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ABSTRACT
The ability to access physiologically driven signals, such as surface 
temperature, photochemical reflectance index (PRI), and sun- 
induced chlorophyll fluorescence (SIF), through remote sensing 
(RS) are exciting developments for vegetation studies. Accessing 
this ecophysiological information requires considering processes 
operating at scales from the top-of-the-canopy to the photosys
tems, adding complexity compared to reflectance index-based 
approaches. To investigate the maturity and knowledge of the 
growing RS community in this area, COST Action CA17134 
SENSECO organized a Spatial Scaling Challenge (SSC). Challenge 
participants were asked to retrieve four key ecophysiological vari
ables for a field each of maize and wheat from a simulated field 
campaign: leaf area index (LAI), leaf chlorophyll content (Cab), max
imum carboxylation rate (Vcmax,25), and non-photochemical 
quenching (NPQ). The simulated campaign data included hyper
spectral optical, thermal and SIF imagery, together with ground 
sampling of the four variables. Non-parametric methods that com
bined multiple spectral domains and field measurements were used 
most often, thereby indirectly performing the top-of-the-canopy to 
photosystem scaling. LAI and Cab were reliably retrieved in most 
cases, whereas Vcmax,25 and NPQ were less accurately estimated and 
demanded information ancillary to RS imagery. The factors consid
ered least by participants were the biophysical and physiological 
canopy vertical profiles, the spatial mismatch between RS sensors, 
the temporal mismatch between field sampling and RS acquisition, 
and measurement uncertainty. Furthermore, few participants 
developed NPQ maps into stress maps or provided a deeper analy
sis of their parameter retrievals. The SSC shows that, despite 
advances in statistical and physically based models, the vegetation 
RS community should improve how field and RS data are integrated 
and scaled in space and time. We expect this work will guide new
comers and support robust advances in this research field.
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1. Introduction

Remote sensing (RS) is widely used to monitor a range of vegetation attributes across 
scales. Mapping plant ecophysiological traits from spectral imagery is necessary for 
enhancing agricultural production (Weiss, Jacob, and Duveiller 2020), forest management 
(Lechner, Foody, and Boyd 2020), and sustaining ecosystem services (Del Río-Mena et al.  
2020). The measurement and regular monitoring of both natural and managed ecosys
tems across time and space play a key role in our efforts to understand drivers and 
variations in productivity and ecosystem–climate interactions (Rocchini and Lenoir 2021; 
J. Yang et al. 2013). As more frequent and intense stress events are being recorded due to 
climate change and environmental variations (IPCC 2023), the need for early stress 
detection and recommendations for resource use efficiency in agriculture and forestry 
(Herrmann and Berger 2021) also increases.

Light and carbon dioxide are two resources that drive vegetation (primary) productiv
ity, which depends on the absorption and use efficiency of light energy (Haxeltine and 
Prentice 1996) and carbon dioxide assimilation through stomata (Gates 1968). 
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Characterizing the ecophysiological parameters related to photosynthesis is fundamental 
to understanding vegetation functions and responses to the environment. Parameters 
that are typically quantified from field and laboratory measurements include the fraction 
of photosynthetically active radiation absorbed by leaves, leaf chlorophyll a and b content 
(Cab), the maximal rate of CO2 carboxylation at 25°C (Vcmax,25), and photosystem II 
quantum yields. Light energy that is not used for CO2 assimilation and is dissipated by 
xanthophyll cycle pigments is characterized by the level of non-photochemical quench
ing (NPQ) or the thermal dissipation of absorbed photosynthetically active radiation (PAR) 
(Demmig-Adams et al. 2012). As NPQ increases under energy-limiting conditions, it can be 
used as a stress or potential stress indicator. In addition, photosynthetic efficiency 
depends on temperature, and optimal functioning involves stomatal control to balance 
CO2 assimilation against water loss in the process of transpirational cooling (Farquhar and 
Sharkey 1982; Gates 1968). Usually, determining these parameters involves intensive field 
measurements at the leaf scale. While these measurements offer fundamental insights 
into the leaf-level processes, time and other resource constraints limit the extent and 
frequency of acquisition and, therefore, the capability of becoming monitoring tools.

The fundamental link to the absorption and use of visible light enables some of these 
parameters to be inferred from top-of-canopy (TOC) RS observations and, thus, the 
opportunity to measure and monitor vegetation status and productivity across spatial 
scales from field to global and at high temporal frequency. Traditionally, these observa
tions have relied on reflected visible and infra-red radiance and derived vegetation indices 
(VI) related to vegetation structure, biochemistry, and photosynthetic capacity that vary 
over medium time scales (Nemani et al. 2003; Running et al. 2004). Recent advances in 
satellite technology are providing the opportunity to collect signals more closely related 
to dynamic vegetation properties and ecophysiological traits (Schimel et al. 2019). These 
include hyperspectral Visible-Near InfraRed (VNIR) reflected radiance that enables the 
quantification of solar-induced chlorophyll fluorescence (SIF) and the Photochemical 
Reflectance Index (PRI), as well as thermal infrared data for land surface temperature 
(LST) mapping. These signals are influenced by biophysical properties and ecophysiolo
gical processes at both canopy and leaf levels, exhibiting variations from diurnal to 
seasonal scales (Farella et al. 2022). Sound physiological understanding of these signals 
requires solving the spatial and temporal-scale mismatches between RS and field data (Ma 
et al. 2020). Facing such problems requires down-scaling information from canopy to leaf 
and even photosystem scales (Van Wittenberghe et al. 2021) for reliable interpretation of 
these signals and reconciling the large temporal variation of many processes with the 
periodic image acquisition of RS data.

