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This is a third installment in a program to develop a method for alleviating the scale disparity in binary
black hole simulations with mass ratios in the intermediate astrophysical range, where simulation cost is
prohibitive while purely perturbative methods may not be adequate. The method is based on excising a
“worldtube” around the smaller object, much larger than the object itself, replacing it with an analytical
model that approximates a tidally deformed black hole. Previously [N. A. Wittek et al., Worldtube excision
method for intermediate-mass-ratio inspirals: Scalar-field model in 3þ 1 dimensions, Phys. Rev. D 108,
024041 (2023)] we have tested the idea in a toy model of a scalar charge in a fixed circular geodesic orbit
around a Schwarzschild black hole, solving for the massless Klein-Gordon field in 3þ 1 dimensions on the
SpECTRE platform. Here we take the significant further step of allowing the orbit to evolve radiatively, in a
self-consistent manner, under the effect of back-reaction from the scalar field. We compute the inspiral orbit
and the emitted scalar-field waveform, showing a good agreement with perturbative calculations in the
adiabatic approximation. We also demonstrate how our simulations accurately resolve postadiabatic effects
(for which we do not have perturbative results). In this work we focus on quasicircular inspirals. Our
implementation is publicly accessible in the SpECTRE numerical relativity code.
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I. INTRODUCTION

Inspiraling binary black holes (BBHs) will remain prime
targets for gravitational-wave searches aswe approach the era
of third-generation instruments and LISA (the Laser
Interferometer Space Antenna). Precision modeling of
BBH signals over the full parameter space of expected
sources remains a high priority task [1]. Unique difficulties
are posed in the intermediate mass-ratios regime, where
numerical relativity (NR) simulations become less efficient
while perturbative methods may not be adequate. This work
continues the program initiated in Dhesi et al. [2] (henceforth
Paper I) andWittek et al. [3] (Paper II) aimed at developing a
synergistic approach to the problem, combining NR tech-
niques with methods in black hole perturbation theory. The
general idea is to alleviate the scale disparity that hampersNR
simulations by excising a large region around the smaller
black hole, insidewhich an approximate analytical solution is

used, representing a tidally perturbed black hole geometry.
The smallest length scale on the numerical domain is now that
of the excised sphere (a “worldtube” in spacetime), rather than
the scale of the smaller body. As a result, the Courant-
Friedrich-Lewy (CFL) stability limit on the time step of the
numerical simulation is relaxed, with a commensurate gain in
computational efficiency.
Paper I laid out the basic framework and tested it in a

simple scalar-field model in 1þ 1 dimensions. In this toy
model, reviewed further below, the smaller black hole is
replaced with a point particle endowed with scalar charge,
which sources a (massless) scalar field, assumed to satisfy
the Klein-Gordon equation on the fixed geometry of the
large object, taken to be a Schwarzschild black hole. The
scalar charge in Paper I was taken to move on a fixed
circular geodesic orbit around the black hole, with both
gravitational and scalar-field backreaction forces ignored.
Paper I was focused on exploring various techniques for
matching the numerical field outside the excision world-
tube to the analytically prescribed solution inside it. It also
investigated and quantified the scaling of the model error
with the worldtube size, using two independent numerical
implementation schemes.
Paper II applied the worldtube idea in full 3þ 1

dimensions, still working with a scalar-field toy model
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and a fixed circular geodesic source. The problem was
reformulated as an initial-boundary evolution problem
suitable for implementation on the SpECTRE platform [4],
and a completely new implementation code was developed.
The paper detailed the construction of a suitable approxi-
mate analytical solution inside the worldtube, and devised a
procedure for fixing remaining, a priori unknown degrees
of freedom using dynamical matching to the external
numerical solution across the worldtube’s boundary. The
convergence of the numerical solutions with worldtube size
was quantified and shown to agree with theoretical expect-
ations. Detailed comparisons were made with analytical
solutions in limiting cases, and with numerical results from
other simulations, showing a reassuring agreement.
In the current work we take a crucial step towards the

physical BBH problem by relaxing the condition that the
scalar charge is moving on a fixed geodesic orbit, and
instead allowing the orbit to evolve radiatively, solving the
sourced field equation in a self-consistent manner. This
requires substantial adaptations in both formulation and
code infrastructure. The analytical model inside the world-
tube must be generalized to allow for the source’s accel-
eration as it moves in its inspiral trajectory around the large
black hole. The architecture of the numerical domain must
be significantly modified, too. In particular, our evolution
code employs a discontinuous Galerkin (DG) scheme with
several hundred DG elements that are deformed to fit the
domain structure using a series of smooth coordinate maps,
and these must now become time dependent.
We begin in Sec. II with a general summary of the

worldtube method. Section III details our numerical
method, including the construction of time-dependent
coordinate maps for generic orbits, and the procedure for
matching numerical data to the analytical solution across
the worldtube’s boundary. In Sec. IV we give a generalized
approximate analytical model for the field inside the
worldtube, allowing for source acceleration. Section V
describes in detail the procedure employed to perform a
self-consistent evolution of the sourced field equations,
coupled to the particle’s equation of motion. Since, at each
time step, the analytical field inside the worldtube depends
on the particle’s acceleration, which itself is determined
from the field that we are attempting to calculate, the
acceleration equations take an implicit form. We describe
an iterative scheme developed to deal with this problem.
Section VI contains a sample of illustrative results from

our numerical simulations. We show examples of inspiral
orbits and emitted scalar-field waveforms, tracking the
evolution all through the inspiral, plunge and ringdown
phases. We use invariant diagnostics—the adiabaticity
parameter and total orbital phase—to perform quantitative
tests against accurate perturbative calculations in the
adiabatic approximation, showing excellent agreement.
We show, furthermore, how our simulations resolve post-
adiabatic information. We explore in detail the scaling of

numerical error with worldtube size and with the number of
iterations of the acceleration equation, in both cases
confirming the expected convergence. Section VII summa-
rizes our results and discusses forthcoming steps in our
program.
To the best of our knowledge, our work is the first to

report a fully self-consistent evolution in the scalar-field
model. Previously, Diener et al. [5] have studied the
radiative evolution of orbits in the same model, using an
alternative method—the so called “effective source”
approach (whose relation to our worldtube method is
discussed in Sec. III C of Paper I). However, that work
neglects the so-called acceleration terms which contribute
to the orbital evolution on nongeodesic orbits. Another
code [6], based on the decomposition of Eq. (1) into
spherical harmonics, includes these terms. However, it was
found that, in order to achieve a numerically stable
evolution, certain terms (involving time derivatives of
the acceleration) had to be ignored in the equations that
couple the particle’s equation of motion to the local
analytical approximation. We decided that a comparison
of our method to these codes is beyond the scope of this
work.
The rest of this Introduction reviews the scalar-field toy

model employed in this work. Throughout the paper we use
geometrized units, withG ¼ c ¼ 1. We use Latin indices to
denote spatial tensor components and Greek indices for
spacetime components.

A. Scalar-field toy model

We consider a Schwarzschild black hole of mass M
orbited by a pointlike particle carrying a scalar charge q and
mass μ ≪ M. The particle sources a (test) scalar field Ψ,
assumed to be governed by the massless Klein-Gordon
equation

gμν∇μ∇νΨ ¼ −4πq
Z

δ4ðxα − xαpðτÞÞffiffiffiffiffiffi−gp dτ; ð1Þ

and subject to the usual retarded boundary conditions at
null infinity and on the event horizon. In Eq. (1), gμν is the
inverse spacetime metric and ∇μ is the covariant derivative
compatible with it. xαpðτÞ describes the particle’s worldline,
parametrized in terms of proper time τ. The worldline itself
satisfies the equation of motion

uβ∇βðμuαÞ ¼ q∇αΨR; ð2Þ

where uα ≔ dxαp
dτ is the tangent four-velocity, and ΨR is

the Detweiler-Whiting regular piece of Ψ (“R field”) at the
position of the particle. On the left-hand side here is the
covariant derivative of the particle’s four-momentum along
the orbit, and the right-hand side represents the back-
reaction force from the particle’s own scalar field, known as
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self-force. Equations (1) and (2), together with a prescrip-
tion for constructingΨR out ofΨ, form a closed coupled set
of “self-consistent” evolution equations, whose solution we
aim to obtain. This solution is uniquely determined once
initial conditions are given in the form of xα and uα at an
initial time, together with initial data for Ψ.
It is useful to split Eq. (2) into its components orthogonal

and tangent to uα, respectively given by

uβ∇βðuαÞ ¼
q
μ
ðδβα þ uβuαÞ∇βΨR; ð3Þ

dμ
dτ

¼ −quα∇αΨR: ð4Þ

The first equation describes the self-acceleration of the
scalar charge on the Schwarzschild background due to the
scalar-field back reaction. The second equation can be
immediately integrated to yield

μ ¼ μ0 − qΨR; ð5Þ

which describes the evolution of the particle’s mass over
time due to exchange of energy with the ambient sca-
lar field.
From Eq. (3) and the fact that ∇βΨR ∝ q=M2, we see

that the magnitude of the self-acceleration is controlled by
the dimensionless parameter

ϵ ≔
q2

μ0M
; ð6Þ

which plays the role of the (small) mass ratio in the
analogous BBH problem. We assume ϵ ≪ 1, in order to
ensure that the orbital evolution is slow during the inspiral,
as in the BBH case. In practice, μ changes by a few percent
at most during the systems studied here, so the distinction
between μ and μ0 in Eq. (6) is subdominant. In this work we
also completely neglect the gravitational backreaction on
the particle’s motion.

