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Fig. 1. Existing denoising diffusion models (top row) generate images with low-dynamic range (LDR) on a certain exposure, in the center. When re-exposed to
other levels, bright parts like the lamps do not retain their contrast, and dark areas do not reveal details as in the shadow below the table. In our high-dynamic
range (HDR) approach (bottom), diffusion is performed at multiple exposures, such that the lamps retain their contrast and the details in the animals’ bodies
are produced without noise (see insets). An example application is an HDR display, where high pixel values map to high physical intensity.

We demonstrate generating high-dynamic range (HDR) images using the
concerted action of multiple black-box, pre-trained low-dynamic range (LDR)
image diffusion models. Common diffusion models are not HDR as, first,
there is no sufficiently large HDR image dataset available to re-train them,
and, second, even if it was, re-training such models is impossible for most
compute budgets. Instead, we seek inspiration from the HDR image capture
literature that traditionally fuses sets of LDR images, called “brackets”, to
produce a single HDR image. We operate multiple denoising processes to
generate multiple LDR brackets that together form a valid HDR result. To this
end, we introduce an exposure consistency term into the diffusion process
to couple the brackets such that they agree across the exposure range they
share. We demonstrate HDR versions of state-of-the-art unconditional and
conditional as well as restoration-type (LDR2HDR) generative modeling.

CCS Concepts: • Computing methodologies → Computer graphics.

Additional Key Words and Phrases: Augmented Reality

1 INTRODUCTION
Images generated by modern denoising diffusion models [Rombach
et al. 2022; Sohl-Dickstein et al. 2015] have shown an unprecedented
combination of user control and image quality. Unfortunately, the
resulting images are low-dynamic range (LDR) while in computer
graphics, several applications, such as physically-based simulation
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and rendering [Debevec 1998], scene reconstruction involving pro-
found shadows and specular highlights [Huang et al. 2022; Jun-
Seong et al. 2022; Mildenhall et al. 2022], as well as advanced displays
[Seetzen et al. 2004] require high-dynamic range (HDR).

We propose to close this gap by introducing a simple and effective
method to upgrade a black-box denoising diffusion model from LDR
to HDR image generation.

This poses two main challenges: first, the limited scale of the avail-
able HDR training data, which is orders of magnitude lower than
its HDR counterpart, and second, the fact that for most users, it is
impossible to re-train the denoiser due to the sheer compute require-
ments. We overcome the first challenge by avoiding producing HDR
directly. Instead, we produce a set of individual brackets, i.e., LDR
images, which can be merged into an HDR image. This allows us
to circumvent the first challenge by never operating the denoiser
on HDR images, and hence, also overcome the second challenge,
as we circumvent the need to re-train the denoiser in HDR. Our
method does not need any fine-tuning or training and considers the
denoiser a black box.
Instead, the task is to produce brackets that are meaningful, i.e.,

meaningful on their own and meaningful in combination with other
brackets (Fig. 2). To be plausible on its own, a bracket should have
all details, without noise, in the range of values it represents. To
work as a combination, a value in one bracket must match its value
re-exposed to another bracket and ultimately when they are merged.
We achieve these properties by deriving a diffusion process based on
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Fig. 2. Recalling HDR merging: LDR brackets are shown on the left; right,
the weights for each bracket, for simplicity in binary. White means this
pixel will contribute to the final HDR.

ideas from diffusion posterior sampling (DPS) [Chung et al. 2023]
that operates between multiple brackets jointly.

