
26

An Improved Algorithm for The k-Dyck Edit Distance

Problem

DVIR FRIED, Bar-Ilan University, Israel

SHAY GOLAN, Reichman University, Israel and University of Haifa, Israel

TOMASZ KOCIUMAKA, Max Planck Institute for Informatics, Germany

TSVI KOPELOWITZ and ELY PORAT, Bar-Ilan University, Israel

TATIANA STARIKOVSKAYA, DIENS, École normale supérieure, PSL Research University, France

A Dyck sequence is a sequence of opening and closing parentheses (of various types) that is balanced. The
Dyck edit distance of a given sequence of parentheses S is the smallest number of edit operations (insertions,
deletions, and substitutions) needed to transform S into a Dyck sequence. We consider the threshold Dyck

edit distance problem, where the input is a sequence of parentheses S and a positive integer k , and the goal is
to compute the Dyck edit distance of S only if the distance is at most k , and otherwise report that the distance
is larger than k . Backurs and Onak [PODS’16] showed that the threshold Dyck edit distance problem can be
solved in O (n + k16) time.

In this work, we design new algorithms for the threshold Dyck edit distance problem which costs O (n +
k4.544184) time with high probability or O (n + k4.853059) deterministically. Our algorithms combine several
new structural properties of the Dyck edit distance problem, a refined algorithm for fast (min,+) matrix
product, and a careful modification of ideas used in Valiant’s parsing algorithm.

CCS Concepts: • Theory of computation→ Design and analysis of algorithms;

Additional Key Words and Phrases: Dyck language, edit distance, fine-grained complexity

ACM Reference format:

Dvir Fried, Shay Golan, Tomasz Kociumaka, Tsvi Kopelowitz, Ely Porat, and Tatiana Starikovskaya. 2024. An
Improved Algorithm for The k-Dyck Edit Distance Problem. ACM Trans. Algor. 20, 3, Article 26 (June 2024),
25 pages.
https://doi.org/10.1145/3627539

1 INTRODUCTION

The notion of balanced sequences of parentheses is a fundamental concept in the theory of com-
puter science. Formally, a Dyck sequence is a sequence of opening and closing parentheses (of

S. Golan the work was done while the author was at Bar-Ilan University and the University of California, Berkeley.
T. Kociumaka the work was done while the author was at the University of California, Berkeley.
Authors’ addresses: D. Fried, T. Kopelowitz, and E. Porat, Bar-Ilan University, Ramat Gan 5290002, Israel; e-mails:{friedvir1,
kopelot}@gmail.com, porately@cs.biu.ac.il; S. Golan, Reichman University, Herzliya 4610101, Israel and University of Haifa,
Haifa 3498838, Israel; e-mail:golansh1@biu.ac.il; T. Kociumaka, Max Planck Institute for Informatics, Saarbrücken 66123,
Germany; e-mail: kociumaka@mimuw.edu.pl; T. Starikovskaya, DIENS, École normale supérieure, PSL Research University,
45 rue d’Ulm, Paris F-75230, France; e-mail: tat.starikovskaya@gmail.com.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
1549-6325/2024/06-ART26
https://doi.org/10.1145/3627539

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 26. Publication date: June 2024.

https://orcid.org/0000-0003-1859-8082
https://orcid.org/0000-0001-8357-2802
https://orcid.org/0000-0002-2477-1702
https://orcid.org/0000-0002-3525-8314
https://orcid.org/0000-0001-6912-5766
https://orcid.org/0000-0002-7193-9432
https://doi.org/10.1145/3627539
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3627539
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627539&domain=pdf&date_stamp=2024-06-21


26:2 D. Fried et al.

various types) that is balanced, and Dyck(t ) is the language containing all balanced sequences of
parentheses over Σ = {(i , )i | i ∈ [0 . . t − 1]}. The Dyck(t ) language is a context-free language
that is generated by the following grammar: S → ε , where ε is the empty string, S → (0S )0S ,
S → (1S )1S, . . . , S → (t−1S )t−1S .

The Dyck language has proven to be instrumental in the theory of context-free languages; in par-
ticular, Chomsky and Schotzenberger [9] proved that every context-free language can be mapped
to a subset of the Dyck language (see also [16, 18]). The Dyck language also plays a role in practice
since balanced parentheses are used to succinctly describe arbitrary rooted trees [23], and many
programming languages have a balanced parentheses-like structure. Additionally, data files, such
as XML files, which store data in a structured way, often utilize a notion of balanced parentheses.
Moreover, the Dyck language is strongly related to DNA/RNA sequences since these sequences
slightly deviate from the balancedness requirement, so understanding the behavior of the Dyck

language is often an important building block for designing algorithms on such sequences [15, 26].

Language Edit Distance. The language edit distance (LED) problem is one of the most fun-
damental problems in formal language theory, generalizing both parsing and string edit distance
problems. Formally, given a language L and a string S , the task is to compute the minimal edit
distance between S and the strings in L.

The LED problem has been extensively studied for context-free languages. Consider a context-
free language generated by a grammarG and a string S of length n. Aho and Peterson [2] showed a
dynamic-programming algorithm with runtimeO ( |G |2n3). Myers [24] improved the running time
of the algorithm to O ( |G |n3). In a recent breakthrough article, Bringmann et al. [6] bypassed the
n3 barrier and demonstrated O ( |G |O (1)n2.8244)-time randomized and O ( |G |O (1)n2.8603)-time deter-
ministic algorithms. The algorithms of [6] are non-combinatorial, in the sense that they use fast

matrix multiplication (FMM). Unfortunately, this seems to be unavoidable: the lower bound
result of Lee [22] implies that there is no algorithm that solves LED in time less than that of
Boolean matrix multiplication. Saha studied the problem of approximating LED, developing a
(1 + ε )-factor approximation algorithm [28] followed by a solution providing an additive approxi-
mation of LED [29]. In another related work, Jayaram and Saha [17] studied LED for the class of
linear grammars.

Dyck Edit Distance. In this work, we focus on the LED problem for the Dyck language. Formally,
the Dyck edit distance of a given sequence of parentheses S = S[0]S[1]S[2] · · · S[n − 1] ∈ Σn , de-
noted by edD (S ), is the smallest number of edit operations (insertions, deletions, and substitutions)
needed to transform S into a Dyck sequence. Notice that it is enough to consider only deletions
and substitutions since insertions can be transformed into deletions.

One might hope that the LED problem for the Dyck language might be easier than for gen-
eral context-free languages, but as Abboud et al. [1] showed, this is probably not the case: they
proved that an efficient algorithm for the Dyck edit distance problem implies an algorithm for k-
Clique whose runtime is faster than what is believed to be obtainable. In other words, an efficient
algorithm for the Dyck edit distance problem must either provide approximate answers or focus
on the small distance regime. Saha [27] presented a randomized algorithm with running time
O (n1+o (1) ) and a Õ (1) multiplicative approximation factor. Very recently, Debarati, Kociumaka, and
Saha [10] showed a constant factor approximation algorithm with runtime Õ (n1.971) and a (1+ ε )-
approximation algorithm with runtime Õ (n2/ε ). In this work, we turn to the small distance regime.

1.1 The k-Dyck Edit Distance Problem.

For a string S ∈ Σn , define edD (S ) to be the edit cost of S which is the smallest number of deletions
and substitutions of a parenthesis such that the resulting string belongs to the Dyck language.

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 26. Publication date: June 2024.



An Improved Algorithm for The k-Dyck Edit Distance Problem 26:3

In this article, we consider the k-Dyck edit distance problem, where the input is a sequence of
parentheses S ∈ Σn and a positive integer k , and the goal is to compute min{edD (S ),k + 1}. In
other words, we want to compute the Dyck edit distance of S , as long as the distance is at most k
(and return k+1 otherwise). This problem was first considered by Backurs and Onak [5], who gave
anO (n+k16)-time algorithm. Krebs et al. [19] presented a randomized streaming algorithm for the
Dyck language with two types of parentheses with running time Õ (nkO (1) ) and space complexity
O (k1+ε +

√
n logn), for any fixed constant ε > 0. Debarati, Kociumaka, and Saha [10] showed a

(3 + ε )-approximation algorithm for the k-Dyck edit distance problem with runtime Õ (kn/ε ).

O (n3)-time dynamic programming algorithm. We begin by describing a simple folklore dynamic-
programming algorithm that solves the Dyck edit distance problem in O (n3) time. This algorithm
forms the basis of previous results, as well as the basis of our new algorithms for the k-Dyck edit
distance problem.

Consider a sequence S ∈ Σn and let D be a matrix of size (n + 1) × (n + 1) such that D[i, j] =
edD (S[i . . j )) (where S[i . . j ) is the substring of S from position i to position j − 1) to the Dyck

language. By definition, edD (S ) = D[0,n]. Notice that D[i, i] = 0 for i ∈ [0 . .n], D[i, i + 1] = 1
for i ∈ [0 . .n), and D[i, j] satisfies the following recursion for i, j ∈ [0 . .n] with j − i ≥ 2:1

D[i, j] = min
⎧⎪⎨⎪⎩
D[i,m] +D[m, j] form ∈ (i . . j ),

edD (S[i]S[j − 1]) +D[i + 1, j − 1].
(1)

One can use Equation (1) to compute D[0,n] in O (n3) time.

O (n + k16)-time algorithm by Backurs and Onak [5]. Backurs and Onak [5] solved the k-Dyck

edit distance problem by first showing that the problem can be reduced to an instance on a string
S ′ of length n′ ≤ n such that: (1) edD (S ) = edD (S ′), and (2) when solving k-Dyck edit distance on
S ′, it suffices to compute only O (k14) values ofD when applied to S ′. Moreover, by modifying the
algorithm of Landau, Myers and Schmidt [20], after O (n)-time preprocessing, each of the O (k14)
calls to D is computed recursively in O (k2) time.

Our results. We begin by designing an algorithm for k-Dyck edit distance which costs O (n2k )
time, and is thus faster than the algorithm of Backurs and Onak [5] whenever k = Ω(n2/15). We
further improve on the algorithm of Backurs and Onak [5] by designing a combinatorial algorithm
for k-Dyck edit distance which runs in O (n + k5) time. Our final contribution, summarized in
Theorem 1.1, improves upon this runtime using FMM.

Theorem 1.1. Given a sequence S of parentheses of length n, min{edD (S ),k + 1} can be computed
in O (n + k4.853059) deterministically or in O (n + k4.544184) time with high probability.

If k >
√
n, our algorithm is actually faster than claimed in Theorem 1.1. The precise bound,

which never exceedsO (n2k ), is provided in Section 1.2; it depends on the complexity of rectangular
matrix multiplication and involves optimization over auxiliary parameters of the algorithm.

1.2 Algorithmic Overview and Organization.

Heights and valleys. In Section 2, we describe an O (n2k )-time algorithm for the k-Dyck edit
distance problem which is based on Equation (1). The main idea is to reduce the number of options
for m in Equation (1) from O (n) to O (k ). To do so, we define the height of position i ∈ [0 . .n]
in S , denoted by H (i ), to be the difference between the number of opening parentheses and the
number of closing parentheses in S[0 . . i ). (See Figure 1(a); we remark that our notion of height

1For i, j ∈ Z, we denote [i . . j] = {k ∈ Z : i ≤ k ≤ j }, [i . . j ) = {k ∈ Z : i ≤ k < j }, (i . . j] = {k ∈ Z : i < k ≤ j }, and
(i . . j ) = {k ∈ Z : i < k < j }.

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 26. Publication date: June 2024.



26:4 D. Fried et al.

Fig. 1. (a) A plot example of the function H (·). (b) An example of a maximal tall trapezoid (a,b, c,d ), which

covers the green indices. Notice that the red and yellow indices also form tall maximal trapezoids (a triangle

is a degenerated instance of a trapezoid).

differs slightly from the notion of height in [5].) The notion of heights leads to a set of positions
V , called valleys and defined as positions i such that H (i − 1) > H (i ) < H (i + 1). The result of
Backurs and Onak [5] implies that one can convert S into a string S ′ of length at most n such that
edD (S ) = edD (S ′) and S ′ has at most 2k valleys. The intuition is that if edD (S[i − 1]S[i]) = 0 for
some peak i (i.e., a position such that H (i − 1) < H (i ) > H (i + 1)), then the two parentheses can be
greedily matched; otherwise, they contribute at least 1 to edD (S ). Thus, we assume without loss of
generality that S has at most 2k valleys. The main new insight behind our O (n2k )-time algorithm
is that one can reduce the set of options for m in Equation (1) to the set (i . . j ) ∩ (M ∪ {i + 1, i +
2, j − 2, j − 1}), where M =

⋃
v ∈V {v − 1,v,v + 1}; see Lemma 2.1. Since |V | ≤ 2k , this reduces the

cost of each recursive call to O (k ) time.

