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Abstract Convective storms with strong downdrafts create windthrows: snapped and uprooted trees that
locally alter the structure, composition, and carbon balance of forests. Comparing Landsat imagery from
subsequent years, we documented temporal and spatial variation in the occurrence of large (≥30 ha) windthrows
across the Amazon basin from 1985 to 2020. Over 33 individual years, we detected 3179 large windthrows.
Windthrow density was greatest in the central and western Amazon regions, with ∼33% of all events occurring
in ∼3% of the monitored area. Return intervals for large windthrows in the same location of these “hotspot”
regions are centuries to millennia, while over the rest of the Amazon they are >10,000 years. Our data
demonstrate a nearly 4‐fold increase in windthrow number and affected area between 1985 (78 windthrows and
6,900 ha) and 2020 (264 events and 32,170 ha), with more events of >500 ha size since 1990. Such extremely
large events (>500 ha up to 2,543 ha) are responsible for interannual variation in the overall median
(84± 5.2 ha;±95% CI) and mean (147± 13 ha) windthrow area, but we did not find significant temporal trends
in the size distribution of windthrows with time. Our results document increased damage from convective
storms over the past 40 years in the Amazon, filling a gap in temporal records for tropical regions. Our publicly
accessible large windthrow database provides a valuable tool for exploring dynamic conditions leading to
damaging storms and their ecological impact on Amazon forests.

Plain Language Summary Windthrows in the Amazon, the uprooting or breaking of trees by winds,
are produced by downdrafts associated with strong convective storms. They are a major natural disturbance that
can influence the structure, carbon balance and species composition of forests worldwide. Damage by wind can
range from single trees to large forest areas, but only windthrow of large enough size can be detected from
satellite imagery. We mapped large windthrows (≥30 ha) occurring between 1985 and 2020 in the Amazon to
assess possible trends in their spatial and temporal variability. Large windthrows were more common in the
central and western Amazon, with ∼33% of all detected events occurring in only ∼3% of the monitored area.
Between 1985 and 2020, the number and total area of forests impacted by large‐scale windthrows increased
about fourfold, suggesting an increase in the number of intense storms that can topple trees although there was
no obvious change over time in their spatial or size distribution. We did observe interannual variations in the
overall mean size (147 ± 13 ha; 95% CI) reflecting the sporadic contributions from infrequent but very large
events (up to 2,543 ha).

1. Introduction
Natural ecological disturbances serve as a record of extreme conditions and exert an important influence on
biogeochemical cycles. Windthrows (i.e., trees snapped or uprooted by wind) are an important natural disturbance
in the Amazon rainforest (Chambers et al., 2013; Espírito‐Santo et al., 2014; Esquivel‐Muelbert et al., 2020; Y.
Feng, Negrón‐Juárez, Chiang, & Chambers, 2023; Feng, Negrón‐Juárez, Romps, & Chambers, 2023; Negrón‐
Juárez et al., 2017; Nelson & Amaral, 1994). They are produced by strong downdrafts associated with convective
storms (Garstang et al., 1998; Negrón‐Juárez et al., 2018) and thus record the occurrence of such storms and their
interaction with the forest. Locally, sufficiently large windthrows trigger forest succession, with new species
filling created gaps and leading to changes in structure, diversity and carbon dynamics (Chambers et al., 2009;
Marra et al., 2014, 2018; Rifai et al., 2016; Silvério et al., 2019; Urquiza Muñoz et al., 2021). Wind damage can
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also impact forests by increasing susceptibility to other disturbances. For example, survivor trees may be more
exposed to subsequent wind or other disturbances such as fires (Silvério et al., 2019).

Recent studies have documented that windthrow density is higher in the central and western parts of the Amazon
basin, and that they tend to occur more in regions with areas of high mean annual rainfall, lower elevation and
higher soil organic matter (Negrón‐Juárez et al., 2023). They also overlap with regions having higher values of
mean afternoon Convective Available Potential Energy (CAPE) (Y. Feng, Negrón‐Juárez, Chiang, & Cham-
bers, 2023; Feng, Negrón‐Juárez, Romps, & Chambers, 2023), a measure of the energy available to fuel con-
vection. Climate models predict future increases in storm‐favorable conditions (CAPE >1023 J kg− 1) and
therefore windthrows would be expected to also increase (Y. Feng, Negrón‐Juárez, Chiang, & Chambers, 2023;
Feng, Negrón‐Juárez, Romps, & Chambers, 2023). In addition to their association with damaging winds, strong
convective storms are responsible for more than half of the annual rainfall in tropical regions (Negron‐Juarez
et al., 2024; Schumacher & Rasmussen, 2020), thus changes in their frequency or intensity can also impact forests
by affecting hydrology.

A number of lines of evidence point to increases in the intensity of damaging storms over the last 40 years (IPCC
report on extremes) (Chen & Dai, 2023), although records documenting such changes are limited in regions like
the Amazon Basin, where long‐term climate records are sparse. Documentation of the geographical distribution
and the size, frequency and severity of windthrows across the Amazon Basin can provide a temporal and spatial
history of damage from strong convective storms to compare with other regions. Further, such records can be used
to assess the local‐to‐regional importance of windthrows in terms of their impact on the structure and composition
of Amazon forests.

Here, we produce an annual dataset of windthrows occurring across the Amazon basin for 33 years between 1985
and 2020, focusing on describing temporal variations in large wind disturbance. In particular, we assessed (a) the
spatial distribution of large (≥30 ha) windthrows across the Amazon basin and whether regions with more
clustering of events have shifted with time; (b) temporal changes in windthrow size distribution and severity; and
(c) whether there were detectable trends in the occurrence of large windthrows over the last three decades. We
evaluated potential explanations for observed interannual variability and temporal trends by comparing them with
well‐known indicators of climate variability in the Amazon. Our results also identified regions where windthrows
occur most frequently and have the greatest potential to influence forest dynamics and composition. Thus the
main contribution of this work is the temporal and spatial history of damage from strong convective storms that
can be used to inform understanding of strong convection, and the assessment of the importance of windthrows at
local‐to‐regional scales in Amazon forests.

2. Materials and Methods
We used the Google Earth Engine ‐GEE (Gorelick et al., 2017) platform to perform image analysis and pro-
cessing, and to identify windthrows across the entire Amazon Basin, encompassing ∼700 million hectares. This
approach builds on the methods used by Negrón‐Juárez et al., 2023 but adds novel aspects: (a) a reliable iden-
tification of the year in which detected windthrows occurred; and (b) an improved measurement of the affected
area based on shape detection and semi‐automatic pixel extraction. A detailed summary of our approach is
provided in Figure 1.

2.1. Mapping Windthrows Across the Amazon

2.1.1. Annual Landsat Mosaics

We used Landsat 5 Thematic Mapper (L5) and Landsat 8 Operational Land Imager (OLI8) to create mosaics of
images with minimal cloud cover for every year from 1985 to 2020 (example in Figure 2a). We used the Landsat
Path/Row World Reference System (WRS‐2), which is a global notation used for cataloging Landsat data. The
Path/Row is spatially shown as grids, dividing the Amazon into 311 grids (Figure 2a). For each grid we selected
the least cloudy scene (<50%), based on image ranking for the dry season of the Amazon (June to December). We
used images from June 1 to December 31 to identify windthrows of each target year (e.g., 2005) and compared it
with a minimum‐cloud scene from the same months in the previous year (in this Case 2004). In some cases where
no scene meeting our criteria for maximum cloud cover was found in these months, the period analyzed was
locally extended fromMarch 1 to December 31 (See Figure S1a in Supporting Information S1). This procedure is
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justified since the reflectance signal of windthrows remains clear for ∼1 year (Marra et al., 2014; Negrón‐Juárez
et al., 2011, 2020; Nelson & Amaral, 1994). If several images had the same percentage of cloud cover in a path/
row, we selected the recent image in time for that year.