2 BACKGROUND: MULTI-EXPOSURE HDR IMAGING
HDR images directly register scene radiance, typically up to a scale
factor, so that image details in the darkest and brightest scene re-
gions are readily available. As sensors with HDR capabilities are
relatively rare and expensive, typically, a stack of differently exposed
LDR photographs (refer to Fig. 2) is merged into an HDR image [De-
bevec and Malik 1997; Mitsunaga and Nayar 1999; Robertson et al.
2003; Wang et al. 2023b]. By transforming each pixel value through
an inverted camera response and then dividing by the exposure
time, a measurement of the scene radiance can be derived [Reinhard
et al. 2010]. As such, per-pixel measurements are the most reliable
in the middle range of the camera response [Debevec and Malik
1997]; an accordingly weighted average of the measurements can be
computed for all exposures. Fig. 2-right shows a simplified version
of such weights for exposures EV-1, EV+0, and EV+1, where EV+𝑥
denotes multiplying with 2𝑥 in the linear radiance space. Note that
the radiance ranges below the black level and over 1 are covered
just in a single exposure EV+1 and EV-1, respectively, while for
EV+0, radiance information is clamped on both sides of the range.
Dark image regions are also contaminated with sensor noise, whose
characteristics may differ between exposures, which makes con-
sistent denoising difficult [Chang et al. 2020; Cogalan et al. 2022;
Mustaniemi et al. 2020]. Some camera manufacturers introduce hard
clamping at a black-level radiance, assuming that there is no reli-
able image information below this threshold due to noise. Finally,
the performance of the multi-exposure methods might be limited
for large scene/camera motion that causes ghosting that is further
aggravated by simultaneous image saturation [Kalantari and Ra-
mamoorthi 2017; Wu et al. 2018; Yan et al. 2019, 2020]. The latter
problem can be reduced through consistent image hallucination us-
ing adversarial training [Li et al. 2022; Niu et al. 2021] or conditional
diffusion [Yan et al. 2023] components.

In this work, we aim to use diffusion [Chung et al. 2023; Ho et al.
2020; Sohl-Dickstein et al. 2015] to generate consistent multiple ex-
posures. In this process, we need to account for missing information
due to clamping and, when relevant, denoise.

3 PREVIOUS WORK
In this section, we discuss previous work on deep single-image HDR
reconstruction methods and the use of diffusion models in HDR
imaging that are central to this work. A broader perspective on

other aspects of deep learning for HDR imaging can be found in a
recent survey [Wang and Yoon 2022].

Deep single-image HDR reconstruction (LDR2HDR). An alternative
solution to multi-exposure techniques (Sec. 2) relies on restoring
HDR information from a single LDR image. Traditional methods
are extensively covered in Banterle et al. [2017], and here, we focus
on recent machine-learning solutions. Single-image HDR recon-
struction can be performed directly [Chen et al. 2022; Eilertsen et al.
2017; Liu et al. 2020; Marnerides et al. 2018; Santos et al. 2020; Yu
et al. 2021; Zhang and Aydın 2021], or, alternatively, by first pro-
ducing a stack of different exposures that are then merged into
an HDR image [Endo et al. 2017; Jo et al. 2021; Lee et al. 2018a,b,
2020]. Specialized solutions are required when an observation EV+0
is captured in dark conditions, where denoising is a key problem
[Chen et al. 2018; Wang et al. 2023c]. Text conditioning driven by
a contrastive language-image pre-training (CLIP) model [Radford
et al. 2021] can be used for the generation of a well-exposed LDR
environment map that is then transformed into its HDR counter-
part by a fully supervised network [Chen et al. 2022]. Even though
some methods employ adversarial training [Lee et al. 2018b; Zhang
and Aydın 2021], the key problem remains limited performance
in reconstructing clamped regions. Those methods mostly require
LDR and HDR image pairs for training, which is problematic due to
limited datasets. Recently, GlowGAN [Wang et al. 2023a] addressed
the latter two problems by fully unsupervised learning a generative
model of HDR images exclusively from in-the-wild LDR images. As
this approach is based on StyleGAN-XL [Sauer et al. 2022], it re-
quires GAN training on narrow domains (e.g., lightning, fireworks)
to capture the respective HDR image distribution.