II. SUMMARY OF WORLDTUBE METHOD

In Paper II we developed a technique for solving the field
equation (1) with a source corresponding to a scalar charge
on a fixed, circular geodesic orbit. Much of the infra-
structure of Paper I carries over to our present work, so we
start with a summary of that infrastructure.
We describe the trajectory of the scalar charge using

xipðtÞ in Kerr-Schild (KS) coordinates t; xi associated with
the black hole. For the Schwarzschild black hole consid-
ered here, the horizon is at r ¼ 2M where the radius in KS
coordinates is given by

r ¼ ðδijxixjÞ1=2: ð7Þ

A KS coordinate sphere, centered on xipðtÞ, is excised from
the computational domain. We refer to the spacetime
boundary of the excised region as the worldtube, denoted
by Γ. By construction, the scalar charge is always at the
center of the spherical excision sphere. Outside the world-
tube, we solve the homogeneous Klein-Gordon equation

gμν∇μ∇νΨN ¼ 0; ð8Þ

with 3þ 1 dimensional numerical relativity methods. The
superscript N denotes this numerical solution (as distin-
guished from the fields ΨP and ΨR defined below). To
facilitate numerical implementation, Eq. (8) is reduced to
first order in space and time by introducing the following
auxiliary variables [7]:

Π ¼ −α−1ð∂tΨN − βi∂iΨN Þ; ð9aÞ

Φi ¼ ∂iΨN ; ð9bÞ

where α and βi are, respectively, the lapse function and shift
vector of the background metric. The coupled evolution
equations forΠ andΦi are given in Eq. (8) of Paper II. They
are solved using SpECTRE [4] in 3þ 1 dimensions using a
nodal DG scheme.
In the vicinity of the charge, an approximate particular

solution to the inhomogeneous equation (1) is given by the
puncture field ΨP . It is constructed as an approximation to
the Detweiler-Whiting singular field [8] and expressed as a
power series in coordinate distance from xipðtÞ. In Paper II,
we derived ΨP for circular geodesic orbits; here, in Sec. IV,
we extend it to generic, accelerated equatorial orbits.
The residual field ΨR ¼ Ψ −ΨP approximately solves

the homogeneous Klein-Gordon equation in the world-
tube’s interior. Our perturbative approximation of the
interior solution consists of expanding ΨR and its time
derivative as a Taylor series truncated at order n. For n ¼ 1,
these read

ΨRðt; xiÞ ¼ ΨR
0 ðtÞ þ ΨR

i ðtÞρni þOðρ2Þ; ð10Þ

∂tΨRðt; xiÞ ¼ ð∂tΨRÞ0ðtÞ þ ð∂tΨRÞiðtÞρni þOðρ2Þ: ð11Þ

Different to Paper II, we write this expansion in inertial KS
coordinates xi. We define the displacement to the particle as

Δxi≔xi−xip, the KS spatial distance by ρ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δijΔxiΔxj

q
and normal vector through ni ≔ Δxi=ρ. The boundary of
the worldtube is located at ρ ¼ R (for some constant R).
Because Eq. (11) expands the inertial time derivative
around a time-dependent expansion point xipðtÞ, the
coefficients on the right-hand side of Eq. (11) are not
the time derivatives of the coefficients in Eq. (10), i.e.
dΨR

0 =dt ≠ ð∂tΨRÞ0.
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The essence of the worldtube scheme lies in determining
the unknown expansion coefficients in Eqs. (10) and (11)
dynamically during the evolution. Most of the coefficients
are determined from a continuity condition at the world-
tube’s boundary Γ, which matches the exterior solution ΨN

to the interior, residual solution ΨR at each time step:

ΨR ¼Γ ΨN −ΨP; ð12Þ

∂tΨR ¼Γ ∂tΨN − ∂tΨP: ð13Þ

This matching is done mode by mode in a multipole
expansion, using a procedure described around Eq. (33) of
Paper II. For expansion orders n > 1, to fully determine all
coefficients one must additionally use further constraints
coming from the requirement that ΨR solves the vacuum
Klein-Gordon equations. As described in Paper II, one
arrives at ODEs in time to be solved along with the
evolution equation.
Once fully determined, the expansions (10) and (11) are

used to provide boundary conditions to the DG evolution at
the worldtube boundary. The exact conditions are derived
in Sec. IV C of Paper II and remain unchanged in this work.
The errors of various quantities in the simulation are

expected to scale with the worldtube radius R according to
a power law. Paper II derives the following predictions:

Error inΨN ðxiÞ∶ OðRnþ2Þ; ð14Þ

Error inΨRðxipÞ∶ OðRnþ1Þ; ð15Þ

Error in ∂αΨRðxipÞ∶ OðRnÞ: ð16Þ

The validity of these scaling relations was illustrated
numerically in Paper II for a particle on a fixed, circular
geodesic orbit with radius r0 ¼ 5M.
In the next three sections we describe the extension of the

above scheme to radiatively evolving orbits. This involves
(i) the addition of time-dependent maps to the code, able to
track the particle on generic orbits; (ii) the generalization of
the puncture field to generic orbits; and (iii) the derivation
of an iterative scheme to accommodate the new puncture
field. We restrict ourselves to the first-order expansion
case, n ¼ 1.

III. TIME-DEPENDENT MAPS
FOR GENERIC ORBITS

A. Coordinate frames

The computational domain is constructed by combining
several hundred DG elements, each containing up to several
thousand collocation points. These grid points correspond
to the nodal representation of a tensor product of Legendre
polynomials using Gauss-Lobatto quadrature.
The elements are deformed from unit cubes to fit the

domain structure using a series of maps. An initial set of
time-independent maps transforms them to the so-called
grid frame which is comoving with the grid points.
It is depicted in the left panel of Fig. 1. We denote the
corresponding grid coordinates with a bar, x{̄.
A set of time-dependent maps then transform the grid

coordinates to the inertial KS coordinates xi introduced
earlier. These time-dependent maps cause the grid points to
move across the spacetime background in the inertial
frame, to follow the motion of the scalar point charge.
The setup is motivated by BBH evolutions where control

FIG. 1. Left: the DG grid in the time-independent grid frame, equivalent to the inertial Kerr-Schild coordinates at the start of a
simulation. On the right side is the worldtube excision sphere with the scalar charge q at its center indicated by a red dot. On the left side
is the excision sphere around the central black hole. The blue ring corresponds to the event horizon at r ¼ 2M. The KS coordinates are
centered on the black hole, and during the evolution the grid rotates around this center. Right: the DG grid in the inertial frame at a later
time of a simulation, at the same scale as on the left. The worldtube excision sphere at the bottom left is close to crossing the event
horizon at r ¼ 2M. A series of time-dependent functions map the collocation points from the grid frame as depicted in the left panel to
the inertial frame by rotating and compressing the grid. The approximate value for the phase is ϕ ≈ 5π=4, for the orbital radius it is
rp ≈ 2.7M, for the worldtube radius R ≈ 0.15M, and the black hole excision radius is ≈0.5M.
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systems continually adjust time-dependent parameters in
these maps to track the motion and shape of the black holes’
apparent horizons [9–11].
In this work, we integrate the particle’s orbit along with

the DG evolution and determine the time-dependent
parameters in the maps by demanding that the worldtube
is centered on the scalar charge at each time step. This
corresponds to the particle physically moving across the KS
background with its position fixed at the excision sphere’s
center. Because xipðtÞ is determined directly from the ODE,
Eq. (3), this setup does not utilize control systems.
In Paper II, we fixed the particle’s orbit to be circular.

The map from grid to inertial coordinates then amounts to a
global rotation with constant angular velocity. We now
generalize to a series of time-dependent maps to accom-
modate generic, equatorial orbits with dynamically adjust-
able excision radii.
A rotation map controls the angular position of the

particle and is applied globally to each DG element
according to

x ¼ x̄ cosϕðtÞ − ȳ sinϕðtÞ; ð17aÞ

y ¼ x̄ sinϕðtÞ þ ȳ cosϕðtÞ; ð17bÞ

z ¼ z̄; ð17cÞ

where ϕðtÞ is the time-dependent rotation angle. The orbital
velocity ϕ̇ðtÞ is no longer constant but tracks the particle’s
orbit. The rotation is always around the z axis as we fix the
particle’s orbit in the xy plane.
A compression map stretches grid points according to a

time-dependent factor λðtÞ about a center C{̄. We define the
coordinate distance from C{̄ in the grid frame to be

r̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ{̄ |̄ðx{̄ − C{̄Þðx|̄ − C|̄Þ

q
. The compression factor falls

off linearly in the radial interval ½rmin; rmax�, and the
compression map is given in the piecewise form as

xi ¼

8>><
>>:

x{̄ − λðtÞ x{̄−C{̄

rmin
; r̄ < rmin;

x{̄ − λðtÞ rmax−r̄
rmax−rmin

x{̄−C{̄

r̄ ; rmin ≤ r̄ ≤ rmax;

x{̄; r̄ > rmax:

ð18Þ

The Jacobian of this map is discontinuous at rmin and rmax.
The DG method can handle this as long as these radii are
placed at element boundaries. We apply three compression
maps to the domain as follows.
A global compression map is centered on the central

black hole with the inner radius placed at the so-called
envelope rmin ¼ renv which is chosen several times larger
than the initial separation of the two excision spheres. The
outer radius rmax is placed at the outer boundary of the
domain. The radial separation between the worldtube and
the black hole in the inertial frame can then be controlled by

adjusting the corresponding parameter λrðtÞ which linearly
scales the entire inner portion of the grid. The outer
boundary of the domain does not change as the compres-
sion factor drops to zero at the outer boundary.
Two additional compression maps are centered on the

black hole and the worldtube, respectively, with rmin set to
the initial excision sphere radii and rmax placed at the
spherical element boundaries surrounding them. We denote
the corresponding functions of time as λbhðtÞ and λwtðtÞ,
respectively. As the compression map is spherically sym-
metric, the excision regions remain spherical in the iner-
tial frame.
The combination of all four time-dependent maps allows

for separate control of the angular and radial position of the
worldtube through ϕðtÞ and λrðtÞ, as well as the excision
sphere radii through λbhðtÞ and λwtðtÞ. An example of this
concatenation of maps is shown in Fig. 1. The left figure
corresponds to the DG elements in the time-independent
grid frame which coincides with the inertial frame the
beginning of the simulation. The right figure shows the
same grid points transformed to the inertial frame at a later
time of the simulation.
At each time t, the DG elements need to be supplied with

the value and derivative of the time-dependent parameters
ϕðtÞ, λrðtÞ, λbhðtÞ and λwtðtÞ to evaluate the evolution
equations at their collocation points in the inertial frame
xiðt; x{̄Þ. At these positions, we compute the metric quan-
tities appearing in the evolution equations. The velocity is
needed to transform the time derivative of the evolution
equations into the comoving grid frame as described e.g.
in [9]. We now show how the values of these time-
dependent parameters are determined from the orbit of
the scalar charge.

