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Abstract

This paper explores the integration of symmetries into the Koopman-operator framework for
the analysis and efficient learning of equivariant dynamical systems using a group-convolutio-
nal approach. Approximating the Koopman operator by finite-dimensional surrogates, e.g.,
via extended dynamic mode decomposition (EDMD), is challenging for high-dimensional
systems due to computational constraints. To tackle this problem with a particular focus
on EDMD, we demonstrate—under suitable equivarance assumptions on the system and the
observables—that the optimal EDMD matrix is equivariant. That is, its action on states can
be described by group convolutions and the generalized Fourier transform. We show that
this structural property has many advantages for equivariant systems, in particular, that
it allows for data-efficient learning, fast predictions and fast eigenfunction approximations.
We conduct numerical experiments on the Kuramoto–Sivashinsky equation, a nonlinear and
chaotic partial differential equation, providing evidence of the effectiveness of this approach,
and highlighting its potential for broader applications in dynamical systems analysis.

1. Introduction

Dynamical systems are fundamental to the modeling of various natural phenomena and
engineering systems. These systems are often modeled by differential equations which may
describe mechanical systems, the diffusion of heat in a material, the propagation of sound
waves in air, or the flow of fluids in pipes and oceans. These equations are indispensable
in fields ranging from physics and engineering to finance and biology, making them critical
tools for solving practical problems in both theoretical and applied contexts.

Linear systems are particularly appealing due to their well-understood properties and
the powerful mathematical techniques available for their analysis. For example, one can
characterize the behavior of these systems by analyzing their eigenvalues and eigenvectors.
In case of nonlinear dynamics, the Koopman operator, see Koopman (1931); Rowley et al.
(2009), provides a transformation into a linear framework by focusing on the evolution of
observables—functions of the system state—rather than the state itself. This linearization
can reveal underlying structures and long-term behavior. Still, the Koopman operator is
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likely to be infinite-dimensional, and hence intractable, which requires an approximation by
means of extended dynamic mode decomposition (EDMD).

EDMD constructs a matrix that can contain prohibitively many entries. This can happen
when the state dimension is already very large, as is usually the case for discretizations of
partial differential equations (PDEs). To address this issue, one can often exploit system-
inherent symmetries. Accordingly, symmetry-exploiting methods have become more popular
in recent years, even beyond the scope of dynamical systems: For example, convolutional
neural networks and more generally geometric deep-learning methods Bronstein et al. (2021)
are designed to respect task-inherent equivariances. Constructing learning algorithms that
respect these equivariances can increase performance and reduce the necessary training data,
see Masci et al. (2015); Cohen and Welling (2016); Bronstein et al. (2017); Atz et al. (2021);
Bronstein et al. (2021); Harder et al. (2024).

The presence of symmetry can lead to a decomposition of the EDMD matrix into simpler,
more tractable components. It appears that hitherto proposed symmetry-based methods can
be split into two categories: Some methods enforce block-wise diagonal structures in the
EDMD matrix, see Sinha et al. (2020); Peitz et al. (2024), and some methods enforce diagonal
structures in Fourier space. Our contribution falls into the latter category and is related to the
works of Salova et al. (2019); Baddoo et al. (2023); Hochrainer and Kar (2024). Here, the work
of Salova et al. (2019) provides a more general group-theoretic treatment and, among other
things, discusses the importance of choosing appropriate symmetry-respecting observables.
Another focus is on efficient methods for translation-equivariant dynamical systems, see
Baddoo et al. (2023); Hochrainer and Kar (2024) (the work of Baddoo et al. (2023) also
considers different aspects, but their proposed method for translational equivariance is most
relevant for our purposes). In particular, both Baddoo et al. (2023) and Hochrainer and Kar
(2024) discuss how the EDMD matrix can be forced to be (block-)diagonal in Fourier space
for PDEs.

Contributions and organization. Our approach extends and generalizes these developments
into multiple directions: Firstly, we assume a more general group-theoretic setting. In this
regard, we show how one can enforce an equivariant structure in the EDMD matrix and
demonstrate that this approach is optimal under suitable assumptions on the system dynam-
ics, the observables and the sampling distribution. Finally, we make use of the generalized
Fourier transform to effectively learn the corresponding EDMD matrix (representing it only
implicitly by means of a convolution kernel), and show how this may be leveraged to efficiently
approximate eigenfunctions of the Koopman operator.

To this end, we provide an introduction to the Koopman operator and its approximation
via EDMD (Section 2), followed by a discussion of basic group-theoretic aspects (Sections 2.1
and 2.3). Section 3 contains the main contributions of this work: On the one hand, assum-
ing an appropriate choice of the sampling distribution and the observables, we show that
equivariance is inherited by the EDMD matrix and that it can be represented by a group
convolution (Theorem 3.1). On the other hand, we show how one can conveniently learn the
corresponding convolution kernel in Fourier space using the generalized Fourier transform.
And finally, we conduct experiments by means of the two-dimensional Kuramoto–Sivashinsky
equation to demonstrate the advantages of our proposed group-convolutional approach in the
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low-data regime (see Section 3.1).

Notation. We will frequently require sets of the form CI , CI×J , CI×J×K , etc., where I, J
and K are finite sets. The intention is to think of the elements in CI as vectors instead
of functions, similarly we think of elements in CI×J as matrices. The individual entries of
A ∈ CI×J are denoted by Ai,j for (i, j) ∈ I × J . Vector-vector or matrix-vector products
are defined accordingly. The main advantage is that this simplifies indexing: For example,
if J = J1 × J2, we can easily define the matrix-vector product of A ∈ CI×J with x ∈ CJ by
Ax ∈ CI , (Ax)i =

∑
(j1,j2)∈J Ai,(j1,j2)xj1,j2 .

Code and resources. The code for our experiments in Section 3.1 and some supplementary
material for Example 2.7 can be found on GitHub,

https://github.com/graps1/convolutional-edmd.

For the case of Example 2.7, our codebase contains an implementation that models the system
dynamics using a group-convolutional approach. For the experiments on the Kuramoto-
Sivashinsky equation in Section 3.1, we provide a readable implementation that mimics the
mathematical descriptions used in this paper.