Diffusion models in HDR imaging. Denoising diffusion probabilis-
tic models (DDPMs) [Ho et al. 2020; Sohl-Dickstein et al. 2015]
demonstrate huge capacity in modeling complex distributions and
typically outperform other generative models in terms of image
realism, diversity, and detail reproduction [Dhariwal and Nichol
2021]. DDPMs also proved useful for solving linear [Song et al. 2021]
and non-linear [Chung et al. 2023] inverse imaging problems that
are common in image restoration and enhancement tasks guided by
the degraded input image. Image inpainting [Lugmayr et al. 2022],
deblurring [Kawar et al. 2022], and super-resolution [Saharia et al.
2023] are examples of such restoration tasks, where the degradation
models are typically linear and known [Fei et al. 2023]. In HDR
imaging tasks, the degradation model is more complex, and existing
solutions based on DDPMs are more sparse. Wang et al. [2023c]
propose low-light image enhancement using exposure diffusion
that is directly initialized with the noisy low-light image instead
of Gaussian noise, which greatly simplifies denoising and conse-
quently reduces the network complexity and the required number of
inference steps. The method can be trained using pairs of low-light
and normally-exposed photographs, as well as synthetic data using
different noise models. Fei et al. [2023] employ a pre-trained DDPM
and propose the Generative Diffusion Prior (GDP) for unsupervised
modeling of the natural image posterior distribution. They demon-
strate the utility of this framework for low-light image enhancement
and HDR image reconstruction by merging low, medium, and high
exposures. A similar task, but with explicit emphasis on largemotion
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Fig. 3. Overview of our approach. Diffusion occurs from left to right and across multiple exposure levels (brackets), shown vertically. We show an example
with three brackets. The process starts with three independent noises. At each diffusion step (one is shown), denoising is guided by an exposure consistency
term (middle block). In this term, brackets are made consistent when re-exposed (-̃symbol). When diffusion has finished, the brackets form an HDR image
under a common HDR fusion.

between the three exposures and severe clamping at the same time,
is addressed in Yan et al. [2023]. Lyu et al. [2023] train a DDPM to
capture the distribution of natural HDR environment maps, but are
limited to rather narrow classes (e.g., urban streets) due to scarcity
of available HDR training data. Dalal et al. [2023] train a DDPM
on LDR–HDR image pairs (roughly 2,000 images, from the HDR-
Real [Liu et al. 2020] and HDR-Eye [Nemoto et al. 2015] datasets)
and reconstruct HDR images from single LDR images.
Our work follows [Chung et al. 2023] and relies on off-the-shelf

pre-trained diffusion models [Dhariwal and Nichol 2021; Nichol et al.
2022] that feature better domain generalizability due to intensive
training on large datasets than explicit training on small datasets
of LDR–HDR image pairs [Dalal et al. 2023; Lyu et al. 2023]. Our
solution does not require any HDR images at the training stage.
Instead, we implicitly leverage the exposure statistics of real-world
photographs used for DDPM training, which allows the model to
reason on the underlying radiance distributions. In single-image
reconstruction, we require as the input just one LDR exposure and
then generate a stack of different spatially consistent LDR exposures.
This way, we avoid possible problems with large motion inherent
for time-sequential capturing [Fei et al. 2023; Yan et al. 2023].
Optionally, the hallucinated HDR content in saturated regions

can be conditioned on text prompts [Nichol et al. 2022]. Such text
prompts can also be used as the only input to generate standalone
HDR images. Histograms with the desired pixel color distribution,
possibly derived from existing images, can guide global contrast
relations in generated HDR content and can optionally be combined
with text prompts. Tab. 1 summarizes all text conditioning and
image/histogram guidance combinations we support. With respect
to non-diffusion methods such as GlowGAN [Wang et al. 2023a],
we benefit from an overall better quality of generated images by
diffusion models [Dhariwal and Nichol 2021; Nichol et al. 2022] and
avoid a lossy inversion of an input LDR exposure into a latent code
as required by GANs.

4 OUR APPROACH
We will first briefly recall the mechanics of sample generation using
DDPMs with a guiding term (Sec. 4.1), before presenting our idea
(Sec. 4.2).

4.1 Guided Diffusion
Data generation with a pre-trained DDPM [Ho et al. 2020; Sohl-
Dickstein et al. 2015] amounts to gradual denoising of a sample
x ∈ R𝑢 using

x𝑡−1 :=
1

√
𝛼𝑡

(
x𝑡 − (1 − 𝛼𝑡 )∇x𝑡 log𝑝𝑡 (x𝑡 )

)
+z𝑡 . (1)