B. Particle’s position

At the start of the simulation, all functions of time are set
to zero, ϕ ¼ λr ¼ λbh ¼ λwt ¼ 0, so that grid coordinates
coincide with inertial coordinates, xiðx{̄; t ¼ 0Þ ¼ x{̄. The
worldtube is initially located on the positive x axis with
center at an orbital radius r0.
In Sec. V, we will derive an ODE governing the particle’s

motion. At each time step, we integrate the ODE to
calculate the new position xipðtÞ ¼ ðxpðtÞ; ypðtÞ; zpðtÞÞ
and velocity ẋipðtÞ ¼ ðẋpðtÞ; ẏpðtÞ; żpðtÞÞ of the particle
in Kerr-Schild coordinates. The time-dependent parameters
are then adjusted so that the function from grid to inertial
coordinates xiðt; x{̄Þmaps the center of the worldtube to the
current position of the particle,

xiðt; x{̄pÞ ¼ xipðtÞ: ð19Þ

This condition is satisfied by choosing the following
values:
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ϕðtÞ ¼ arctan ðypðtÞ; xpðtÞÞ; ð20Þ

ϕ̇ðtÞ ¼ xpðtÞẏpðtÞ − ypðtÞẋpðtÞ
r2pðtÞ

; ð21Þ

λrðtÞ ¼ renv

�
1 −

rpðtÞ
r0

�
; ð22Þ

λ̇rðtÞ ¼
−renvṙpðtÞ

r0
; ð23Þ

where we defined the orbital radius of the particle as

rpðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δijxipðtÞxjpðtÞ

q
, with radial velocity ṙpðtÞ ¼

δijẋipðtÞxjpðtÞ=rpðtÞ.

C. Radii of excision spheres

The time-dependent map parameters λbhðtÞ and λwtðtÞ
merely modify the size of the excision regions around the
center of the black hole or the scalar charge, respectively,
and can be chosen independently of Eq. (19).
Our choice for λwt is motivated by observing that the

worldtube scheme is more accurate at larger rp, since the
expansion terms of the puncture field converge more
quickly there. If the orbital radius decreases, the truncation
error of the puncture field, and hence that of the regular
field too, grow. We expect the error ε due to the worldtube
to scale with rp as [2]

ε ∼ r−3ðnþ1Þ=2
p : ð24Þ

Recall that n is the expansion order of the scheme, fixed to
n ¼ 1 in this work. The error in the field and its derivatives
also scale with the worldtube radius R, according to the
relations (14)–(16): ∼Rnþ1 for the field and ∼Rn for its
derivatives. We can keep the error roughly constant as the
orbit evolves, by adjusting the worldtube radius R as a
function of the changing orbital radius rp. To achieve this
we use the power-law relation

RðtÞ ¼ R0

�
rpðtÞ
r0

�
β

; ð25Þ

where R0 is the initial excision radius and the exponent β
can be chosen freely. Avalue of β ¼ 3=2 should ensure that
the error in ΨR remains constant; a value of β ¼ 3 is
required to keep the error in the derivatives ∂iΨR constant.
For the simulations presented in this work we choose
β ¼ 3=2, as the larger worldtube reduces computational
cost.
The excision sphere within the central black hole is

assigned an initial radius of R0 ¼ 1.99 M. It is then shrunk
using Eq. (25) with β ¼ 1. The dynamic shrinking of both
excision spheres allows the worldtube to approach and

ultimately to pass through the black hole horizon with the
grid remaining well-behaved; see the right side of Fig. 1 for
the configuration shortly before the particle passes through
the horizon.
Care has to be taken in determining the actual functions

of time λbhðtÞ and λwtðtÞ to match the desired excision
sphere radii RðtÞ, as the global compression map governed
by λrðtÞ has already affected the radii. The appropriate
choice to attain an excision sphere radius of Rbh=wtðtÞ is

λbh=wtðtÞ ¼ R0 þ
Rbh=wtðtÞrenv
λrðtÞ − renv

; ð26Þ

λ̇bh=wtðtÞ¼
renv

λrðtÞ−renv

�
Ṙbh=wtðtÞþ

Rbh=wtðtÞλ̇rðtÞ
renv−λrðtÞ

�
; ð27Þ

where R0 ¼ Rbh=wtðr0Þ is the excision sphere radius at the
start of the simulation.

IV. PUNCTURE FIELD

Local expansions of the Detweiler-Whiting singular field
for a scalar charge are well developed [12–14], as reviewed
in Paper II. These have primarily focused on the case of a
charge moving on a geodesic, but Refs. [15,16], for
example, considered the case of an accelerated source
particle.
Here we start from the results of Ref. [15]. That reference

provided punctures for gravitational perturbations hαβ
produced by an accelerated point mass μ, but we can
readily extract the puncture for our scalar field by noting
that the trace of the linear metric perturbation, h ≔ gαβhαβ,
satisfies the same Klein-Gordon equation (1) as the scalar

field, gμν∇μ∇νh ¼ −16πμ
R δ4ðxα−xαpðτÞÞffiffiffiffi−gp dτ, with the replace-

ment q ↔ 4μ. Therefore we have ΨP ¼ q
4μ h

P .
The resulting puncture takes the form

ΨP ¼ ΨP
geo þΨP

acc; ð28Þ

where ΨP
geo is the puncture for a particle on a geodesic, and

ΨP
acc is the correction due to the particle’s acceleration. The

first term, which appeared already in Paper II, is given by

ΨP
geo ¼

q
λs

þ qλ
6s3

ðϱ2 − s2ÞCuσuσ þOðλ2Þ: ð29Þ

Here we have introduced a number of auxiliary quantities.
λ ≔ 1 is used to count powers of distance to the particle. s,
ϱ, and Cuσuσ are defined from Synge’s world function

σðx; x̃Þ and its derivative σ̃α ≔ e∇ασðx; x̃Þ [17], where we
use a tilde to label quantities evaluated on the particle at
time t, as in x̃α ≔ ðt; xipðtÞÞ. σðx; x̃Þ is equal to half the
squared geodesic distance between xα and x̃α, and its
gradient σ̃α is a directed measure of distance from x̃α to xα.
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In terms of these, we have defined

ϱ ≔ σ̃αuα; ð30Þ

s ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg̃αβ þ uαuβÞσ̃ασ̃β

q
; ð31Þ

Cuσuσ ≔ C̃αβμνuασ̃βuμσ̃ν; ð32Þ

where C̃αβμν is the Weyl tensor at x̃α and the scalar Cuσuσ is
a specific contraction of it. Written in an analogous form,
the correction to Eq. (29) due to acceleration reads

ΨP
acc ¼

λ0fασαðs2 − ϱ2Þ
2s3

þ λ

�
fασαðs2 − ϱ2Þ

2s3

−
ϱDufασαðϱ2 − 3s2Þ

6s3
−
fαfαðϱ2 þ s2Þ

s

�
þOðλ2Þ;

ð33Þ

where fα is the self-force per unit mass, given by the right-
hand side of Eq. (3), and Dufα ≔ uβ∇βfα is its covariant

derivative along the worldline. Explicitly,

fα ¼ q
μ
ðg̃αβ þ uαuβÞ∂βΨRjxip ; ð34Þ

uβ∇βfα ¼
q
μ
ðḟαu0 þ Γ̃α

βγu
βfγÞ: ð35Þ

In all expressions, it is understood that the four-velocity uα

and self-force per unit mass fα are evaluated on the
worldline at time t. We note that the acceleration terms
ΨP

acc depend on the self-force per unit mass fα atOðλ0Þ and
also start to depend on the derivatives ∂βfα at Oðλ1Þ.
Starting from the above covariant expansions, we re-

expand all quantities in powers of the Kerr-Schild coor-
dinate distance from the particle, Δxi ≔ xi − xipðtÞ. That
expansion is reviewed in Paper II. Although we use all
terms through order λ in our numerics, here for brevity we
only present the order-λ−1 and -λ0 terms. Our results for
those terms are the following:

ΨP
geo ¼

q
λs0

þ λ0qM
2r8ps30

fr3pxipΔxipxkpxlpΔxmΔxnð3δkmδln − 2δklδmnÞ þ ðu0Þ2ðr3pẋipΔxi þ 2MrpxipΔxi þ 2Mẋipxipx
j
pΔxjÞ

× ½2rpxapxbpΔxkΔxlð2δakδbl − δabδklÞ þ ẋapΔxapxkpxlpΔxmΔxnð3δkmδln − 2δklδmnÞ�g þOðλÞ ð36Þ
for the geodesic piece and

ΨP
acc ¼

λ0q
2r9ps30

fðu0Þ2½2MrpxipΔxip þ 2Mxiẋipx
j
pΔxj þ r3pẋipΔxi�2½2MftrpxipΔxi þ fiðr3pΔxi þ 2Mxipx

j
pΔxjÞ�

− 2Mftr7ps20x
i
pΔxi − r6ps20f

iðr3pΔxi þ 2Mxipx
j
pΔxjÞg þOðλÞ ð37Þ

for the correction due to acceleration. Here we have introduced the convention that two repeated upper indices are summed
over with a Kronecker delta, i.e. xiyi ≔ xiyjδij. We have also introduced u0 ≔ dt=dτ, given by

ðu0Þ2 ¼ r3p
r3pðẋipẋip − 1Þ − 2Mr2p − 4Mrpxipẋip − 2MðxipẋipÞ2

; ð38Þ

and the leading-order term in the coordinate expansion of Eq. (31), given by

s20 ¼ ΔxiΔxi þ 2MðΔxixipÞ2
r3p

þ ðu0Þ2ðr3pΔxiẋip þ 2MrpΔxixip þ 2MΔxixipẋ
j
px

j
pÞ2

r6p
: ð39Þ

V. SELF CONSISTENT EVOLUTION

The motion of a scalar charge subject to the scalar self-
force is governed by Eq. (3). In coordinate form, the spatial
components are given by

ðu0Þ2ẍip¼
q
μ
ðgiα− ẋipg0αÞ∂αΨR−ðΓi

βγ− ẋipΓ0
βγÞuβuγ; ð40Þ

where Γα
βγ are the Christoffel symbols of the second kind

and ui ¼ ẋipu0. The first term on the right-hand side
represents the covariant acceleration due to the scalar
self-force, and the second term describes the coordinate
acceleration of the background geodesic.
The metric and Christoffel symbols are known a priori as

the particle is evolved on a fixed background in Kerr-Schild
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coordinates. The relevant expressions can be found e.g.
in [18].