Trapezoids. In order to obtain ourO (n+k5) time algorithm, we introduce the notion of trapezoids
and clusters, which are based on the heights of positions. Intuitively, a trapezoid is a quadruple
(a,b, c,d ) with 0 ≤ a < b ≤ c < d ≤ n, where S[a . .b) are all open parentheses, S[c . .d ) are all
closing parentheses, H (a) = H (d ), H (b) = H (c ), and for all i ∈ (b . . c ) we have H (i ) ≥ H (b); see
Figure 1(b).

The motivation for defining trapezoids is that, in Section 3, we design an O (k2)-time algorithm
for processing a trapezoid that, given values min{D[i, j],k + 1} for enough i, j in the vicinity
of b and c , outputs the values min{D[i, j],k + 1} for enough i, j in the vicinity of a and d . Our
algorithm utilizes the approach developed by Landau–Vishkin for computing the threshold edit
distance [20, 21]. Thus, the trapezoids together with the trapezoid processing algorithm provide a
method for shortcutting the evaluation of Equation (1). In order to leverage these shortcuts, and
since the runtime per trapezoid does not depend on the distance between d and a, we choose
to apply the trapezoid algorithm to the largest possible trapezoids. Thus, we define a maximal
trapezoid to be a trapezoid (a,b, c,d ) that cannot be extended to another trapezoid of the form
either (a − 1,b, c,d + 1) or (a,b + 1, c − 1,d ), and consider only tall maximal trapezoids which are
maximal trapezoids where b − a ≥ 2k (and so the shortcutting is significant); see Figure 1(b).

Clusters. The computation of Equation (1) is not fully completed by just processing all tall max-
imal trapezoids. In order to address the remaining computation, we introduce the notion of clus-
ters, which are defined as follows. Consider a cycle with vertices [0 . .n] and edges {(i, i + 1) :
i ∈ [0 . .n)} ∪ {(n, 0)}. For each tall maximal trapezoid (a,b, c,d ), delete edges (i, i + 1) for
i ∈ [a . .b) ∪ [c . .d ), delete vertices (a . .b) ∪ (c . .d ), and add edges (a,d ) and (b, c ). The con-
nected components of the resulting graph are called clusters; see Figure 2(a).

From the way that clusters are constructed, the clusters and tall maximal trapezoids define a
parent-child relationship as follows. Let T = (a,b, c,d ) be a tall maximal trapezoid and let C be a

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 26. Publication date: June 2024.



An Improved Algorithm for The k-Dyck Edit Distance Problem 26:5

Fig. 2. (a) An example of the partitioning to trapezoids and clusters. (b) The tree T for the partitioning

of Figure 2(a). (c) Focus on a cluster C2, the input contains the values min{D[i, j],k + 1} for all pairs of

red solid indices and for all pairs of yellow solid indices. The output of the processing of C2 is the values

min{D[i, j],k + 1} for all pairs of green solid indices. (d) The values min{D[i, j],k + 1} for pairs of red solid

indices are the input for processing a trapezoid T1, and the values min{D[i, j],k + 1} for pairs of blue solid

indices are the output of the processing.

cluster. We say that C is the parent of T if a,d ∈ C , and that T is the parent of C if b, c ∈ C . This
relationship defines a tree T whose root is the cluster containing both 0 and n. Notice that every
trapezoid in T has a cluster parent and exactly 1 cluster child. Moreover, every cluster in T has an
arbitrary number of trapezoid children, and at most 1 trapezoid parent (the root of T is a cluster
and has no parent); see Figure 2(b).

By combining ideas based on the notions of heights and valleys, we design an algorithm for pro-
cessing a cluster C with r children Tq = (aq ,bq , cq ,dq ) for q ∈ [1 . . r ] and a parent T = (a,b, c,d ),
which given the values min{D[i, j],k+1} for i, j in the vicinity ofaq anddq for allq ∈ [1 . . r ] (which
are the outputs of the executions of the trapezoid processing algorithm onTq for q ∈ [1 . . r ]), com-
putes the values min{D[i, j],k + 1} for i, j in the vicinity of b and c (which can later be used as
input for processingT ). Moreover, ifC is the root of T , then the cluster processing algorithm com-
putes D[0,n]. Similar to the O (n2k )-time algorithm, the intuition behind the cluster processing
algorithm is to reduce the options for m when applying Equation (1) to the vicinity of the valleys
contained in the cluster; see Figure 2(c) and (d).

Combining Trapezoids and Clusters. The tree T provides a natural processing order, starting
from the leaves (which could be either clusters or trapezoids) towards the root, in order to compute
D[0,n] at the root. Whenever the processing order reaches a trapezoid, the input to the algorithm
for processing the trapezoid is either trivial when the trapezoid is a leaf, or given from the cluster
child of the trapezoid. Whenever the processing order reaches a cluster, the input to the algorithm
for processing the cluster is either the output of the trapezoid processing algorithm when applied
to the child trapezoid of the cluster, or trivial when the cluster is a leaf. Finally, the outputD[0,n]
is computed when processing the cluster that is the root of T .

In Section 3, we show that the total runtime of the cluster processing algorithm on all clusters
is O (k5). We also show that the number of tall maximal trapezoids is O (k ) and so the total time
spent processing trapezoids is O (k3). In addition, constructing the tall maximal trapezoids, the

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 26. Publication date: June 2024.



26:6 D. Fried et al.

clusters, and the tree T , together with some additional preprocessing, costs O (n) time, for a total
of O (n + k5) time.

Min-Plus Products, Fast Matrix Multiplication, and Valiant’s Parser. Bringmann et al. [6] im-
proved the running time of the dynamic programming algorithm based on Equation (1) from
O (n3) to O (n2.8603) (deterministically) and O (n2.8244) (using randomization). Their approach is
based on observations that D satisfies a column bounded difference (column-BD) property2

|D[i, j]−D[i+1, j]| ≤ 1 and a row bounded difference (row-BD) property |D[i, j−1]−D[i, j]| ≤ 1
all i, j ∈ [0 . .n] with i > j. Moreover, the bottleneck of computing D[i, j] is the (min,+) product
of vectors (D[i,m]) j−1

m=i+1 and (D[m, j]) j−1
m=i+1. If a matrix is both column-BD and row-BD, we say

that the matrix is fully-BD. Their main technical contribution for the k-Dyck edit distance prob-
lem is an efficient algorithm for computing the (min,+) product3 of fully-BD square matrices.
Building upon Valiant’s parser, filling the entire dynamic-programming tableD is then reduced to
computing the (min,+) products of the already constructed square submatrices of D. It is worth
mentioning that Bringmann et al. [6] introduce a subcubic (min,+) algorithm also for the case
where only one of the matrices is either column-BD or row-BD. A subcubic (min,+) algorithm for
even less structured matrices was later introduced by Vassilevska-Williams and Xu [31]. Recently,
Chi et al. [7] improved upon the result of Bringmann et al. [6] for bounded difference (min,+)
product, and, in follow up work, Chi et al. [8] introduced even more efficient algorithms that apply
to a broader range of structured matrices. All of these recent improvements are randomized.

In the dynamic programming based on limiting the options for m, which results in the O (n2k )
time algorithm, the bottleneck is determining the (min,+) product of vectors (D[i,m])m∈(i ..j )∩M

and (D[m, j])m∈(i ..j )∩M . Thus, instead of multiplying square matrices, it suffices to multiply
smaller rectangular matrices (with columns of the first matrix and rows of the second matrix re-
stricted to M). While this shrinks the two matrices, only the column-BD property is preserved for
the left matrix in the (min,+) product, while only the row-BD property is preserved for the right
matrix. Using the (min,+) product algorithm of Bringmann et al. [6] for the more general case,
where only one of the matrices is either column-BD or row-BD would lead to inferior running
times.

Nevertheless, in Section 6, we observe that the output matrix of the (min,+) product in our case
is fully-BD and, accordingly, design a (min,+) product algorithm specialized for our case, which
may be of independent interest. Formally, we prove the following theorem in Section 6.

Theorem 1.2. Let A and B be integer matrices of sizes n × nα and nα × n, respectively, such that
A is column-BD and B is row-BD. For any β, s,δ ∈ (0, 1], there exists a randomized algorithm that
computes the (min,+) product A� B (correctly with high probability) in time

Õ
(
nβM (n,nα ,n) + n2+α−β

)
,

and a deterministic algorithm that runs in time

Õ
(
nδ+sM (n,nα−s/3,n) + nα ·M (n1−δ ,ns ,n1−δ ) + n2+α−s/3 + nα ·M (n1−δ ,n1−δ ,n1−δ )

)
.

Here, M (a,b, c ) denotes the time needed for computing the Boolean product of an a ×b matrix with a
b × c matrix.

2The notion of bounded difference defined in [6] is parametrized by a natural number W . In our setting W = 1, so we only
focus on this case.
3For two matrices A and B of size a × b and b × c , respectively, the (min, +)-product of A and B is a matrix C = A � B of
size a × c such that Ci, j = min�∈[1. .b] {Ai, � + B�, j }.

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 26. Publication date: June 2024.



An Improved Algorithm for The k-Dyck Edit Distance Problem 26:7

Henceforth, we assume that the running time of Theorem 1.2, after optimizing over β, s and
δ , is Õ (nω̄ (α ) ) (depending on context, this can either refer to the deterministic or the randomized
runtime). In Section 6, we estimate ω̄ ( 1

2 ) (using the bounds of [3, 14]), deriving ω̄ ( 1
2 ) < 2.426524

in the deterministic case and ω̄ ( 1
2 ) < 2.272092 if randomization is allowed (for this case, a similar

result was obtained independently and in parallel by [12]).
We emphasize that the techniques used to prove Theorem 1.2 mostly follow the paradigm and

techniques of Bringmann et al. [6] and Chi et al. [7], with some adjustments to the details so that
their paradigm fits our case. For sake of completeness, a full exposition is given in Section 6.

Proving Theorem 1.1. In Section 4, we define a generic Valiant-like recursion (whose structure re-
sembles that of the dynamic-programming algorithm based on limiting the options form) and show
that it can be simulated in time proportional (up to polylogarithmic factors) to a single (min,+)
product. As a straightforward corollary, our O (n2k )-time dynamic-programming algorithm can
be sped up to Õ (nω̄ (logn k ) ) time. In particular, this proves Theorem 1.1 for k ≥

√
n (if k 


√
n,

the runtime is actually better than claimed in Theorem 1.1). In Section 5, we apply the result of
Section 4 to convert our O (n + k5)-time algorithm into an Õ (n + k2ω̄ (1/2) )-time solution, thereby
completing the proof of Theorem 1.1 for the case of k <

√
n.

2 COMBINATORIAL OBSERVATIONS AND O (N 2K )-TIME ALGORITHM

In this section, we introduce a new combinatorial property (Lemma 2.1) that allows the dynamic
programming algorithm to spend only O (k ) time to compute each value of the matrix D, and
hence achieve O (n2k ) runtime, which is an improvement over the runtime of Backurs and Onak’s
algorithm [5] for all k = Ω(n2/13).

Definition 2.1 (Heights). Define the function h : Σ → {−1, 1} so that h(a) = 1 if a ∈ Σ is an
opening parenthesis and h(a) = −1 otherwise. Given a sequence S ∈ Σn , define the height of a
position i of S , 0 ≤ i ≤ n, as H (i ) =

∑i−1
j=0 h(S[j]).

Notice that H (i ) is the difference between the number of opening parentheses and the number
of closing parentheses in S[0 . . i ).

Definition 2.2 (Peaks and valleys). Let S ∈ Σn . We say that a position i ∈ [1 . .n) is a peak if
H (i − 1) < H (i ) > H (i + 1) and a valley if H (i − 1) > H (i ) < H (i + 1).

The following claim allows us to assume, without loss of generality, that there are at most 2k
valleys.

Claim 2.3 (Corollary of [5, Claim 35]). Let S ∈ Σn . There exists an algorithm that preprocesses
S in O (n) time, and either rejects S (meaning that edD (S ) > k), or outputs a string S ′ of length at
most n such that edD (S ) = edD (S ′) and S ′ has at most 2k valleys.

From now on, we assume that the input string S has at most 2k valleys, and we denote the
set of valleys by V . This assumption leads us to refine Equation (1) by observing that instead of
considering all possible values of m for i < m < j, it is enough to consider only values of m that
are at distance at most 1 from some valley or at most 2 from i or j.

Lemma 2.1. Let M =
⋃

v ∈V {v − 1,v,v + 1} for S ∈ Σn . Let i, j ∈ [0 . .n] with j − i ≥ 2. Then

D[i, j] = min
⎧⎪⎨⎪⎩
D[i,m] +D[m, j] form ∈ (i . . j ) ∩ (M ∪ {i + 1, i + 2, j − 2, j − 1}),
edD (S[i]S[j − 1]) +D[i + 1, j − 1].

(2)

Proof. Notice that if D[i, j] = edD (S[i]S[j − 1]) + D[i + 1, j − 1] then, by the correctness of
Equation (1), the equality holds since the options form in Equation (2) are a subset of the options

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 26. Publication date: June 2024.