2.1.2. Windthrow Identification

Windthrows were identified by their spectral characteristics, including red coloration due the low radiance in band
4 (L5) and band 5 (OLI8) in a composite image using bands 5, 4, 3 (L5) and 6, 5, 4 (OLI8) (Figure 2c). These
features allow us to identify only new events and avoid double counting from year to year. When strong winds
impact a forest, they can exert collapsing loads on trees, causing them to fall. The result is often a “fan‐shaped” or
radiating arrangement of fallen trees spreading from a central point that represents the epicenter of the windthrow
event (Nelson et al., 1994). Windthrow tree‐mortality is usually higher at the epicenter and decreases toward the
edges and within the corridors created by the wind gusts. Windthrows were labeled manually for a reliable
identification and each was visually confirmed to avoid false positives. Clouds and rivers were masked out using
the CFMask Algorithm (Foga et al., 2017), and the “max extent” band of Global Surface Water Mapping v1.4
(Pekel et al., 2016), respectively. With this approach, we could reliably distinguish windthrows from other types
of disturbances, such as deforestation. Further confirmation of events was carried out for selected years when high
resolution images in GEE allowed us to see directional alignment of toppled trees in the windthrow.

Confirmation that windthrows occurred in a given year came from comparing features found in the target year
(e.g., 1985, 1986 and 1987 up to 2020) with imagery of the previous year (e.g., 1984, 1985 and 1986, up to 2019,
respectively). We carried out Spectral Mixture Analysis (SMA) (Adams, 1995) using the “unmix” function
available in GEE to identify potential windthrow areas. Linear Spectral unmixing is a standard technique for SMA
that is basically a physically‐based image‐processing tool aiding in precise repeated derivation of quantitative
subpixel information (Roberts et al., 1998). It infers the observed spectral signal for a given pixel as a combination
of pure spectral signatures, called endmembers (an endmember is the spectral reflectance of a pure surface cover),

Figure 1. Diagram of windthrow mapping workflows. Construction of the mosaic of images for the Amazon basin (top) and
the identification and certification of windthrows (bottom). Confirmed windthrows were manually labeled by enclosing them
in a circle of 4 km of radius around the centroid of the windthrow (Figure 2c). These circles were used only to reduce the
computational effort when calculating metrics such as windthrow area and severity. The area of the windthrow was
determined by counting aggregated pixels with ∆NPV ≥ 0.25 within each polygon, which gave us a reliable estimate of the
affected area. This approach is less arbitrary and does not overestimate areas compared to other methods that have used
rectangles (Nelson et al., 1994) and triangles (Negrón‐Juárez et al., 2023).
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and fractions of these endmembers, called abundances. The linear unmixing model has received considerable
attention since it generally consists of an acceptable first‐order approximation of the physical processes involved
in most scenes of interest (Garg, 2020). Two distinct endmembers associated with windthrows were quantified:
green photosynthetic vegetation (PV) and non‐photosynthetic vegetation (NPV) (attributable to dead or broken
tree stems). After observing no differences in windthrow detection using different NPV endmembers (see Figure
S2 in Supporting Information S1), we used the average of a set of endmembers for the different Landsat sensors to
characterize windthrows across the entire basin.

We used SMA to quantify the fraction of PV and NPV for each pixel. The fractions of NPV were then
normalized as NNPV = NPV

(PV+NPV) (Adams & Gillespie, 2006). Normalization removes artifacts associated
with seasonal or orbital differences in the background PV signals when comparing the cloud‐free images
(before and after the windthrow) acquired in different months. We computed ∆NPV by subtracting
NNPVtarget year − NNPVtarget year − 1. The severity of windthrow tree‐mortality was scaled to range from 0 (old‐
growth forest) to 1 (highly disturbed, >90% mortality) (Figure 2d). This approach has been employed in
previous studies that combined field and remote sensing data in the central (Brazilian) (Emmert et al., 2023;
Marra et al., 2014, 2018; Negrón‐Juárez et al., 2011, 2018) and western (Peruvian) Amazon (Rifai et al., 2016;
Urquiza Muñoz et al., 2021) (Figure 2a, locations identified with red circles).

To minimize false positive windthrow detections we applied a 100 m buffer for minimizing the error caused by
the edges of masked cloud‐covered areas. Further, we visually identified the characteristic shape of windthrows as
either diverging from a central area with corridors separated by undisturbed forest or exhibiting radial or fan‐
shaped patterns (Araujo et al., 2017; Nelson et al., 1994) (Figure 2c). Confirmed windthrows were manually
labeled and enclosed in a buffer circle with 4 km radius (Figure 2c, blue circle). These circles were used to reduce
the computational effort when calculating metrics such as area and severity of single windthrows. When an
additional windthrow occurring in the same year was identified within the same radius such that the circles
overlapped, we counted this as a single windthrow event and reported the summed area over the various wind-
throw “patches.” To reduce the false positives around affected areas–usually attributable to local variations in tree
phenology, deciduousness or fog–we focused our analysis on pixels with ∆NPV ≥ 0.25 (Y. Feng, Negrón‐Juárez,
Chiang, & Chambers, 2023; Feng, Negrón‐Juárez, Romps, & Chambers, 2023). Then, windthrows were clustered

Figure 2. Study area and methods. (a) Example of an annual mosaic over the Amazon biogeographic limits (black line)
comprising each Landsat 5/8 tile (purple lines) fromwhich the images with minimum cloud cover were selected for the target
years (e.g., in 2000, the year shown). Empty squares are scenes where no image with cloud cover <50% was available (these
were omitted from further analysis in that year); and areas where field data on windthrow tree‐mortality were collected (red
circles) and combined with Landsat 5 TM (1985–2010) and Landsat 8 OLI (2015 and 2020). (b) Pre‐disturbance image for an
area where a 2020 windthrow was identified. (c) Post‐disturbance image as example of a target windthrow, with the
designation of buffer of 4 km of radius (blue circle) used to reduce false‐positive detections and subsequent computational
efforts. (d) Changes in non‐photosynthetic vegetation (∆NPV). (e) Spatial aggregation of events used to reduce scattering
effects around windthrows and respective ∆NPV values.
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using a morphological reducer tool available in GEE (focal mode; radius = 1, kernel type “square,”
units = “pixels,” iterations = 1) (Figure 2d). Morphological operations minimize interference and enhance object
edge details, separates overlapping objects in low‐resolution multispectral images, extracting valuable infor-
mation (Dharani & Sreenivasulu, 2021). Our estimates of windthrow area are thus deliberately conservative and
limited to the core area to meet the requirement that pixels with ∆NPV ≥ 0.25 be connected (e.g., compare
Figures 2d and 2e).

Post‐processing steps included a detailed verification and classification of detected windthrows to reflect levels of
uncertainty around our detection approach. To do this, we compared the point cloud distribution with the visual
outline of drawn polygons and respective windthrows identified automatically in the raw imagery data (Figure S3
in Supporting Information S1). Class‐1 windthrows had full agreement between the point cloud distribution and
the identified disturbed patch (Figure S3a in Supporting Information S1). These provided the most reliable and
conservative estimates of windthrow‐affected area. Class‐2 windthrows did not match the actual disturbed patch,
which led to underestimation of the true windthrow area (Figure S3b in Supporting Information S1). This
occurred when clouds covered part of the target windthrow area in the previous year. Class‐3 windthrows
occurred when the point cloud distribution exceeded the margins of the disturbed patch, leading to overestimation
of the disturbed area (Figure S3c in Supporting Information S1). Class‐4 encompasses all events that cannot be
compared on an annual basis, as the target year provided the only available data–that is, cases where the ∆NPV
and the event size cannot be estimated. We report the number of windthrow events for each year based on all
detected windthrows, but constrained our estimates of size and severity distribution only to Class 1 events for
which we have highest confidence.