This update rule involves a noise schedule 𝛼𝑡 ∈ R+, random vectors
z𝑡 ∈ R𝑢 , and, at its core, a score function ∇x𝑡 log 𝑝𝑡 (x𝑡 ). Optionally,
the score can be conditioned on a signal c ∈ R𝑣 , such as a text
prompt embedding, to yield ∇x𝑡 log𝑝𝑡 (x𝑡 |c). In modern DDPMs,
scores are typically approximated by a neural network s𝜃 (x𝑡 , c, 𝑡) ∈
(R𝑢 × R𝑣 × Z) → R𝑢 . Please refer to Yang et al. [2023] for an
in-depth treatise.
In the framework of diffusion posterior sampling (DPS) [Chung

et al. 2023], an additional guiding signal y ∈ R𝑤 , such as a partial
observation of x, is incorporated into the denoising process to arrive
at the posterior score

∇x𝑡 log 𝑝𝑡 (x𝑡 |c, y) ≈ s𝜃 (x𝑡 , c, 𝑡) − 𝜆∇x𝑡𝐶 (x̂𝑡 , y) . (2)

Here,𝐶 ∈ (R𝑢×R𝑤) → R is a problem-specific measurement term
that drives the denoising process towards solutions that incorporate
the guiding signal y, and 𝜆 ∈ R+ is a balancing term. For increased
stability, Chung et al. [2023] propose to feed the current estimate of
the clean sample

x̂𝑡 =
1

√
𝛼𝑡

(
x𝑡 + (1 − 𝛼𝑡 )s𝜃 (x𝑡 , c, 𝑡)

)
(3)

to 𝐶 , where 𝛼𝑡 is derived from 𝛼𝑡 .

4.2 Exposure diffusion
The above equations Eq. 1 and Eq. 2 are valid for producing a sin-
gle LDR result image x. Our idea is to produce HDR by diffusing
multiple LDR results. Hence, we operate (Fig. 3) on a set of LDR
images {x−𝑚, . . . , x0, . . . , x𝑛}, called “brackets”. Positive and nega-
tive superscripts denotes positive and negative EVs, respectively.
All brackets are initialized to noise with mean zero and standard
deviation one. They, further, need to be gamma-corrected sRGB LDR
images, as we consider the score function a black box that cannot
be retrained to work on linear HDR.
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Score term. The first term in Eq. 2 is the common score function
that points from the current solution into the direction of a more
plausible one. It may or may not be conditioned as per the second
column of Tab. 1, leading to different application scenarios.
It is a black box we do not need to know any details of, nor

differentiate, as it already encodes a gradient. We only need to know
its noise schedule 𝛼𝑡 to also use x̂ from Eq. 3. The score function is
hence simply computed on each bracket independently.

Posterior term. The second term in Eq. 2 is very specific to our
problem, the exposure consistency cost term. The consistency of two
brackets measures how much x̂𝑖 , a free variable, is compatible with
another bracket x̂𝑟 that is assumed fixed. For each bracket x̂𝑖 , the
reference bracket x̂𝑟 is exposed to another bracket, and the resulting
differences are checked using a function exco (to be defined in the
next paragraph).

The posterior term is slightly different for positive, negative and
zero EV brackets:

𝐶 (x̂𝑖 ,y) =


𝐶↓ (x̂𝑖 ,x̂𝑖+1) , if 𝑖 < 0, see Eq. 5,
𝐶↑ (x̂𝑖 ,x̂𝑖−1) , if 𝑖 > 0, see Eq. 6 and
𝐶0 (x̂𝑖 , y) , if 𝑖 = 0, see Eq. 7.

(4)

Both positive and negative posterior make use of two mask func-
tions sat and darkwhich are one for saturated and near-zero pixels,
respectively, and zero otherwise. In practice, we use smooth ver-
sions of that for better differentiability; a very smooth function
sat(x) = x and dark(x) = 1 − x provides the best results.
The posterior for decreasing exposure is

𝐶↓ (x̂𝑖 , x̂𝑟 ) =| |sat(x̂𝑟 ) · max(exco(x̂𝑟 → x̂𝑖 ), 0) | |2+
𝜆s·| | (1 − sat(x̂𝑟 )) · (exco(x̂𝑟 → x̂𝑖 )) | |2,

(5)

while the one to increase exposure is

𝐶↑ (x̂𝑖 , x̂𝑟 ) =| |dark(x̂𝑟 ) · (exco(x̂𝑟 → x̂𝑖 )) | |2+
𝜆d·| | (1 − dark(x̂𝑟 )) · (exco(x̂𝑟 → x̂𝑖 )) | |2,