2. Preliminaries: The Koopman operator, EDMD, and symmetries

The Koopman operator evolves functions (called observables) forward in time by com-
posing them with a given dynamical system. For such a system Φ : Y → Y on some state
space Y , one defines the Koopman operator K on observables of the form f : Y → C via the
composition

Kf := f ◦ Φ.
If f is a vector-valued function f : Y → Cm, then Kf is defined analogously. The Koop-
man operator is linear by definition, even though the underlying system dynamics may be
nonlinear, but it is infinite-dimensional in general. By studying properties of the Koopman
operator, such as its eigenvalues and eigenfunctions, one can obtain insights into the under-
lying system dynamics. However, due to the infinite number of dimensions, one has to resort
to finite-dimensional approximations using extended dynamic mode decomposition (EDMD),
see, e.g., Williams et al. (2015). In EDMD, one projects K onto a set of base observables,
whose evolution is described by a finite linear system. This system is found by drawing states
from some distribution and solving a certain least-squares problem. We need the following
additional assumptions:

– In order to draw samples from Y , we assume that it is part of a probability space
(Y,Σ, P ), where Σ ⊆ 2Y is a set of events and P : Σ → [0, 1] a probability function.

– Additionally, if the Koopman operator is applied to square-integrable observables, it
must again produces square-integrable observables. In other words, f ∈ L2

P (Y ) implies
Kf ∈ L2

P (Y ). (So that the EDMD loss in (1) has a well-defined expectation.)
– The dictionary of base observables is given by a set of predefined ψ1, . . . , ψm ∈ L2

P (Y ),
or, more simply, ψ ∈ L2

P (Y )m.
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The EDMD matrix K is now any matrix solving the optimization problem

min
K∈Cm×m

Ey∼P [∥Kψ(y)−Kψ(y)∥2]. (1)

Intuitively, K defines a linear map in Cm that mimics the Koopman operator’s action on the
observables ψ1, . . . , ψm. The corresponding EDMD operator is defined on the span of the
base observables, f = cTψ ∈ span {ψ1, . . . , ψm}, with c ∈ Cm, via the mapping

(KEDMDf)(y) := cTKψ(y).

Under some additional assumptions, it can be shown that KEDMD converges to the true
Koopman operator when m → ∞, see Korda and Mezić (2018). Besides the projection
error, one may deviate from the true EDMD matrix if the expectation in (1) is approximated
using finitely many samples. The resulting finite-data error term is well studied and can be
bounded, see, e.g., Mezić (2022); Zhang and Zuazua (2023); Nüske et al. (2023) and Philipp
et al. (2024) for kernel EDMD, in case of either i.i.d. or ergodic sampling. Moreover, uniform
error bounds on the approximation error were recently derived in Köhne et al. (2024).

Most Koopman-theoretic investigations have hitherto considered ordinary or stochastic
differential equations. More general settings can be found in Baddoo et al. (2023); Hochrainer
and Kar (2024); Philipp et al. (2024), which cover PDEs as well. Due to the usually very high
state dimension in the PDE case stemming from spatial discretization, it is prohibitive to learn
a full-scale EDMD matrix and advantageous to apply more efficient approaches. Previous
works such as Baddoo et al. (2023); Hochrainer and Kar (2024) already indicated that one
may exploit the Fourier transform using translational symmetries. In general, symmetries
occur in a large number of PDE systems implying that the dynamics are equivariant under
certain group actions, which depend on the system dynamics as well as on the domain and
the boundary conditions. One example is the Kuramoto–Sivashinsky equation, which can be
written in coordinate-free form as

yt = N (y) = −∆y −∆2y − 1

2
∥∇y∥2, (2)

where y is an underlying time-dependent scalar field, ∆ the Laplace operator, ∆2 the bihar-
monic operator and ∥∇y∥2 the squared length of y’s time-dependent gradient field. The re-
sulting flow Φ can be obtained by solving the PDE for a fixed time step, say Φ(y(t)) = y(t+δ)
for some δ > 0. This particular PDE is equivariant under any transformation of the Euclidean
group. This means that shifting, rotating or reflecting the solution y and then applying N
yields the same result as shifting, rotating or reflecting N (y), see, e.g., Harder et al. (2024).
Here, we utilize this group-theoretic perspective to leverage the generalized Fourier transform
for efficient learning.

2.1. Groups and group actions

The following discussion of group-theoretic aspects takes orientation from Åhlander and
Munthe-Kaas (2005); Åhlander and Munthe-Kaas (2006) and Terras (1999). A group is a set
G along with an associative composition operation G×G→ G, (g, h) 7→ gh that contains an
identity e and inverses. It is said to be abelian if the composition operation is commutative.
Throughout this text, G is assumed to be finite.
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Example 2.1. The symmetry group of the square describes rotations and reflections of a
square across its center. It consists of an identity element, rotations of 90, 180 and 270
degrees, and reflections across the diagonal as well as horizontal and vertical axes. The group
operation chains these elements, in the sense that two 90 degree rotations amount to one 180
degree rotation.

A left group action of G on a set Y is defined as a mapping G × Y → Y, (g, y) 7→ g · y,
associating a group element g ∈ G and a point y ∈ Y with some other point in Y in a way
that is compatible with the group operation, i.e., e · y = y and (gh) · y = g · (h · y) for all
g, h ∈ G and y ∈ Y . An analogous definition holds for right group actions, but in the sense
that (g, y) 7→ y · g with y · e = y and y · (gh) = (y · g) · h. We say that a left resp. right
group action is free if g · y = y resp. y · g = y already implies g = e (that is, only the identity
element can map elements in Y to themselves). Finally, we call a set G · y = {g · y : g ∈ G}
resp. y · G = {y · g : g ∈ G} an orbit of a left resp. right group action. Notably, the set of
orbits forms a partition of Y . Intuitively, an orbit collects a (maximal) subset of elements in
Y that can be transformed into each other by application of group operations.

Example 2.2 (Orbits). Suppose Z2 is the cyclic group of order two, that is, Z2 = {0, 1}
together with addition modulo 2 as the group operation. Defining Y = Z2 × Z2 and G = Z2,
the mapping (y1, y2) · g = (y1 + g, y2 + g) is a free right group action. This results in the
orbits {(0, 0), (1, 1)} = (0, 0) ·G and {(1, 0), (0, 1)} = (0, 1) ·G. An analogous left action can
be defined.