2.2. Spatial Distribution and Clustering of Windthrows

To determine whether there were “hotspots,” or areas where windthrows occur with greater frequency, we applied
a clustering analysis by imposing a 20 km × 20 km grid over the defined area of the Amazon Basin. We estimated
the centroid for each event by averaging the coordinates of the pixels within the defined disturbed points for all
windthrow events and years. Using the centroids, the spatial density of windthrows was calculated at a 20 km
resolution by kernel density estimation using an Epanechnikov kernel with a bandwidth of 200 km (function kde
in package SpatialKDE in R) (Caha, 2023). The spatial density was calculated for individual years. The latitude
and longitude density were estimated by the spatial distribution of centroids and plotted in a map using the
function ggMarginal in the package ggExtra in R (Attali & Baker, 2023).

2.3. Estimation of Windthrow Area and Severity (Windthrow Inventory Database, WInD)

For Class‐1 windthrows, the area directly affected was determined by identifying pixels with ∆NPV ≥ 0.25
within each polygon that shared at least one edge with another pixel having∆NPV≥ 0.25. To accomplish this, we
extracted the centroid of each polygon and spatially aggregated all contiguous pixels. These pixels were also used
to extract the spatial distribution of windthrow severity (Figure 2e). To obtain conservative estimates, we limited
our analysis to windthrows with a minimum area of 30 ha (i.e., ≥333 Landsat pixels) and in which the fan shape
typical of large windthrows could be observed. As a demonstration of sensitivity to our constraint that contiguous
pixels delimit the core of the windthrow, we tested an alternative method that created a polygon by connecting
single pixels that outlined the core area using the Concave Hull algorithm (parameter concavity = 3) in the
concaveman package (Gombin et al., 2020) (see Figure 3).

As Class‐1 windthrows represented more than half of the detected events (see Results), and were those for which
we have high confidence in area estimates, we used them to calculate the size and severity distributions of events.
In order to identify optimal models for characterizing the size distribution of windthrows, we employed the
Akaike information criterion (AIC) methodology. The AIC is a mathematical method for evaluating how well a
model fits the data from which it was generated. In statistics, AIC is used to compare different possible models
and determine which one has the best fit to the data (Stoica & Selen, 2004). The AIC is accessible within the
univariate ML 1.1.2 package in R (Moss, 2019). Given that all data are positive, we only evaluated support
densities on the positive half‐track.

To provide an estimate of the total Amazon basin area affected by windthrows in a given year, we adopted a yearly
average area determined for Class‐1 events and multiplied this by the sum of the number of other events (i.e., sum
of Class 2, 3, and 4 events) in the respective year.
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All detected windthrows were organized, structured, and stored in our Windthrow Inventory Database, Version
1.0 (WInD V.1) (Urquiza‐Muñoz et al., 2024). The WInD V.1 includes a complete catalog of windthrows
detected in the 33 years we studied, and a detailed summary of their attributes (e.g., area, windthrow severity and
the spatial distribution of pixels) (see Figure S4 in Supporting Information S1). WInD V.1 is available as an open‐
access resource (https://doi.org/10.5281/zenodo.11168104).

2.4. Analysis of Climate Indicator Data

Large windthrows provide a record of the impact of strong convective storms that cause downdrafts with the
energy to damage areas ≥30 ha. Our results thus provide a history that could be used to improve modeling and
prediction of such storms and their ecosystem relevance. While atmospheric modeling for detailed attribution of
the causes of trends and interannual variability are beyond the scope of this study, we compared commonly used
climate indicators with our temporal and spatial records. Specifically, we used data on the Oceanic Niño Index
(ONI), the Atlantic Meridional Oscillation (AMO) and the CAPE to assess their degree of correlation with
interannual variability or temporal trends in windthrow occurrence. The El Niño Southern Oscillation (ENSO)
has been identified as a main driver of interannual climate extremes in Amazonia (Cai et al., 2020). ONI data was
downloaded from the NOAA Weather Service Climate Prediction Center (https://origin.cpc.ncep.noaa.gov/
products/analysis_monitoring/ensostuff/ONI_v5.php), where they are reported as the 3‐month running mean of
sea surface temperature anomalies in the Niño 3.4 region (5°N–5°S, 120°–170°W). ONI values >0.5 are
considered indicative of El Niño (>1.0 indicates strong El Niño), while values <− 0.5 indicate La Niña conditions
(<− 1.0 strong La Niña) (Bamston et al., 1997; Huang et al., 2017). We also accessed data on the detrended
Atlantic Multidecadal Oscillation (AMO) index from the NOAA Physical Sciences Laboratory (https://psl.noaa.
gov/data/correlation/amon.us.data) to compare with temporal trends in the windthrow data.

Previous work demonstrated that regions of dense windthrows (summed from 1990 to 2019) tend to be the regions
where mean afternoon CAPE is large (Y. Feng, Negrón‐Juárez, Chiang, & Chambers, 2023; Feng, Negrón‐Juárez,
Romps, & Chambers, 2023). Following the methods outlined in (Feng, Negrón‐Juárez, Chiang, & Cham-
bers, 2023; Feng, Negrón‐Juárez, Romps, & Chambers, 2023), we obtained data on CAPE from ERA 5 hourly
reanalysis data available at: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis‐era5‐single‐levels?
tab=form.

Mean and extreme (upper 95th percentile) CAPE values were calculated from data limited to time periods when
convective storms mostly occur: the local afternoon 13:00–19:00 (UTC 17:00–23:00) from August to November
(e.g., August‐November in 2010 to compare with windthrows reported as occurring in 2010).

Figure 3. Direct and indirect affected area. (a) Verified windthrow. Note that at the bottom right corner of the image (outside the circle) there is an area that is disturbed
but not classified as a windthrow due to its rectangular boundaries that identify it as land‐use related disturbance. (b) Our detection Class 1 points were distributed within
the directly affected area, defined by requiring at least one adjacent disturbed pixel, which totaled approximately 604 ha. The indirectly affected area, as indicated by the
red polygon, was calculated using the Concave Hull algorithm (parameter concavity = 3) in the concaveman package, resulting in a total of approximately 1,630 ha.
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3. Results
3.1. Windthrow Detection and Mapping

We analyzed 9,082 Landsat scenes (6,943 scenes of L5 TM and 2,139 scenes of L8 OLI) with cloud cover
<50% (see Table 1 and Figure S2 in Supporting Information S1 for details of scene distribution). In total,
we identified 3,179 disturbance patches classified as windthrows ≥30 ha (Table 1). The years 2012 and
2013 were excluded from the analysis because these were transition years between Landsat sensors, and this
would affect our estimation of ∆NPV. We also excluded the year 2002 due to a large number of scenes with
>50% cloud cover. The number of scenes analyzed varied from year to year (Table 1), averaging 267 scenes
for the years with Landsat 5. These increased to an average of 298.7 scenes for the years after the switch to
Landsat 8 in 2014, that is, the number of scenes increased by ∼10%. To correct for this effect on temporal
trends in our results, we reduced the number of events detected after 2014 by 267/298 and included this in
our analysis (corrected values are identified with an asterisk in Table 1; this reduced the number of total
events to 3081 for analysis of temporal trends). As cloud‐free scenes are concentrated in the eastern and
southern Amazon in most years (Figure S5 in Supporting Information S1), it is likely that our approach is
underreporting windthrows in areas with typically more clouds (western and northern Amazon) during the
Landsat 5 record.

Of the 3,179 events identified, 1,819 (57.2%) were classified as Class‐1 (i.e., events with cloud‐free prior year
images for which we can confidently estimate total area and severity [∆NPV] distribution), 581 (18.3%) as Class‐
2 (i.e., bias toward underestimated area), 278 (8.7%) as Class‐3 (i.e., bias toward overestimated area), and 501
(15.8%) as Class‐4 (i.e., no prior year cloud‐free image for ∆NPV estimation). Class‐1 accounts for more than
50% of all observations in every year except for 1985, 2001, and 2015, when they were 49%, 48%, and 46%, of
events, respectively.