26:8 D. Fried et al.

for m in Equation (1). Thus, we focus on the case where D[i, j] = D[i,m] + D[m, j] for some
m ∈ (i . . j ). Let p = arg min{H (m) : m ∈ (i . . j ) and D[i, j] = D[i,m] + D[m, j]}. That is, p is an
index from (i . . j ) for which D[i, j] = D[i,p] + D[p, j] and H (p) is minimized. In the following,
we complete the proof by showing that p ∈ M∪{i+1, i+2, j−2, j−1}. For a proof by contradiction,
suppose thatp � M∪{i+1, i+2, j−2, j−1}. Then, [p−2 . .p+2] ⊆ (i . . j ) sincep � {i+1, i+2, j−2, j−1},
and min{H (p − 2),H (p + 2)} = H (p) − 2 since p � M . By symmetry, we assume without loss of
generality that H (p + 2) = H (p) − 2. In this case, H (p + 1) = H (p) − 1, and S[p], S[p + 1] are both
closing parentheses.

Let q ∈ (p . . j] be the smallest value such thatD[p, j] = D[p,q]+D[q, j] (notice thatD[p, j] =
D[p, j] +D[j, j], so q is always well-defined). We consider two cases:

Case 1: q ≤ p+2. In this case,D[i, j] = D[i,p]+D[p,q]+D[q, j] ≥ D[i,q]+D[q, j] ≥ D[i, j]
and hence D[i, j] = D[i,q] + D[q, j]. However, H (q) < H (p), which contradicts the choice of p
since H (p) is not minimized.

Case 2: q > p + 2. Recall that q is minimized. Therefore, there is no q′ ∈ (p . .q) such that
D[p,q] = D[p,q′] + D[q′,q] as otherwise D[p, j] = D[p,q] + D[q, j] = D[p,q′] + D[q′,q] +
D[q, j] ≥ D[p,q′] + D[q′, j] ≥ D[p, j] and hence D[p, j] = D[p,q′] + D[q′, j], a contradiction.
Consequently, we have D[p,q] = edD (S[p]S[q − 1]) + D[p + 1,q − 1] and D[i, j] = D[i,p] +
edD (S[p]S[q − 1]) +D[p + 1,q − 1]+D[q, j]. Let us define r ∈ (p + 1 . .q − 1] as the smallest value
such that D[p + 1,q − 1] = D[p + 1, r ] +D[r ,q − 1]. We consider two subcases:

Case 2a: r = p+2. Notice that edD (S[p]S[q − 1]) = edD (S[p+1]S[q − 1]) since S[p] and S[p+1]
are closing parentheses. Recall that for � ∈ [0 . .n) we have D[�, � + 1] = 1. Consequently,

D[i, j] = D[i,p] + edD (S[p]S[q − 1]) +D[p + 1,p + 2] +D[p + 2,q − 1] +D[q, j]

= D[i,p] +D[p,p + 1] + edD (S[p + 1]S[q − 1]) +D[p + 2,q − 1] +D[q, j]

≥ D[i,p + 1] +D[p + 1,q] +D[q, j]

≥ D[i,p + 1] +D[p + 1, j]

≥ D[i, j].

Thus, D[i, j] = D[i,p + 1] +D[p + 1, j]. However, H (p + 1) < H (p), which contradicts the choice
of p since H (p) is not minimized.

Case 2b: r > p+ 2. Notice that edD (S[p]S[p+ 1]) ≤ edD (S[p+ 1]S[r − 1]) since S[p] and S[p+ 1]
are closing parentheses. Moreover, if S[q− 1] is a closing parenthesis, then edD (S[r − 1]S[q− 1]) ≤
1 = edD (S[p]S[q − 1]). Otherwise, S[q − 1] is an opening parenthesis and edD (S[r − 1]S[q − 1]) ≤
2 = edD (S[p]S[q − 1]). Notice that for � ∈ [0 . .n − 1) we have D[�, � + 2] = edD (S[�]S[� + 1]).
Consequently,

D[i, j] = D[i,p] + edD (S[p]S[q − 1]) + edD (S[p + 1]S[r − 1]) +D[p + 2, r − 1] +D[r ,q − 1]

+D[q, j]

≥ D[i,p] + edD (S[p]S[p + 1]) +D[p + 2, r − 1] + edD (S[r − 1]S[q − 1]) +D[r ,q − 1]

+D[q, j]

≥ D[i,p] +D[p,p + 2] +D[p + 2, r − 1] +D[r − 1,q] +D[q, j]

≥ D[i,p + 2] +D[p + 2, j]

≥ D[i, j].

Thus, D[i, j] = D[i,p + 2] +D[p + 2, j]. However, H (p + 2) < H (p), which contradicts the choice
of p since H (p) is not minimized. �

By Lemma 2.1 it is straightforward to prove the following corollary.

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 26. Publication date: June 2024.



An Improved Algorithm for The k-Dyck Edit Distance Problem 26:9

Corollary 2.2. There exists an algorithm for k-Dyck edit distance with O (n2k ) running time.

3 O (N + K5)-TIME ALGORITHM

In this section, we further refine the dynamic programming approach to achieve anO (n+k5)-time
algorithm. To do so, the algorithm carefully selects a subset ofO (k4) entries of the matrixD based
on Lemma 2.1, and the remaining entries are computed using a much faster method based on the
approach developed by Landau and Vishkin for computing the threshold edit distance ([21], see
also [20]).

3.1 Definitions and Combinatorial Observations.

We use the following simple fact that is an extension of [5, Fact 36].

Fact 3.1. For 0 ≤ i ≤ j ≤ n, if D[i, j] ≤ k , then H (m) ≥ max{H (i ),H (j )} − 2k holds for every
m ∈ [i . . j]. In particular, |H (i ) − H (j ) | ≤ 2k .

Definition 3.2 (Trapezoid). For 0 ≤ a < b ≤ c < d ≤ n, we say that (a,b, c,d ) is a trapezoid if the
following properties hold: (1)H (a) = H (d ), (2)b−a = H (b)−H (a) = H (c )−H (d ) = d−c (this value
is called the height of the trapezoid), and (3) for allm ∈ [b . . c], we have H (m) ≥ H (b) = H (c ). See
Figure 1(b).

Notice that all the characters in S[a . .b) are opening parentheses and all the characters in
S[c . .d ) are closing parentheses, respectively.

Definition 3.3 (Tall and maximal trapezoid). A trapezoid (a,b, c,d ) is maximal if it cannot be
extended to a different trapezoid (a′,b ′, c ′,d ′) with a′ ≤ a, b ′ ≥ b, c ′ ≤ c , and d ′ ≥ d . A trapezoid
is tall if its height is at least 2k .

Fact 3.4. If (a,b, c,d ) and (a′,b ′, c ′,d ′) are distinct maximal trapezoids, then [a . .b) ∪ [c . .d )
and [a′ . .b ′) ∪ [c ′ . .d ′) are disjoint.

Proof. Suppose that these sets contain a common position i . By symmetry, assume without loss
of generality that i ∈ [a . .b), which means that S[i] is an opening parenthesis and i ∈ [a′ . .b ′).
Let j ∈ (c . .d] with i + j = a + d , and so H (i ) = H (j ). Moreover, since (a,b, c,d ) is a trapezoid,
for m ∈ (i . . j ) we have H (m) > H (i ). Symmetrically, define j ′ ∈ (c ′ . .d ′] so that i + j ′ = a′ + d ′.
Thus, H (i ) = H (j ′) and for m ∈ (i . . j ′) we have H (m) > H (i ). This proves that j = j ′ and that
(a,b, c,d ) and (a′,b ′, c ′,d ′) both extend (i, i + 1, j − 1, j ). Finally, we note that a′ ≥ a (otherwise
(a − 1,b, c,d + 1) is a trapezoid), a′ ≤ a (otherwise (a′ − 1,b ′, c ′,d ′ + 1) is a trapezoid), b ′ ≤ b
(otherwise (a,b+1, c+1,d ) is a trapezoid), and b ′ ≥ b (otherwise (a′,b ′+1, c ′−1,d ′) is a trapezoid).
Hence, (a,b, c,d ) = (a′,b ′, c ′,d ′) holds as claimed. �

We process tall maximal trapezoids using a fast method based on [20, 21], but the computation of
Equation (1) is not fully completed by just processing all tall maximal trapezoids. In order to address
the remaining computation, The remaining positions are grouped into clusters, and processed
using Lemma 2.1. Formally,

Definition 3.5 (Cluster). Consider a cycle with vertices [0 . .n] and edges {(i, i+1) : i ∈ [0 . .n)}∪
{(n, 0)}. For each tall maximal trapezoid (a,b, c,d ), delete edges (i, i + 1) for i ∈ [a . .b) ∪ [c . .d ),
delete vertices (a . .b) ∪ (c . .d ), and add edges (a,d ) and (b, c ). The connected components of the
resulting graph are called clusters. We say that a cluster C contains all positions S[p] such that
(p,p + 1) is an edge of C . See Figure 2(a).

Lemma 3.1. If the input string S has at most 2k valleys and D[0,n] ≤ k , then the number of
maximal trapezoids is O (k ) and the total number of positions in the clusters is O (k2).

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 26. Publication date: June 2024.



26:10 D. Fried et al.

Proof. Consider a maximal trapezoid (i, i ′, j ′, j ). First, note that i ∈ V∪{0} or j ∈ V∪{n} because
(i − 1, i ′, j ′, j + 1) is not a trapezoid. Moreover, by Fact 3.4, there is no other maximal trapezoid
(a,b, c,d ) with a = i or d = j. Hence, there are at most two maximal trapezoids associated with
each v ∈ V , and another maximal trapezoid associated with each extreme position (0 and n − 1).
Thus, number of maximal trapezoids is bounded by 4k + 2.

We now show that all positions in clusters, except for O (k ) of those positions, belong to some
maximal trapezoid. Consider an opening parenthesis S[p]. If there is a position r ∈ [p . .n] such
that H (r ) = H (p), then choose the leftmost such position. In this case, S[r − 1] is a closing paren-
thesis and (p,p + 1, r − 1, r ) forms a trapezoid, which can be extended to a maximal trapezoid.
Thus, an opening parenthesis S[p] does not belong to any maximal trapezoid only if H (p) < H (r )
for all r ∈ [p . .n]. The number of such positions does not exceed H (n) − minp∈[0..n] H (p),
since each height between minp∈[0..n] H (p) and H (n) can contribute at most once. By Fact 3.1,
H (n) − minp∈[0..n] H (p) ≤ 2k . Thus, the number of such positions is at most 2k . Similarly, there
are at most 2k closing parentheses that do not belong to any maximal trapezoid.

Finally, we note that if a maximal trapezoid is not tall, then it contains at most 4k positions.
Since the number of maximal trapezoids is O (k ), this means that maximal trapezoid that are not
tall contain at mostO (k2) positions in total. Overall, we conclude that the total number of positions
in the clusters is O (k2) as desired. �

Definition 3.6 (Parent relation on clusters and trapezoids). Let T = (a,b, c,d ) be a tall maximal
trapezoid and letC be a cluster. We say thatC is the parent ofT if a,d ∈ C , and thatT is the parent
of C if b, c ∈ C . See Figure 2(b).

The following lemma shows that clusters and trapezoids naturally define a tree structure.

Lemma 3.2. IfD[0,n] ≤ k , then the parent relation on clusters and tall maximal trapezoids defines
a rooted tree whose root is the cluster containing both 0 and n. We denote this tree by T .

Moreover, there exists an algorithm for constructing tree T in O (n) time.

Proof. For a tall maximal trapezoid T = (a,b, c,d ), the graph G of Definition 3.5 does not
contain any edge connecting [b . . c] with [0 . . a] ∪ [d . .n]. Consequently, the cluster C whose
parent is T satisfies minC = b and maxC = c . At the same time, the parent C ′ of T satisfies
minC ′ ≤ a < b and maxC ′ ≥ d > c . We conclude that the parent relation is acyclic.

It remains to prove that every cluster C (except for the one containing 0,n) has exactly one
parent. Consider an edge (maxC,maxC + 1) not present in G. Since maxC ∈ G, this edge must
have been deleted while processing a tall maximal trapezoidT = (a,b, c,d ) such that maxC ∈ {a, c}.
If maxC = a, then (a,d ) is an edge of G, so d ∈ C and maxC ≤ d < a = maxC , a contradiction.
Consequently, we must have maxC = c , which means that T is the parent of C . This trapezoid is
unique due to Fact 3.4.

We now show an algorithm that builds T inO (n) time. First, for each opening parenthesis S[p],
we compute the value B (p) = min{r ∈ (p . .n] : H (p) = H (r )}, assuming min ∅ = ∞. For this, it
suffices to scan S from left to right in linear time. Now, observe that (a,b, c,d ) is a trapezoid if and
only if i + B (i ) = a + d = b + c for all i ∈ [a . .b). In particular, maximal trapezoids correspond
to maximal segments S[a . .b) of opening parentheses such that i + B (i ) is fixed for all i ∈ [a . .b).
This allows constructing all maximal trapezoids inO (n) time. Out of these trapezoids, we filter tall
trapezoids (for which the height is at least 2k).