If G acts from the left on two sets X and Y , we say that a function f : X → Y is left
invariant if f(x) = f(g · x), and we say that it is left equivariant if g · f(x) = f(g · x) holds
for all g ∈ G and x ∈ X. (Note that the spaces X and Y might be unrelated, and that the
group action might behave differently in both spaces.) If G acts on X and Y from the right,
the definition is analogous.

Example 2.3 (Actions on PDEs). Consider the group ({+1,−1}, ·), which acts on R via
multiplication. We can define a group action on the set of twice-differentiable functions
y ∈ C2(R) by setting (g ·y)(x) = y(−g ·x), and get ∂x(g ·y) = g · (−∂xy). Hence, equivariance
for N (y) = ∂2xxy or N (y) = (∂xy)

2 holds, but not for N (y) = ∂xy.

Remark 1 (Orbits and free actions). If G acts freely from the right on some finite set O, then
the set of orbits defines an equivalence class on the elements in O. If S ⊆ O is a complete
collection of orbit representatives (that is, S contains exactly one element from every orbit
and nothing else), then we have a one-to-one correspondence between O and S × G via the
bijection S × G → O, (s, g) 7→ s · g. This fact allows us to switch back-and-forth between
vectors y ∈ CO and vector-valued functions on G, namely y : G → CS, via the mapping
ys(g) := ys·g. We note that this also holds for left group actions.

Example 2.4. Consider O := Y = Z2×Z2 and G = Z2 from Example 2.2. A valid set of orbit
representatives would be S = {(0, 0), (1, 0)} and we indeed have a one-to-one correspondence
between O and S ×G via the identification:

(0, 0) 7→ ((0, 0), 0), (1, 1) 7→ ((0, 0), 1), (1, 0) 7→ ((1, 0), 0), (0, 1) 7→ ((1, 0), 1).

5



Intuitively, every o ∈ O can be uniquely represented as o = s · g for an orbit representative
s ∈ S and a group element g ∈ G, and hence we can simply identify o with (s, g).

Throughout this paper, we assume that G defines a free right-group action on a finite
set O. By Remark 1, there is a set of orbit representatives S ⊆ O such that S × G and O
are in one-to-one correspondence, and that a bijection is defined by (s, g) 7→ s · g.

2.2. Equivariant matrices

We call a matrix K ∈ CO×O equivariant if it satisfies Ko,o′ = Ko·g,o′·g for all g ∈ G.
Matrices of this type are used to model equivariant structures in dynamical systems. As
an important property, matrix-vector multiplications involving equivariant matrices can be
efficiently evaluated by group convolutions. Here, in view of symmetry-exploiting learning,
we utilize the inherent connection of equivariant matrices with convolution kernels in two
ways: First, we reduce the storage requirements, as the convolution kernel stores fewer
elements than the corresponding matrix, and second, we achieve a significant speed-up in
computations, as propagating the system or computing its eigenvalues may be performed by
a generalized version of the Fourier transform.

To understand the connection between equivariant matrices and equivariant linear func-
tions, Lemma 1 shows that both are equivalent for group actions that permute indices:

Lemma 1. Suppose G acts on O from the right, K ∈ CO×O is a matrix, and a left group
action on CO is defined via (g · y)o := yo·g−1 for all y ∈ CO and o ∈ O. Then the following
statements are equivalent:

(i) K is an equivariant matrix.
(ii) The function f(y) = Ky is left equivariant.

Proof. For the direction (i) ⇒ (ii), pick an arbitrary o ∈ O. Then note that

(K(g · y))o =
∑
o′∈O

Ko,o′(g · y)o′ =
∑
o′∈O

Ko·g−1,o′·g−1yo′·g−1

=
∑
o′∈O

Ko·g−1,o′yo′ = (Ky)o·g−1 = (g ·Ky)o.

It follows thatK(g ·y) = g ·Ky, and hence f must be equivariant. For the direction (ii) ⇒ (i),
pick o, o′ ∈ O and g ∈ G arbitrarily. Suppose that eo′ ∈ CO denotes the canoncial unit vector
for index o′, and note that g · eo′ = eo′·g. Using equivariance of f ,

Ko,o′ = (Keo′)o = (g−1 ·K(g · eo′))o = (Keo′·g)o·g = Ko·g,o′·g.

It follows that K is an equivariant matrix.

Example 2.5 (Circulant matrices; heat equation). To give an instructive example, we con-
sider the one-dimensional heat equation with periodic boundary conditions. After space dis-
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cretization via finite differences, we obtain a linear equation of the form

ẏ ∝



2 −1 0 0 . . . 0 −1
−1 2 −1 0 . . . 0 0
0 −1 2 −1 . . . 0 0
...

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
−1 0 0 0 . . . −1 2


y.

This structure is typical for equivariant systems. Indeed, systems that are equivariant with
respect to a cyclic group can be described by matrices whose rows are shifted versions of each
other – in that case, they are called circulant matrices. More formally, one sets O := G := Zn

and defines a group action of G on O (that is, itself) simply by applying the group operation.
One then may verify that the above-described matrix is indeed equivariant, or simply consider
Example 2.6.

Example 2.6 (Block-circulant matrices). Suppose K ∈ Rnm×nm is a block-circulant matrix,

K =


C0 Cn−1 . . . C1

C1 C0 . . . C2
...

...
. . .

...
Cn−1 Cn−2 . . . C0


where Ci ∈ Rm×m, i.e., K consists of blocks of size m × m. Intuitively, the number of
orbits m corresponds to the size of each block, while the number of blocks n corresponds to
the size of the group. To show equivariance of K with respect to G = Zn, we first identify
O = {1, . . . ,m} × G with {1, . . . , nm} using the bijection ι : (i, j) 7→ jm + i. A free group
action is defined on O by (i, j) · g = (i, j + g), and on {1, . . . , nm} by ι(i, j) · g = ι((i, j) · g).
Indeed, one has for (i, j), (i′, j′) ∈ O,

Kι(i,j),ι(i′,j′) = Kjm+i,j′m+i′ = (Cj−j′)i,i′ = (C(j+g)−(j′+g))i,i′ = Kι(i,j)·g,ι(i′,j′)·g.

For the orbit representatives, one can, for example, pick S = {(1, 0), . . . , (m, 0)}.

k k k k k

p1 p2 p3 p4

Figure 1: A spring system of four nodes connected in a row with equal stiffness coefficients. This system is
equivariant with respect to reflections along the center.