Classes 1 and 3 are well distributed throughout the Amazon basin, however, Classes 2 and 4 (both of which
involve clouds obscuring the prior year image) tended to occur more in the northwest Amazon (see Figure S5 in
Supporting Information S1) which is the area of the Amazon with the highest precipitation. Thus, the potential for
errors in estimating total windthrow area are smallest in the parts of the basin with least cloud cover (south and
east) and greatest in those with consistently higher cloud cover (north and west). A comparison of the number of
windthrows divided by the number of scenes analyzed indicates limited biases, even when more images were
available after 2014 (see Figure S6 in Supporting Information S1).

The map of windthrows we have produced generally has limited overlap with products of forest loss/gain pro-
duced using other criteria. In cases where∆NPV values indicate severe forest damage (∆NPV >0.8), these can be
(and in some cases were) classified as forest loss (Hansen et al., 2013). Thus, distinguishing windthrows from
other types of forest disturbance such as deforestation still requires manual inspection (as performed in this study;
see also Figure 2 for an example) of the spectral and geometric characteristics of disturbed patches.

3.2. Spatial Distribution of Windthrow Events

We detected windthrows throughout almost the entire Amazon basin (see Figure S5 in Supporting Informa-
tion S1), although in some regions they are very rare. We defined windthrow density as the number of events
occurring in cells within a 20 km × 20 km grid imposed across the study area (see Section 2.2). Our data indicate a
distinct clustering characterized by significantly greater density of windthrows (density ranging from 1 to 5
events/400 km2 over the 33 years for which data are available, Figure 4) in the central and western Amazon. Areas
of higher windthrow density (≥1 event over 33 years) cover approximately 14% of the Amazon basin
(∼1,030,000 km2), but account for ∼45% (1,448) of all detected windthrows. Areas with ≥2 events over 33 years
represent ∼3% of the Amazon Basin and are ∼35% (1,118) of all detected windthrows.

Across all years, windthrows occurred most frequently between the equator and 5° S (Figure 4b). The areas with
highest windthrow density oscillate over time, particularly longitudinally between the central and western
Amazon (Figure 4a), as reflected in the fluctuation of intensity and location of windthrow density aggregated by
5‐year intervals (Figure 4a).
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3.3. Size and Severity Characteristics Based on Class‐1 Windthrows

Class‐1 windthrows (Figure S3a in Supporting Information S1), which account for 57% of the detected events,
provide the most reliable estimates of the distribution of size (number of pixels classified as windthrow, i.e.

Table 1
Summary of Detected Windthrows

Year Scenes ACC Events
Ratio events/

scenes Class1 Class2 Class3 Class4 Avg size
Median
size

Max
size

Affected
by C1

Total estimated
affected area

1985 227 8.2 78 0.34 29 (37%) 9 (12%) 8 (10%) 32 (41%) 103 ± 32 65 ± 20 351 2,995 8,042

1986 275 8.6 75 0.27 38 (51%) 6 (8%) 2 (3%) 29 (39%) 116 ± 58 72 ± 20 480 2,083 6,375

1987 260 7.2 45 0.17 35 (78%) 5 (11%) 2 (4%) 3 (7%) 105 ± 53 64 ± 17 618 2,617 3,667

1988 267 6.8 101 0.38 54 (53%) 25 (25%) 13 (13%) 9 (9%) 140 ± 40 93 ± 10 677 6,558 13,138

1989 264 6.6 58 0.22 42 (72%) 8 (14%) 1 (2%) 7 (12%) 80 ± 18 54 ± 10 249 2,568 3,848

1990 272 8.0 105 0.39 61 (58%) 5 (5%) 8 (8%) 31 (30%) 157 ± 51 85 ± 21 1,195 9,588 16,496

1991 278 5.6 41 0.15 29 (71%) 2 (5%) 9 (22%) 1 (2%) 127 ± 46 92 ± 35 417 2,928 4,452

1992 258 7.6 51 0.20 31 (61%) 9 (18%) 6 (12%) 5 (10%) 82 ± 19 64 ± 17 179 1,723 3,363

1993 258 7.6 52 0.20 28 (54%) 12 (23%) 6 (12%) 6 (12%) 178 ± 109 110 ± 55 1,029 3,387 7,659

1994 248 8.2 46 0.19 27 (59%) 11 (24%) 4 (9%) 4 (9%) 149 ± 135 72 ± 32 1,348 2,980 5,811

1995 254 6.3 123 0.48 70 (57%) 14 (11%) 17 (14%) 22 (18%) 180 ± 62 90 ± 21 1,878 12,601 22,141

1996 281 7.4 67 0.24 38 (57%) 14 (21%) 3 (4%) 12 (18%) 115 ± 36 85 ± 24 422 3,790 7,125

1997 288 7.4 71 0.25 49 (69%) 5 (7%) 11 (15%) 6 (8%) 155 ± 51 92 ± 18 681 6,188 9,598

1998 289 7.2 81 0.28 40 (49%) 21 (26%) 11 (14%) 9 (11%) 198 ± 77 126 ± 60 989 7,328 15,446

1999 286 7.4 125 0.44 74 (59%) 20 (16%) 22 (18%) 9 (7%) 176 ± 66 84 ± 12 1,608 11,087 20,063

2000 289 9.3 125 0.43 76 (61%) 16 (13%) 6 (5%) 27 (22%) 155 ± 37 102 ± 24 1,036 11,814 19,409

2001 259 3.9 72 0.28 35 (49%) 21 (29%) 8 (11%) 8 (11%) 102 ± 30 66 ± 14 412 3,365 7,139

2003 254 7.8 48 0.19 25 (52%) 7 (15%) 6 (12%) 10 (21%) 64 ± 21 53 ± 14 200 1,093 2,565

2004 268 7.2 35 0.13 20 (57%) 7 (20%) 4 (11%) 4 (11%) 93 ± 31 68 ± 20 211 1,396 2,791

2005 270 5.3 151 0.56 87 (58%) 19 (13%) 6 (4%) 39 (26%) 184 ± 42 131 ± 54 1,207 16,000 27,776

2006 271 6.3 56 0.21 30 (54%) 14 (25%) 11 (20%) 1 (2%) 141 ± 44 104 ± 33 478 3,654 7,320

2007 267 7.4 149 0.56 91 (61%) 26 (17%) 23 (15%) 9 (6%) 132 ± 31 86 ± 17 779 10,143 17,799

2008 271 4.9 56 0.21 35 (62%) 11 (20%) 3 (5%) 7 (12%) 153 ± 50 109 ± 42 413 3,671 6,884

2009 274 5.8 84 0.31 50 (60%) 23 (27%) 1 (1%) 10 (12%) 104 ± 47 63 ± 11 531 2,490 6,026

2010 248 7.2 186 0.75 105 (56%) 40 (22%) 27 (15%) 14 (8%) 254 ± 59 161 ± 53 1,860 26,682 47,256

2011 268 7.3 166 0.62 91 (55%) 50 (30%) 14 (8%) 11 (7%) 92 ± 25 74 ± 25 478 3,956 10,856

2014 267* 8.7 57* 0.21 39 (61%) 13 (20%) 0 (0%) 12 (19%) 133 ± 49 75 ± 18 617 4,244 7,569

2015 269* 6.5 163* 0.60 84 (46%) 26 (14%) 15 (8%) 57 (31%) 144 ± 30 87 ± 26 653 12,062 26,174

2016 264* 7.1 53* 0.20 42 (71%) 12 (20%) 4 (7%) 1 (2%) 120 ± 46 75 ± 13 853 4,557 6,597