We now show how to compute the clusters. Let G be a graph on nodes [0 . .n] that contains
edges (i, i + 1) for each i ∈ [0 . .n) and an edge (n, 0) (i.e., G is a cycle on [0 . .n]). Next, for each
tall maximal trapezoid (i, i ′, j ′, j ), modify G as specified in Definition 3.5. By Fact 3.4, no vertex

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 26. Publication date: June 2024.



An Improved Algorithm for The k-Dyck Edit Distance Problem 26:11

or edge is deleted twice. Finally, traverse the graph and mark each vertex with an identifier of its
connected component (cluster). Thus, constructing all the clusters costs O (n) time in total.

It remains to build the tree T . For this, each tall maximal trapezoid T = (a,b, c,d ) is connected
to its child (the cluster containing b and c) and its parent (the cluster containing a and d). Overall,
the algorithm costs O (n) time. �

Notice that every trapezoid in T has a cluster parent, and at most 1 child, which must be a
cluster. Moreover, every cluster in T has an arbitrary number of trapezoid children, and at most
1 trapezoid parent (the root of T is a cluster and has no parent).

Claim 3.7. Consider a trapezoid (a,a + 2k,d − 2k,d ) and indices i ≤ j such that D[i, j] ≤ k . If
one of the indices i, j belongs to (a + 2k . .d − 2k ), then the other belongs to (a . .d ).

Proof. By symmetry, we assume without loss of generality that i ∈ (a + 2k . .d − 2k ). Then,
H (i ) > H (d − 2k ) = H (d ) + 2k and, by Fact 3.1, d � [i . . j], i.e., j ∈ (a . .d ). �

3.2 The Algorithm.

Our main algorithm constructs T and then performs a post-order traversal of T , with distinct
procedures for processing nodes representing clusters and trapezoids.

Processing Clusters. When the algorithm processes a cluster C with r children Tq =

(aq ,bq , cq ,dq ) for q ∈ [1 . . r ], the algorithm is given the values min{D[i, j],k + 1} for all i, j ∈
[aq . . aq + 2k] ∪ [dq − 2k . .dq] and q ∈ [1 . . r ]. If C has a parent T = (a,b, c,d ), then the out-
come of processingC consists of the values min{D[i, j],k + 1} for i, j ∈ [b − 2k . .b]∪ [c . . c + 2k].
See Figure 2(c). IfC is the root of T , then 0,n ∈ C by Lemma 3.2 and the output isD[0,n]. Denote

E (C ) : = C ∪ ��
�

r⋃
q=1

[aq . . aq + 2k] ∪ [dq − 2k . .dq]	

�
∪ ([b − 2k . .b] ∪ [c . . c + 2k])

= [b − 2k . . c + 2k] \
r⋃

q=1

(aq + 2k . .dq − 2k ),

where the last term is included only ifC is not the root of T . Notice that E (C ) is the set of positions
that are relevant for processingC . Let M (C ) = M ∩E (C ), where M is defined as in Lemma 2.1. The
following lemma is a simplification of Lemma 2.1, confined to values in E (C ) which are not given
as input to cluster processing.

Lemma 3.3. Let (i, j ) ∈ E (C )2 \⋃r
q=1[aq . .dq]2. If j ≥ i + 2 and D[i, j] ≤ k , then

D[i, j] = min
⎧⎪⎨⎪⎩
D[i,m] +D[m, j] form ∈ (i . . j ) ∩ (M (C ) ∪ {i + 1, i + 2, j − 2, j − 1}),
edD (S[i]S[j − 1]) +D[i + 1, j − 1] if i + 1, j − 1 ∈ E (C ).

(3)

Proof. If D[i, j] = D[i + 1, j − 1] + edD (S[i]S[j − 1]) ≤ k , then observe that i + 1, j − 1 ∈ E (C )
unless i + 1 ∈ (aq + 2k . .dq − 2k ) or j − 1 ∈ (aq + 2k . .dq − 2k ) for some q ∈ [1 . . r ]. By Claim 3.7
applied to (aq ,aq + 2k,dq − 2k,dq ), the assumption D[i, j] ≤ k implies D[i + 1, j − 1] ≤ k and so
(i + 1, j − 1) ∈ (aq . .dq )2, i.e., (i, j ) ∈ [aq . .dq]2, a contradiction.

Thus, by Lemma 2.1, we focus on the case where D[i, j] = D[i,m] + D[m, j] for some m ∈
(i . . j ) ∩ (M ∪ {i + 1, i + 2, j − 2, j − 1}). Assume by contradiction that m � M (C ), and so m ∈
(aq + 2k . .dq − 2k ) for some q ∈ [1 . . r ]. By Claim 3.7 applied to (aq ,aq + 2k,dq − 2k,dq ), the
assumption D[i,m] +D[m, j] ≤ k implies i, j ∈ (aq . .dq ). However, (i, j ) � [aq . .dq]2, and so we
obtain a contradiction. �

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 26. Publication date: June 2024.



26:12 D. Fried et al.

Fig. 3. The submatrix of D corresponding to a tall maximal trapezoid T = (a,b, c,d ). Green squares cor-

respond to the values D[i, j] with (i, j ) ∈ [a . .b]2 ∪ [c . .d]2, for which the values are known. Except for

the green squares, only the values in the red square, yellow diagonals, and the blue square can be smaller

or equal to k . The processing of T must compute the values in the blue square given the values in the red

square.

By Lemma 3.3, the values min{D[i, j],k + 1} for all i, j ∈ E (C ) with i ≤ j can be computed in
O ( |E (C ) |2 (1 + |M (C ) |)) time. Notice that |E (C ) | ≤ |C | + (4k + 2) (q + 1). Moreover, by Lemma 3.1,
the sum of the number of children for all clusters is O (k ) and the total number of positions in the
clusters isO (k2), and therefore

∑
C |E (C ) | = O (k2). Furthermore, |M (C )\C | = O (q+1) (because, for

each trapezoid (a,b, c,d ), only a,a+1,d−1,d may belong toM) and
∑

C |M (C )∩C | ≤ |M | = O (k ) as
the clusters do not intersect, so

∑
C |M (C ) | = ∑

C |M (C )\C |+∑C |M (C )∩C | = O (k ). Consequently,
the total time required to process all clusters is O ((k2)2 · (1 + k )) = O (k5).

Processing Trapezoids. When we process a tall maximal trapezoid T = (a,b, c,d ), we are given
values min{D[i, j],k + 1} for all i, j ∈ [b − 2k . .b] ∪ [c . . c + 2k], and the output consists of the
values min{D[i, j],k + 1} for i, j ∈ [a . . a + 2k] ∪ [d − 2k . .d]. See Figure 2(d).

For (i, j ) ∈ [a . .b]2∪[c . .d]2, we haveD[i, j] = �(j−i )/2� because all parentheses in S[i . . j ) are
of the same orientation. We therefore only need to compute entriesD[i, j] such that i ∈ [a . . a+2k]
and j ∈ [d − 2k . .d]. Consider a square submatrix D[a . .b, c . .d] of D (see Figure 3). We start by
showing that the values in the submatrix follow a simpler recursion:

Claim 3.8. For all (i, j ) ∈ [a . .d]2 \ [b − 2k . . c + 2k]2 such that i ≤ j and D[i, j] ≤ k ,

D[i, j] = min

{
D[i + 2, j] + 1,D[i + 1, j] + 1,D[i + 1, j − 1] + edD (S[i]S[j − 1]),

D[i, j + 1] + 1,D[i, j + 2] + 1

}
.

Proof. Note that D[i, i + 2] = D[i, i + 1] = D[j − 1, j] = D[j − 2, j] = 1, since for each
computation all the parentheses that matter are of the same orientation. Hence, it suffices to prove
that ifD[i, j] = D[i,m]+D[m, j] then, without loss of generality,m ∈ {i+1, i+2, j−2, j−1}, since,
for example, ifm = i + 1 thenD[i, j] = D[i, i + 1]+D[i + 1, j] = 1+D[i + 1, j]. By Lemma 2.1, the
only other possibility is that m ∈ M and, since (a . .d ) ∩V ⊆ (b . . c ), this implies that m ∈ [b . . c].
However, D[i,m] ≤ k would then contradict Claim 3.7 for a trapezoid (b − 2k − 1,b − 1, c + 1, c +
2k + 1). �

Consider an entry D[i, j] ≤ k , where (i, j ) ∈ [a . .d]2 \ [b − 2k . . c + 2k]2. We have either
(i, j ) ∈ [a,b − 2k )2 ∪ (c + 2k,d]2 or, by Fact 3.1, i + j = b + c + δ , where δ ∈ [−2k . . 2k]. Let us

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 26. Publication date: June 2024.



An Improved Algorithm for The k-Dyck Edit Distance Problem 26:13

denote δ+ := max(0,δ ) and δ− := min(0,δ ). For a fixed δ ∈ [−2k . . 2k], we call the set of entries
(i, j ) ∈ [a . .d]2 \ [b − 2k . . c + 2k]2 such that i + j = b + c + δ the diagonal δ . Let us show that the
values D[i, j] are monotone along each diagonal:

Claim 3.9. For all (i, j ) ∈ [a . .d]2 \ [b − 2k . . c + 2k]2 such that D[i, j] ≤ k , we have D[i, j] ≥
D[i + 1, j − 1].

Proof. Let q ∈ (i . . j] be the smallest value such that D[i, j] = D[i,q] + D[q, j]. We consider
four cases:

(1) q = j. In this case, D[i, j] = edD (S[i]S[j − 1]) +D[i + 1, j − 1] ≥ D[i + 1, j − 1].
(2) q = j − 1. In this case, D[i, j] = edD (S[i]S[j − 2]) +D[i + 1, j − 2] +D[j − 1, j] ≥ D[i + 1,

j − 2] +D[j − 2, j − 1] ≥ D[i + 1, j − 1].
(3) q = i + 1. Let r ∈ [q . . j ) be the largest value such that D[q, j] = D[q, r ] + D[r , j]. We

consider two subcases:
(a) r = j − 1. In this case, D[i, j] = D[i, i + 1] +D[i + 1, j − 1] +D[j − 1, j] ≥ D[i + 1, j − 1].
(b) r < j−1. In this case,D[i, j] = D[i, i+1]+D[i+1, r ]+edD (S[r ]S[j−1])+D[r +1, j−1] ≥
D[i + 1, r ] +D[r , r + 1] +D[r + 1, j − 1] ≥ D[i + 1, j − 1].

(4) i+1 < q < j−1. Again, let r ∈ [q . . j ) be the largest value such thatD[q, j] = D[q, r ]+D[r , j].
We consider two subcases:

(a) r = j−1. In this case,D[i, j] = edD (S[i]S[q−1])+D[i+1,q−1]+D[q, j−1]+D[j−1, j] ≥
D[i + 1,q − 1] +D[q − 1,q] +D[q, j − 1] ≥ D[i + 1, j − 1].

(b) r < j −1. In this case,D[i, j] = edD (S[i]S[q−1])+D[i +1,q−1]+D[q, r ]+edD (S[r ]S[j −
1]) + D[r + 1, j − 1] ≥ D[i + 1,q − 1] + edD (S[q − 1]S[r ]) + D[q, r ] + D[r + 1, j − 1] ≥
D[i +1,q−1]+D[q−1, r +1]+D[r +1, j −1] ≥ D[i +1, j −1], where edD (S[i]S[q−1])+
edD (S[r ]S[j − 1]) ≥ 1 ≥ edD (S[q− 1]S[r ]) follows from the fact that S[q− 1] is an opening
parenthesis or S[r ] is a closing parenthesis (otherwise, we would have q, r ∈ (b . . c ), which
contradicts D[i,q] ≤ k and D[r , j] ≤ k by Claim 3.7 applied to (b − 2k,b, c, c + 2k )).

�

For the diagonal δ and values v ∈ [0 . .k], we shall compute values Lv [δ] = max{j ∈ [c +
2k + δ− . .d − 2k + δ+] : D[b + c + δ − j, j] ≤ v}, assuming max ∅ = −∞. From the resulting
tables Lv [δ], we can determine min(D[i, j],k + 1) for all i, j ∈ [a . . a + 2k] ∪ [d − 2k . .d] in
O (k2) time by Claim 3.8. To compute the values Lv [δ], we rely on the fact that, after O (n)-time
preprocessing, the longest common prefix of any two substrings of SS can be computed in O (1)-
time [13].4 Specifically, we use an adaptation of the Landau–Vishkin method [20, 21] generalizing
a similar subroutine present in [5]. Our procedure is implemented as Section 3.2, which assumes
that Lv [s] = −∞ for all out-of-bounds and uninitialized entries.

Lemma 3.4. For all (i, j ) ∈ ([a . .b] × [c . .d]) \ ([b − 2k . .b] × [c . . c + 2k]) and v ∈ [0 . .k], we
have D[i, j] ≤ v if and only if the value Lv [(i + j ) − (b + c )] computed by Section 3.2 is at least j.