Example 2.7 (Symmetric spring system1). Consider the spring system from Figure 1, which
consists of four nodes that deviate from their resting positions by p1(t), p2(t), p3(t), p4(t) ∈ R,

1Code available online, https://github.com/graps1/convolutional-edmd.
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p(t) = [p1(t), p2(t), p3(t), p4(t)] ∈ R4. All springs have the same fixed stiffness coefficient k
and the nodes have mass m. The force acting on the i-th node is given by Fi(p), where

F1(p) = −2kp1 + kp2, F4(p) = −2kp4 + kp3,

F2(p) = −2kp2 + kp1 + kp3, F3(p) = −2kp3 + kp2 + kp4.

From Newton’s second law, we have p̈(t) = F (p(t))/m. By moving to position-velocity vari-
ables y(t) = (p(t), ṗ(t)) ∈ R8, we may consider the first-order differential equation ẏ = Ky,
where 

ṗ1
ṗ2
ṗ3
ṗ4
p̈1
p̈2
p̈3
p̈4


=



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

−2k/m k/m 0 0 0 0 0 0
k/m −2k/m k/m 0 0 0 0 0
0 k/m −2k/m k/m 0 0 0 0
0 0 k/m −2k/m 0 0 0 0





p1
p2
p3
p4
ṗ1
ṗ2
ṗ3
ṗ4


This system is equivariant with respect to reflections along the center, that is, when swapping
nodes 1 and 2 with nodes 4 and 3. More formally, the reflection group G = {e, a}, aa = e,
acts on Y via

a ·
[
p1 p2 p3 p4 ṗ1 ṗ2 ṗ3 ṗ4

]T
=

[
p4 p3 p2 p1 ṗ4 ṗ3 ṗ2 ṗ1

]T
,

with e doing nothing. That is, a just reflects the p’s and ṗ’s along the center. One can then
verify that the system satisfies g · Ky = K(g · y) for all g ∈ G and y ∈ Y (this can be
checked by simply computing a · Ky and K(a · y) separately). Additionally, mind that this
action simply permutes vector indices, and hence K is also an equivariant matrix by means
of Lemma 1. The corresponding action of G on O = {1, . . . , 8} would then be given by e
doing nothing and

1 · a = 4, 2 · a = 3, 3 · a = 2, 4 · a = 1,

5 · a = 8, 6 · a = 7, 7 · a = 6, 8 · a = 5.
(3)

Convolution kernels. The convolution kernel A : G → CS×S that corresponds to an equiv-
ariant matrix K is defined by

As,s′(g) := Ks,s′·g−1 . (4)

By assumption, G acts freely on O, and thus O and S ×G are in one-to-one correspondence
via the bijection (s, g) 7→ s ·g. Therefore, vice versa, the equivariant matrix that corresponds
to any kernel is (well-)defined by

Ks·g,s′·h := As,s′(gh
−1). (5)

Equation (5) defines the inverse of (4) if one sees these equations as functions between the
set of equivariant matrices and the set of convolution kernels.
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The convolution of a kernel A : G→ CS×S with u : G→ CS is defined by

A ∗ u : G→ CS, g 7→
∑
h∈G

A(h)u(h−1g). (6)

By the identification of O with S × G, we can define the convolution of A with a vector
u ∈ CO by viewing u as a function u : G → CS defined by us(g) = us·g (see Remark 1).
In the same sense, one can also view A ∗ u as a vector in CO. If K is A’s corresponding
equivariant matrix, one always has

Ku = A ∗ u. (7)

Hence, if one makes use of the generalized Fourier transform, one may gain a computational
advantage when it comes to computing matrix-vector products.

Example 2.8 (Symmetric spring system: Convolutions). From Example 2.7, recall that the
state can be viewed as an element of RO, where O = {1, . . . , 8}. We have defined a group
action of G = {e, a} on O via (3). The corresponding set of orbits is given by

{1, 4}, {2, 3}, {5, 8}, {6, 7},

and we may pick the orbit representatives S = {1, 2, 5, 6}. The identification of y ∈ RO with
y : G→ RS according to Remark 1 is given by

p1 p2 p3 p4 ṗ1 ṗ2 ṗ3 ṗ4
y ∈ RO y1 y2 y3 y4 y5 y6 y7 y8

y : G→ RS y1(e) y2(e) y2(a) y1(a) y5(e) y6(e) y6(a) y5(a)

Finally, let us consider the convolution kernel for the matrix K. To simplify notation, we
sort S in ascending order, and view y(e), y(a) ∈ RS as vectors in R|S|,

y(e) =
[
p1 p2 ṗ1 ṗ2

]T
, y(a) =

[
p4 p3 ṗ4 ṗ3

]T
.

From eq. (7) together with (6), we can derive[
ẏ(e)
ẏ(a)

]
=

[
(A ∗ y)(e)
(A ∗ y)(a)

]
=

[
A(e) A(a)
A(a) A(e)

] [
y(e)
y(a)

]
. (8)

Here, we view A(e), A(a) ∈ RS×S as matrices in R|S|×|S|. From eq. (4) and the entries of K
in Example 2.7, we can derive their values by inspection:

A(e) =


0 0 1 0
0 0 0 1

−2k/m k/m 0 0
k/m −2k/m 0 0

, A(a) =


0 0 0 0
0 0 0 0
0 0 0 0
0 k/m 0 0

.

9



Inserting these into (8), we obtain the following system of equations:

ṗ1
ṗ2
p̈1
p̈2
ṗ4
ṗ3
p̈4
p̈3


=



0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

−2k/m k/m 0 0 0 0 0 0
k/m −2k/m 0 0 0 k/m 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 −2k/m k/m 0 0
0 k/m 0 0 k/m −2k/m 0 0





p1
p2
ṗ1
ṗ2
p4
p3
ṗ4
ṗ3


Notice that this yields the same solution as the original system. However, by re-ordering the
variables, we have achieved a block-circulant format (compare eq. (8) with Example 2.6 for
the case n = 2), which is due to the isomorphism of G with Z2. Therefore, instead of solving
the equation ẏ = Ky by explicit construction of K, one can compute convolutions using A,
if it is known. Notice also that we do not need to store the full 8× 8 matrix K (ignoring its
sparsity), but can rather store two 4× 4 matrices, namely A(e) and A(a).

In the next section, we show how the Fourier transform of the convolution kernel can be
used to speed up linear operations.