A. Iterative scheme

The particle’s self-acceleration is driven by spatial and
time derivatives of the regular field ΨR, as described in
Eqs. (3) or (40). Inside the worldtube, the regular field is
represented by a Taylor expansion, the coefficients of
which are determined from continuity conditions on ΨR

and its time derivative on the worldtube boundary, Eqs. (12)
and (13). These conditions involve the puncture field ΨP

and its time derivative, which themselves, however, depend
on the particle’s self-acceleration and its derivatives; recall
Eq. (37). The acceleration equation (40) is therefore an
implicit equation for ẍip.
To deal with this problem, we construct an iterative

scheme. For the ease of the reader, we first define the
scheme using just the geodesic component of the puncture
field, ΨP ¼ ΨP

geo and elaborate how the acceleration terms
ΨP

acc are included in the next section. The geodesic puncture
field ΨP

geo, as given in Eq. (36), only depends on the
particle’s position and velocity but its time derivative ∂tΨP

geo

depends on the particle’s acceleration.
Let ẍipðkÞ be this acceleration during the kth iteration of

this scheme. From this, we compute the corresponding
value for the geodesic puncture field by evaluating Eq. (36)
and its time derivative

ΨP
ðkÞ ¼ ΨP

geoðxip; ẋipÞ; ð41Þ

∂tΨP
ðkÞ ¼ ∂tΨP

geoðxip; ẋip; ẍip ¼ ẍipðkÞÞ: ð42Þ

This allows us to calculate iteration k for the Taylor
expansions of the regular field ΨR

ðkÞ and its time derivative

∂tΨR
ðkÞ using the continuity condition (12) and (13)

ΨR
ðkÞðt; xiÞ ¼

Γ ΨN ðt; xiÞ − ΨP
ðkÞðt; xiÞ; ð43Þ

∂tΨR
ðkÞðt; xiÞ ¼

Γ
∂tΨN ðt; xiÞ − ∂tΨP

ðkÞðt; xiÞ: ð44Þ

The regular field then yields an updated guess for the
acceleration through Eq. (40)

ẍipðkþ1Þ ¼ ẍið∂αΨR
ðkÞÞ: ð45Þ

The updated acceleration can be reinserted into Eq. (41)
and the iteration procedure can in principle be repeated an
arbitrary number of times. The convergence of this scheme
is explored in Sec. VI D.
We initialize this iterative procedure with the geodesic

acceleration ẍið0Þ ¼ ẍigeo as given by the second term in
Eq. (40). This choice conveniently separates the first

iterations by order in ϵ: the values from the 0th iteration
ẍipð0Þ, ∂tΨ

P
ð0Þ and ∂tΨR

ð0Þ are all computed for a geodesic

orbit and are accurate up to order ϵ0. The first iteration of
the acceleration ẍipð1Þ is then accurate up to order ϵ1, as is

the resulting derivative of the puncture field ∂tΨP
ð1Þ.

B. Evaluation of acceleration terms

The acceleration terms of the puncture field ΨP
acc directly

depend on the particle’s acceleration ẍip captured by the
self-acceleration fα and its derivatives, see Eq. (37). We
now explain how this contribution, and its required deriv-
atives, are evaluated at the kth iteration step, given the
particle’s current position and velocity as well as
ΨR

ðk−1Þðt; xiÞ and ∂tΨR
ðk−1Þðt; xiÞ.

We denote the partial derivative of a field hðt; xiÞ
evaluated at the position of the particle xip:

∂h
∂xα

����
xip

ðtÞ ¼ ∂h
∂xα

ðt; xi ¼ xipðtÞÞ: ð46Þ

We label with a tilde fields evaluated along the path of the
particle, f̃ðtÞ ¼ fðt; xi ¼ xipðtÞÞ. We also introduce the
total time derivative operator dt to take time derivatives
of fields evaluated at the position of the particle. It acts on
an arbitrary field h̃ as

dth̃ ¼ ∂h
∂t

����
xip

þ ẋip
∂h
∂xi

����
xip

: ð47Þ

The second total time derivative is given by

d2t h̃ ¼ ∂
2h
∂t2

����
xip

þ 2ẋip
∂
2h

∂t∂xi

����
xip

þ ẋipẋ
j
p

∂
2h

∂xi∂xj

����
xip

þ ẍip
∂h
∂xi

����
xip

:

ð48Þ

For n ¼ 1, the acceleration terms, Eq. (37), depend on
fαðtÞ and its first covariant derivative along the
orbit, ðuβ∇βfαÞðtÞ. We also require ∂tΨP

acc, which involves
the time derivative of these two quantities. These expres-
sions, in turn, require the calculation of the first and second
time derivatives of the four velocity, u̇α and üα,
as well as various partial derivatives of the regular
field evaluated at the position of the particle. Here we give
explicit expressions for all these necessary input
quantities.
The first two time derivatives of the self-force are

given by

ḟα ¼ q
μ

�ðdtðg̃αβÞ þ u̇αuβ þ uαu̇βÞ∂βΨRjxip

þ ðg̃αβ þ uαuβÞdtð∂βΨRjxipÞ
	
−
μ̇

μ
fα; ð49aÞ
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f̈α ¼ q
μ
½ðd2t ðg̃αβÞ þ üαuβ þ 2u̇αu̇β þ uαüβÞ∂βΨRjxip

þ 2ðdtðg̃αβÞ þ u̇αuβ þ uαu̇βÞdtð∂βΨRjxipÞ

þ ðg̃αβ þ uαuβÞd2t ð∂βΨRjxipÞ� − 2
μ̇

μ
ḟα −

μ̈

μ
fα: ð49bÞ

The derivative of uβ∇βfα is given by

d
dt

ðuβ∇βfαÞ ¼ f̈αu0 þ ḟαu̇0

þ dtΓ̃α
βγu

βfγ þ Γ̃α
βγu̇

βfγ þ Γ̃α
βγu

βḟγ: ð50Þ

The quantities ∂igαβ, ∂i∂jgαβ and ∂iΓα
βγ , which are required

for the total time derivatives of the metric and Christoffel
symbols, are calculated analytically. We do not give the
expressions here for brevity.
The first derivative of the four velocity is given directly

by the evolution equation (3), and the second time
derivative can be obtained from its derivative:

u̇α ¼ 1

u0

�
q
μ
g̃αβ∂βΨRjxip − Γ̃α

βγu
βuγ

�
; ð51aÞ

üα ¼ 1

u0

�
q
μ
dtg̃αβ∂βΨRjxip þ

q
μ
g̃αβdtð∂βΨRjxipÞ

−
qμ̇
μ2

g̃αβ∂βΨRjxip − dtΓ̃α
βγu

βuγ

− 2Γ̃α
βγu̇

βuγ − u̇0u̇α
�
: ð51bÞ

Some of the required derivatives of the regular fieldΨR can
be obtained directly from the Taylor expansions (10),

∂iΨRjxip ¼ ΨR
i ðtÞ; ð52Þ

∂tΨRjxip ¼ ð∂tΨRÞ0ðtÞ; ð53Þ

∂t∂iΨRjxip ¼ ð∂tΨRÞiðtÞ: ð54Þ

Higher derivatives, however, are not obtainable directly in
this manner. We make use of the fact that we can take
arbitrarily high spatial derivatives of the regular field and its
time derivative by taking spatial derivatives of their
expansions. For expansion order n ¼ 1, this implies that
all second and higher spatial derivatives of the regular field
and its time derivative can be consistently set to zero. This
leaves the higher time derivatives ∂

2
tΨRjxip , ∂3tΨRjxip and

∂
2
t ∂iΨRjxip to be determined. We obtain these by taking
derivatives of the vacuum scalar wave equation which the
regular field satisfies. As they express the second time
derivative in terms of spatial derivatives, we can consis-
tently express all second time derivatives in terms of spatial

derivatives yielding

∂
2
tΨR ¼ 1

gtt
ð−2gti∂t∂iΨR þ Γt

∂tΨR þ Γi
∂iΨRÞ; ð55Þ

∂
2
t ∂iΨR ¼ 1

gtt
ð2∂igtj∂t∂jΨR − ∂iΓt

∂tΨR

− Γt
∂t∂iΨR − ∂iΓj

∂jΨR − ∂igtt∂2tΨRÞ: ð56Þ

The time derivative of Eq. (55) yields the final necessary
term

∂
3
tΨR ¼ 1

gtt
ð2gti∂2t ∂iΨR − Γt

∂
2
tΨR − Γi

∂t∂iΨRÞ: ð57Þ

At this point, we have prescribed all quantities necessary
for evaluating the acceleration term ΨP

acc and its time
derivative in terms of the expansion coefficients of ΨR

and ∂tΨR, the current position and velocity of the particle,
and background quantities. This allows for ΨP

acc to be
included in the iterative scheme consistently. We construct
the kth iteration of the puncture field from an acceleration
ẍipðkÞ as

ΨP
ðkÞ ¼ΨP

geoðxip;ẋipÞþΨP
accðxip;ẋip;ẍipðkÞ;∂αΨR

ðk−1ÞjxipÞ; ð58Þ

∂tΨP
ðkÞ ¼ ∂tΨP

geoðxip; ẋip; ẍipðkÞÞ
þ ∂tΨP

accðxip; ẋip; ẍipðkÞ; ∂αΨR
ðk−1ÞjxipÞ: ð59Þ

Recall that the scheme is initialized with the geodesic
acceleration ẍipð0Þ ¼ ẍigeo so the zeroth iteration of the

puncture field is given by its geodesic component ΨP
ð0Þ ¼

ΨP
geo and ∂tΨP

ð0Þ ¼ ∂tΨP
geo. The acceleration terms ΨP

acc only

start to contribute to the particle’s acceleration at the second
iteration ẍipð2Þ. At this point, ẍ

i
p includes terms ofOðϵ2Þ and

we must use in Eq. (40) the dynamical mass μðtÞ as
obtained in Eq. (5), rather than the rest mass μ0.
The acceleration terms can cause the simulation to grow

unstable during a self-consistent evolution. We find this
happens only for relatively large ϵð≳0.1Þ and far into the
inspiral, usually when the scalar charge is near the horizon
of the central black hole. The instabilities do not occur
when the acceleration terms are not included in the
evolution. We are unsure what the underlying cause is,
but it does not affect the regions of parameter space we
probe in Sec. VI. It might be a consequence of the coupled
system (the Klein-Gordon equation coupled to the par-
ticle’s equation of motion) being effectively higher than
second-order in time, meaning the instability could be
similar in nature to the well-known problem of runaway
solutions in the equation of motion of an accelerated
charged particle in electromagnetism [19,20]; our iterative
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procedure is similar to an iterative reduction-of-order
approximation in that context [21]. If the instability is a
pathology of the original system of Eqs. (1) and (2) in this
way, then it can be understood as a failing of the point-
particle approximation [22,23].

SpECTRE employs a task-based parallelism design where
the worldtube and the DG elements are assigned to different
cores of a computational cluster. At each iteration, the DG
elements neighboring the worldtube evaluate the puncture
field ΨP

ðkÞ, integrate it over the worldtube boundary and
send the result to the worldtube. It uses this data to compute
the next iteration of the acceleration, ẍipðkþ1Þ, and the self-
force per unit mass fα and its derivatives, which it then
sends back to the neighboring elements. Each iteration
therefore introduces a synchronization point between the
worldtube and adjacent DG elements where computational
cores are idly waiting for the results of another core. We
find that in our simulations each iteration does increase
runtime by 15–20 percent compared to the evolution with
one iteration.