Proof. First, let us prove that D[i, j] ≤ v implies Lv [δ] ≥ j, where δ = (i + j ) − (b + c ). We

proceed by induction onv . Let S[i . . i ′) = S[j ′ . . j ) be the longest common prefix of S[i . .b−2k+δ+)

and S[c + 2k + δ− . . j ). We shall prove L′v [δ] ≥ j ′, where δ = (i + j ) − (b + c ), by considering six
cases:

— If j ′ = c + 2k + δ− and i ′ = b − 2k + δ+, then D[i ′, j ′] ≤ v by Claim 3.9. Hence, L′v [δ] ≥
c + 2k + δ− = j ′.

4Here, S denotes the reverse complement of S , obtained by reversing S and flipping the orientation of every parenthesis.

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 26. Publication date: June 2024.



26:14 D. Fried et al.

ALGORITHM 1: Processing trapezoids.

1: for v := 0 to k do

2: for δ := −2v to 2v do

3: L′v [δ] := min(d − 2k + δ+,max(Lv−1[δ − 2] + 2,Lv−1[δ − 1] + 2,Lv−1[δ] + 1,Lv−1[δ +
1],Lv−1[δ + 2])

4: if D[b − 2k + δ+, c + 2k + δ−] ≤ v then

5: L′v [δ] := max(L′v [δ], c + 2k + δ−)
6: end if

7: Lv [δ] := L′v [δ] + lcp(S[a . .b + c + δ − L′v [δ]), S[L′v [δ] . .d ))
8: end for

9: end for

Otherwise, by Claim 3.8, it suffices to consider one of the remaining five cases:

— IfD[i ′, j ′] = D[i ′, j ′ −2]+1, then the inductive assumption yields L′v [δ] ≥ Lv−1[δ −2]+2 ≥
(j ′ − 2) + 2 = j ′.

— IfD[i ′, j ′] = D[i ′, j ′ −1]+1, then the inductive assumption yields L′v [δ] ≥ Lv−1[δ −1]+1 ≥
(j ′ − 1) + 1 = j ′.

— IfD[i ′, j ′] = D[i ′+1, j ′ −1]+1, then the inductive assumption yields L′v [δ] ≥ Lv−1[δ]+1 ≥
(j ′ − 1) + 1 = j ′.

— IfD[i ′, j ′] = D[i ′+ 1, j ′]+ 1, then the inductive assumption yields L′v [δ] ≥ Lv−1[δ + 1] ≥ j ′.
— IfD[i ′, j ′] = D[i ′+ 2, j ′]+ 1, then the inductive assumption yields L′v [δ] ≥ Lv−1[δ + 2] ≥ j ′.

In all cases Lv [δ] ≥ j follows from L′v [δ] ≥ j ′ due to lcp(S[a . . i ′), S[j ′ . .d )) ≥ j − j ′.
The converse implication is also proved by induction on v . Let δ = (i + j ) − (b + c ), j ′ = L′v [δ]

and i ′ = i + j − j ′. By Claim 3.9, we can assume j = Lv [δ] without loss of generality. Moreover,

since S[i . . i ′) = S[j ′ . . j ), we have D[i, j] ≤ D[i ′, j ′]. Hence, it suffices to prove D[i ′, j ′] ≤ v . For
this, we consider six cases:

— If j ′ = c + 2k + δ−, then the algorithm explicitly checked D[i ′, j ′] ≤ v while setting j ′.
— If j ′ = Lv−1[δ − 2] + 2, then D[i ′, j ′] ≤ D[i ′, j ′ − 2] + 1 ≤ (v − 1) + 1 = v by the inductive

assumption.
— If j ′ = Lv−1[δ − 1] + 1, then D[i ′, j ′] ≤ D[i ′, j ′ − 1] + 1 ≤ (v − 1) + 1 = v by the inductive

assumption.
— If j ′ = Lv−1[δ] + 1, then D[i ′, j ′] ≤ D[i ′ − 1, j ′ − 1] + 1 ≤ (v − 1) + 1 = v by the inductive

assumption.
— If j ′ = Lv−1[δ + 1], then D[i ′, j ′] ≤ D[i ′ + 1, j ′] + 1 ≤ (v − 1) + 1 = v by the inductive

assumption.
— If j ′ = Lv−1[δ + 2], then D[i ′, j ′] ≤ D[i ′ + 2, j ′] + 1 ≤ (v − 1) + 1 = v by the inductive

assumption. �

Lemma 3.4 shows correctness of Section 3.2. From the description of Section 3.2 it follows that
the tables Lv [δ] and hence the entries min(D[i, j],k + 1) for all i, j ∈ [a . . a + 2k] ∪ [d − 2k . .d]
can be computed in O (k2) time.

Theorem 3.5. Given a sequence S of parentheses of length n, min{edD (S ),k + 1} can be computed
in O (n + k5) time.

Proof. We start with anO (n)-time preprocessing of S according to Claim 2.3. After completing
this preprocessing, we can assume that S contains at most 2k valleys. Next, we apply Lemma 3.2

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 26. Publication date: June 2024.



An Improved Algorithm for The k-Dyck Edit Distance Problem 26:15

to build a tree of clusters and trapezoids in O (n) time, and then we start the main phase of the
algorithm. The total time used to process the clusters is O (k5). The total time used to process the
tall maximal trapezoids is O (n + k · k2) = O (n + k3). The theorem follows. �

4 VALIANT-LIKE RECURSION

In this section, we describe how to speed up a dynamic-programming procedure that constructs a
matrix A[0 . .n, 0 . .n] so that, for some non-empty M ⊆ [0 . .n]:

(1) each entry A[i, j] can be computed in O (1) time given (O (1)-time access to) the remaining
entries A[i ′, j ′] with i ≤ i ′ ≤ j ′ ≤ j and the value min{A[i,m] +A[m, j] : m ∈ (i . . j ) ∩M },

(2) for every m ∈ M , subsequent entries A[i,m] and subsequent entries A[m, j] differ by at
most 1.

Our procedure is an adaptation of Valiant’s approach [30] to generalize computing a transitive
closure by allowing a non-transitive operation. The description of our adaptation follows a more
recent perspective of Valiant’s recursion scheme as described by Okhotin [25].

The scheme recursively halves the domain [0 . .n], which yields a hierarchy of decompositions.
We call intervals comprising the dth decomposition level-d intervals so that [0 . .n] is the unique
level-0 interval and a level-d interval is partitioned into two disjoint level-(d + 1) intervals.

The computation ofA[0 . .n, 0 . .n] is based on two recursive procedures that utilize an auxiliary
array P[0 . .n, 0 . .n]. Their definitions below are adapted to our setting.

compute(I ): given a level-d interval I , compute the entries A[i, j] for i, j ∈ I with i ≤ j.
complete(I , J ): given two level-d intervals I , J (with I to the left of J ), compute the entries
A[i, j] for i ∈ I and j ∈ J , assuming that:
– the remaining entries A[i, j] with min I ≤ i ≤ j ≤ max J have already been computed,
– P currently stores values P[i, j] = min{A[i,m] + A[m, j] : m ∈ M ∩ (max I . .min J )} for

each i ∈ I and j ∈ J .

The following procedure is the workhorse of the algorithm, allowing speed-ups through fast matrix
multiplication.

update(I ,K , J ): given three distinct level-d intervals I ,K , J , set P[i, j] :=
min{P[i, j],min{A[i,m] + A[m, j] : m ∈ K ∩ M )}} for i ∈ I and j ∈ J , assuming that
all entries A[i,m] and A[m, j] with i ∈ I , j ∈ J , andm ∈ K have already been computed.

In the original hierarchical decomposition, each level-d interval of length at least 2 is partitioned
into two equal halves, whereas intervals of length 1 form the recursion base case. In this work, our
goal is to make the algorithm more efficient when |M | is much smaller than n, and we need to
control both |I | and |I ∩ M | for the intervals I in the decompositions. Moreover, we do not need
to partition intervals I with |I ∩ M | = O (1). To facilitate these goals, we define the weight of an
interval I ⊆ [0 . .n] as

w (I ) := |I ∩M | + |I \M | · |M |
n

.

Note that the weight of I is the sum of the singleton intervals constituting it. We also denoteW =
w ([0 . .n]); note that |M | ≤W ≤ 2|M |. For 0 ≤ d ≤ ⌊

log2W
⌋
, we define a level-d decomposition of

[0 . .n] into disjoint intervals. The only level-0 interval is [0 . .n]. For 0 ≤ d <
⌊
log2W

⌋
, each level-

d interval I is decomposed into two level-(d+1) intervals I� and Ir (the left and right subinterval) so
thatw (I� ) andw (Ir ) are as balanced as possible. Since the weight of a singleton does not exceed 1,
we can achievew (I� ),w (Ir ) ≤ 1

2 (w (I )+1). A simple induction shows that, for every level-d interval

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 26. Publication date: June 2024.



26:16 D. Fried et al.

I , we havew (I ) ≤ 2−d (W −1)+1. Consequently, |I∩M | ≤ w (I ) ≤ 21−dW , |I∩M | ≤ w (I ) ≤ 22−d |M |,
and |I | ≤ n

|M |w (I ) ≤ 22−dn.

Lemma 4.1. The update function for level-d intervals, 2 ≤ d ≤ ⌊
log2W

⌋
, costs O ((2−dn)ω̄ ) time,

where ω̄ is the exponent of Theorem 1.2 for α = logn |M |.

Proof. This operation can be implemented via a min-plus product of a |I | × |K ∩ M | matrix,
storing A[i,m] for i ∈ I andm ∈ K ∩M , with a |K ∩M | × |J | matrix, storing A[m, j] form ∈ K ∩M
and j ∈ J . By Property (2), the first matrix is 1-column-BD, and the second matrix is 1-row-BD,
so Theorem 1.2 can be applied to compute the product. Note that |I |, |J | ≤ 22−dn and |K ∩ M | ≤
22−d |M | ≤ (22−dn)logn |M | . Consequently, the product can be computed in O ((22−dn)ω̄ ) time. �

Lemma 4.2. The complete function for level-d intervals, 1 ≤ d ≤ ⌊
log2W

⌋
, costs O ((2−dn)ω̄ )

time, where ω̄ is the exponent of Theorem 1.2 for α = logn |M |.

Proof. Ifd =
⌊
log2W

⌋
, then the naive implementation costsO ( |I |·|J |·|M∩(I∪J ) |) = O ((2−dn)2)

time because |M∩ (I ∪ J ) | = O (1). Otherwise, we proceed recursively based on the decompositions
I = I� ∪ Ir , J = J� ∪ Jr into level-(d + 1) intervals:

(1) complete(Ir , J� ),
(2) update(I�, Ir , J� ),
(3) complete(I�, J� ),
(4) update(Ir , J�, Jr ),
(5) complete(Ir , Jr ),
(6) update(I�, Ir , Jr ),
(7) update(I�, J�, Jr ),
(8) complete(I�, Jr ).

This sequence of steps is at the heart of Valiant’s recursion [25, 30], and it is easy to check that
the pre-conditions for each application of complete and update are satisfied. Since I × J = (Ir ×
J� ) ∪ (Ir × Jr ) ∪ (I� × J� ) ∪ (I� × Jr ), the post-conditions of the four applications of complete
guarantees that the resulting entries A[i, j] for i ∈ I and j ∈ J are determined correctly. As for the
running time, it suffices to observe that there are four applications of update and four recursive
applications of complete, all on level-(d+1) intervals. Since ω̄ > 2, the runtime isO ((2−dn)ω̄ ). �

Lemma 4.3. The compute function for a level-d interval, 0 ≤ d ≤ ⌊
log2W

⌋
, costs O ((2−dn)ω̄ )

time, where ω̄ is the exponent of Theorem 1.2 for α = logn |M |.

Proof. If d =
⌊
log2W

⌋
, then the naive implementation costs O ( |I | · |I | · |M ∩ I |) = O ((2−dn)2)

time because |M ∩ I | = O (1). Otherwise, we proceed recursively based on the decomposition
I = I� ∪ Ir into level-(d + 1) intervals:

(1) compute(I� )
(2) compute(Ir )
(3) complete(I�, Ir )

Again, it is easy to see that the pre-condition for complete is satisfied. Since each (i, j ) ∈ I 2 with
i ≤ j belongs to I 2

�
∪ I 2

r ∪ (I� × Ir ), the post-conditions of the two applications of compute and
the one application of complete guarantee that all entries A[i, j] with (i, j ) ∈ I 2 and i ≤ j are
computed correctly. As for the running time, it suffices to observe that there is one application of
update and two recursive applications of complete, all on level-(d + 1) intervals. Since ω̄ > 1, the
runtime is O ((2−dn)ω̄ ). �

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 26. Publication date: June 2024.



An Improved Algorithm for The k-Dyck Edit Distance Problem 26:17

In particular, Lemma 4.3 applied to the initial recursive call compute([0 . .n]) yields the
following.

Corollary 4.4. The values A[i, j] for 0 ≤ i ≤ j ≤ n can be computed in Õ (nω̄ ) time, where ω̄ is
the exponent of Theorem 1.2 for α = logn |M |.