2.3. The generalized Fourier transform

Before introducing the generalized Fourier transform, we require the notion of a group
representation. Essentially, a representation maps every group element to a matrix that
describes the action of this element on points in space. In case of abelian groups, this notion
simplifies significantly, but we are also interested in the more general case.

Group representations. A representation of a finite group G is a function ρ : G → Cdρ×dρ ,
where dρ ∈ N is the degree of ρ, such that ρ(g) is invertible for all g ∈ G and compatibility with
the underlying group is ensured: for h, g ∈ G, one has ρ(h)ρ(g) = ρ(hg). Two representations
ρ, σ with dρ = dσ = d are equivalent if there is an invertible T ∈ Cd×d such that ρ(g) =
T−1σ(g)T for all g ∈ G. A representation ρ is called reducible if there is an equivalent
representation σ such that all {σ(g) : g ∈ G} have the same block-diagonal structure. Finally,
there exists a finite set of irreducible representations that are pairwise inequivalent. This set
is denoted by Ĝ, and it satisfies

∑
ρ∈Ĝ d

2
ρ = |G|.

Example 2.9 (Cyclic group). The cyclic group Z3 has three irreducible representations:
ρ0, ρ1, ρ2 : G→ C, defined by ρk(g) = exp(−2πigk/3) for k = 0, 1, 2.

Example 2.10 (Permutation group). The permutation group of three elements can be defined
by the set of bijective functions from {1, 2, 3} to itself together with function composition. A
representation in R3 is given for σ : {1, 2, 3} → {1, 2, 3} by ρ(σ) ∈ R3×3, with ρ(σ)ij = 1 if
i = σ(j) and 0 otherwise. That is, by the set of permutation matrices in R3.
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The generalized Fourier transform. For a representation ρ, the generalized Fourier transform
is defined on u : G→ C by

û(ρ) =
∑
g∈G

u(g)ρ(g) ∈ Cdρ×dρ . (9)

That is, û takes a representation ρ and maps it to a complex matrix of size dρ × dρ. The
inverse of the generalized Fourier transfom is given by

u(g) =
1

|G|
∑
ρ∈Ĝ

dρTr(ρ(g
−1)û(ρ)). (10)

The convolution theorem connecting Fourier transformations and convolutions also holds in
this case; for u, v : G → C, one has û ∗ v(ρ) = û(ρ)v̂(ρ) (see, for example, Terras (1999),
Theorem 4, p. 261).2 For the general case of matrices and vectors, let A : G → CS×S and
u : G→ CS and introduce:

Â(ρ) ∈ C(S×Dρ)×(S×Dρ), Â(s,i),(s′,j)(ρ) := (Âs,s′)i,j(ρ),

û(ρ) ∈ C(S×Dρ)×Dρ , û(s′,j),k(ρ) := (ûs′)j,k(ρ),

where Dρ = {1, . . . , dρ}. Intuitively, this way we treat the S×S resp. S like batch dimensions

by defining the Fourier transform individually for every As,s′ and us. Here, Â(ρ) and û(ρ)
can also be seen as matrices with shape |S|dρ × |S|dρ and |S|dρ × dρ. This perspective is
comfortable because it extends the convolution theorem to matrix multiplication:

Â ∗ u(ρ) = Â(ρ)û(ρ). (11)

Eigenvalues and eigenvectors. As discussed by Åhlander and Munthe-Kaas (2006), the Fourier

transform closely connects the eigenvalues of group convolutions with the eigenvalues of Â(ρ),
where ρ ranges over the irreducible representations:

Proposition 1 ((Åhlander and Munthe-Kaas, 2006, Proposition 2)). Let A : G → CS×S be
a convolution kernel. Then,

1. If λ is an eigenvalue of u 7→ A ∗ u, then there is ρ ∈ Ĝ s.t. λ is an eigenvalue of Â(ρ).

2. If λ is an eigenvalue of Â(ρ) for a ρ ∈ Ĝ, then λ is a dρ-fold eigenvalue of u 7→ A ∗ u.
Besides eigenvalues, Åhlander and Munthe-Kaas (2006) also describe how one can obtain

the corresponding eigenvectors, that is, those v : G → CS that satisfy A ∗ v = λv for some
eigenvalue λ. Since v 7→ A ∗ v is a linear operation on vectors of size |S||G|, there are equally
many eigenvectors, and one can index them by (σ, i, j), where σ ∈ Ĝ, i = 1, . . . , |S|dσ and
j = 1, . . . , dσ (this follows from

∑
σ∈Ĝ d

2
σ = |G|). For (σ, i, j) fixed, let (λ, ξ) be the i-th

eigenpair of the Fourier-transformed kernel at σ,

Â(σ)ξ = λξ.

2Here, the convolution of u with v is defined as in (6), resulting in a function u ∗ v : G → C.
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Define v in Fourier space by a zero-padded version of ξ, i.e., v̂(ρ) ∈ C|S|dρ×dρ with:

v̂•,ℓ(ρ) =

{
ξ if ℓ = j and ρ = σ,

0 else

for all ρ ∈ Ĝ and ℓ = 1, . . . , dρ. Note that Â(ρ)v̂(ρ) = λv̂(ρ) holds for all ρ ∈ Ĝ. Using the
convolution theorem (11) and the inverse Fourier transform, one can then see that (λ, v) is
an eigenpair of u 7→ A∗u. By ranging over all (σ, i, j), this procedure allows one to construct
a full set of eigenvectors.

If K is A’s corresponding equivariant matrix, then every eigenpair of u 7→ A ∗ u is a right
eigenpair of K. Left eigenpairs of K correspond to right eigenpairs of KT , and hence we can
compute them by introducing a “transposed” kernel

AT : G→ CS×S, (AT )s,s′(g) := As′,s(g
−1),

that computes the matrix-vector product KTu = AT ∗ u. Therefore, one can construct left
eigenpairs of K by computing eigenpairs of u 7→ AT ∗ u in the above-described way. (This
is in particular necessary when it comes to approximating eigenfunctions of the Koopman
operator.)