(6)

where 𝜆s and 𝜆d are set to 1 and 2, respectively. Note that in Eq. 6,
the two terms are weighted differently. This is because the darker
regions dark (x̂𝑟 ) are usually noisy or unreliable; thus, we impose
less exposure consistency prior on these regions compared to the
brighter regions. The exposure consistency exco of one LDR bracket
x̂𝑖 with respect to a reference x̂𝑟 (that can both be higher or lower
EV) is defined as

exco(x̂𝑟 → x̂𝑖 ) :=
(
min(( 𝛽

𝑖

𝛽r ⊙ (x̂𝑟 )−𝛾 ), 1)
)𝛾

− x̂𝑖 ,

where 𝛽 stands for exposure time.We first undo the gamma (𝛾 = 2.2),
as the solution has to live in non-linear space for the black box score.
Next, we scale by the ratio between the exposure times and then
clamp and apply gamma again, as a real camera would. The result
has returned to the domain an LDR score function can handle and
is compared to the bracket x̂𝑖 in question.

The possible combinations of consistency and up or down direc-
tion are discussed for an example in Fig. 4.
Eq. 4 is the expression for a single exposure bracket x̂𝑖 . As per

Eq. 2, this expression gets differentiated with respect to its first
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Fig. 4. Posterior based on exposure consistency cost for three representative
points (colored dots) in two conditions (rows) when adjusting the current
solution x̂𝑖 with respect to a reference bracket x̂𝑟 (columns). The top row
goes down in exposure, bottom row goes up. The condition with respect to
dark and sat is different for each representative point. Depending on the
exposure direction, this results in different costs for choices in x̂𝑖 . In the
cost plot, dots are placed horizontally where their value in the reference is.

Table 1. Different combinations of score conditioning, guidance, and
whether including EV+0 in the posterior leads to different applications.

Application Cond. c Guide y EV+0 fix? Example

Generation Text — ✕ Fig. 5
Generation — Histo. ✕ Fig. 6
Generation Text Histo. ✕ Fig. 7

Reconstruction — Image ✓ Fig. 10, 11, 12
Reconstruction Text Image ✓ Fig. 8

argument. The subtlety is that this is now done for multiple brackets,
but they depend on each other. In our implementation, during one
optimization step, however, for each bracket, the other bracket x̂𝑟
is considered a constant, so the second argument of 𝐶↓, 𝐶↑, and 𝐶0
is “detached” in PyTorch parlance. Note that this is different from
greedily optimizing each bracket sequentially.
Finally, we can also define an optional posterior term on the

original image by applying a function 𝑓 :

𝐶0 (x̂𝑖 , y) = 𝜆𝑐 · | |𝑓 (x̂𝑖 ) − y| |2 . (7)

First, if 𝑓 is, for example, the identity, and y an LDR image (the third
column in Tab. 1), this becomes a reconstruction task. In that case,
the solution for x̂𝑖 is immediately set to y. As a second alternative, we
explore using conversion to an LDR histogram as 𝑓 . The parameter
𝜆𝑐 is always set to 10.

5 RESULTS
We demonstrate the application of our method to HDR generation
(Sec. 5.2) and reconstruction (Sec. 5.3), demonstrating qualitative as
well as quantitative results for both tasks.

5.1 Experimental setup
For our reconstruction experiments, specifically the LDR2HDR task,
we utilize the pre-trained unconditional diffusion model [Dhariwal
and Nichol 2021] directly without finetuning. Our input images
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are down-sampled to 256×256 before they are fed to this model,
and we perform 1,000 denoising steps to produce our results. In
tasks involving text-conditioning or histogram guidance, we use
the OpenAI GLIDE [Nichol et al. 2022] diffusion model, which is
text-conditional and generates images at a resolution of 64×64 using
a classifier-free guidance strategy. Subsequently, an upsampling dif-
fusion model is applied to increase the resolution to 256×256. In this
case, we apply our DPS approach only to the text-conditional model.
Once the exposure brackets are generated, they are individually
upsampled with the upsampling module.
The hyper-parameter 𝜆 in Eq. 1 balances between the diffusion

prior and our posterior term. In our experiments, a constant 𝜆 led to
degenerated results; instead, we adopt 𝜆𝑡2, gradually incorporating
the posterior term with respect to the denoising step 𝑡 . We set 𝜆 = 3
when using the unconditional diffusion model [Dhariwal and Nichol
2021] while opting for a lower value of 𝜆 = 0.75 when employing
the conditional diffusion model [Nichol et al. 2022], as it operates
on smaller image resolutions.
For all results, we compute five exposure brackets: EV-4, EV-2,

