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Introduction

The importance of the q = 1 profile derivation is linked to the 1/1 perturbation developing

in central plasma either as a reconnection process triggered by a q0 < 1 plasma central safety

factor [1] or as a 1/1 interchange perturbation [2] when q ≳ 1 near the magnetic axis, both

flattening the central temperature and driving a restored sawtooth preventing q0 ≳ 1 profile

afterwards. The latter profile is possible to be kept in specific plasma scenarios, the sawtooth

being absent due to a self regulating mechanism such as the magnetic flux pumping [3]-[5]. A

way of deriving the q= 1 profile is presented here via the determination 1/1 mode location. This

is an alternate method when an unclear inversion radius is found from the associated electron

cyclotron emission temperature measurements or soft X-ray emission profiles.

The perturbed solution

In this regard, the following perturbed solution for the m/n magnetic flux [6]

Ψ
mn
s (t) = i(m/qs −n) (1)

×
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is used for deriving the q = 1 profile via our modes localization technique [7]. ∆ is the de-

terminant of the Laplace transformed system of linearized perturbed plasma and outer plasma

equations having Ψmn
s and its radial derivative at the m/n magnetic surface radial coordinate

rs as unknowns. τp are the roots of ∆(τ) = 0 with τ the Laplace transform variable. ∆l is

simply the numerator determinant according to the Cramer’s rule applied to the mentioned

system of equations in order to find the solution associated to every considered mode. l =
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m−m1+1+(n−n1)(m2−m1+1) where m and n span m1,n1 ≤ m,n ≤ m2,n2 and L = max
m,n

(l).

qs and ΩMP are the safety factor at rs and the outer coils signal rotation frequency, respectively.

It has been demonstrated that the modes amplitude bmn
θ f = (mrm

s /rm+1
f )|Ψmn

s | and frequency

f mn = Im[(∂Ψmn
s /∂ t)/Ψmn

s ] derived based on our solution are good matches for the experimen-

tal corresponding quantities [6] provided by the JET MHD data analysis code [8]. The pertur-

bation amplitude is derived by means of the perturbed poloidal magnetic field measured at the

JET Fast Magnetic Acquisition System diagnostic coils, disposed at r f . Our method basically

consists in inverting our model and, starting from the experimental amplitude as input data and

based on the validity of the proposed model, in finally retrieving the dynamic profile of the 1/1

mode via the 1/1 mode localization derivation. The latter technique has been presented in Ref.

[7] and is simply based on the incremental spanning of rs between 0 and 1 m and on choosing

the appropriate mode location when the derived amplitude best matches the experimental one.

Modelled vs experimental results

The JET shot to be analyzed is the EUROfusion flux-pumping campaign shot no. 103110

showing a reported clear, highest unstable 1/1 mode amplitude in figure 1(b) along with its

neighboring modes and a (red color) frequency in the spectrogram from figure 1(c). A potential

signature of the 1/1 flux pumping is discovered, as reported. The 1/1 mode experimental am-
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Figure 1: JET 103110 and 103820 shots 1/1 mode (a,d) normalized beta, plasma current, NBI and
ohmic power, (b,e) modes amplitudes and (c,f) modes spectrogram of frequencies.

plitude and frequency provided by the JET data analysis MHD python code are shown in figure

2(a) and 2(b). Our technique in deriving the mode location is based on the suitable choice of

the initial conditions as to most accurately retrieve the mode amplitude and frequency via our
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calculated location when the experimental mode amplitude and frequency play the role of the

input data. It can be clearly seen that the match between the retrieved quantities by means of the
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Figure 2: JET 103110, 103820 shots 1/1 mode experimental vs. modelled/retrieved (a,e) amplitude,
(b,f) frequency, (c,g) location and (d,h) safety factor profile.

calculated location and the experimental ones is pretty good for the both EFTF and EFIT equi-

librium reconstruction data profiles used into calculus. The best retrieval ensures the obtaining

of the sought after 1/1 mode location. Figure 2(c) shows a reasonable good inversion major

radius match. Based on the obtained inversion radius, the corresponding safety factor q = 1

in figure 2(d) is simply found from the spatial profile of the EFIT/EFTF qmag midplane safety

factor data by interpolating with respect to our derived location. It can be clearly observed that

the calculated q = 1 matches pretty good the experimental safety factor for the case of the EFIT

data profile. However, the quality of the EFTF data is lower, the match being less accurate.

This also can be seen from a slightly less precise amplitude retrieval. On the other hand, the

EFIT and EFTF based inversion radii and safety factor profiles are quite different. By looking
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at its spanned range, the EFTF shows a possible sawtooth activity whereas the EFIT data rather

indicates a sawtooth free and a possible flux pumping dynamics. A similar analysis leading to

the same conclusions is performed for the JET shot no. 103820 (involving sawtooth activity),

shown in figures 1(d-f) and 2(e-h). The 1/1 mode is locking when the NBI is off. Again, a good

q = 1 calculated vs experimental match is obtained. From the q = 1 profiles derived in figure 2,

by using the following Wesson type safety factor formula experiencing plasma shaping correc-

tions [9]

q(r) =
qaρ2

1− [1−ρ2](qa/q0)+ ε2
0 λ sin(πρ4)

(2)

λ = (a/4π)(3/2+∆
′2
a +2∆

′
a +E ′2

a +6EaE ′
a −3E2

a +T ′2
a +16TaT ′

a −8T 2
a ) (3)

the q0 profile is determined in figure 3. ρ = r/a, ε0 = a/R0 where a, R0, qa, aε0∆a, aε0Ea,
aε0Ta are the minor and the major radius and the safety factor, Shafranov shift, ellipticity and
triangularity on the boundary, respectively. ‘ means the r derivation. Therefore the q = 1 profile
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Figure 3: JET shots no. (a) 103110 and (b) 103820 experimental vs. modelled q0 safety factors.

accuracy is additionally checked by the subsequently good match between our derived plasma
central safety factor q0 and the experimental one, no matter the used diagnostic data.
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