Plancherel’s identity. This result relates the norm of u : G → CS with a “weighted” norm
of its Fourier transform. Recall that û(ρ) can be seen as a |S|dρ × dρ matrix. From this
perspective, the two norms considered here are

∥u∥2 :=
∑
s∈S

∥us∥22 and ∥û∥2 := 1

|G|
∑
ρ∈Ĝ

dρ∥û(ρ)∥2F ,

where ∥·∥F is the Frobenius norm. In particular, if u : G→ C, Plancherel’s identity (see, for
example, (Terras, 1999, Theorem 2, p. 258, exercise on p. 263)) states that ∥u∥2 = ∥û∥2.
Even further, one can see that it also holds for the case u : G→ CS:

∥u∥2 =
∑
s∈S

1

|G|
∑
ρ∈Ĝ

dρ∥ûs(ρ)∥2F =
1

|G|
∑
ρ∈Ĝ

dρ
∑
s∈S

∥ûs(ρ)∥2F =
1

|G|
∑
ρ∈Ĝ

dρ∥û(ρ)∥2F = ∥û∥2.

We state this result independently:

Lemma 2 (Plancherel’s identity). For u : G→ CS, one has ∥u∥2 = ∥û∥2.

Abelian groups. If G is abelian, then the situation simplifies significantly. In this case, G can
be expressed as the direct sum of cyclic groups, G = Zp1 ⊕ · · · ⊕Zpm . Assuming that we can

decompose G this way, the order of every irreducible representation ρ ∈ Ĝ is exactly dρ = 1,

and moreover, we can write Ĝ = {ρg : g ∈ G} with

ρg(h) = exp(−2πi
m∑

n=1

gnhn/pn) ∈ C.
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The Fourier transform simplifies to:

û(ρg) =
∑
h∈G

u(h) exp(−2πi
m∑

n=1

gnhn/pn),

which is essentially the multi-dimensional discrete Fourier transform. For the multi-channel
case, Â(ρ) is a matrix in CS×S and û(ρ) a vector in CS. Note that Proposition 1 also simplifies
in the sense that the multiplicity of the eigenvalues vanishes.

3. Group-convolutional EDMD: Theory and Application

In this section, we show how equivariant structures can be exploited in EDMD when the
observables are appropriately defined. We build on the previously established results from
Sections 2.1 to 2.3 to show a number of results: The first result concerns the “optimality”
of convolutions (Theorem 3.1), that is, we show that there is indeed an optimal equivariant
EDMD matrix under certain conditions. Next, we show how one can construct appropri-
ate observables, how one can learn the convolution kernel, and how one can approximate
eigenfunctions of the Koopman operator.

Recall from Section 2 that Φ defines a flow on a state space Y , stemming, for instance,
from the discretization of an ODE or PDE in time. Additionally, Y comes with a probability
measure P that allows us to draw samples from it. To define the EDMD loss, we additionally
require that the observables are square-integrable and indexed by a finite set O, i.e., ψ : Y →
CO with ψo,Kψo ∈ L2

P (Y ) for all o ∈ O. Finally, recall that G denotes a finite group.
Our assumptions are then:

(A1) G acts on Y from the left, and it acts freely on O from the right.
(A2) ψo(g · y) = ψo·g(y) for g ∈ G, o ∈ O and y ∈ Y .
(A3) Φ(g · y) = g · Φ(y) for g ∈ G and y ∈ Y .
(A4) If y ∼ P , then g · y ∼ P .

Assumption (A1) is very basic; it ensures that the group can act on both the system state
and the observables. Intuitively, we need a group action on the system state to even consider
group-based methods, and we need a group action on the index set of the observables so
that the equivariance of the underlying system carries over to the level of observables. The
next assumptions (A2) and (A3) are in the same spirit; the second ensures that the group
operation can shift from state to observation level and the third assumes left equivariance
of the system dynamics.3 Finally, (A4) ensures that the underlying distribution is invariant
with respect to group actions. That is, acting on states does not change the probability.

Our main result is now as follows:

Theorem 3.1. Under (A1), (A2), (A3) and (A4), there is an equivariant EDMD matrix.

3Note that assumption (A3) already implies equivariance of the Koopman operator: One can define a
group action on observables of the form f : Y → C by (g · f)(y) := f(g−1 · y). The Koopman operator then
satisfies K(g · f) = g · (Kf) (see Theorem III.1 in Salova et al. (2019)).
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(Before going into the proof, note that the minimization problem (1) can have multiple
solutions if no further restriction are applied. However, under suitable conditions, the solution
is unique (see, e.g., (Philipp et al., 2024, Lemma C.2)). In that case, according to this
theorem, the unique optimal EDMD matrix must be equivariant.)

Proof. Introduce u = ψ(y) and u+ = Kψ(y), and define ℓ(K) = Ey∼P [∥Ku−u+∥2], so that
an EDMD matrix satisfies K ∈ argminK∈CO×O ℓ(K). It suffices to fix an arbitrary K and to
show that there is an equivariant matrix K ′ such that ℓ(K) ≥ ℓ(K ′).

Let S ⊆ O be a set of orbit representatives. Since G defines a free action on O by (A1),
the mapping (s, g) 7→ s · g constitutes a bijection between S ×G and O (see also Remark 1).
Hence,

ℓ(K) =
∑
g∈G

∑
s∈S

Ey∼P [((Ku)s·g − u+
s·g)

2]. (12)

Select the group element that minimizes the inner sum:

g⋆ ∈ argmin
g∈G

∑
s∈S

Ey∼P [((Ku)s·g − u+
s·g)

2].

We then define K ′ by setting
K ′

s·g,s′·h := Ks·g⋆,s′·hg−1g⋆ ,

and note that it is indeed equivariant. Then, for arbitrary g ∈ G and s ∈ S,

(K ′ψ(g · y))s·g⋆g−1 =
∑

(s′,h)∈S×GK
′
s·g⋆g−1,s′·hψs′·h(g · y)

=
∑

(s′,h)∈S×GK
′
s·g⋆,s′·hgψs′·hg(y) (13)

=
∑

(s′,h)∈S×GKs·g⋆,s′·hgψs′·hg(y) (14)

=
∑

(s′,h)∈S×GKs·g⋆,s′·hψs′·h(y) (15)

= (Kψ(y))s·g⋆ . (16)

Equation (13) uses (A2) and equivariance of K ′. Then (14) follows by definition of K ′.
Finally, (15) holds by the substitution h 7→ hg−1. Hence,

ℓ(K) ≥ ∑
(s,g)∈S×G Ey∼P [((Ku)s·g⋆ − u+

s·g⋆)
2] (17)

=
∑

(s,g)∈S×G Ey∼P [((K
′ψ(g · y))s·(g⋆g−1) − ψs·g⋆(Φ(y)))

2] (18)

=
∑

(s,g)∈S×G Ey∼P [((K
′ψ(g · y))s·(g⋆g−1) − ψs·(g⋆g−1)(Φ(g · y)))2] (19)

=
∑

(s,g)∈S×G Ey∼P [((K
′u)s·(g⋆g−1) − u+

s·(g⋆g−1))
2] (20)

=
∑

(s,g)∈S×G Ey∼P [((K
′u)s·g − u+

s·g)
2] = ℓ(K ′).