C. Evolving the orbit

Given the position xipðtsÞ and velocity ẋipðtsÞ of the
particle, as well as data for the evolved fields ΨN ðts; xiÞ,
Πðts; xiÞ and Φiðts; xiÞ at time step ts, we can evaluate time
derivatives of the evolved fields using Eq. (8) and compute
the acceleration ẍipðtsÞ with Eq. (40). Both the partial
differential equations (PDEs) for the fields and the ordinary
differential equations (ODEs) of the trajectory are advanced
with the same time stepper and step.
The evaluation of the evolution equations requires for the

DG method to know both the position and velocity of the
collocation points at the corresponding time step as dis-
cussed in Sec. III. These are set by the new position
xipðtsþ1Þ and velocity ẋipðtsþ1Þ of the particle through the
time-dependent parameters λrðtsþ1Þ and ϕðtsþ1Þ and their
derivatives by demanding that the center of the worldtube is
mapped onto the new position of the worldtube through
Eq. (20). The parameters controlling the excision sphere
radii λwtðtsþ1Þ and λbhðtsþ1Þ are fixed by the condition (26).
These fully determine the global map from grid to inertial
Kerr-Schild coordinates xiðtsþ1; x{̄Þ and its time derivative
at the new time step tsþ1 and therefore the position
and velocity of each grid point. Both the evolved variables
and the orbit can now be advanced to the next time step
tsþ2 and the procedure repeated. When using multistep
methods, all variables are updated each substep.

VI. RESULTS

For the results presented here, we excise a sphere with
initial radius R0 ¼ 1.99M from the center of our domain.
The excision will at all times be contained within the event
horizon of the Schwarzschild black hole of fixed mass M.
The particle with charge q and mass μ is initially placed

at an orbital radius r0 and the worldtube is centered on it.
The outer boundary of the domain is placed at r ¼ 500M.
The left side of Fig. 1 shows a cut through the inner part of
the domain at the start of the simulation.
The DG evolution of the scalar field ΨN is carried out in

a manner very similar to that of Paper II. We employ a
multistep fourth-order Runge-Kutta method [24] and the
orbital parameters are advanced along with the evolved
variables at each substep. A weak exponential filter is
employed on all the evolved variables at each time step.
The resolution of the DG grid is always set so that its error
is subdominant to the error introduced by the worldtube.
For simplicity, we always choose the charge and mass to be
equal: q ¼ μ0 ¼ ϵM. This is no restriction, since only the
ratio q2=ðμ0MÞ is relevant for the evolution of the system.
At time t ¼ t0 ¼ 0, the regular field inside the worldtube

and the evolved variables are set to zero throughout the
domain, ΨRðt0;xiÞ¼ΨN ðt0;xiÞ¼Πðt0;xiÞ¼Φiðt0;xiÞ¼0.
The simulation is then evolved up to t1 ¼ 1500M with
the worldtube orbiting on a prescribed, circular geodesic
exactly as in Paper II. The value of t1 was determined
empirically to ensure that ΨR and the evolved variables
have sufficiently converged to a steady-state solution that
acts as initial condition to the inspiral.
Starting at t1, we include the acceleration due to the

scalar self-force given by the first term in Eq. (40), as
discussed in Sec. V. A transition function wðtÞ is used to
continuously activate this extra term, chosen as

wðtÞ ¼ 1 − exp

�
−
�
t − t1
σ

�
4
�
: ð60Þ

Here, σ is the time scale over which the scalar self-force is
turned on. A short time scale will cause the orbit to have
higher residual eccentricity whereas a long time scale is
computationally more expensive. Quantitative results
below are presented starting at t ¼ t1 þ 2σ where the
self-force is fully active to more than one part in 107.
The smoothness of the turn-on function also avoids a jump
in the puncture field caused by the addition of the
acceleration terms ΨP

acc. In the simulations of this work,
we set σ to either 500M or 1000M, as described in Sec. VI.
The backreaction of the scalar radiation causes the

charge to lose potential energy and to spiral into the central
black hole on a quasicircular orbit. Figure 2 depicts one of
these simulations. Here, the particle was placed at an initial
radius r0 ¼ 10.5M and a comparatively large value
ϵ ¼ 0.08 leads to a fast inspiral. The orbit is only shown
starting at t ¼ 3500M, at which point the self-force is fully
activated. The orbital radius decreases at a faster rate as the
particle gets closer to the central black hole. The red dot
shows the particle’s position as it crosses the innermost
stable circular orbit (ISCO) at r ¼ 6M. At this point, it
quickly plunges into the event horizon, depicted by the
dashed black line.

WITTEK, POUND, PFEIFFER, and BARACK PHYS. REV. D 110, 084023 (2024)

084023-10



Once the scalar charge is contained entirely within the
horizon it can no longer transfer any information to future
null infinity, and there starts a vacuum “ringdown” evolu-
tion, in which the scalar field ΨN evolves outside the black
hole without a source term. In practice, we choose to evolve
the simulation with the scalar charge until the worldtube
excision sphere is contained entirely within a radius of
r ¼ 1.99M. At this point, we halt the simulation and save
the values of the evolved variables ΨN , Π and Φi on the
final time slice t ¼ trd. The evolution of the scalar field is
continued on a new domain which has a single central
excision sphere of constant radius r ¼ 1.995M. This choice
places the boundary within the black hole horizon so no
boundary conditions are required and outside the worldtube
so data can be supplied entirely from ΨN . The ringdown
evolution of the scalar field is then initialized at time trd by
interpolating the evolved variables to the new grid points.
The simulation is continued on the same background
spacetime for a duration of 1000M at which point the
scalar field has dissipated beyond the resolution of the grid.
Figure 3 shows the value of rΨN ðt; xiÞ=q in the orbital

plane evaluated at x ¼ 300M. It is plotted against retarded
time t − r zeroed at the onset of ringdown time,
corresponding to KS time t ¼ trd. The dominant frequency
of the produced waveform matches the orbital frequency of
the particle and gradually increases during the inspiral. The
vertical dashed line shows the retarded time at which the

particle crossed the ISCO. The waveform looks different to
typical gravitational waveforms, as the scalar charge emits
dominant monopole and dipole radiation causing its profile
to oscillate around a positive value. The average amplitude
of the waveform also slightly decreases during the final
orbits, presumably because a significant part of the mono-
polar radiation is absorbed by the central black hole at this
stage. This is supported by our observation that, close
to the horizon, the amplitude of the scalar field peaks near
merger.
We define the phase ϕpðtÞ and angular velocity ωðtÞ of

the particle as

ϕp ¼ arctanðyp; xpÞ; ð61Þ

ω ¼ ϕ̇p: ð62Þ

The definition of the phase ϕp coincides with the time-
dependent parameter ϕðtÞ of the rotation map (17) because
we demand that the worldtube excision sphere is tracking
the particle through Eq. (20).
In general, we will compare two simulations at the same

angular velocity ωðtÞ. As the angular velocity is strictly
monotonically increasing for the quasicircular inspirals
presented here, it can be mapped to the coordinate time
t one-to-one. This allows us to evaluate the difference
between two simulations at a common angular velocity but
still plot it against the corresponding coordinate time of one
of the simulations. Performing comparisons in this manner
ensures that the comparisons are made when the orbits are
in the same state (as invariantly defined by ω). This is
especially important when comparing simulations with
different values of ϵ because the inspiral occurs on the
time scale 1=ϵ; the same coordinate time t hence corre-
sponds to different stages of the inspiral for different values

FIG. 2. The orbit of a particle inspiraling into a central black
hole under the influence of the scalar self-force. The orbit
inspirals at a faster rate as the particle approaches the black
hole and, after crossing the ISCO, plunges into the event horizon
depicted by the dashed, black ring. The red dot shows the position
of the particle as it crosses the ISCO at rp ¼ 6M. Here, ϵ ¼ 0.08
and R0 ¼ 0.8M.

FIG. 3. The value of the scalar field rΨN =q evaluated in the
orbital plane at x ¼ 300M for the same simulation as depicted in
Fig. 2. The x axis shows the retarded time t − r, zeroed at the
ringdown time trd. The dashed vertical black line indicates the
retarded time when the charge crossed the ISCO.
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of ϵ. Moreover, small-ϵ expansions for inspirals, such as the
adiabatic approximation we compare to, are typically
designed to be uniformly accurate on frequency intervals
rather than time intervals [25]. The accuracy and conver-
gence of self-forced inspiral calculations are hence best
assessed on such frequency intervals.
We also define the quantity rω ¼ M1=3ω−2=3, which is

the radius corresponding to a perfectly circular geodesic
orbit with angular velocity ω. During the inspiral, the value
of rω is typically similar to the Kerr-Schild orbital radius rp
of the particle. Comparing two simulations at the same rω is
mathematically equivalent to comparing them at the same
angular velocity ω but hopefully more intuitive to the
reader.
In Sec. VI A, we study the dependence of the self-force

driven inspiral on the small parameter ϵ by fixing the initial
worldtube radius R0 and varying ϵ between 0.005 and 0.08.
In the following, Sec. VI B, we fix ϵ ¼ 0.01 and explore the
convergence with worldtube radius R0 by varying it
between 3.2M and 0.2M. In Sec. VI C, we repeat these
simulations but do not include the acceleration terms
ΨP

acc to see how this affects the evolution. Finally,
we explore the convergence of the iterative scheme in
Sec. VI D by fixing both ϵ ¼ 0.01 and the initial worldtube
radius R0 ¼ 0.8M and iterating the acceleration ẍipðkÞ up to

k ¼ 2; 3; 5 or 7.