5 FASTER PROCEDURE FOR CLUSTERS

In this section, we apply Corollary 4.4 to develop a faster implementation of the subroutine for
processing clusters. For this, we shall prove that the dynamic-programming procedure following
from Lemma 3.3 satisfies the two conditions of Valiant recursion. Formally, for a fixed cluster
C , this procedure operates on an array A[E (C ),E (C )] resulting in A[i, j] = min{D[i, j],k + 1}
for all i, j ∈ E (C ) with j ≥ i . Inspecting the recursion in Lemma 3.3, it is easy to see that this
dynamic program satisfies condition (1) of Valiant recursion. As for condition (2), we need to
prove that, for every m ∈ M (C ), the subsequent entries A[i,m] (with i ∈ E (C ) and i ≤ m) and
A[m, j] (with j ≥ m and j ∈ E (C )) differ by at most one. By symmetry, we focus without loss of
generality on the former case. Let A[i,m] and A[i ′,m] be such subsequent entries with i < i ′ ≤ m.
If i ′ = i + 1, then |D[i,m] − D[i + 1,m]| ≤ 1 because S[i . .m) and S[i + 1 . .m) are at distance 1.
Otherwise, we must have i = aq + 2k and i ′ = dq − 2k for some q ∈ [1 . . r ]. If D[i,m] < k or
D[i ′,m] < k , then Claim 3.7 applied for a trapezoid (aq + 1,aq + 2k − 1,dq − 2k − 1,dq − 1) implies
m ∈ (aq + 1 . .dq − 1), which contradictsm ∈ M (C ). Consequently, A[i,m],A[i ′,m] ∈ {k,k + 1}. In
both case |A[i,m] −A[i ′,m]| ≤ 1 holds as claimed.

Thus, Corollary 4.4 implies that C can be processed in time max{|E (C ) |, |M (C ) |2}ω̄ , where ω̄ is
the exponent of Theorem 1.2 for α = 1

2 . Due to
∑

C |E (C ) | = O (k2) and
∑

C |M (C ) | = O (k ), the total

cost of processing all clusters is Õ (k2ω̄ ), which is O (k4.544184) with high probability or O (k4.853059)
deterministically. The remaining components of the algorithm from Section 3 cost O (n +k3) time,
so this yields Theorem 1.1.

6 (MIN,+)-PRODUCT OF RECTANGULAR MATRICES WITH PARTIALLY BOUNDED

DIFFERENCE

In this section we consider the problem of computing (min,+) product of rectangular matrices
which are partially bounded difference. We first describe a deterministic algorithm that follows
the ideas of Bringmann et al. [6]. We first describe a randomized algorithm follows the ideas of
[6] and then we describe how to derandomize this algorithm to get a deterministic algorithm.
Then, in Section 6.5 we describe a randomized algorithm which based on the recent result of Chi
et al. [8], which improve upon the results of Bringmann et al. [6], but does not introduce any
derandomization method.

Bringmann et al. [6] designed algorithms for (min,+)-product of two square matrices A and B
of size n × n for two special cases. In the first case, both input matrices are fully-BD matrices, and
the runtime for this case is Õ (n2.8244) randomized or Õ (n2.8603) deterministic. In the second case,
only one of the input matrices is assumed to be either column-BD or row-BD, and the randomized
runtime for the second case is Õ (n2.9217) time.

In our setting, the two matrices are rectangular, the matrix A is column-BD, and the matrix B
is row-BD. One could extend the solution of Bringmann et al. [6] for the second case to work on
rectangular matrices. However, in our case, we take advantage of the additional structure of B in
order to further reduce the runtime. Our algorithm is very similar to the algorithms of Bringmann
et al. [6], and we follow their structure. We emphasize that our exposition is given here only for
the sake of completeness; all the main ideas come from [6].

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 26. Publication date: June 2024.



26:18 D. Fried et al.

The (first) algorithm of Bringmann et al. [6] considers the matrices A,B, and C = A � B as
composed of blocks of size Δ × Δ, for some parameter Δ which is a small polynomial in n, and n
is an integer multiple of Δ. The algorithm considers the right-bottom corner of each block as the
representative of the block. The intuition is that, due to the bounded difference, the value of any
two positions inside the same block differs byO (Δ), and so in order to compute a rough estimation
of the output it suffices to consider only the representatives of the blocks.

Due to the following lemma, in our case where A is column-BD and B is row-BD, the matrix
C = A� B is fully-BD.

Lemma 6.1. Let α > 0. Let A and B be two integer matrices of sizes n ×nα and nα ×n, respectively,
such that A is column-BD and B is row-BD. Then, C := A� B is fully-BD.

Proof. Let (i, j ) ∈ [n − 1] × [n]. By definition, C[i, j] = min�∈[nα ]{A[i, �] + B[�, j]}. By the
assumption on A, for any (i, j ) ∈ [n − 1]× [nα ] we have A[i, j]− 1 ≤ A[i + 1, j] ≤ A[i, j]+ 1. Hence,

C[i + 1, j] = min
�∈[nα ]

{A[i + 1, �] + B[�, j]} ≤ min
�∈[nα ]

{(A[i, �] + 1) + B[�, j]}

= min
�∈[nα ]

{A[i, �] + B[�, j]} + 1 = C[i, j] + 1.

Similarly,

C[i + 1, j] = min
�∈[nα ]

{A[i + 1, �] + B[�, j]} ≥ min
�∈[nα ]

{(A[i, �] − 1) + B[�, j]}

= min
�∈[nα ]

{A[i, �] + B[�, j]} − 1 = C[i, j] − 1.

Thus, |C[i, j] −C[i + 1, j]| ≤ 1. The proof that |C[i, j] −C[i, j + 1]| ≤ 1 is symmetric (based on the
assumption on B). �

The algorithm of Bringmann et al. [6] is composed of three phases. We first describe the ran-
domized algorithm, and in Section 6.4 we describe how to derandomize the algorithm.

6.1 Phase 1: Finding C̃ – An Approximation of C with O (Δ) Additive Error.

Let Δ be a positive integer parameter (to be fixed later) and assume that n is divisible by Δ (we
can always assume without loss of generality that both n and Δ are powers of 2). We partition [n]
into intervals of length Δ, that are defined as follows: for each 1 ≤ i ′ ≤ n which is divisible by Δ,
let I (i ′) = {i ∈ [n] | i ′ − Δ < i ≤ i ′}. For every i ′, j ′ which are divisible by Δ, the algorithm first
computes C̃[i ′, j ′] = C[i ′, j ′] exactly (naively) and then, for any (i, j ) ∈ I (i ′) × I (j ′) the algorithm
sets C̃[i, j] ← C[i ′, j ′]. We emphasize that the definition of C̃[i ′, j ′] in our algorithm differs from
the definition in [6], since in our case A is not guaranteed to be row-BD and B is not guaranteed
to be column-BD. Moreover, for pairs i ′, j ′ which are divisible by Δ we define C̃[i ′, j ′] to be exactly
C[i ′, j ′], while in [6], C̃[i ′, j ′] is an approximation ofC[i ′, j ′]. Nevertheless, the following lemma is
similar in flavor to [6, Lemma 2.1].

Lemma 6.2. For i ′, j ′ which are divisible by Δ and (i, j ) ∈ I (i ′) × I (j ′) we have |C̃[i, j] −C[i, j]| =
|C[i ′, j ′] −C[i, j]| ≤ 2Δ.

Proof. Notice that C̃[i, j] = C[i ′, j ′] by definition, so we only need to prove that |C[i ′, j ′] −
C[i, j]| ≤ 2Δ.

Notice that one can move from C[i, j] to C[i ′, j] in i ′ − i < Δ vertical steps. Moreover, one can
move further fromC[i ′, j] toC[i ′, j ′] in j ′ − j < Δ horizontal steps. Thus, one can move fromC[i, j]
to C[i ′, j ′] in less than 2Δ steps. By Lemma 6.1 each step increases the difference between C[i, j]
and the current entry by at most 1, hence the claim follows. �

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 26. Publication date: June 2024.



An Improved Algorithm for The k-Dyck Edit Distance Problem 26:19

Runtime. Notice that computing C̃[i ′, j ′] for all i ′, j ′ which are divisible by Δ costs Õ (( n
Δ )2nα ) =

Õ ( n2+α

Δ2 ) time. In addition, the process of filling the rest of the matrix C̃ costs O (n2) time. Hence,

the total running time of the first phase is Õ ( n2+α

Δ2 + n
2) time.

6.2 Phase 2: Reduction to (min, +)-Product with Small Entries.

The following lemma is useful for the second phase.

Lemma 6.3 (cf. [4, Lemma 1]). Let R ∈ N. Let A and B be n × s and s × n matrices, respectively,

with entries in {−R,−R + 1, . . . ,R} ∪ {∞}. Then A� B can be computed in Õ (R ·M (n, s,n)) time.

The second phase has ρ iterations (ρ will be fixed later as a small polynomial in n). In each
iteration the algorithm chooses ir and jr independently and uniformly at random from [n]. Let Ar

be the matrix where Ar [i, �] = A[i, �] + B[�, jr ] − C̃[i, jr ] and let Br be the matrix where Br [�, j] =
B[�, j] − B[�, jr ] + C̃[ir , jr ] − C̃[ir , j]. Let Cr = Ar � Br . For each i, j, we have C[i, j] = Cr [i, j] +
C̃[i, jr ] − C̃[ir , jr ] + C̃[ir , j], and therefore one can compute C from Cr . However, computing Cr

exactly seems to be inefficient, and so [6] proved that a partial computation of Cr can be done
efficiently enough and still result in useful information regarding C .

Triples. By definition of (min,+)-product, for every (i, j ) we have C[i, j] = min�∈[nα ]{A[i, �] +
B[�, j]}. Thus, we associate with each entry C[i, j] the triples (i, 1, j ), (i, 2, j ), . . . , (i,nα , j ) which
refer to the nα different indices considered in the (min,+)-product definition. The value of C[i, j]
is A[i, �] + B[�, j] for at least one value � ∈ [nα ]; for such values � we say that (i, �, j ) is relevant.

Let Âr (B̂r ) be the matrix Ar (Br ) after replacing each entry whose absolute value is larger than
48Δ with ∞, thereby effectively allowing a (min,+)-product to ignore those entries. Let Pr =

Âr � B̂r and define Ĉr [i, j] = Pr [i, j]+ C̃[i, jr ]− C̃[ir , jr ]+ C̃[ir , j]. Notice that Ĉr [i, j] ≥ C[i, j]. For
triples (i, �, j ) where both |Ar [i, �]| ≤ 48Δ and |Br [�, j]| ≤ 48Δ we have Ĉr [i, j] ≤ A[i, �] + B[�, j].
We call such triples covered by the r th sample. Finally, Ĉ is defined as the entry-wise minimum of
Ĉr for r = 1, 2, . . . , ρ. One can compute each Pr , and eventually Ĉ , using Lemma 6.3. However, we
employ a different approach which introduces additional speed-up.

Bounding the Number of Relevant and Not Covered Triples. Our goal is to show that with high
probability, most of the relevant triples (i, �, j ) are covered by at least one of the ρ samples. Notice
that for any pair (i, j ) we have Ĉ[i, j] = C[i, j] if and only if there exist � ∈ [nα ] and 1 ≤ r ≤ ρ such
that (i, �, j ) is relevant and is covered by the r th sample. Since the relevant triples are unknown,
we use a weaker definition of relevance and also a weaker definition of being covered:

Definition 6.1 (cf. [6, Definition 2.2]). We call a triple (i, �, j ) ∈ [n] × [nα ] × [n]

— strongly relevant if A[i, �] + B[�, j] = C[i, j];
— weakly relevant if |A[i, �] + B[�, j] −C[i, j]| ≤ 16Δ;5

— strongly r -uncovered if for all 1 ≤ r ′ ≤ r we have |Ar ′[i, �]| > 48Δ or |Br ′[�, j]| > 48Δ;
— weakly r -uncovered if for all 1 ≤ r ′ ≤ r we have |Ar ′[i, �]| > 40Δ or |Br ′[�, j]| > 40Δ.

A triple is called strongly (weakly) uncovered if it is strongly (weakly) ρ-uncovered. Finally, a triple
is strongly (weakly) r -covered if it is not strongly (weakly) r -uncovered.

The following lemma is a straightforward generalization of [6, Lemma 3.1] to our case.

Lemma 6.4 (Based on [6, Lemma 3.1]). With high probability for any 1 ≤ r ≤ ρ, the number of

weakly relevant triples that are also weakly r -uncovered is Õ (n1.5+α + n2+α /r 1/3).

5We actually can use smaller constants, since by Lemma 6.2 the additive error is at most 2Δ, while in [6] the additive error
in C̃ is bounded by 4Δ. However, we prefer to use the original constants not to modify the claims and the proofs much.

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 26. Publication date: June 2024.