EV+0, EV+2, and EV+4, unless otherwise specified. These exposure
brackets are merged using the standard technique [Debevec and
Malik 1997] to create our HDR image. For Fig. 11, Fig. 8 and Fig. 12,
we show the result of applying Mantiuk et al. [2006]’s tonemapping
while in all other results, we directly show the optimized brackets.

5.2 Generation
Image generation is a premiere ability of diffusion models, which
we extend to HDR. Image generation without any conditioning or
guidance frequently results in scenes that, in reality, do not exhibit
high dynamic ranges. Therefore, capitalizing on the generality of our
framework, we consider generation conditioned on text prompts,
guided by RGB color histograms, and a combination thereof (first
three rows in Tab. 1).

Text-based. Here, we consider the task of text-conditioned gen-
eration, where the score function takes a conditioning signal c in
the form of a text embedding. We omit 𝐶0, i.e., the generation is
free to synthesize any consistent brackets following the text prompt.
Results of this application are shown in Fig. 5. The low exposures
present detailed depictions of visible light sources, such as the struc-
ture of candle flames, including glares typically found around strong
light sources. In the daylight scenes, most of the details are properly
exposed for the medium exposure (EV+0), while in the night scenes,
a high exposure (EV+4) is required to see sufficient detail.

Histogram-based. Here, we explore guided generation using a
target histogram. In our experiments, we first compute an LDR
histogram with 10 bins per color channel of an input image as our
guiding signal y (Fig. 6, first column). Then, we utilize 𝐶0 to direct
the generation process towards producing an EV+0 bracket that
matches this histogram (Fig. 6, third column), using a differentiable
histogram function with soft bin assignments as 𝑓 . Our framework
produces consistent brackets of HDR content (Fig. 6, second to
fourth column).

Text & histogram-based. In Fig. 7, we combine the control modali-
ties of the previous two paragraphs. In the first three rows, we apply

“a photo of 
New York city at 
a full moon night”

“a beautiful 
sunset at a beach 
with a palm tree”

“a photo of 
stylish candles 

on a table”

 “an alpine 
mountain view 

with visible  
sunlight”

EV-4 EV+0 EV+4

Fig. 5. Text-based HDR generation. Text prompts are on the left, alongside
low (EV-4), medium (EV+0), and high exposures (EV+4). Please refer to our
supplementary material for additional results.

EV-4 EV+0 EV+4Input

Fig. 6. Histogram-based HDR generation. The first column shows the input
image and its histogram. The other columns show our generated brackets.
Note that the method never sees the input image (left) only its histogram.

constraints where 50%, 25%, and 1% of saturated pixels are enforced
on the histograms of the EV+0 bracket, all while utilizing the same
text prompt. We observe that our approach enables the generation
of different HDR contents that faithfully reflect the queries. In the
last row, a guiding histogram is extracted from an input image.
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“a scenic view of 
landscape against 

sky”

EV+0: 50% saturated 

“a scenic view of 
landscape against

 sky”

EV+0: 25% saturated 

“a scenic view of 
landscape against

 sky”

EV+0: 01% saturated 

EV-4 EV+0 EV+4

“a lightning strike”

Fig. 7. Text- and histogram-based HDR generation. The first column is the
query, and the other three columns are our results.

Table 2. Reconstruction task performance.

