation of plant model mismatch
y linear feedback control action is, though not negligible, minor

compared to the feedforward action and can be handled effectively by
he linear feedback controller.

5. Conclusion and outlook

In this paper a new efficient and robust two degrees of freedom
ontrol strategy was developed for a multistage power-to-methanol
eactor and tested in silico. It was assumed that main disturbances are
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Fig. 10. Control action according to Eq. (38) which is required to track the desired
carbon conversion of 60% in Fig. 9.

introduced by the green hydrogen supply due to unavoidable fluctu-
ations of regenerative electrical energy supply for water electrolysis.
n this contribution, a scenario with disturbances on a relatively short
ime horizon of about 10 min, typical for regenerative energy supply
rom wind turbines, was considered. In view of the time required for
ydrogen production and in view of moderate intermediate storage
apacities, it was assumed that the disturbance of the hydrogen supply
an be well predicted on this time horizon. However, uncertainty
f disturbance prediction is increasing with increasing time horizon.

Nowadays a good prediction of energy supply from wind turbines over
a few hours seems to be possible. For longer time horizons, the present
control strategy could be embedded in a receding horizon strategy,
where feedforward control action is re-calculated from time to time
to include updates of the predicted disturbances. Further, the receding
horizon strategy could also be used for updating the hybrid model with
available new measurement information from the process.

The proposed control strategy was based on a hybrid model, which
ombines physico-chemical modeling from first principles with a data
riven neural network to predict the influence of dynamic changes of
he catalyst on the reaction rates, which can be hard to model from first
rinciples. This hybrid model combines good predictability due to the
nclusion of physico-chemical a priori knowledge with high efficiency
ue to the data driven approach. The approach was well motivated
y our previous work on mathematical modeling of the methanol
inetics (Seidel et al., 2018, 2020). However, alternative hybrid model

structures are possible by replacing the reaction kinetics step-by-step
by data driven models and thereby relaxing more and more the effort
for kinetic modeling. This would also be interesting for new reaction
ystems, where not yet so much a priori knowledge is available like

for the methanol synthesis. Therefore an interesting question for our
future work is also to study how the performance of the proposed
control scheme depends on the specific hybrid model structure. Again,
methanol synthesis could be a suitable benchmark problem for this.

Finally, it is clear that the proposed control strategy cannot handle
ll possible disturbance scenarios. For example, it would not work if

there is very little or even no wind available at all. For such cases,
additional measures are required like buffer tanks for example. To find
an optimal trade off between different strategies is also an interesting
topic, which is, however, beyond the scope of this paper.
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