A. Comparison with adiabatic approximation

We explore the effect of the inspiral parameter ϵ by
varying it between ϵ ¼ 0.005 and ϵ ¼ 0.08 for a total of 14
values. Two simulations are run for each value of ϵ, one
with initial worldtube radius R0 ¼ 0.8M and one with
R0 ¼ 0.4M. For simulations with ϵ ≤ 0.01, we set an
initial orbital radius r0 ¼ 8M. For larger ϵ, the inspiral can
happen so quickly that the particle would cross the ISCO
before the self-force is fully turned on. To remedy this, we
appropriately set larger initial orbital radii up to 10.5M
such that the self-force is fully active at latest when the
particle reaches an orbital radius of rp ¼ 7.8M. The
worldtube radius RðtÞ is shrunk according to Eq. (25)
with r0 fixed to 8M, even for simulations starting at
larger initial separations. This leads to simulations
having the same worldtube radius at the same rp,
independent of initial separation. We apply the iterative
scheme derived in Secs. VA and V B and iterate each
simulation until it does not affect the final results. The
turn-on time scale is set to σ ¼ 1000M for all simulations.
The puncture field includes the acceleration terms accord-
ing to Eq. (58).
To understand the ϵ dependence of our results, we

compare against a standard adiabatic approximation [26],
which fixes the particle on a quasicircular orbit with

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
M=r3p

q
and evolves the orbital radius according to

the fluxes of energy to null infinity and down the black hole

horizon. Concretely, we assume a solution to Eq. (1) of the
form

Ψ ¼
X
lm

½Ψlmðrp; rÞ þOðϵÞ�e−imϕpYlmðθ;ϕÞ: ð63Þ

Substituting this expansion into the Klein-Gordon equa-
tion, using dϕp=dt ¼ ω and drp=dt ¼ OðϵÞ, discarding
subleading terms, and factoring out e−imϕpYlmðθ;ϕÞ
reduces the PDE to decoupled radial ODEs for the
coefficients Ψlmðrp; rÞ, which we solve on a grid of rp
values using the Teukolsky package from the Black Hole
Perturbation Toolkit [27]. At each value of rp, the energy
fluxes F∞ and FH are extracted from the solutions
Ψlmðrp; r → ∞Þ and Ψlmðrp; r → 2MÞ. In terms of these
fluxes, the orbital energy E changes at a rate

dE
dt

¼ −F ≔ −ðF∞ þ FHÞ: ð64Þ

At leading order, E is related to the orbital radius by the

geodesic relationship, E ¼ μ0
1−2M=rpffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−3M=rp

p , which allows us

to express the rate of change of rp in terms of F .
The evolution of the orbital phase and radius are then
governed by

dϕp

dt
¼ ωðrpÞ; ð65Þ

drp
dt

¼ −ϵ
F̂ ðr̂pÞ
dÊ=dr̂p

: ð66Þ

To express the last equation in terms of ϵ, we have
introduced the normalized quantities Ê ≔ E=μ, F̂ ≔ F=q2,
and r̂p ≔ rp=M.
The solution to Eqs. (65) and (66) can be written as

ϕp ¼ ϕ0ðrpÞ
ϵ

: ð67Þ

From Eq. (66), we can also obtain an adiabatic approxi-
mation for the dimensionless adiabaticity parameter ω̇=ω2,

ω̇

ω2
¼ ϵG0ðrpÞ; ð68Þ

where G0ðrpÞ ¼ − dω=drp
ωðrpÞ2

F̂ ðr̂pÞ
dÊ=dr̂p

. We note that unlike the

self-consistent evolution we perform in our worldtube
scheme, this approximation (and its extension in the next
paragraph) breaks down at the ISCO: as rp approaches the

ISCO, dÊ=dr̂p vanishes and G0 diverges.
It will also be useful to compare against the expected ϵ

dependence beyond leading order in a two-time-scale
expansion. If the expansion is carried to higher order in
ϵ following Refs. [28,29], then Eqs. (67) and (68) take the
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postadiabatic form

ϕp ¼ ϕ0ðrωÞ
ϵ

þ ϕ1ðrωÞ þ ϵϕ2ðrωÞ þOðϵ2Þ; ð69Þ

ω̇

ω2
¼ ϵG0ðrωÞ þ ϵ2G1ðrωÞ þ ϵ3G2ðrωÞ þOðϵ4Þ: ð70Þ

Here it is more useful to use the invariant orbital radius rω,
but note that ϕ0 and G0 are the same functions as in the
adiabatic approximation, now simply evaluated at rω rather
than rp.
Figure 4 shows the orbital radius rp extracted from our

numerical simulations for different values of ϵ plotted
against coordinate time t multiplied by ϵ. Here, the world-
tube radius is fixed to R0 ¼ 0.8M and we set t to zero at an
orbital radius of rp ¼ 7.8M when the scalar self-force was
fully active for all simulations. The rescaling of time by ϵ is
motivated by Eq. (66), which shows that at adiabatic order
the orbital radius is independent of ϵ when treated as a
function of ϵt. Initially, our results conform to that behavior:
our numerically computed orbital radii lie on top of each
other, which suggests that the orbit is well described by the
adiabatic approximation. The lines start to deviate near the
ISCO, as nonadiabatic effects start to become significant.
Once the particle passes the ISCO at rp ¼ 6M, it quickly
plunges into the central black hole. The simulations shown
here proceed through 69 orbits for ϵ ¼ 0.005 between rp ¼
7.8M and rp ¼ 6M, and through 4.8 orbits for ϵ ¼ 0.08.
Figure 5 shows the evolution of the dynamicmass μ given

by Eq. (5), plotted as a fraction of μ0. The mass grows as the
particle inspirals and can increase by≈0.1 percent of μ0. The
inset on the right plots this fraction logarithmically as
μ=μ0 − 1, which can be rewritten as −ϵΨR=q using

Eq. (5). It remains proportional to ϵ during the simulation
as ΨR is proportional to the scalar charge q. This again
conforms to the expected behavior at adiabatic order;
beyond adiabatic order, wewould expect order-ϵ corrections
to appear in ΨR as a function of rω, but these appear
to remain small evenwhen the particle has crossed the ISCO.
Figure 6 plots ω̇=ω2 against rω. The solid lines corre-

spond to simulations with worldtube radius R0 ¼ 0.8M.
The simulations start at an initial separation between
r0 ¼ 8M and r0 ¼ 10M, depending on the value of ϵ.
Outside the ISCO, the particle is on a quasicircular orbit.
The geodesic angular acceleration ω̇ is close to zero in this
regime and the adiabaticity parameter is dominated by the
scalar self-force given by the first term of Eq. (40). The
adiabaticity parameter roughly doubles for each doubling
of ϵ here, as predicted by Eq. (70). For rp < 6M, the scalar
charge plunges into the black hole. The geodesic angular
acceleration starts to dominate over the scalar self-force in
this regime so the solid lines approach a common value
independent of ϵ.
The dashed lines in Fig. 6 show the results of the

adiabatic approximation, given by the leading term in
Eq. (70). We calculate these results starting at separation
rp ¼ 10M until their divergence at the ISCO. The adia-
baticity parameter looks almost identical to the worldtube
scheme and starts to deviate only near the ISCO.
We investigate the transition regime from inspiral to

plunge further and define the “local convergence order” of
the adiabaticity parameter

αϵ;jðrωÞ ¼
logðQjðrωÞÞ − logðQj−1ðrωÞÞ

logðϵjÞ − logðϵj−1Þ
; ð71Þ

where ϵj are the different values of the inspiral parameter
that were simulated and we have denoted withQj ¼ ω̇j=ω2

j

FIG. 4. The orbital radius rp plotted against coordinate time t
multiplied by the inspiral parameter ϵ for different values of ϵ.
The time was set to zero for all simulations at an orbital radius of
rp ¼ 7.8M, when the scalar self-force was fully active. Initially,
the radii are almost identical between simulations. Near the
ISCO, they start to deviate due to nonadiabatic effects. Beyond
the ISCO, the particle quickly plunges into the central black hole.

FIG. 5. The evolution of the dynamic mass μ shown as a
fraction of μ0 for simulations with varying ϵ. The mass grows
with the orbital frequency during the evolution. The inset on the
right shows μ=μ0 − 1 (plotted logarithmically), which remains
proportional to ϵ throughout the simulation.
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the corresponding values of the adiabaticity parameter.
The quantity αϵ gives the power in ϵ with which the
adiabaticity parameter changes between simulations with
different ϵ. We evaluate αϵ as a function of rω to investigate
the different regimes inspiral, transition-to-plunge, and
plunge. Figure 7 shows αϵ;j for the same set of simulations
shown in Fig. 6. Early in the inspiral (where rω is
significantly larger than rISCO ¼ 6M), αϵ;j ≈ 1, since in
that regime ω̇=ω2 is proportional to ϵ. Deep inside the
plunge (when rω ≪ rISCO), the particle follows a plunge
geodesic independent of ϵ, and αϵ;j approaches zero. The
transition regime in between is broader for larger values of
ϵ. At the ISCO, αϵ;j ≈ 3=5, in line with the theoretical
prediction [30]; see, for example, Eq. (25) of Ref. [25].
We expect the width of this interval in the transition

regime to scale as ϵ2=5 [31]. To check this, we rescale the x
axis around the ISCO by a factor of ϵ−2=5 as shown in the
inset of Fig. 7. Now the values of αϵ coincide between the
different simulations and the width of the transition region
appears independent of ϵ as expected.
Let us now investigate the deviations of our worldtube

inspiral from the adiabatic approximation in more detail.
We explore the effect of higher-order terms by considering
the ϵ dependence of the orbital phase accumulated during
the inspiral. We define ϕtot as the total phase covered

between the frequencies corresponding to rð0Þω ¼ 7.8M and

rð1Þω ¼ 6.8M. We consider an expansion of the form
predicted by Eq. (69),

ϵϕtot ¼ aþ bϵþ cϵ2 þ… ð72Þ

Figure 8 shows ϵϕtot plotted for a range of ϵ using the
adiabatic approximation (marked by green triangles),
as well as for simulations with initial worldtube radius

R0 ¼ 0.8M (blue circles) and R0 ¼ 0.4M (red crosses).
Each marker corresponds to a separate simulation. Also
plotted is a cubic fit for each worldtube size and a linear fit
for the adiabatic approximation given by

R0 ¼ 0.8M∶ ϵϕtot ¼ 1.6516þ 0.184ϵþ 8.49ϵ2 − 36.4ϵ3;

R0 ¼ 0.4M∶ ϵϕtot ¼ 1.6522þ 0.195ϵþ 8.20ϵ2 − 34.4ϵ3;

adiabatic∶ ϵϕtot ¼ 1.6527 − 4.3 × 10−7ϵ: ð73Þ

The bottom panel displays the residuals of each fit.
The adiabatic approximation only resolves the leading

order term in ϵ given by the constant coefficient a, whereas
the worldtube simulations are sensitive to all powers of ϵ. It
is therefore unclear which order polynomial should be used
to fit our simulations. A higher-order polynomial will
always have lower residuals but will start to overfit the
data at some order. A low-order fit will absorb higher-order
physical effects into the low-order coefficients, skewing
their values.
We choose to fit a cubic polynomial here, as the residuals

start to look more or less unstructured at this point. A brief
Bayesian analysis confirmed that a cubic fit has the highest
evidence of all orders. The coefficients of the fit depend on
the choice of the arbitrary frequencies rð0Þω and rð1Þω between
which the phase is covered. We analyze the results here for

rð0Þω ¼ 7.8M and rð1Þω ¼ 6.8M, but our general conclusions
hold for all frequency intervals examined.
The coefficient a corresponds to the differenceϕ0ðrð1Þω Þ −

ϕ0ðrð0Þω Þ predicted by the adiabatic approximation (67).

