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Background Future tokamaks must avoid large edge localized modes (ELMs). A promising 

solution is the application of 3D magnetic perturbations (MPs), which under certain conditions 

can mitigate, or even suppress, ELMs. However, quantifying the optimal magnetic geometry 

and plasma conditions to achieve this on future devices is uncertain in the absence of a rigorous 

theoretical model. Key to such a model is a predictive capability for peeling-ballooning mode 

stability in the presence of non-axisymmetric MPs. Such calculations are possible (eg [1]) but 

have great demands on computational resources, so detailed convergence tests and parameter 

scans are prohibitive. This motivates our project to develop an efficient code to quantify the 

impact of MPs on ideal MHD stability of the plasma edge. Here, we describe the methodology 

and some of the foundations on which we shall build our full capability in the future. 

Methodology The methodology is based on that developed in [2], aiming to exploit a feature 

of high toroidal mode number, n, ballooning modes to develop a variational principle. A 

ballooning mode consists of a large number of coupled poloidal Fourier harmonics, each 

labeled by their poloidal mode number, m, and localized about their rational surface where 

m=nq with q(y) being the safety factor and y the poloidal flux. Each of the Fourier coefficients 

has approximately the same shape in y, and this is described by the well-known n=¥ 

ballooning equation. They have an amplitude that is slowly varying from one value of m to 

another, which is set by the weak radial (y) variation of the equilibrium. This structure is 

illustrated in Fig 1, which shows the output from a particular ELITE calculation for a peeling-

ballooning mode. Each curve shows the radial dependence of a different poloidal Fourier mode, 

with two of them highlighted in red for clarity. Note their similarity in shape, but differing 

amplitude, consistent with the description above. The region where x<0 (approximately) 

corresponds to the vacuum region, and this plasma-vacuum interface interrupts the “ballooning 

symmetry”. In particular, the Fourier modes resonant in the vacuum (i.e. m³m0) have a different 

shape, and enable the energy of the kink-mode to be tapped into (see example highlighted red). 
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For our approach, we conjecture that the effect 

of weak toroidal variation associated with a 3D 

MP will act similarly to the radial variation, 

primarily affecting how poloidal and toroidal 

Fourier modes couple while having little 

influence on their shape. Thus we adopt a trial 

function for the displacement, x, of the form: 

      𝝃 = ∑ 𝐶!,#𝝃!,#(𝜓)𝑒$%!&𝑒%#'!,#  (1) 

where q is the straight field line poloidal angle 

and j is the toroidal angle. The functions 

xm,n(y) are provided by ELITE stability calculations for the toroidally averaged equilibrium 

and the coefficients Cm,n are the variational parameters to be obtained by minimization of the 

energy functional dW. Assuming an applied MP with a single toroidal mode number, N, the 

energy functional can be written in a schematic form: 

𝛿𝑊 = ∑ 𝐶(,)∗(,!,),# 𝐶!,#+𝛿#,)〈𝝃(,)∗ ∙ 𝐹+/𝝃!,#0〉 + 𝛿#,)±-〈𝝃(,)∗ ∙ 𝐹-/𝝃!,#0〉3 (2) 

Angled brackets denote Jacobian-weighted integrals over y and q, and the ideal MHD force 

operators for the axisymmetric and non-axisymmetric field contributions are represented by F0 

and FN, respectively. ELITE will provide the harmonics xm,n so that once the force operators 

are derived, minimization of Eq (2) with respect to C*k,l provides an eigenmode equation for 

the Cm,n, with the new growth rate provided as an eigenvalue (note that F0 and FN include 

inertia and the vacuum energy). The challenge is then to derive forms for the force operators 

that are numerically tractable. We first consider the axisymmetric piece, which is the largest 

and best understood of the two. Nevertheless, we shall find that it is not trivial to reconstruct 

numerically when one is considering intermediate-to-high n modes because of the cancellations 

that must be captured. In the rest of this paper, we describe our approach which then sets the 

foundations for introducing the non-axisymmetric force operator in a next stage of our project. 

Reconstructing the energy functional We decompose our displacement, x, and magnetic 

fluctuation (ie that associated with the instability), dB, in the forms: 

 𝝃 = .
/!0"!