FID↓
Method EV-4 EV-2 EV+0 EV+2 EV+4 All. No-Ref.↓ Full-Ref.↑
MaskHDR 14.36 09.44 04.13 01.14 02.81 03.63 51.7 ± 7.5 5.87 ± 1.6
HDRCNN 14.54 16.89 13.06 03.73 03.27 06.54 47.2 ± 7.1 6.67 ± 1.2
GlowGAN 08.59 06.94 05.32 03.61 08.09 03.08 45.5 ± 8.6 6.57 ± 1.5
Ours 06.25 06.48 04.65 01.28 02.89 02.05 51.7 ± 7.6 6.51 ± 1.2

5.3 Reconstruction
We now turn to one of the supreme disciplines of HDR imaging:
LDR2HDR restoration. There are two major challenges involved in
this task. Firstly, we need to fill the saturated (white) regions in the
LDR image y with appropriate content. Secondly, dark regions in y
often contain strong noise that needs to be removed. Our approach
naturally supports this task by setting 𝑓 in Eq. 7 to be the identity
function. We demonstrate both unconditional and text-conditioned
reconstruction (last two rows in Tab. 1).

Methods and dataset. We compare our unconditional approach
against the three best-performing LDR2HDR methods according
to a recent study [Wang et al. 2023a]: MaskHDR [Santos et al. 2020],
HDRCNN [Eilertsen et al. 2017] and GlowGAN [Wang et al. 2023a].
Note that the only other generative approach, GlowGAN, requires
training a domain-specific model. Thus, for a fair comparison, we
limit our evaluation to landscape images, as a pre-trained GlowGAN
model is available for this category. Specifically, we curate a dataset
comprising 75 HDR images sourced from various online platforms,
which will be made available on publication.

Metrics. We employ three different metrics to assess restoration
performance. Firstly, we employ the full-reference metric HDR-
VDP-3 [Mantiuk et al. 2023], which evaluates reconstruction fidelity
without considering that saturated regions in an LDR image may
allow for multiple, different HDR solutions. Secondly, to gauge
overall plausibility, we utilize the no-reference HDR image metric
PU21-PIQE [Hanji et al. 2022]. This metric, however, is agnostic of
the expected distribution of hallucinated contents in our narrow
domain.

To address these considerations, we further measure the FID score
[Heusel et al. 2017], which is commonly used in generative settings
for its ability to measure discrepancies between distributions. As
this metric relies on a vision model [Krizhevsky et al. 2012] pre-
trained on LDR images, we cannot directly feed HDR content into
it. Rather, we seek to produce a representative distribution of LDR
images derived from the HDR content, accounting for uncalibrated
and unnormalized pixel values across methods. We opt to apply the
auto-exposure method by Shim et al. [2014] to each HDR image.
This technique helps determine the EV0 bracket, from which we
derive EV±2 and EV±4 brackets. Subsequently, we select 100 random
64 × 64-pixel crops from each image. We maintain consistency in
selecting crop locations across methods [Chai et al. 2022]. This
precaution is necessary because having small bright light sources,
such as the sun, in some patches in one method but not in another,
could disproportionately bias the measurement. Our protocol leads
to stable estimates based on 7.5k patches per bracket and 37.5k
patches in total.

Results. Our quantitative evaluation results are presented in Tab. 2.
We observe that our approach outperforms the baselines in terms
of aggregated FID and excels in the challenging cases of negative
EV where content needs to be hallucinated. Results for the other
two metrics remain inconclusive due to statistical insignificance.

In Fig. 11, we show corresponding qualitative results with a focus
on saturated regions; complete sets of images are provided in the
supplemental. Our approach consistently generates arguably the
highest-quality hallucinations in saturated regions. This is facili-
tated by the first term in Eq. 5, which gives the process the freedom
to generate any content, as long as it is bright enough. Notably,
in the third row of Fig. 11, we present a particularly challenging
case where one color channel is nearly entirely saturated across
the image. In this instance, we observe how the baselines struggle
to produce plausible content, even GlowGAN, which typically excels
in generating realistic results due to its domain-specific generative
capabilities. In the last two rows, we see that HDRCNN and MaskCNN
struggle with image regions close to the sun, producing unnatural
discontinuities and halo effects, respectively. As anticipated, given
the inherent ambiguities of the LDR2HDR restoration task, all meth-
ods, including ours, generate results that diverge from the reference.