FIG. 7. The convergence order αϵ of the adiabaticity parameter
ω̇=ω2 between simulations of adjacent ϵ. The convergence order
is close to one during the early inspiral on the right, where ω̇=ω2

is proportional to ϵ and close to zero during the final plunge on
the left, where it is independent of ϵ. The width of this transition
grows with larger values of ϵ. The inset on the left shows the same
plot with the x axis rescaled by a factor of ϵ−2=5 around
rISCO ¼ 6M. The curves now collapse, suggesting that the width
of the transition regime scales as ϵ2=5.

FIG. 6. The value of the adiabaticity parameter ω̇=ω2 plotted
for a circular inspiral for different values of ϵ. The solid lines
correspond to a worldtube simulation with initial worldtube
radius R0 ¼ 0.8M. The dashed lines correspond to the adiabatic
approximation given by the first term in Eq. (70), which breaks
down at the ISCO.
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This limit is approached by the worldtube simulations at the
left side of Fig. 8 as ϵ approaches zero. The cubic fits in
Eq. (73) demonstrate that the worldtube simulations extract
this value with a relative error of ∼10−4. The smaller
worldtube radius R0 ¼ 0.4M has a lower error indicating
the expected convergence with worldtube size.
The difference in the simulations with worldtube radius

R0 ¼ 0.8M and R0 ¼ 0.4M gives an estimate of the error
induced by the finite size of the worldtube. The top panel of
Fig. 8 shows that the error remains small for the range of ϵ
sampled as the points of the two simulations lie almost on
top of each other. This is reflected by the small difference in
the linear and post-adiabatic coefficients, which suggests
that our simulations are able to resolve such higher-order
effects accurately. However, the exact values of the post-
adiabatic coefficients are more uncertain, as our fits yield
values that depend rather strongly on the polynomial order
used for the fit. An accurate extraction of such coefficients
would require many simulations at small ϵ and worldtube
radii, which are computationally expensive and beyond the
scope of this project.

B. Convergence with worldtube radius

In Paper II, we predicted the (global) converge rates α
with worldtube radius R of the numerical field ΨN , the
regular field ΨR and its derivatives ∂iΨR which we have
summarized in Eqs. (14)–(16). These scaling relations were
confirmed for circular geodesic orbits with radius r0 ¼ 5M.

The predicted rates are, however, valid for arbitrarily
accelerated orbits and a correct generalization of the
worldtube scheme should show the same behavior.
We investigate convergence with worldtube radius by

running a set of simulations with R0 varying between 3.2M
and 0.2M. As no analytical solutions or comparable codes
exist to our knowledge, we choose the evolution with
smallest initial worldtube radius 0.2M as a reference
solution and compute errors with respect to it. The initial
orbital radius is set to r0 ¼ 8M for each simulation and we
compute the second iteration of the acceleration ẍipð2Þ at

each time step. The turn-on time scale is fixed to
σ ¼ 500M. The puncture field is computed with the
acceleration terms according to Eq. (58).

1. Regular field

We denote the reference solution of the regular field at
the position of the particle as ΨR

refðωÞ to emphasize that we
are evaluating it as a function of the particle’s angular
velocity. The relative error of a simulation at angular
velocity ω is defined as

εðωÞ ¼ jΨRðωÞ −ΨR
refðωÞj

jΨR
refðωÞj

: ð74Þ

The top panel of Fig. 9 shows this relative error εðωÞ
plotted against the coordinate time corresponding to the
angular velocity of the reference solution, as explained after
Eq. (62). For all simulations, the error of the regular field
ΨR at the charge’s position remains constant until the
particle is close to the event horizon. Recall that in all
simulations presented here, we shrink RðtÞ according to the
power law given by Eq. (25) with exponent β ¼ 3=2. The
constant error in the regular field confirms our hypothesis
from Sec. III C that this choice compensates the increase in
the error of the regular field ΨR as the orbital radius rpðtÞ
decreases.
The convergence rate α is no longer constant for the

inspiraling orbits, as the simulations do not reach a steady-
state solution. We introduce the local convergence order

αloc;jðωÞ ¼
logðεjðωÞÞ − logðεj−1ðωÞÞ
logðR0;jÞ − logðR0;j−1Þ

; ð75Þ

where R0;j are the different initial worldtube radii evolved,
and εj are the corresponding errors. The metric αloc;j gives a
“local” measure of α reached between simulations with
worldtube radius R0;j and the next smaller worldtube radius
R0;j−1 and is therefore less prone to be influenced by zero
crossings or anomalies in the errors. The bottom panel of
Fig. 9 shows αlocðωÞ. The rates are continually between 2.2
and 2.5 for all worldtube radii up until the scalar charge is
very close to the event horizon. This consistently exceeds
the prediction α ¼ 2 from Eq. (15).

FIG. 8. The total phase ϕtot covered between the two angular

velocities corresponding to rð0Þω ¼ 7.8M and rð1Þω ¼ 6.8M, multi-
plied by ϵ. Each marker represents a separate simulation. The blue
dots correspond to simulations with initial worldtube radius
R0 ¼ 0.8M, the red crosses correspond to R0 ¼ 0.4M. A cubic
fit is shown for each worldtube radius as well. The green triangles
correspond to the adiabatic approximation which only captures
the leading order term of the scalar self-force. A linear fit is
shown as well.
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The noisy “glitches” visible at times ≈3100M;
4200M; 6300M here and in the following plots are a result
of numerical noise propagating through the domain. They
are spaced at approximately twice the distance of the outer
boundary. Increasing the numerical resolution decreases
their amplitude without affecting the field at other times.

2. Angular derivative of regular field

Next, we show the convergence of the error in the
angular derivative of the regular field at the particle’s
position ∂ϕΨRjxip . This component corresponds to the
dissipative part of the scalar self-force, which dominates
the particle’s inspiral rate. Its relative error against
a reference simulation with initial worldtube radius
R0 ¼ 0.2M is depicted in the top panel of Fig. 10. As
before, data at the same frequency are subtracted from each
other at fixed angular velocity ω but plotted against the
corresponding time of the reference simulation.
All simulations show a zero crossing in this error over

the course of the inspiral, appearing later for larger
worldtube radii. With the exception of this crossing, the
errors are consistently increasing over the course of the
evolution. This is expected as the worldtube radius is
shrunk according to the power law (25) with β ¼ 3=2, a
choice that keeps the error in the regular field ΨR constant.
A value of β ¼ 3 would be required to keep the error in the
derivatives of the field constant.

The bottom panel displays the local convergence order
αloc of the relative error in ∂ϕΨRjxip . When the scalar self-
force is fully turned on at around t ¼ 2500M at an orbital
radius close to rp ≈ 8M, the converge order is around 2 for
all simulations. As the errors go through zero crossings, the
convergence jumps but, at least for the smaller worldtube
radii, appears to settle to a value αloc ≈ 1. We suspect that,
at larger worldtube radii, higher-order terms still dominate,
which causes the convergence order to be higher than
predicted by Eq. (16). As the orbital radius decreases, the
terms stop dominating and we approach the expected
convergence order. The radial and time derivative of the
regular field show similar behavior, but we do not include
their analysis here.

3. Orbital phase

Lastly, we consider the error in the orbital phase ϕp. As
the simulations are already accumulating phase differences
while the self-force is being turned on, we compare phase
differences at fixed angular velocity rather than time. The
phase offset δϕ and the accumulated phase error εðωÞ with
respect to a reference simulation are defined as

δϕ ¼ ϕpðω0Þ − ϕp;refðω0Þ ð76Þ

εðωÞ ¼ jϕpðωÞ − ϕp;refðωÞ − δϕj; ð77Þ

where ω0 is an arbitrary angular velocity at which the
phase difference is set to zero, εðω0Þ ¼ 0. We choose
ω0 ¼ 0.2 M−1 here, which is close to the final passage
through the event horizon of the particle.

FIG. 10. Top panel: the relative error of the angular derivative of
the regular field ∂ϕΨR at the position of the charge compared to a
reference solution of small worldtube radius. The error is computed
for fixed angular velocities. Bottom panel: the local convergence
order between simulations of neighboring worldtube radii.

FIG. 9. Top panel: the relative error of the regular fieldΨR at the
position of the charge compared to a reference solution of small
worldtube radius. The error is computed for fixed angular
velocities. Each line represents a simulation with different initial
worldtube radius. The error remains constant during the inspiral as
the worldtube is shrunk at a rate that compensates the increasing
error at smaller orbital radii. Bottom panel: the local convergence
order between simulations of neighboring worldtube radii. It
continually exceeds the expected convergence rate of α ¼ 2.
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The phase differences are shown in the top panel of
Fig. 11 plotted against the coordinate time corresponding to
the angular velocity of the reference simulation. The entire
inspiral covered about 41 orbits while the self-force was
fully turned on, during which a total phase error between
0.2 and 1 radians was accumulated. This corresponds to a
relative error of ∼10−3. The phase error of the blue line with
the largest initial worldtube radius of R0 ¼ 3.2M shows a
zero crossing in the orbit as well as signs of some residual
eccentricity. The orange line with initial worldtube radius
R0 ¼ 1.6M also appears to approach a zero crossing
towards the start of the simulation.
The bottom panel of Fig. 11 shows the local convergence

order αloc.We expect that the phase error is dominated by the
dissipative part of the scalar self-force driven by ∂ϕΨRjxip
and should therefore display the same convergence behavior
of α ¼ 1. The evolution with initial worldtube radius
R0 ¼ 0.4M shown by the red line supports this with a local
convergence order slightly larger than 1 for the entire
inspiral. The zero crossings of the error in the other
simulations make the analysis more difficult but the con-
vergence order for the slightly larger initial worldtube size
R0 ¼ 0.8M appears to approach αloc ≈ 1 towards the end of
the simulation.

C. Effect of acceleration terms

In the previous section, we showed that the iterative
scheme derived in Sec. VA attains at least the same
convergence orders predicted in Eqs. (15) and (16) for a

scalar charge inspiraling under the influence of the scalar
self-force. These simulations include acceleration terms in
the computation of the puncture field, and we explain our
method of calculating them in Sec. V B. Given the diffi-
culties involved in including the acceleration terms, one
might wonder whether they are indeed needed at the
accuracies reached here. To this end, we repeat the simu-
lations of the previous section but useEq. (41) to evaluate the
puncture field, i.e. we do not include the acceleration terms.
Other than that, the simulations presented here are identical
to those from the last section. The acceleration is calculated
up to the second iteration ẍipð2Þ and the initial worldtube
radius R0 is varied between 3.2M and 0.2M. The evolution
with smallest initial worldtube radius 0.2M (not including
acceleration terms) is again used as a reference solution to
compute errors with respect to it.