2017 266* 6.5 137* 0.51 97 (63%) 37 (24%) 1 (1%) 18 (12%) 137 ± 102 63 ± 14 2,544 6,719 14,391

2018 269* 7.6 97* 0.36 78 (72%) 21 (19%) 4 (4%) 5 (5%) 94 ± 19 64 ± 9 341 5,182 8,002

2019 265* 8.4 91* 0.34 56 (55%) 33 (32%) 10 (10%) 3 (3%) 128 ± 49 62 ± 9 798 5,643 11,531

2020 269* 6.0 236* 0.88 133 (50%) 39 (15%) 12 (5%) 80 (30%) 150 ± 40 79 ± 8 1,803 19,999 39,649

Note. Columns: Year: studied year; Scenes: number of processed scenes; ACC: mean area of cloud cover across processed scenes, Events: number of detected
windthrows ≥30 ha; Ratio events/scenes: number of events detected/number of scenes with <50% cloud cover, a measure of bias in years with high cloud cover.
Windthrow classification: percentage of windthrows belonging to our classes of detection. Class 1= greatest certainty in area estimate; Class 2–reduced certainty, likely
underestimating actual area; Class 3 = reduced certainty, likely overestimate of actual area; Class 4 = Cases where the ∆NPV and the size cannot be estimated due to
lack of scene from the previous year; Avg size: mean area (in ha) of all Class‐1 windthrows in that year. Max size: maximum size (ha) of an individual windthrow
detected in each year. Affected by C1: sum of the area values for Class 1. Total affected area–The estimated total area (in ha) affected is the sum of the area values for
Class‐1 events (Affected by C1) and the mean size determined from Class 1 events multiplied by the sum of Class‐2, 3, and 4 events for that year.
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∆NPV > 0.25) and severity (∆NPV value for each pixel) for individual events (Table 1). Across the Amazon
basin, the size distribution of Class‐1 windthrows in any given year was highly skewed toward smaller events
(Figures 5c and 5d). While the majority of windthrows had areas between 30 ha (our low end cutoff) and 200 ha,
the maximum windthrow size observed was ∼2,543 ha (year: 2017, ∼260 km north of Porto Velho, Brazil,
Lat:− 6.8207035, Long:− 62.3252312), and the number of events greater than the upper quartile occurred mostly
in 2 years, 1995 (11 large events), and 2020 (16 large events). The disturbed area attributable to a few large events
(here defined as windthrows >500 ha) can make up a relatively large fraction of the total area disturbed in a given
year (Figure 5b) and is responsible for much of the interannual variation in the mean size of windthrows in any
given year (Table 1). The same patterns were also observed in hotspot areas (Figure S7 in Supporting
Information S1).

The median size overall years for Class‐1 windthrows was 84 ± 5 ha. The mean was 147 ± 13 ha (99% CI),
ranging from a minimum of 64 ha in 2003 to a maximum of 252 ha in 2010 (Table 1). However, windthrows
occurring in hotspot areas (density ≥1; Figure 4) averaged nearly twice the size of this basin‐wide average
∼284 ± 57 ha (99% CI). Post‐hoc pairwise comparisons using t‐tests with pooled SD (p‐adjusted using the false
discovery rate method) indicated no significant (p > 0.05) trends in the mean size of Class‐1 windthrows over
time. Only the year 2010 had significantly (p < 0.05) greater (254 ha) mean area compared to other years (Table
S1 in Supporting Information S1).

Figure 4. Spatial and temporal distribution of all detected Amazon windthrows ≥30 ha (Events in Table 1) for the period from 1985 to 2020. Density (color contour) is
defined as the number of windthrows that occur in a 20 km × 20 km grid per year, (a) windthrow density aggregated over 5‐year intervals. (b) Aggregated windthrow
density over all 35 years. The Amazon basin area is delimited by the green boundary. Colored crosses (b) show the centroid locations of all windthrows detected in the
grouped years. The colored density curves in the figure margins show the density distribution of windthrows across longitude and latitude for the aggregated 5‐year
intervals.
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Windthrow severity was assumed to scale with ∆NPV values, ranging from minimal disturbance (below our
lower cutoff of 0.25) to moderate (0.25–0.5) and severe (>0.5) damage, with 1.0 representing complete loss of
photosynthetic vegetation (i.e., 100% of windthrow tree mortality) (Emmert et al., 2023; Marra et al., 2018;
Urquiza Muñoz et al., 2021). The cumulative distribution of windthrow severity, that is, the total number of pixels
identified in Class‐1 windthrows with a given severity in each year had a consistent unimodal distribution across
the analyzed years (Figures S8a and S8b in Supporting Information S1), and did not demonstrate any
apparent trend over time. Notably, 2010 and 2020 were marked by severe windthrow events and had the highest
number of pixels with ∆NPV values ≥0.5. Because we rely on only two locations for which our end members

Figure 5. The optimal models for large windthrow size distribution. (a) Heatmap of event size by year. The heatmap depicts
the number of years that a given windthrow size has occurred on the y‐axis, with the size represented on the x‐axis. The color
intensity in each cell represents the frequency of windthrows within that specific size category and year. (b) Temporal
variability of total disturbed areas by year, the dashed line shows the mean total affected area (∼6,700 ha) across all years,
color represents the strong El Nino (red), La Nina (blue) and neutral (gray) years. In total 221,090 ha of forest were disturbed
in Class 1 events over the 33 years with observations between 1985 and 2020. (c) Distribution of the frequency (histogram
bin = 30 ha) of events in size classes of 100 ha intervals (i.e., 0–100 ha, 100–200 ha, etc.) across all years for the Amazon
basin compared to two models; the “Log‐normal distribution maximum likelihood” model with an Akaike information
criterion (AIC) far below the power law distribution or other candidate models (See Table S2 in Supporting Information S1).
(d) Frequency‐area distribution (histogram bin= 30 ha) for hotspot areas, where the “Inverse Weibull distribution maximum
likelihood” model stands out with an AIC far below the power law distribution or other candidate models.
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were field‐calibrated (Manaus and Iquitos) and can thus not address potential regional differences, we will not
discuss patterns or trends in severity in this study.

3.4. Total Projected Area Damaged by Windthrows

Our method allowed us to accurately detect the number of ≥30 ha windthrow events. For 57% of events classified
as Class 1, we could confidently determine their individual area. To provide an estimate of the total area affected
by all detected windthrows each year, we included the Class‐1 detected area and added the number of non‐Class‐1
events (i.e. summing Class 2, 3, and 4) multiplied by the mean area as determined from the Class‐1 events that
year. Obviously, we can have limited confidence in this extrapolation. Still, we are most confident for estimates
covering the central and eastern Amazon, where most of detected windthrows fall in Class‐1 (see Figure S5 in
Supporting Information S1).

Using this method and summing over the 33 years of record for which we could identify windthrows between
1985 and 2020, we estimated a total moderate‐to‐severely disturbed area of 423,000 ha, or roughly 0.06% of the
∼7,000,000 km2 area of the Amazon basin. This implies a disturbance rate for windthrows ≥30 ha of 0.0018% per
year, or average return interval of ∼55,000 years. However, our spatial analysis shows that windthrows are
concentrated in hotspot areas, such that only 14% of the basin had ≥1 windthrow over 33 years. Within those
regions, windthrows had larger mean areas (∼270 ha) compared to the basin‐wide averages (∼150 ha). We es-
timate the total area disturbed ∼186,000 ha (0.18% of the hotspot area in 33 years), which implies a disturbance
rate of 0.0054% yr− 1, or a return interval of ∼18,000 years. These estimates are based on severe disturbance
within large and potentially less‐frequent events without consideration of the forest corridors that can be affected
by neighboring damage in subsequent years (see Figure 2d), or less impacted areas on the edge of contiguous
moderate to severe damage (e.g., Figure 3). The Concave Hull algorithm shows an increase of the estimated area
affected of 2.3 ± 0.08 (mean ± 99% CI, number of windthrows analyzed = 519). See for example, the windthrow
in Figure 3, where the affected area increases from 706 to 1,630 ha (i.e., 2.3 times more affected area). Calculating
the actual area impacted by a windthrow including areas outside the major disturbed patch requires care and field
confirmation. For Class‐1 events we found that the area of impact can be up to three times greater than the area we
reported depending on how the boundary is drawn (e.g., Figure 3).