∇𝜓 + 𝑅1𝑈∇𝜑 + 𝑍𝑩           𝜹𝑩 = 2#
/0"

∇𝜓 + 2⋀
/0"0

𝑩 × ∇𝜓 + 2%
0
𝑩 (3) 

Assuming an incompressible plasma model in this first study, we eliminate Z from dW. We 

then follow standard procedures to derive the contributions to the potential energy, dWp: 

 𝛿𝑊3 =
3
1∫𝑑𝑉 ?𝑄4?

1																										𝑄4 =
3

/0"
(𝑩 ⋅ ∇)𝑋 

 
Figure 1: Classic peeling-ballooning mode structure 
predicted by ELITE, showing the similarity in 
shape of the different core Fourier harmonics. 

access to second stability for this value of the magnetic well
@Fig. 1~b!#; note, however, that a second stability region does
exist. Here we have chosen n520 and a small value of D
50.1, for which the localized peeling mode stability crite-
rion is expected to be accurate when coupling to the core
Fourier harmonics is weak ~i.e., low a).

As the well is deepened further, the unstable region gets
smaller and, for dM&20.64, access to second stability can
be achieved. Figure 2 shows the effect of progressively deep-
ening the magnetic well from dM520.6 through dM
520.64 and finally to dM520.645, with other parameters
the same as Fig. 1. It is interesting to note that in the case
dM520.645 the marginal stability boundary is pulled above
the peeling mode stability criterion as it passes under the
nose of the ballooning boundary @Fig. 2~b!#. For larger D
50.9 the localized peeling mode stability criterion is no
longer valid, and the stability curves predicted by the two-
dimensional calculation are somewhat different to the low D
case. These results are shown in Fig. 3 for dM520.6 ~no

second stability access! and dM520.62 ~second stability ac-
cess!.

The structure of the modes is very different for different
parts of the marginal stability curves: this can be illustrated
by considering the D50.1 case shown in Fig. 2~b!. Taking
a55.0, s52.58, corresponding to marginal stability on the
low shear peeling mode branch, we find that the mode is
very localized at the plasma edge, coupling only a few inter-
nal rational surfaces, but several ~seven in this case! vacuum
surfaces @Fig. 4~a!#. If we now consider higher shear, s
54.09, at the same value of a , so that we are on the second
stability branch of the ballooning mode marginal stability
contour, then we find the mode structure shown in Fig. 4~b!.
There are now many more Fourier modes that are resonant
inside the plasma, which peak at their respective rational
surfaces, as expected from a ballooning mode. Approximat-
ing the fraction of plasma minor radius which this mode
penetrates the plasma by dr/r;dm/(nqs), where dm is the
number of internal Fourier modes, we find dr/r;6%, which
justifies the ‘‘localized mode’’ approximation we made in
performing the equilibrium expansion. We find that this
mode structure persists as we reduce a towards the first sta-
bility branch, up to the point at which this branch crosses the
n5` ideal ballooning stability contour. Then the mode
structure becomes much more radially extended, as shown in
Fig. 4~c!, which is for a case just below the n5` ballooning
mode boundary, again at a55.0, but s54.67. Finally, as we
increase a and s along the first stability boundary, the bal-
looning nature begins to dominate and the mode amplitude
peaks away from the plasma edge; this is illustrated for the
case a56.0, s56.13 in Fig. 4~d!. This mode structure is
similar to those derived previously,7 where the envelope of

FIG. 2. ~a! A sequence of marginal stability curves from the two-
dimensional stability calculation as the magnetic well is deepened from
dM520.6 ~long-dashed!, through dM520.64 ~short-dashed!, to dM
520.645 ~full!, showing access to second stability at the deepest well ~the
other parameters as Fig. 1!. In ~b! the results of the two-dimensional code
~full curves! are compared with the individual peeling and ballooning sta-
bility boundaries for dM520.645.

FIG. 3. The marginal stability contours calculated using the two-
dimensional code for D50.9 and dM520.6 ~full curve! and dM520.62
~dashed curve!; the other parameters are as for Fig. 1~b!.