Another challenging aspect of LDR2HDR reconstruction involves
eliminating noise from regions that were initially very dark. A naïve
scaling of the original image content leads to substantial noise,
making these results practically unusable. In Fig. 12, we illustrate
how our approach serves as an effective denoiser, yielding visually
pleasing outcomes.
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Text-based reconstruction. Our framework offers a unique oppor-
tunity: the ability to dictate which content to hallucinate in saturated
regions through text conditioning. This is demonstrated in Fig. 8,
where, in addition to the guiding LDR signal y, the user provides
a text prompt conditioning signal c. We see that this combination
of control modalities enables precise HDR content generation. We
emphasize that this task differs from typical inpainting in the LDR
domain. Here, saturated pixel values are not replaced by darker
ones, but rather extended in dynamic range while forced to align
with the LDR observation (Eq. 5).

Input (LDR) “blue sky” “sunset” “cloudy”

Fig. 8. Text-based reconstruction. The LDR image on the left has ambiguous
regions, e.g., the sky. The right three columns show what the sky could
look like in a tone-mapped result on a reconstructed HDR. Each variant is
conditioned on different text prompts shown on the top.

Alternative solution. We further investigated the alternative choice
of score distillation sampling (SDS) [Poole et al. 2022] for HDR gen-
eration. In this approach, we represent our HDR image using a 2D
hash-grid neural network (NN) [Müller et al. 2022]. We choose to
optimize an NN rather than a simple pixel grid as we observed the
NN provides better results. During each optimization step, the HDR
image is randomly exposed with EV+𝑥 , where 𝑥 is drawn from a
normal distribution with a mean of zero and a standard deviation of
four. We compute the SDS loss on the exposed images and update
the parameters of NN. The SDS loss guides the current estimate of
the exposed images towards the manifold of natural images learned
by the pre-trained diffusion model [Rombach et al. 2022]. In Fig. 9,
we present our best-effort results. While this simpler approach can
generate HDR content, achieving natural results remains challeng-
ing.

6 CONCLUSION
We have suggested a method to generate HDR images using a black-
box diffusion-based image generation model. The key idea is to
generate multiple LDR brackets in sync. The method is simple to
implement, intuitive, and can produce results with unprecedented
quality in bright lights and good noise removal in shadows. This is
confirmed by the many results from our supplemental material and
the results of baselines on these.
In future work, we would like to extend the presented ideas

to other modalities involving multiple images, like multi-spectral,
stereo, light fields, and combinations thereof. It would be interesting

“a photo of 
stylish candles 

on a table”

 “an alpine 
mountain view 

with visible  
sunlight”

EV-4 EV+0 EV+4HDR (tonemapped)Input prompt

Fig. 9. HDR generation using SDS-based optimization [Poole et al. 2022]:
the resulting images are HDR, but unfortunately not natural.

EV-4

EV+0

EV+4

Fig. 10. Panoramic HDR generation at a 256 × 640 resolution given an
AI-generated LDR image (middle row): To generate a panoramic image,
we follow the diffusion composition technique from [Jiménez 2023] and
simultaneously denoise three tiles of 256 × 256 resolution, each with a 64-
pixel overlap, to ensure smooth transitions between them.

to adapt our DPS-based approach to stable/latent diffusion models
[Rombach et al. 2022] and directly benefit from the higher image
quality, as well as image resolution that they offer. Fine-tuning of
large pre-trained diffusion models that require little paired training,
such as ControlNet [Zhang et al. 2023] and Marigold [Ke et al. 2023],
would be another interesting avenue of research. In this work, we
have chosen to strictly avoid using any HDR images for training
and mitigate possible issues due to limited image content classes
that are available in existing HDR datasets.
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MaskHDR HDRCNN OursGlowGANInput (LDR) Reference

Fig. 11. LDR2HDR reconstruction for our method and competitors given an input LDR images (first column). All HDR images (right columns) are tone-mapped
using the same tone-mapper, whose parameters are tuned for each row to achieve the best visual appearance of the corresponding reference HDR image.
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Fig. 12. LDR2HDR reconstruction for MaskHDR, HDRCNN, and Ours methods guided by the input LDR images (left column). Insets show dark, and hence
noisy, as well as bright, partially saturated input regions. Other methods can remove some noise, but ours not only gets the semantics right in saturated areas
(e.g., for the lamp or sun), but also removes noise in dark areas. The images in the first three rows are examples from the SI-HDR dataset [Hanji et al. 2022],
while the image in the last row is an AI-generated image with Stable-Diffusion.
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