Large‐scale windthrows such as those we identified here can thus be considered rare events over much of the
Amazon basin. However, within hotspot areas, we have detected 20 km × 20 km areas with 2–5 windthrow events
≥30 ha in size over the 33 years of record. These represent in total around 3% of the area of the basin, but about a
third of the total events. In these areas, we estimate that from 1.35% to 3.4% of the area experienced severe wind
damage/mortality in 33 years, or recurrence intervals of ∼1,000–2,500 years (see Figure 6 for examples). As
noted above, our area estimates are conservative and represent just the core area experiencing moderate to severe
damage. In fact, we expect the actual area affected to be larger, and thus recurrence intervals in these regions
could potentially be of the order of three lifetimes (hundreds of years; Vieira et al., 2005) (Figures 2d and 3).

The size distribution of Class 1 windthrows from 1985 to 2020 are illustrated with a heatmap (Figure 5a). Prior to
the 1990s, the majority of windthrows had sizes of <750 ha Figure 5a also shows that smaller size categories
(between 30 and 250 ha) have become more common in recent years than in the past, and that this has been
accompanied by an increase in the occurrence of large events (between 750 and 2000 ha). These large‐scale
events contribute substantially to the total area affected on an annual basis (Figure 5b; Table 1).

Given the large number of windthrows we have identified, we tested the hypothesis that their size ‐frequency
distribution follows a power law (e.g., as suggested in Chambers et al., 2009, 2013; although Espírito‐Santo
et al., 2014 note breaks in slope of power law distributions). According to our AIC analysis (See Table S2 in
Supporting Information S1), applied only to Class‐1 windthrows, size‐frequency distributions did not fit the
power law distribution. More optimal models for the size distribution of windthrows ≥30 ha in the Amazon basin
were the Log‐normal (df = 2, AIC = 20783.78) and Log‐gamma (df = 2, AIC = 20837.49) models (see
Figure 5c). Like the Log‐normal and Log‐gamma distributions, the Weibull distribution can also be used to model
the asymmetric windthrow size distribution. In hotspot areas, the inverse Weibull (df = 2, AIC = 7533.932) and
inverse gamma (df = 2, AIC = 7548.182) were the optimal models (see Figure 5d).
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3.5. Temporal Trends in Windthrows

Fitted linear regressions (Figure 7a) show that both the number and the estimated total area of windthrows ≥30 ha
increased significantly from 1985 (50 events) to 2020 (205 events). The total number of events was assessed with
high confidence, whereas the confidence is lower for estimates of total area as it was based on Class‐1 areas (high
confidence) and the areas for Class‐2, 3, and 4 (relatively lower confidence). The positive slopes of both fitted
models suggest that the number of windthrows and associated area increased at rates averaging 3 windthrows yr− 1

and ∼340 ha yr− 1 over the last 35 years.

Figures 5 and 7 also demonstrate large interannual variability both in the number and estimated area affected by
windthrows, with variability increasing especially in the last half of the record. To assess potential relationships
between interannual variability and trends in windthrows we compared them with common indices related to
tropical climate variability (ENSO/La Niña) and Atlantic Multidecadal Oscillation (AMO), as well as to CAPE.
In seeking attribution using temporal comparisons, we need to acknowledge that the actual climatic (windthrow‐
causing) storm event could have occurred in the calendar year before we reported it. Because most of the cloud‐
free Landsat images occur in dry‐season months (that tend to be in June through October), a windthrow detected
and reported in a given year (e.g., 2006), could potentially have been caused by an event that occurred in the
second half of the previous one (e.g., 2005). In the case of CAPE, the maximum values in a given year tend to be in
the months of August‐November, and we compared the same year in which the windthrow was reported (see
Methods).

El Niño and LaNiña years are associated with anomalous temperatures in the eastern Pacific ocean and drivemuch
of the interannual variation in Amazon rainfall, with recent record droughts occurring mostly during El Niño years
(1987, 1998, 2010, 2016, but not 2005) and years with large flooding (1989, 1999, 2009, 2012, 2022) during La
Niña years (Marengo et al., 2018). As also found by Negrón‐Juárez et al., 2017, we found no significant rela-
tionship between the ONI value and the number or area of windthrow (Figure S9 in Supporting Information S1).
For example, although 2010 was an El Niño year with a relatively high number of windthrows, the stronger ENSO
years of 1998 and 2016 were not marked by large numbers of windthrows. There has been no overall temporal
trend in ONI over the past three decades (Figure S9 in Supporting Information S1), although windthrows have
increased. TheAtlanticMultidecadal Oscillation (AMO) is related to shifts in sea surface temperatures in the north
Atlantic Ocean, where warmer temperatures (positive AMO phase) have also been related to increased Amazon
droughts (Espinoza et al., 2019; Yoon & Zeng, 2010). During the period we studied here, the AMO index

Figure 6. Examples of areas within “hotspots” where multiple windthrows ≥30 ha occurred in a 20 km × 20 km area over the 33‐year period. The white numbers
represent the year of occurrence of windthrows. Black numbers and dots represent the location. The yellow lines show the extent of the 20 km × 20 km grid.
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(detrended; https://psl.noaa.gov/data/timeseries/AMO/) increased from a
cold (− 0.2) to a warm phase (high of 0.9 in 2017). However, as with ONI, we
did not see evidence for AMO linking to interannual variability in windthrow
numbers or area.

The top 95th percentile of afternoon CAPE values averaged over the entire
Amazon basin indicated a small but consistent increase in absolute values
from 1985 to 2020 (Figure 7b), even though the mean CAPE values have
declined over the same period (Riemann‐Campe et al., 2009). The spatial
distribution of the 95th percentile afternoon CAPE overlaps with observed
windthrow density (Figure S10 in Supporting Information S1), indicating a
larger‐than‐average increase of extreme CAPE values in the western Amazon,
where the number and area of windthrows increased the most over the same
time period (Figure 7c).

4. Discussion
The observed increase in the number of windthrows and the area they have
affected between 1985 and 2020 across the Amazon Basin provides important
information for assessing possible changes in convective storms and their
impact on forests. Windthrows provide evidence of where and approximately
when strong downdrafts occurred in the past. This information is especially
important for a region such as the Amazon Basin, where long‐term obser-
vations of forest dynamics and atmospheric conditions are sparse. As large
windthrows trigger ecological and biogeochemical changes, our data indicate
which regions in the Amazon are most likely to be impacted by windthrow
damage.

4.1. What Could Explain the Observed Increase in Windthrow Number
and Area Since 1985?

Our results document a nearly fourfold increase in the number and accu-
mulated area of windthrows ≥30 ha from 1985 to 2020. One plausible
explanation for this increase is related to the intensification of the Amazon's
hydrological cycle in the last two decades (Gloor et al., 2013), and to changes
in larger‐scale circulation that reflect trends in the AMO and ocean surface
warming (Barichivich et al., 2018). Such changes include the enhancement of
deep convective clouds and intense rainfall, and positive anomalies of
terrestrial water storage over the northern Amazon during the 21st century

(Espinoza et al., 2022), as well as increases in extreme flooding events (Barichivich et al., 2018). With climatic
warming, atmospheric conditions favorable for the formation of extreme storms over tropical regions are ex-
pected to increase (Diffenbaugh et al., 2013; Seeley & Romps, 2015; Singh et al., 2017), which could lead to a
continued increase in windthrows (Y. Feng, Negrón‐Juárez, Chiang, & Chambers, 2023; Feng, Negrón‐Juárez,
Romps, & Chambers, 2023), with a potential decrease in the atmospheric conditions producing weak and
moderate storms (Rasmussen et al., 2020).