26:20 D. Fried et al.

sketch. The proof of [6, Lemma 3.1] shows that for every �, with high probability, the number
of weakly relevant triples (i, �, j ) that are also weakly r -uncovered is Õ (n1.5 + n2/r 1/3). Since in
our case there are only nα possible values of �, then, with high probability, the number of weakly
relevant triples that are also weakly r -uncovered (among all possible values of �) is Õ (nα (n1.5 +

n2/r 1/3)) = Õ (n1.5+α + n2+α /r 1/3). �

Efficient Method for Covering Relevant Triples. Instead of computing the (min,+)-product Pr =

Âr �B̂r in the r th round, we follow the method of [6] and use their additional insight to reduce the
runtime of the algorithm. The proof of [6, Lemma 3.1] has the property that for any round r , the
triples that are counted as covered by the r th round are exactly triples of the form (i, �, j ) such that
the triple (ir , �, jr ) is weakly relevant and weakly (r − 1)-uncovered. Therefore, in order to cover
the same triples at round r , after the algorithm chooses ir and jr , the algorithm computes Lr which
is the set of � values such that (ir , �, jr ) is both weakly relevant and weakly (r −1)-uncovered. The
algorithm removes all the columns � � Lr from Âr and all the rows � � Lr from B̂r . Let sr = |Lr |
be the number of surviving �’s in round r . The algorithm computes P̂r = Âr � B̂r using Lemma 6.3,
in O (Δ ·M (n, sr ,n)) time.

Runtime. For implementing the filtering in the r th iteration the algorithm checks nα triples. For
each triple the test takes O (r ) time (to check that the triple is (r − 1)-uncovered). Thus, the total
time of the filtering takes in total O (nα · ρ2) ≤ O (ρn1+α ) time. The runtime of computing the
matrix products is

∑ρ
r=1 Õ (ΔM (n, sr ,n)) time, which due to the analysis made in [6, Lemma 3.2] is

bounded by Õ (ρΔ · M (n, nα

ρ1/3 ,n)) time with high probability. Thus, the total running time of the

second phase is Õ (ρΔ ·M (n, nα

ρ1/3 ,n) + ρ · n1+α ) time with high probability.

6.3 Phase 3: Complete the Relevant Uncovered Triples.

In the third phase, the goal is to find all the triples (i, �, j ) that are both strongly relevant and
strongly uncovered, and use each such triple to update Ĉ by setting Ĉ[i, j] = min{Ĉ[i, j],A[i, �] +
B[�, j]}. In order to identify all of these triples, we introduce the notions of approximately relevant
and approximately covered.

Definition 6.2 (cf. [6, Definition 2.6]). We call a triple (i, �, j ) ∈ I (i ′) × [nα ] × I (j ′)
— approximately relevant if |A[i ′, �] + B[�, j ′] − C̃[i ′, j ′]| ≤ 8Δ, and
— approximately r -uncovered if for all 1 ≤ r ′ ≤ r we have either |Ar ′[i ′, �]| > 44Δ or
|Br ′[�, j ′]| > 44Δ (or both).

A triple is called approximately uncovered if it is approximately ρ-uncovered. A triple that is both
approximately relevant and approximately uncovered is called interesting.

A triple (i ′, �, j ′) where i ′ and j ′ are divisible by Δ and � ∈ [nα ] is called a representative triple.
A useful property of these definitions is that for a representative triple (i ′, �, j ′), all the triples
(i, �, j ) ∈ I (i ′) × {�} × I (j ′) (and, in particular, the representative triple itself) are similar in the
sense that either all of these triples are interesting, or all of these triples are not interesting. Thus,
in order to find all the interesting triples, it suffices to test for every representative triple if the
triple is interesting.

The following lemma describes the relationships between the different definitions of strongly,
approximately and weakly relevant (uncovered) triples.

Lemma 6.5 ([6, Lemma 2.7]). Any strongly relevant triple is also approximately relevant. Any ap-
proximately relevant triple is also weakly relevant. The same holds also with “relevant” replaced by
“r -uncovered”.

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 26. Publication date: June 2024.



An Improved Algorithm for The k-Dyck Edit Distance Problem 26:21

To test whether a given (representative) triple is interesting, the algorithm tests if the triple
is both approximately relevant and approximately uncovered. The test whether a given triple is
approximately relevant takes O (1) time (see Definition 6.2). In order to find all approximately
uncovered representative triples, the algorithm employs rectangular Boolean matrix multiplica-
tion as follows. For each � ∈ [nα ] let U � be a matrix of size n

Δ × ρ such that U �[x , r ] = 1 if
and only if |Ar [xΔ, �]| ≤ 44Δ (see Definition 6.2). Similarly, let V � be a matrix of size ρ × n

Δ

such that V �[r ,y] = 1 if and only if |Br [�,yΔ]| ≤ 44Δ. Let Z � be the Boolean matrix product
U � · V � . Then, by Definition 6.2, for every i ′ = xΔ, j ′ = yΔ and � ∈ nα , we have (i ′, �, j ′) is

approximately uncovered if and only if Z �[ i′

Δ ,
j′

Δ ] = 1. Thus, the algorithm uses nα rectangular
Boolean matrix multiplications, in order to find all the interesting representative triples. At the
last step of the third phase, for any (i ′, �, j ′) which is known to be interesting from the previous
step, the algorithm iterates over all (i, �, j ) ∈ I (i ′) × {�} × I (j ′) and updates Ĉ[i, j] ← min{Ĉ[i, j],
A[i, �] + B[�, j]}.

Runtime. At the first step of the phase, the algorithm finds all the interesting representative

triples. The time cost of finding all the approximately relevant representative triples is O ( n2+α

Δ2 ).
The time cost of finding all the approximately uncovered representative triples isO (nα ·M ( n

Δ , ρ,
n
Δ ))

time. Then, in the second step of the phase, the algorithm iterates over all the interesting triples,
in time linear in the number of such triples which by Lemmas 6.4 and 6.5 is, with high probability,
Õ (n1.5+α +n2+α /ρ1/3). In total, the third phase takes O (nα ·M ( n

Δ , ρ,
n
Δ ) +n1.5+α +n2+α /ρ1/3) time

with high probability.

6.4 Derandomization.

The only randomized part of the algorithm described above is the process of choosing ir and jr

from [n]. The derandomization technique introduced by Bringmann et al. [6, Section 3.4] is based
on the following observations.

Choosing Only Indices which are Divisible by Δ. Bringmann et al. [6, Section 3.4] show that the
algorithm has guarantees similar to Lemma 6.4 even if ir and jr are chosen uniformly at random
from the set of indices in [n] which are divisible by Δ. The following lemma states that after this
change in the algorithm, the number of interesting triples that will be covered in the third phase
is still Õ (n1.5+α + n2+α /ρ1/3). Hence, the running time of the third phase will not increase.

Lemma 6.6 ([6, Section 3.4]). With high probability, for any 1 ≤ r ≤ ρ the number of approxi-

mately relevant, approximately r -uncovered triples is Õ (n1.5+α + n2+α /r 1/3).

Deterministic greedy choice. Let r be an iteration of the algorithm and let � ∈ [nα ]. Bringmann
et al. [6] showed that one could count for every pair (i ′, j ′), where i ′ and j ′ are divisible by Δ, the
number of triples (i, �, j ) which are approximately relevant and approximately (r − 1)-uncovered
but will be covered by choosing (ir , jr ) ← (i ′, j ′). The time cost of computing the counts for all pairs
(i ′, j ′) isO (( n

Δ )ω ) time for fixed � and r . Thus, a greedy algorithm that computes in the r th iteration
the pair (i ′, j ′) which maximizes the number of triples that will be covered, suffices to guarantee
results which are at least as good as the expectation of the random process. The additional time in
total for the derandomization of the second phase isO (ρnα ( n

Δ )ω ), and the guarantees of Lemma 6.6
hold.

6.4.1 Total Runtime. The additional runtime introduced by the derandomization process is ex-
actly O (( n

Δ )ω · nα ) = O ( nω+α

Δω ). Summing up the running time of all the phases, the total runtime

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 26. Publication date: June 2024.



26:22 D. Fried et al.

of the algorithm is:

Õ

(
n2+α

Δ2
+ n2 + ρΔM (n,

nα

ρ1/3
,n) + nα ·M (

n

Δ
, ρ,

n

Δ
) + n1.5+α +

n2+α

ρ1/3
+
nω+α

Δω

)

= Õ

(
ρΔM (n,

nα

ρ1/3
,n) + nα ·M (

n

Δ
, ρ,

n

Δ
) +

n2+α

ρ1/3
+ n1.5+α +

nω+α

Δω

)
.

We use the results of Le Gall and Urrutia [14]. We set Δ = nδ and ρ = ns for some s,δ positive
integers. We will focus on α = 1

2 . Hence, the running time is:

Õ
(
nδ+sM (n,n1/2−s/3,n) + n1/2 ·M (n,n

s
1−δ ,n)1−δ + n5/2−s/3 + n1/2+(1−δ )ω

)
.

We optimize the running time by choosing δ = 0.1881 and s = 0.220425. By interpolating the
results of [14] the total running time of the algorithm is O (n2.426524).

Corollary 6.7. Let 0 < α ≤ 1
2 . Let A and B be integer matrices of sizes n × nα and nα × n,

respectively, such that A is column-BD and B is row-BD. There exists a deterministic algorithm that

computes A� B whose runtime is Õ (n2.426524).

6.5 Randomized Algorithm

In a recent article, Chi et al. [8] introduced an efficient randomized algorithm for computing the
(min,+)-product of two square matricesA and B of size n×n, for a broad range of structured matri-
ces. In particular, their algorithm is applicable to our case, except for the fact that our matrices are
rectangular and they described their algorithm for squared matrices. Notice that one can partition
each rectangular matrix of size n × nα or nα × n into n1−α sub-matrices of size nα × nα , and so
computing the (min,+)-product of the two original matrices is reduced to n2(1−α ) computations
of (min,+)-products of squared matrices whose size is nα × nα . Such an approach leads to an al-
gorithm that costs O (n2(1−α )nα (3+ω )/2) = O (n2−α /2+αω/2) = O (n2+(ω−1)α /2) time. Nevertheless, in
this section we analyze the runtime obtained by adjusting the algorithm of Chi et al. [8] to our
case in order to obtain a more efficient runtime.

We emphasize that the only change to the algorithm of [8] is replacing computations on squared
matrices with computations on rectangular matrices. Thus, correctness follows immediately from
[8], and our discussion focuses only on the runtime cost of the algorithm for our case. For complete
definitions and details, the reader is referred to Chi et al. [8].

Overview. In our setting, the matrix A is column-BD and the matrix B is row-BD. As [8, Section
2] observes, one can reduce the computation of a min-plus product of two such matrices to the
computation of a min-plus product of two matrices where the values in the second matrix are row
monotone (the values never decrease when scanning a row from left to right), and all of the values
in both matrices are integers from the range [1..cn] for some constant c ∈ N. Thus, for the rest of
this section we assume that B is row monotone and all the entries in A and B are integers from the
range [1..cn].

Notice that [8] contains two algorithm, the first one is a basic algorithm that provides the main
ideas of the article, and the second uses recursion to speedup the basic algorithm. Here, we refer
directly to the recursive algorithm. Our algorithm follows the algorithm of [8] by replacing every
part of the algorithm that computes a product of square matrices by an algorithm that computes
a product of rectangular matrices.

The algorithm of Chi et al. [8] is composed of two parts that both depend on a random prime p ∈
[40nβ ..80nβ ] (for some parameter β to be determined6). In the first part, the algorithm computes

6Chi et al. [8] uses ’α ’ to denote this parameter. We use ’β ’ instead since ’α ’ is already taken.

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 26. Publication date: June 2024.



An Improved Algorithm for The k-Dyck Edit Distance Problem 26:23

a matrix C∗ such that for every i, j ∈ [1..n] we have C∗i, j = �Ci, j/p� for some prime number p. In
the second part, the algorithm computes for every i, j ∈ [1..n] the value Ci, j modp. Using the fact
that Ci, j = �Ci, j/p� + Ci, j modp, after the execution the two parts, the algorithm completes the
computation of C . We describe the two parts below.

First part. The first part of the algorithm computes the matrix C∗ defined as C∗i, j = �Ci, j/p�.
Notice that it is straightforward to computeC∗ inO (n3) time for squared matrices. The algorithm

of [8] applies segment trees [11] to speedup the computation by a factor of Θ̃(nβ )7 and so the
runtime becomes Õ (n3−β ) (see [8, Lemma 3.2]). In our case, the straightforward algorithm for
computingC∗ runs inO (n2+α ) time, and the application of segments trees in our case provides the
same speedup, so the computation of C∗ in our case becomes Õ (n2+α−β ).

Second part. For h =
⌈
logp

⌉
+ 1, the algorithm iteratively computes a sequence of matrices

C (h),C (h−1), . . . ,C (0) where for every � = h,h − 1, . . . , 0 the entry C (�)
i, j is an approximation of

�(Ci, j modp)/2��. One important property of the sequence of matrices is that C (0)
i, j = Ci, j modp.