Equation (17) is obtained when bounding the outer sum in (12) from below by substituting
g 7→ g⋆. Then, (18) holds by (16) and definition of u+. Applying (A3) and (A2), we get
(19). Then we can apply the substitution g · y 7→ y inside the expectation by (A4), and
reintroduce u and u+. Finally, we reorder the summation using the substitution g 7→ g−1g⋆.
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Constructing observables. In order to construct observables satisfying (A1) and (A2), one
can start with an arbitrary finite set S and a set of generating observables χ : Y → CS that
are then expanded using the group. Letting O = S×G, we obtain a full set of observables by
setting ψ : Y → CO, where ψ(s,g)(y) = χs(g · y). Indeed, G defines a free right-group action
on O via (s, h) · g = (s, hg), and we see that it satisfies (A2):

ψ(s,h)(g · y) = χs(h · (g · y)) = χs((hg) · y) = ψ(s,hg)(y) = ψ(s,h)·g(y).

This argument also works the other way around: We can obtain a set of generating
observables given that ψ satisfies (A1) and (A2): In that case, since G acts freely on O, there
is a finite set of orbit-representatives S ⊆ O such that (s, g) 7→ s · g is a bijection between
S × G and O. Therefore, one can define a selection of generating observables by setting
χs(y) = ψs(y), s ∈ S, and recover ψs·g(y) using (A2) and the identity ψs(g · y) = χs(g · y).
(Constructing observables this way appears to be similar to that of Salova et al. (2019).)

Example 3.1. Suppose the state space Y contains functions of the form y : [0, 1) → R. The
group G = Zn can act on Y via periodic shifts: For g ∈ G, define

(g · y)(x) := y(x− g/nmod 1).

In order to obtain a set of generating observables, one may define S = {1, 2, 3} and

χ(y) =
[
y(0) y(0)2 y(0)3

]
.

That is, χ(y) simply observes the state’s value at the origin in various ways. The full set of
observables ψ : Y → CO is obtained when shifting the state periodically and then observing
it at the origin by means of χ. Practically, this has the same effect as observing the original
state at different coordinates: Viewing ψ(y) as a matrix in C|G|×|S|:

ψ(y) =


χ(0 · y)

χ((n− 1) · y)
χ((n− 2) · y)

...
χ(1 · y)

 =


y(0) y(0)2 y(0)3

y(1/n) y(1/n)2 y(1/n)3

y(2/n) y(2/n)2 y(2/n)3

...
...

...
y(1− 1/n) y(1− 1/n)2 y(1− 1/n)3

 .

Training. Instead of constructing a full equivariant EDMD matrix, we can compute its con-
volution kernel instead. That is, we can solve the problem

min
A:G→CS×S

E[∥A ∗ u− u+∥2],

where u and u+ are G → CS-valued random variables with an arbitrary distribution. A
convenient way is to do it in Fourier space. Using Plancherel’s identity (Lemma 2) and the
convolution theorem (11), one has

E[∥A ∗ u− u+∥2] = 1

|G|
∑
ρ∈Ĝ

dρE[∥Â(ρ)û(ρ)− û+(ρ)∥2F ],
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where ∥·∥F is the Frobenius norm. When minimizing the right-hand side, notice that the

{Â(ρ) : ρ ∈ Ĝ} are independent. Hence, we can individually solve |Ĝ| least-squares problems:

min
Â(ρ)∈C|S|dρ×|S|dρ

E[∥Â(ρ)û(ρ)− û+(ρ)∥2F ], (21)

i.e., one for every representation. To recover A, one can apply the inverse Fourier transform.

Eigenfunctions. One commonly approximates eigenfunctions of the Koopman operator by
taking left eigenpairs (λ, v) of the EDMD matrix, i.e., vTK = λvT , and introducing f(y) =
vTψ(y) =

∑
o∈O voψo(y) (see, e.g., Williams et al. (2015)) to approximate an eigenfunction.

Indeed, one has

Kf(y) = K(vTψ)(y) = vTKψ(y) ≈ vTKψ(y) = λvTψ(y) = λf(y).

If the EDMD matrix is equivariant, then one can simply compute eigenpairs of its “trans-
posed” convolution kernel using the approach from Section 2.3.
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(b) System dynamics and predicted trajectories in the low-data regime.

Figure 2: Experimental setup: The Kuramoto–Sivashinsky equation is solved in two spatial dimensions with
periodic boundary conditions. Starting from the shown initial state, the system converges to a periodic
attractor (bottom row), and its evolution is predicted using a group-convolutional and a full-matrix EDMD
approach.

3.1. Experiments: Partial-differential equations with periodic boundary conditions

The goal of this section is to demonstrate the convolutional EDMD approach on the two-
dimensional Kuramoto-Sivashinsky (KS) equation (2). Insofar, we utilize the results Section 3
and show how to 1) construct observables using the notion of generating observables, 2) how
to learn a convolution kernel in Fourier space, and 3) how to approximate eigenfunctions of
the Koopman operator by computing eigenvectors of convolutions.4

Before going into details, let us remark on some methodical aspects. The error (1) is
generally smaller if the EDMD matrix is left unconstrained, i.e., forcing it to be equivariant
can only increase it. But there are two advantages that come with equivariant matrices:

4Code and detailed description available online, https://github.com/graps1/convolutional-edmd.
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Table 1: Experimental comparison of the convolutional with the full-matrix EDMD approach in the low
and large data-regimes: Model performance over time (left column), eigenvalues (center column), quality of
eigenfunctions (right column).