Although responsible for a large fraction of annual precipitation as well as severe weather, convective storms
remain poorly understood. Our results add support from the Amazon region to evidence from radiosonde data for
a global increase in unstable atmospheric conditions that can lead to extreme storms over the past 40 years (Chen
& Dai, 2023). Characteristics of past windthrows (e.g., area, shape, damage distribution) could be used to infer
properties of storms, though the degree of observed damage depends both on atmospheric conditions producing
the downdraft and the vulnerability of the impacted forest to wind damage (Peterson et al., 2019; G. H. P. M.
Ribeiro et al., 2016; Silvério et al., 2019). Over the past 35 years, the characteristics of intact Amazon forests are
unlikely to have changed, and we did not see shifts in the windthrow size or severity distributions over time.
Therefore, we attribute the increase in large‐scale windthrows primarily to changes in atmospheric conditions.

Figure 7. Trends. (a) Corrected number of windthrows ≥30 ha per year
between 1985 and 2020. Linear regression models (with 95% confidence
interval) indicate a mean increase at rates of ∼2 windthrows/year or 340 ha/
year. (b) Total summed windthrow area. Total summed areas could be up to
10% less for each year after 2014 (related to change in cloud cover with
Landsat sensor; see text) but also show an increasing trend. (c) Mean
extreme afternoon Convective Available Potential Energy (95th percentile
from ERA5) for all years.
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Changes in the frequency of strong convective storms since 1985 could reflect variation in the local atmospheric
environment in which convective storms develop (e.g., static instability), or even other conditions that could
affect the speed and duration of downdrafts (Garstang et al., 1998). While a previous study noted the spatial
overlap between high values of CAPE with the “hotspot” regions where most windthrows occur in the Amazon
(Y. Feng, Negrón‐Juárez, Chiang, & Chambers, 2023; Feng, Negrón‐Juárez, Romps, & Chambers, 2023), over
the period 1985–2020 where we observed a large increase in windthrow occurrence, mean afternoon CAPE
values declined over the Amazon basin (Riemann‐Campe et al., 2009). Here, we demonstrated an increase in the
mean top 95th percentile of afternoon CAPE values (increasing from ∼2,700 to 2,820 J kg− 1) in the Amazon
region over the last 35 years (Figure 7c) that also had spatial overlap with the density of windthrows (Figure S10
in Supporting Information S1). Besides CAPE other variables can be used to predict damaging convective storms.
For example, the study by Windmiller et al. (2023) found that the best predictors for downdraft mass flux and
velocity were updraft properties that determine the rain amount and rate, and the environmental lapse rate.
Observational and modeling studies of Derechos (strong convective storms in the central United States) suggest
that the frequency of downdrafts is expected to increase with climate change (Prein, 2023), and that downdraft
CAPE, a better predictor of strong near surface winds, should be explored in further analysis.

Although reflecting a global multidecadal trend of increased atmospheric instability that contributes to weather
extremes (Chen & Dai, 2023), we are unable here to pinpoint a specific cause for increased windstorms. In
addition to changes in atmospheric dynamics associated with detectable warming during this period
(Marengo, 2004), another atmospheric change over the past 35 years in the Amazon is the amount of biomass
burning aerosol, which has direct radiative effects and an impact on the number, chemistry and size of cloud
condensation nuclei (Artaxo et al., 2013). Further, we did not find obvious explanations for the large interannual
variations in windthrow occurrence using climate indices like ENSO that are generally tied to precipitation
variability.

One value of our study is to provide evidence of past damage from large‐scale convective storms for bench-
marking cloud‐resolving climate models. Further examination of specific windthrows in our database can narrow
the timing of their occurrence, often to within a few weeks. This could be important for detailing the meteoro-
logical conditions associated with a specific event (Mendonça et al., 2023; Negrón‐Juárez et al., 2015). Recent
developments in cloud‐ (Satoh et al., 2019) and storm‐resolving (storm‐resolving models), and convection‐
permitting (Z. Feng et al., 2023) models, especially in the Amazon region (Rehbein & Ambrizzi, 2023; Tai
et al., 2021), could be combined with basin‐wide information on characteristics like forest structure available
from field and LiDAR data. Long‐term observations linking the temporal and spatial distribution of extreme wind
and rain with local meteorological conditions and windthrow occurrence will also contribute to better addressing
the dynamics and seasonality of these mechanisms of disturbance across topographic gradients.

4.2. How Important Are Large Windthrows for Amazon Forest Composition and Structure?

The pattern and severity of forest damage for a given windthrow are related to downdraft velocity and geometry,
but also to the resistance of forest to wind (Fujita, 1990; Peterson et al., 2019; G. H. P. M. Ribeiro et al., 2016).
Important factors include stand characteristics (tree height‐to‐diameter‐ratio and tree density), the mechanical
stability of occurring species (slenderness, crown size, root anchoring, soil depth and properties, and connections
between trees and lianas) and interactions of downdraft winds with local topography. The large‐scale windthrows
reported here (≥30 ha) promote changes in environmental conditions that trigger secondary forest succession,
with different species adapted to the rapidly changing levels of light, moisture, and nutrient availability in newly
formed gaps. As a result, windthrows can promote biodiversity (Alencar et al., 2022; Marra et al., 2014), shape
forest structure and biomass (Marra et al., 2018; Rifai et al., 2016; Silvério et al., 2019; Urquiza Muñoz
et al., 2021), dynamics (Marra et al., 2018) and biogeochemical cycling (Espírito‐Santo et al., 2014; dos Santos
et al., 2016) where they occur.

Previous studies focusing on a more limited portion of the Amazon and fewer years of observation established that
large‐scale windthrows are rare events, with recurrence intervals of ∼27,000 years (eastern Amazon) to
∼90,000 years (western Amazon) (Espírito‐Santo et al., 2014). While our results agree with long return intervals
(>18,000 years) over most of the Amazon basin, for the ∼3% of the basin that experienced 2 (or more) events in
the last 33 years over an area of 400 km2 (corresponding to the darker contours in Figure 2a), return intervals are
∼1,000–2,700 years (examples in Figure 6). As our estimates of the damaged area are deliberately conservative
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(Figure 3 suggests the damaged area could be ∼2–3 times larger depending on how we define it), return intervals
could be of the order of hundreds to a thousand years in these regions. This time interval can be of the same order
as the age of late successional trees (Vieira et al., 2005). Evidence for damage extending beyond the “core”
windthrow region is supported by the observation that the passage of a strong squall‐line causing severe wind-
throws near Manaus, Brazil in 2005 (Negrón‐Juárez et al., 2010) also led to increased plot level wind‐related
mortality (Aleixo et al., 2019).

Quantifying the extent and impact of damage outside the core windthrow region is challenging but critical for
evaluating the overall importance of this disturbance mechanism in Amazon. Previous attempts have fitted power
law distributions to area‐frequency data (Chambers et al., 2013; Espírito‐Santo et al., 2014) to estimate damage at
spatial scales smaller than can be confidently related to windthrows detected from Landsat imagery. Our results
(Figures 5c and 5d) confirm those of Espírito‐Santo et al. (2014) that a single power law distribution does not
cover the entire size distribution from a few to thousands of hectares. While Espírito‐Santo et al. (2014) found a
break in slope at ∼10 ha in area, our data indicate slope changes between 30 and 100 ha, perhaps suggesting a
transition from purely atmospheric impacts at larger spatial scales (where power laws might not be expected to
apply), to power law distributions with varying slopes at smaller spatial scales, where forest characteristics have
more impact on the damage experienced. Previous study demonstrate that distinct alpha values are necessary to
achieve a satisfactory fit for mortality in bothManaus and Iquitos (Negrón‐Juárez et al., 2018). Our study supports
that a single power law alpha value is insufficient to explain the distribution of damage from windthrows across
Amazon.