FIG. 4. The radial eigenmode structures for the Fourier components um(x)
for ~a! the peeling mode branch at a55.0, s52.58; ~b! the second stable
branch at a55.0, s54.09; ~c! close to the ‘‘nose’’ of the n5` ballooning
mode marginal stability contour at a55.0, s54.67, and ~d! on the first
stable branch at a56.0, s56.13; parameters are as for Fig. 2~b!. In ~d!, the
dashed curve shows the fit to the Airy function given in Eq. ~6!. The insets
show the position in the s2a diagram.
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A prime denotes derivative with respect to y, n¢ is the local shear, J|| is the parallel current 

density, s=- J||/B and other parameters have their usual meanings. Note that dW1 and dW2 are 

field line bending, dW3 is magnetic compression, dW4 is the curvature drive and dW5 is the kink 

drive. We have dropped two complex terms which cancel between dW4 and dW5. 

Minimization of dW with respect to U* provides the Euler equation relating U to X, and by 

employing a high n expansion of this equation one can readily show that the magnetic 

compression is reduced to O(n-2). However, this Euler equation is only valid for the toroidally 

symmetric equilibrium, and we want to retain the possibility that the MPs could change it. This 

is captured in our formalism by using the axisymmetric ELITE calculations to derive the 

Fourier amplitudes for X, then using the Euler equation relating U and X to provide the Fourier 

amplitudes for U. We then allow these Fourier amplitudes to vary relative to each other, with 

scaling coefficients that differ from those used to adjust X. Thus, when we introduce the 3D 

equilibrium contributions to dW we will perform two minimizations to derive both sets of 

coefficients. To do this reliably, we must develop a formalism that captures the cancellations 

we expect in the axisymmetric limit, but has freedom to adjust in the non-axisymmetric case.  

A first challenge arises from the terms involving (B.Ñ)U~[i(m-nq)/n](¶X/¶y). The (m-nq) 

factor enhances the contributions of higher m harmonics, and in fact we find that we require 

(m-nq)~n. This violates the ordering in ELITE, with the result that the coefficient of the second 

order derivatives can have false zeros at certain radial locations, which then results in 

discontinuities in the radial derivatives of the higher m Fourier harmonics. While this does not 
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Figure 2: Comparison of 
growth rates of peeling- 
ballooning modes in DIII-D 
shot 170063 [4] calculated 
using the original high n 
expansion version of 
ELITE (orange curve) and 
the new arbitrary n version 
(blue curve). The figure on 
the right shows the mode 
structure in poloidal cross 
section for n=6. 
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influence the ELITE eigenmode solver, it does mean dW does not converge robustly with 

increasing number of Fourier harmonics. We have fixed this by employing a finite n version of 

ELITE [3]. This had numerical problems for EFIT equilibria, but we have now resolved these. 

Figure 2 shows the good agreement between the new finite n version of ELITE and the original 

ELITE code for DIII-D EFIT equilibrium, shot 170063 [4], even down to quite low n. 

A second issue concerns the level of cancellation required to accurately calculate dW3 in the 

axisymmetric limit, which is equivalent to three orders of n (i.e. 1 in 1000 for n=10). Actually, 

there is also a factor of (B/Bp)2 which is a further factor of 100, so cancellation to 1 part in more 

than 105 is required. To facilitate this, we introduce the variable W, related to U through 

U=(i/n)[¶X/¶y+p¢X/B2+W]. The new version of ELITE works with W rather than U to account 

for cancellations, and we find this is even more important for constructing dW. A further 

manipulation is required and that is to combine the terms involving |QÙ|2 in dW2 and dW3 before 

introducing the Fourier expansions for W and X, and then integrating over plasma volume. 

Only when we adopt all of these do we get a satisfactory agreement between the square of the 

growth rate, g2, calculated by ELITE and that calculated from the reconstructed dW (Fig 3). 

Summary As a first step towards developing an efficient variational code for peeling-

ballooning stability in toroidal magnetic confinement devices with 3D geometry, we have (1) 

upgraded ELITE to work reliably for arbitrary n (this may be important for spherical 

tokamaks), and (2) identified a procedure to capture the cancellations required to accurately 

reproduce dW for axisymmetric plasmas, needed as a pre-requisite for our variational approach. 
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Figure 3: Growth rate, g2, calculated as a function of n for (1) ELITE eigenmode approach (blue); (2) from dW 
only replacing leading order inU terms with W (green) and (3) replacing all U terms with W (orange), showing 
the importance of capturing the cancellation analytically (left). Contributions to dW versus n, showing the 
dominance of the kink drive for this DIII-D shot 170063 (dW3 is negligible and combined with dW2) (right). 
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