Each matrix C (�) is iteratively computed using C (�+1) .
In order to describe the computation of the different matricesC (�) , Chi et al. [8] define segments

(unrelated to segment trees) as follows. Let � ∈ [0..h], B∗i, j = �Bi, j/p� and B (�)
i, j = �(Bi, j modp)/2��.

A segment (i,k, [j0, j1]) with respect to � is a triple such that for every j0 ≤ j ≤ j1 we have

B (�)
k, j
= B (�)

k, j0
, B∗

k, j
= B∗

k, j0
, C (�)

k, j
= C (�)

k, j0
, and C∗

k, j
= C∗

k, j0
. Chi et al. [8] showed that for every

� ∈ [0..h] there areO (n3/2� ) (maximal) segments. In our case, similar analysis shows that for every
� ∈ [0..h] there are O (n2+α /2� ) segments. Throughout the iterations, for every � the algorithm of

Chi et al. [8] computes O (1) sets of segments T (�)
b

(for b ∈ [−10..10]), used for computing the

matrix C (�) . An important property proved by [8, Lemma 3.7] is that for every � and b we have

E[|T (�)
b
|] = O (n3−β ). In particular, [8, Lemma 3.7] proved that the probability of every segment

in level � to be in T (�)
b

is Õ (2�/nβ ). In our settings this property still holds. Therefore, in our case

E[|T (�)
b
|] = O ( n2+α

2�
) · Õ ( 2�

nβ ) = O (n2+α−β ).
Each iteration of the algorithm of Chi et al. [8] is composed of three phases. In the first phase,

the algorithm computes a product of two polynomial matrices, by using fast matrix multiplication,
where the entries of each matrix are polynomials of bounded degree O (p) = O (nβ ). The runtime
of this phase is O (nω+β ). In our case, the two matrices are of sizes n × nα and nα × n, and the
polynomials are also of bounded degreeO (p) = O (nβ ). Therefore, by using fast rectangular matrix

multiplication, the running time of this phase in our case is generalized to O (nnβ ·M (n,nα ,n) ) time.
In the second phase, the algorithm of [8] computes C (�) , using the result of the first phase and

the sets T (�+1)
b

. The running time of this computation is dominated by two parts. The first part is
reading and manipulating the result matrix of the first phase. The size of the matrix is n × n and
each entry contains a polynomial of bounded degree O (nβ ). Thus, this part costs O (n2+β ) time,

both in [8] and in our case. The second part is dominated by
∑

b |T
(�)

b
|, which in [8] is Õ (n3−β )

and in our case is Õ (n2+α−β ) in expectation. In the third phase of the �th iteration, the algorithm

computes the sets T (�)
b

using the sets T (�+1)
b

and the matrix C (�) . The running time of this phase is

Õ (
∑

b |T
(�+1)

b
|), which in our case is Õ (n2+α−β ) in expectation.

Thus, the total time cost of the second part of the algorithm of [8] in our case is Õ (nβ ·
M (n,nα ,n) + n2+β + n2+α−β ) = Õ (nβ · M (n,nα ,n) + n2+α−β ). For α = 1/2 we optimize the run-

7The notation Θ̃( ·) suppresses polylogarithmic factors.

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 26. Publication date: June 2024.



26:24 D. Fried et al.

ning time by choosing β = 0.227908. By interpolating the results of [14] the total running time of
the algorithm is Õ (n2.272092) in expectation. We mention that adapting the algorithm to compute
C = A� B in Õ (n2.272092) time with high probability is straightforward.

Corollary 6.8. Let 0 < α ≤ 1
2 . Let A and B be integer matrices of sizes n × nα and nα × n,

respectively, such that A is column-BD and B is row-BD. Then there exists a randomized algorithm

that computes A� B in time Õ (n2.272092) with high probability.

Theorem 1.2 follows from Corollaries 6.7 and 6.8.

REFERENCES

[1] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. 2015. If the current clique algorithms are optimal,
so is Valiant’s parser. In Proceedings of the 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.
98–117. DOI:https://doi.org/10.1109/FOCS.2015.16

[2] Alfred V. Aho and Thomas G. Peterson. 1972. A minimum distance error-correcting parser for context-free languages.
SIAM Journal on Computing 1, 4 (1972), 305–312. DOI:https://doi.org/10.1137/0201022

[3] Josh Alman and Virginia Vassilevska Williams. 2021. A refined laser method and faster matrix multiplication.
In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms. 522–539. DOI:https://doi.org/10.1137/1.
9781611976465.32

[4] Noga Alon, Zvi Galil, and Oded Margalit. 1997. On the exponent of the all pairs shortest path problem.Journal of

Computer and System Sciences 54, 2 (1997), 255–262. DOI:https://doi.org/10.1006/jcss.1997.1388
[5] Arturs Backurs and Krzysztof Onak. 2016. Fast algorithms for parsing sequences of parentheses with few errors. In

Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. 477–488. DOI:https:
//doi.org/10.1145/2902251.2902304

[6] Karl Bringmann, Fabrizio Grandoni, Barna Saha, and Virginia Vassilevska Williams. 2019. Truly subcubic algorithms
for language edit distance and RNA folding via fast bounded-difference min-plus product. SIAM Journal on Computing

48, 2 (2019), 481–512. DOI:https://doi.org/10.1137/17M112720X
[7] Shucheng Chi, Ran Duan, Tianle Xie, and Tianyi Zhang. 2022. Faster min-plus product for monotone instances. In Pro-

ceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing (STOC’22). Association for Computing
Machinery, New York, NY, 1529–1542. https://doi.org/10.1145/3519935.3520057

[8] Shucheng Chi, Ran Duan, Tianle Xie, and Tianyi Zhang. 2022. Faster min-plus product for monotone instances. (2022),
1529–1542. DOI:https://doi.org/10.1145/3519935.3520057

[9] Noam Chomsky and Marcel Paul Schützenberger. 1963. The algebraic theory of context-free languages.Studies in Logic

35 (1963), 118–161. DOI:https://doi.org/10.1016/s0049-237x(08)72023-8
[10] Debarati Das, Tomasz Kociumaka, and Barna Saha. 2022. Improved approximation algorithms for Dyck edit distance

and RNA folding. In ICALP 2022, Vol. 229. 49:1–49:20. DOI:https://doi.org/10.4230/LIPIcs.ICALP.2022.49
[11] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. 2008.Computational geometry: Algorithms

and Applications, 3rd Edition. Springer. Retrieved from https://www.worldcat.org/oclc/227584184
[12] Anita Dürr. 2023. Improved Bounds for Rectangular Monotone Min-Plus Product and Applications.
[13] Johannes Fischer and Volker Heun. 2006. Theoretical and practical improvements on the RMQ-problem, with appli-

cations to LCA and LCE. In Proceedings of the Combinatorial Pattern Matching. 36–48. DOI:https://doi.org/10.1007/
11780441_5

[14] Francois Le Gall and Florent Urrutia. 2018. Improved rectangular matrix multiplication using powers of the
Coppersmith-Winograd tensor. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms. 1029–
1046. DOI:https://doi.org/10.1137/1.9781611975031.67

[15] Robin R. Gutell, Jamie Cannone, Zhidi Shang, Yushi Du, and Martin J. Serra. 2000. A story: Unpaired adenosine bases
in ribosomal RNAs. Journal of Molecular Biology 304, 3 (2000), 335–354. DOI:https://doi.org/10.1006/jmbi.2000.4172

[16] Michael A. Harrison. 1978. Introduction to Formal Language Theory.Addison-Wesley Longman Publishing Co., Boston,
MA, 1st edition.

[17] Rajesh Jayaram and Barna Saha. 2017. Approximating language edit distance beyond fast matrix multiplication: Ultra-
linear grammars are where parsing becomes hard!. In Proceedings of the 44th International Colloquium on Automata,

Languages, and Programming. 19:1–19:15. DOI:https://doi.org/10.4230/LIPIcs.ICALP.2017.19
[18] Dexter C. Kozen. 1997. Automata and Computability (1st ed.). Springer-Verlag, Berlin.
[19] Andreas Krebs, Nutan Limaye, and Srikanth Srinivasan. 2011. Streaming algorithms for recognizing nearly well-

parenthesized expressions. In Proceedings of the International Symposium on Mathematical Foundations of Computer

Science. 412–423. DOI:https://doi.org/10.1007/978-3-642-22993-0_38

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 26. Publication date: June 2024.

https://doi.org/10.1109/FOCS.2015.16
https://doi.org/10.1137/0201022
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1006/jcss.1997.1388
https://doi.org/10.1145/2902251.2902304
https://doi.org/10.1137/17M112720X
https://doi.org/10.1145/3519935.3520057
https://doi.org/10.1145/3519935.3520057
https://doi.org/10.1016/s0049-237x(08)72023-8
https://doi.org/10.4230/LIPIcs.ICALP.2022.49
https://www.worldcat.org/oclc/227584184
https://doi.org/10.1007/11780441_5
https://doi.org/10.1137/1.9781611975031.67
https://doi.org/10.1006/jmbi.2000.4172
https://doi.org/10.4230/LIPIcs.ICALP.2017.19
https://doi.org/10.1007/978-3-642-22993-0_38


An Improved Algorithm for The k-Dyck Edit Distance Problem 26:25

[20] Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. 1998. Incremental string comparison. SIAM Journal on

Computing 27, 2 (1998), 557–582. DOI:https://doi.org/10.1137/S0097539794264810
[21] Gad M. Landau and Uzi Vishkin. 1988. Fast string matching with k differences. Journal of Computer and System Sciences

37, 1 (1988), 63–78. DOI: https://doi.org/10.1016/0022-0000(88)90045-1
[22] Lillian Lee. 2002. Fast context-free grammar parsing requires fast boolean matrix multiplication. Journal of the ACM

49, 1 (2002), 1–15. DOI:https://doi.org/10.1145/505241.505242
[23] J. Ian Munro and Venkatesh Raman. 2001. Succinct representation of balanced parentheses and static trees. SIAM

Journal on Computing 31, 3 (2001), 762–776. DOI:https://doi.org/10.1137/S0097539799364092
[24] Gene Myers. 1995. Approximately matching context-free languages. Information Processing Letters 54, 2 (1995), 85–92.

DOI:https://doi.org/10.1016/0020-0190(95)00007-y
[25] Alexander Okhotin. 2014. Parsing by matrix multiplication generalized to Boolean grammars.Theoretical Computer

Science 516 (2014), 101–120. DOI:https://doi.org/10.1016/j.tcs.2013.09.011
[26] Sanguthevar Rajasekaran, Sahar Al Seesi, and Reda Ammar. 2009. Improved algorithms for parsing ESLTAGs: A gram-

matical model suitable for RNA pseudoknots. In Proceedings of the Bioinformatics Research and Applications. 135–147.
DOI:https://doi.org/10.1007/978-3-642-01551-9_14

[27] Barna Saha. 2014. The dyck language edit distance problem in near-linear time. In Proceedings of the 2014 IEEE 55th

Annual Symposium on Foundations of Computer Science. 611–620. DOI:https://doi.org/10.1109/FOCS.2014.71
[28] Barna Saha. 2015. Language edit distance and maximum likelihood parsing of stochastic grammars: Faster algorithms

and connection to fundamental graph problems. In Proceedings of the 2015 IEEE 56th Annual Symposium on Foundations

of Computer Science. 118–135. DOI:https://doi.org/10.1109/FOCS.2015.17
[29] Barna Saha. 2017. Fast space-efficient approximations of language edit distance and RNA folding: An amnesic dynamic

programming approach. In Proceedings of the 2017 IEEE 58th Annual Symposium on Foundations of Computer Science.
295–306. DOI:https://doi.org/10.1109/FOCS.2017.35

[30] Leslie G. Valiant. 1975. General context-free recognition in less than cubic time.J. Comput. Syst. Sci. 10, 2 (1975), 308–
315. DOI:https://doi.org/10.1016/S0022-0000(75)80046-8

[31] Virginia Vassilevska Williams and Yinzhan Xu. 2020. Truly subcubic min-plus product for less structured matrices,
with applications. In Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 12–29. DOI:
https://doi.org/10.1137/1.9781611975994.2

Received 8 June 2022; revised 14 June 2023; accepted 3 September 2023

ACM Transactions on Algorithms, Vol. 20, No. 3, Article 26. Publication date: June 2024.

https://doi.org/10.1137/S0097539794264810
https://doi.org/10.1016/0022-0000(88)90045-1
https://doi.org/10.1145/505241.505242
https://doi.org/10.1137/S0097539799364092
https://doi.org/10.1016/0020-0190(95)00007-y
https://doi.org/10.1016/j.tcs.2013.09.011
https://doi.org/10.1007/978-3-642-01551-9_14
https://doi.org/10.1109/FOCS.2014.71
https://doi.org/10.1109/FOCS.2015.17
https://doi.org/10.1109/FOCS.2017.35
https://doi.org/10.1016/S0022-0000(75)80046-8
https://doi.org/10.1137/1.9781611975994.2