The selection of 30 ha as size threshold was made only to facilitate our basin‐wide annual calculations. Previous
studies employing the same methodology combined with field data have demonstrated the ability to identify gaps
as small as 5 ha (Emmert et al., 2023; Negrón‐Juárez et al., 2023) and even single Landsat pixels containing as few
as eight downed trees (Negrón‐Juárez et al., 2011). At the plot level, it has been shown that wind‐induced tree
mortality can account for up to 50% of overall tree mortality (Esquivel‐Muelbert et al., 2020). These findings
support that windthrows are an important mechanism of tree mortality not only in hotspot areas but across other
regions as well. Future work is needed to understand whether windthrows affecting smaller areas are caused by
different types of storms (e.g., associated microbursts) and whether/how these are related to the convective events
associated with large downdrafts that can fell trees over tens to thousands of hectares.

As remote sensing is available at increasing spatial resolution, mapping of smaller windthrow events is potentially
possible. However, detection and evaluation of the impact of windthrow on forest structure and function requires
comparison with field observations of change in forest structure and biodiversity. Only a few field studies of
recovery after large‐scale wind damage are available (Emmert et al., 2023; Marra et al., 2018; Urquiza Muñoz
et al., 2021). Existing forest inventories may not cover the full range of factors influencing landscape‐to‐regional
variations in disturbance frequency, may not have sufficient spatial resolution to accurately capture small‐scale
disturbances (Gorgens et al., 2023; Simonetti et al., 2023), and are often conducted at discrete time intervals that
may not coincide with the frequency of disturbance events (e.g., Aleixo et al., 2019).

The impact of wind on forest properties depends not only on the frequency, severity and area of damage, but also
the rates of recovery of structure, species and functional composition (Gorgens et al., 2023; Silverio et al., 2019).
Detailed studies of forest responses following windthrows in the Amazon are available only for two regions
(Brazil and Peru), both in areas classified as disturbance “hotspots” in our analysis. These document how
windthrow triggers secondary succession and controls patterns of forest diversity and dynamics by creating a
mosaic of niches across the landscape (Figure 6) (Chambers et al., 2009; Marra et al., 2014; G. H. P. D. M. Ribeiro
et al., 2014). Fallen trees and debris provide important resources for a wide range of organisms, including fungi,
insects (Alencar et al., 2022; Bouget & Duelli, 2004), and small mammals. Dead wood and decaying organic
matter resulting from dead trees contribute to nutrient cycling (dos Santos et al., 2016) and create habitats for
specialized decomposers. While mortality of canopy trees that survived initial disturbance continues over sub-
sequent years (Marra et al., 2018), new tree species including fast growing pioneers colonize the created gaps
(Bordon et al., 2019; Marra et al., 2014; Ribeiro et al., 2014). This increased habitat heterogeneity supports a
greater variety of species and can enhance overall ecosystem functioning (Lugo, 2008; Mitchell, 2013; Viljur
et al., 2022).

Effects of windthrows on local carbon balance depend on the rate of decomposition of downed trees (Chambers
et al., 2004), which takes up to several decades (Palace et al., 2012), compared to the rate of regrowth of new
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biomass. In western Amazon (near Iquitos, Peru), biomass recovery to old‐growth levels in windthrows ranging
from 188 to 662 ha takes only ∼20 years (Urquiza Muñoz et al., 2021). In central Amazon (near Manaus, Brazil),
biomass recovery in windthrows ranging from 75 to 900 ha can take more than 40 years to recover to old‐growth
levels (Marra et al., 2018). However, the recovery of species and functional composition requires longer time
intervals (Marra et al., 2018). Impacts of large windthrows on local to regional carbon balance will depend on the
region surveyed, the degree to which there is damage to trees outside core windthrow areas, the time since
disturbance, the successional stage of affected forests and the occurrence of additional and related mortality or
damage (Silvério et al., 2019). Given the rapidity of decomposition and biomass accumulation, these effects will
be most important in areas directly impacted.

Further investigation is needed to accurately identify and map windthrows smaller than 30 ha to assess their
ecological importance (Chambers et al., 2013; Gorgens et al., 2023; Negrón‐Juárez et al., 2018; Reis et al., 2022;
Simonetti et al., 2023), especially as tree mortality at smaller spatial scales cannot be easily extrapolated from the
spatial‐temporal distribution of larger events (Espírito‐Santo et al., 2014 and this study). Future studies can take
advantage of increased resolution of satellite imagery to map windthrow damage on new windthrows (Emmert
et al., 2023) and track their recovery trajectories. New remotes sensing products like LiDAR can identify canopy
gaps at smaller spatial scales but do not specifically allow identification of the reason for gap formation, though
broken or uprooted trees typically create larger gaps compared to standing dead trees (Esquivel‐Muelbert
et al., 2020; Reis et al., 2022; Simonetti et al., 2023). Future work comparing Lidar surveys with the locations of
known large windthrows can help answer the question of how far damage associated with larger windthrow
events extends beyond the core region detectable with confidence from the Landsat record and reported here.
Such studies can also assess better the degree to which wind damage occurring at scales <30 ha are independent
of, or related to, larger convective systems and topographic features. Detailed field surveys will also be necessary
to improve estimates of tree mortality/damage and associated losses of biomass outside of the “core” damaged
areas. Such studies would also contribute fundamental knowledge to understand the legacy of windthrows on
evolutive processes such the relationships between wind disturbance and species distribution in tropical forests.

5. Conclusions
We presented the first annual analysis of windthrows in the Amazon for the period 1985–2020. Our results
document an approximately four‐fold increase in large (≥30 ha) windthrows per year associated with severe
convective storms in the Amazon Basin over the 33 years documented. The increase in damage from convective
storms felling large areas of forest in this region with sparse atmospheric time series adds to evidence doc-
umenting increases in extreme storms in other regions over the last decades. Windthrows tend to cluster in regions
that coincide with metrics for meteorological conditions favoring convection in the central and western regions of
the Amazon, and in these regions the mean size of windthrows is also larger. Overall, we detected no changes in
the size distribution or severity of windthrows over the past 35 years, except for an increase in very large events
(>500 ha) since 1990. Thus, it is the number of events that has increased. While we cannot attribute the cause for
increase more specifically, our observations are consistent with reported changes in Amazon temperature and
hydrometeorology over the same time period. We argue that the database of past windthrows we provide will be a
valuable benchmark for testing cloud‐resolving climate models that aim at providing a detailed explanation for
the large observed increase in windthrows.

While across much of the Amazon basin, large‐scale windthrows (≥30 ha) is sufficient to impact forest properties,
especially forest structure and species composition, with roughly a third of the documented events occurring a
∼3% of the Amazon basin with recurrence intervals of hundreds to thousands of years. The few studies of re-
covery following large windthrows indicate that while changes in species composition will last longer, biomass
recovery can take only decades. Thus, carbon imbalances associated with large windthrows will be short‐lived
and difficult to measure at spatial scales larger than several hundred km2. Further research is needed to under-
stand wind damage at smaller spatial scales, and how or whether it is connected to larger convective systems
creating windthrows we can detect with high confidence in Landsat records.

Given predictions of increased storm severity with global warming, the number of windthrows are also predicted
to increase. This is likely to make wind disturbance a more important mechanism even outside the regions we
have identified as most impacted, especially if large trees become more vulnerable to snapping and uprooting as a
consequence of other emerging disturbances. The windthrow database we publish with this paper provides a
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benchmark for evaluating future change in disturbance regimes. It also adds novel and valuable information for
progress in atmospheric modeling, as well as field and remote sensing studies linking landscape and regional
patterns of forest structure, dynamics and floristic composition across Amazon.
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