1. Regular field

The top panel of Fig. 12 shows the relative error of the
regular field at a fixed angular velocity as defined in
Eq. (74). The error looks almost identical to the equivalent
top panel of Fig. 9, which includes the acceleration terms.
However, the regular field of the reference simulations ΨR

ref
changes by about 3 percent throughout the evolution if
these terms are included. The regular field therefore
converges to a different value.
The bottom panel shows the local convergence order

αlocðωÞ between simulations with adjacent worldtube radii.

FIG. 12. Top panel: the relative error of the regular field ΨR at
the position of the charge compared to a reference solution of
small worldtube radius when not including the acceleration terms
in the puncture field. Bottom panel: the local convergence order
between simulations of neighboring worldtube radii. This figure
is very similar to Fig. 9 indicating the acceleration terms do not
affect the convergence rate of ΨR. However, they change the
value to which the regular field ΨR converges by about 3 percent.

FIG. 11. Top panel: the accumulated phase error of the orbit
compared to a reference solution of small worldtube radius.
The phase difference is set to zero at an angular velocity of
ω0 ¼ 0.2M−1 corresponding to the right end of the figure.
Bottom panel: the local convergence order between simulations
of neighboring worldtube radii. The zero crossings in the error
skew the convergence orders for larger worldtube radii.
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These naturally also look almost identical and show
convergence orders between 2.2 and 2.5, which is con-
sistent with the prediction (15). The only discernible effect
of ignoring the acceleration terms are visible oscillations in
the error and convergence rates, which suggests that the
residual eccentricities between the simulations are no
longer in phase. Nevertheless, we can conclude that the
acceleration terms significantly change the value to which
the regular field ΨR converges but do not have a visible
effect on the convergence rate in this regime.

2. Angular derivative of regular field

Next, we explore the effect of the acceleration terms on
the angular derivative of the regular field at the particle’s
position, ∂ϕΨRjxip , which is responsible for the dissipative
part of the scalar self-force. Its error is as usual defined with
respect to the reference solution ∂ϕΨR

ref as in Eq. (74).
The relative error with respect to coordinate time is

plotted in the top panel of Fig. 13. It is 1–2 orders of
magnitude larger compared to the corresponding top panel
of Fig. 10, where the acceleration terms were included. The
only exception is the largest worldtube radius, R0 ¼ 3.2M,
which shows a zero crossing at the start of the simulation.
For the other evolutions, decreasing the worldtube radius
appears to slightly decrease the relative error in ∂ϕΨRjxip .
The local convergence rate αloc depicted in the bottom
panel reveals that convergence is consistently lower than
the predicted rate of α ¼ 1.

The acceleration terms therefore appear to be essential
for correctly computing the angular derivative of the regular
field ∂ϕΨRjxip . As this component drives the inspiral of the
particle, we expect that the particle’s orbit to be also
significantly affected.
This behavior roughly conforms with our theoretical

expectation. Omitting the acceleration terms amounts to
neglecting a term of order ϵR0 in the puncture and ϵR−1 in
the derivative of the puncture, inducing errors of those
orders in ΨR and ∂αΨR. Therefore, when R → 0, ΨR will
converge but have a finite error of order ϵ, while ∂αΨR will
actually diverge as R−1; the fact that we find similar
convergence forΨR and slow convergence for ∂αΨR (rather
than divergence) is likely due to the small value of ϵ
suppressing the effect.

3. Orbital phase

Finally, we explore how the acceleration terms affect the
particle’s orbital phase ϕðtÞ. We measure the effect with the
accumulated phase error ε defined in Eq. (76) which zeros
the phase difference at an angular velocity ω0 ¼ 0.2 M−1.
The top panel of Fig. 14 shows ε plotted against coordinate
time corresponding to the angular velocity of the reference
simulation. When compared to the corresponding top panel
of Fig. 11, the accumulated phase difference is about an
order of magnitude higher when the acceleration terms are
omitted. While a lower worldtube radius in general still
reduces the total phase difference, a comparison of the

FIG. 13. Top panel: the relative error of the angular derivative
of the regular field ∂ϕΨR at the position of the charge compared
to a reference solution of small worldtube radius. The simulations
here do not include the acceleration terms. Bottom panel: the
local convergence order between simulations of neighboring
worldtube radii. The convergence rate is below the expected
value of α ¼ 1. Figure 10 shows the same metric when the
acceleration terms are included.

FIG. 14. Top panel: the accumulated phase error of the orbit
compared to a reference solution of small worldtube radius when
the acceleration terms are not included. The phase difference is
set to zero at an angular velocity of ω0 ¼ 0.2M−1 which, roughly
corresponding to t ≈ 7100M. Bottom panel: the local conver-
gence order between simulations of neighboring worldtube radii.
Figure 11 shows results for the same runs with acceleration terms
included which have lower errors and higher convergence rates.
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bottom panels of Figs. 11 and 14 reveals that the local
convergence order is consistently about half an order higher
when acceleration terms are included.

D. Convergence of the iterative scheme

In Sec. VA we presented an iterative scheme that
addresses the implicit form of the particle’s equation of
motion (40) under the influence of the scalar self-force. We
check the convergence with iterations by running a set of
simulations with k ¼ 2; 3; 5 and 7 iterations of the accel-
eration ẍipðkÞ, and then use the simulation with 7 iterations

as a reference solution to estimate errors. We fix the initial
worldtube radius to R0 ¼ 0.8M and the inspiral parameter
to ϵ ¼ 0.01. The acceleration terms are included and the
turn-on time scale is set to σ ¼ 1000M in these runs.
Figure 15 shows the relative error in the angular derivative

of the regular field ∂ϕΨR at the position of the particle for 2,
3 and 5 iterations, respectively. The error is computed
analogously to Eq. (74), which compares the value at the
same orbital angular velocity ω of the orbit against the
reference value ∂ϕΨR

ð7Þ. The simulation with 2 iterations

shows a constant relative error of ∼10−5 until the particle is
very close to the horizon. This justifies our choice of using
two iterations when analyzing the convergence with world-
tube radius R0 in Sec. VI B because the worldtube always
induces an error at least an order of magnitude larger.
We expect that each additional iteration adds a correction

that is a factor of ϵ smaller than the previous one. This is
demonstrated by the orange line, which used 3 iterations
and shows an error 2 order of magnitudes smaller ∼10−7.
When using 5 iterations, the additional corrections get so
small that the finite resolution of the DG grid causes the
error to be fairly noisy. However, a majority of the
simulation still shows an error of ∼10−11, which is 4

orders of magnitude lower than with 3 iterations, as
expected. For larger ϵ, convergence with the iterations k
is slower so that several iterations were used in Sec. VI A
where ϵ was set as high as 0.08.

VII. CONCLUSIONS AND OUTLOOK

In this work, we continue to explore a new approach to
simulating intermediate mass-ratio BBHs in numerical
relativity. The method works by excising a worldtube
much larger than the smaller object from an evolution
domain and employing a perturbative solution inside this
region. The perturbative solution is calibrated from the
evolution outside the excision sphere and in turn provides
boundary conditions to it.
In Paper II, we implemented this scheme for a scalar

charge on a circular geodesic orbit using SpECTRE, a
numerical relativity code that employs a DG method to
evolve the Klein-Gordon equation in 3þ 1 dimensions.
Here we extend the scheme to include the effect of
radiative backreaction on the charge, known as the scalar
self-force.
We construct series of time-dependent maps that allow

the worldtube to track the particle’s motion on generic
equatorial orbits along with the rest of the grid. Then,
we derive a puncture field that is valid for generically
accelerated orbits. Finally, we show that the particle’s
acceleration under the scalar self-force is given in
implicit form and construct an iterative scheme to address
this issue.
The scheme is tested with a set of quasicircular inspirals

for different values of the inspiral parameter ϵ, the world-
tube radius R and number of iterations k used in solving the
implicit equation for the self-force. We compare the results
to an adiabatic approximation and show that we not only
resolve effects at leading order in ϵ but also get important
contributions from higher orders. We demonstrate that the
regular field at the position of the particle and its derivatives
converge with the worldtube radius R at the theoretically
predicted rates. At last, we show that the iterative scheme
converges rapidly.
In this work, we have restricted ourselves to expansion

order n ¼ 1 in coordinate distance and have shown that the
resulting simulations can be run with high accuracy within
a day. The inclusion of second order n ¼ 2, as implemented
for circular orbits in Paper II, would greatly speed up
simulations as a much larger worldtube radius can be used
to achieve the same accuracy. Our previous work also
indicates that the next order would increase the accuracy of
the scheme by up to two orders of magnitude at the same
worldtube radius. An implementation would require the
derivation of the puncture field at the next order as well as
adjusting the iterative scheme to include these higher-order
terms. Both additions should be straightforward if tedious,
and we leave them to future work.

FIG. 15. The relative error in the angular derivative of the
regular field ∂ϕΨR when using different number of iterations
compared to using seven iterations. The error decreases by a
factor of ϵ ¼ 0.01 with each iteration, as expected. The green
curve is noisy due to the finite resolution of the DG evolution.
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While only quasicircular orbits were presented in this
work, our method is applicable for generic bound orbits. In
future work, we would like to examine the effects of the
scalar self-force on eccentric orbits during a self-consistent
evolution.
Other avenues for future work include the extraction of

multipolar energy-momentum fluxes in scalar-field radiation
to infinity and down the event horizon, which would allow
us to check flux balance laws. We currently find that the
finite size of our Cauchy domain limits the accuracy at which
these quantities can be extracted. This difficulty could be
mitigated through a procedure of Cauchy-characteristic
extraction [32] or Cauchy-characteristic matching [33], in
order to propagate the scalar field to null infinity.
Our ultimate goal is to apply the worldtube excision

method to BBH inspirals in numerical relativity. We expect
that many of the techniques developed for the scalar case
will carry over to such evolutions. An initial discussion was
presented in Sec. I of Paper I.

SpECTRE uses Charm++/Converse [34,35], which was devel-
oped by the Parallel Programming Laboratory in the

Department of Computer Science at the University of
Illinois at Urbana-Champaign. SpECTRE uses Blaze [36,37],
HDF5 [38], the GNU Scientific Library (GSL) [39], YAML-

CPP [40], PYBIND11 [41], LIBSHARP [42], and LIBXSMM [43].
The figures in this article were produced with Matplotlib

[44,45], NumPy [46], and ParaView [47,48].
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