Firstly, the additional structure means that fewer parameters are learned, and thus, if the
expectation in (1) is approximated using only few data points, an equivariant approach may
compute better solutions. Secondly, if the group is large and if the Fourier transform can
be computed efficiently, then convolutions may provide a computational advantage over a
full-scale EDMD matrix. Therefore, we conduct one experiment in the “low-data” and one
experiment in the “large-data” regime. For each case, we learn both an equivariant EDMD
matrix that is represented by a convolution kernel, and a full-scale EDMD matrix that is left
unconstrained.

Setup. The PDE is simulated on a small periodic domain of size Ω = [0, L)× [0, L), L = 3π.
The dynamics of the KS equation become chaotic for larger domain sizes, but for our chosen
initial condition (see Figure 2a) and domain size, the solution tends to a periodic wave
that travels from the lower left to the upper right corner (see the lower row in Figure 2b).
We assume that its states are of the form y(t) ∈ Y ⊆ C∞(Ω) for t ≥ 0 and that a flow
Φ : Y → Y is given, which solves the equation given by N in (2) in time steps of δ = 1.
Because of the periodic boundary conditions and independence of the spatial coordinate, this
PDE is equivariant with respect to the group G = Zn × Zn, n ∈ N, acting on y ∈ Y via

(g · y)(x) = y(x− gL/n modL).
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One can then show that equivariance holds for the PDE-operator N , which carries over to
the PDE’s flow (see, e.g., Harder et al. (2024)). Here, periodicity of the boundary conditions
is important. We simulate the system’s trajectory starting from the initial state (Figure 2a)
until it settles onto its attractor, and record the trajectory for another 300 steps. For the
low-data regime, we select only 20 input-output pairs from the training data, and for the
large-data regime, we select all training samples. Another 200 separate samples make up the
test data, used for evaluation.

Observables. For each experiment, we construct observables by selecting 5 random coordi-
nates xs ∈ Ω for s ∈ S := {1, . . . , 5}, at which we simply measure the state of the PDE,

χ : Y → CS, χs(y) := y(xs).

This defines a set of generating observables that are expanded to a full set of base observables
indexed by O = S ×G using the approach of Section 3:

ψ : Y → CO, ψ(s,g)(y) := χs(g · y).

The underlying group is set to G = Z4×Z4, so there are |S||G| = 5 ·16 = 80 base observables
in total. Therefore, the complete EDMD matrix has 802 = 6,400 parameters, while a convo-
lution kernel has |S|2|G| = 52 · 16 = 400. For the plot in Figure 2b, we discretized the spatial
domain into 16 × 16 = 256 equispaced nodes. The discretized state at time t is then given
by y(t) ∈ R256. In order reconstruct y(t) from ψ(y(t)), we solve an additional least-squares
problem

min
B∈R256×|O|

Ey∼Ptest [∥Bψ(y)− y∥2F ]

and apply B to the EDMD prediction of ψ(y(t)) to infer y(t).

Training. Following Section 3, one can learn the optimal convolution kernel in Fourier space,
which amounts to |Ĝ| = |G| = 16 small problems. Since G is abelian, the generalized Fourier
transform is simply a two-dimensional discrete Fourier transform (see end of Section 2.3),
with fast implementations widely available. Additionally, we solve the single large problem
(1) for the full EDMD matrix.

Eigenvalues and eigenfunctions. Eigenvalues are computed using Proposition 1, and eigen-
functions are approximated by computing eigenpairs of the “transposed” convolution. To
demonstrate the correctness of the approximated eigenfunctions, one defines the squared
relative residual (SRR), see Colbrook et al. (2023):

SRReig(λ, f) = 100% · Ey∼Ptest [|Kf(y)− λf(y)|2]
Ey∼Ptest [|f(y)|2]

, (22)

where f ∈ L2
P (Y ) and λ ∈ C. We approximate the SRR by averaging over the test samples.
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Evaluation. For each training trajectory, we use both EDMD models to predict the future
state over the prediction horizon, starting from the last training sample of the same trajectory.
We compare the predicted states to the result of running the full-order model. To compare
the generated states, we employ another squared relative residual, this time as a function of
time t: If φ(t) for t = 0, δ, 2δ, . . . is the predicted trajectory (that is, φ(t) = Kφ(t − δ) for
full EDMD and φ(t) = A ∗ φ(t − δ) for the convolutional approach, with φ(0) = ψ(y(0)) in
both cases), then

SRRstate(t) = 100% · ∥φ(t)− ψ(y(t))∥2
∥ψ(y(t))∥2 . (23)

Results. In the low-data regime, the convolutional approach is able to capture the system
dynamics with low error, see Figure 2b, whereas the full-matrix EDMD approach fails to
learn; its eigenvalues have magnitude smaller than one, leading to a decay of the system state.
The deviation from the true trajectory is depicted in the left column of Table 1 and underlines
the significantly improved performance of the convolutional approach. Additionally, we can
see that it accurately captures most of the eigenvalue spectrum (center column, top row)
compared to the eigenvalues in the large-data regime (center column, bottom row). The
leading eigenfunctions of the convolutional approach have a high quality in terms of the
SRR, see the right column, and do not improve much with more data. In the large-data
regime, both approaches work well, but the convolutional EDMD approach has lower error,
even though both performances are comparable to the convolutional approach in the low-data
regime. (A figure such as Figure 2b for the large-data regime is left out for brevity since the
error is not recognizable by eye.) Here, the eigenvalues of both convolutional and full-matrix
approach are in strong agreement, especially for the ones that have large magnitude, and
both approaches perform similarly in terms of the SRR of their computed eigenfunctions.

4. Conclusion

We have shown that enforcing group-equivariant structures in the EDMD matrix can be
useful for a few reasons. For example, one needs less data since the number of free param-
eters is reduced, and one may improve computational speed by means of fast (generalized)
Fourier transforms. In view of practical applications we have illustrated that a convolutional
approach may provide an advantage in the low-data regime by conducting experiments on
the two-dimensional Kuramoto–Sivashinsky equation. Indeed, as we have argued, using an
equivariant structure is also well-justified in face of Theorem 3.1. For future work, there are
two main avenues that one can pursue: Firstly, one could investigate systems that are only
“semi”-equivariant, for example, equivariant PDEs that have Dirichlet or Neumann instead
of periodic boundary conditions. For the second avenue, one could investigate finite-data er-
ror bounds: The improved convergence of a convolutional method (when varying the number
of data points) over a full-EDMD approach is likely better in theory too, and not only in
practice.
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