Incoming radiation reaching the leaf is absorbed, reflected, and transmitted through 
the leaf, and part of the absorbed fraction is emitted as fluorescence or thermal radiation, 
with all these processes carrying ecophysiological information. However, light is scattered 
and reabsorbed within the plant canopy’s vertical profile before escaping back to space, 
making it difficult to relate leaf-level physiological processes to spectral signals measured 
from the TOC. The RS community has developed various methodologies for estimating 
structural and foliar vegetation properties (Verrelst et al. 2015). Irrespective of the 
approach taken, the combination of RS and field information remains challenging and 
requires accounting for the existing spatial and temporal mismatches and the differences 
in environmental and physiological conditions of the different measurements. 
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Furthermore, these approaches might not have matured to estimate the most sensitive 
physiological variables (e.g. Vcmax,25, NPQ), whose weak effects on the spectral signals 
present an additional challenge. The interpretation of RS information without prior 
knowledge of the vegetation state is rare (e.g. factorial experiments), and the capability 
of the RS community in this regard is largely untested (Ma et al. 2020).

Several studies have evaluated the strengths and weaknesses of the retrieval methods 
to estimate biophysical variables featuring low diurnal variability and strong effects on 
spectral information, such as Cab and leaf area index (LAI) (Verrelst et al. 2019). However, 
there is limited information on how these methods perform when down-scaling physio
logical variables with subtle contributions to spectral signals and are driven by diurnal 
meteorology, such as Vcmax,25 and NPQ (Damm et al. 2022). It is equally important to 
understand the level of uncertainty associated with these estimates (Malenovský et al.  
2019). Furthermore, it is worth considering how the RS scientific community integrates 
a series of sequential field measurements of these dynamic ecophysiological variables 
with usually instantaneous RS imagery. An additional problem is the interpretation of 
these sources of information, as most studies are carried out in controlled experiments, 
where the sources and levels of stress are known beforehand (e.g. Damm et al. (2022)). 
However, RS interpretations are expected to provide reliable conclusions from decontex
tualized situations, which have rarely been systematically assessed and reported in 
publications.

Within the context of the COST Action CA17134 SENSECO ‘Optical synergies for 
spatiotemporal SENsing of Scalable ECOphysiological traits’ (www.senseco.eu), we set 
out to challenge the scientific community to retrieve relevant biophysical and physiolo
gical variables from a simulated dataset of remotely sensed reflectance factors, chloro
phyll sun-induced fluorescence, and thermal imagery, as well as field measurements. 
Specifically, the objectives for every scientist joining this study were to:

(1) down-scale the biophysical and plant physiological variables Cab, LAI, Vcmax,25, and 
NPQ from simulated hyperspectral and thermal imagery and

(2) evaluate the capability of RS data to diagnose and discriminate between different 
plant ecophysiological states and translate the retrieved variables into low or high 
vegetation efficiency or stress.

To assess the quality of the results, we asked the participants of this study to provide the 
uncertainty for each of the required parameters and stress maps. The overarching goal of 
the study was to gather the knowledge and experience of the RS community regarding 
the scaling problems in the context of ecophysiological monitoring, identify gaps, 
strengths, and weaknesses, and guide RS scientists who want to expand their research 
from vegetation biophysical properties to physiology.

2. Material and methods

2.1. The spatial scaling challenge

The Spatial Scaling Challenge (SSC) was organized by the coordinators of the 
SENSECO Working Group 1, ‘Closing the scaling gap: from leaf measurements to 
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satellite images’, who anonymized the identity of all participants in all cases and hid 
the problem ‘solution’ until participation was closed (Figure 1). The SSC was 
announced in April 2022 among various RS networks and research communities 
worldwide working on the retrieval of vegetation ecophysiological parameters. The 
datasets and documentation were published open-access through ZENODO. The 
main dataset (Pacheco-Labrador et al. 2022b) included airborne scene imagery 
(NetCDF files) and field data sets. The field ancillary data was provided in two CSV 
files: one containing the spatial data acquired in the field sampling plots and 
a second including the time series of NPQ and meteorological variables measured 
in a nearby Eddy Covariance tower. Matlab (.m), R (.R), and Python (.py) scripts were 
provided to import the SSC data, as well as to export the outcome results and 
products in a standardized format. Moreover, the SSC included template reports 
describing the retrieval and scaling methods applied to estimate each requested 
variable: Cab, LAI, Vmax,25, and NPQ. The SSC also provided a bonus dataset (Pacheco- 
Labrador et al. 2022a) that included a half-hourly time series of down-welling 
spectral irradiance (W m−2 µm−1) in the visible and near-infrared domains as mea
sured by a field spectroradiometer operating in a nearby ecosystem station. The 
information provided in the reports was complemented later with a questionnaire 
(supplementary material S1). The SSC contributors and SENSECO members collabo
rated to evaluate the results and obtained the conclusions presented in this manu
script (Figure 1).

Figure 1. Spatial scaling challenge (SSC) workflow. The SCC coordinators designed and simulated the 
different SSC datasets privately, and published the ‘problem’ dataset in a zenodo repository. The 
contributors ‘solved’ the SSC and sent their contributions to the SSC coordination. These evaluated 
their results, anonymized them, and shared them with the participants and other COST action 
CA17134 SENSECO working group 1 collaborators for the elaboration of the manuscript, some of 
which contributed to evaluating some of the anonymized results.
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2.2. Scene simulation

Except for the meteorological variables provided by an automated weather station in 
Spain, all the variables were synthetic, i.e. produced artificially with models and empirical 
equations and sampled from a normal distribution with assigned means and standard 
deviations. Despite their synthetic nature, those values throughout the manuscript are 
referred to as ground truth, reference data, baseline dataset, and measured data. This 
section provides a comprehensive overview of what parameters were modelled and the 
principles behind them. For a more thorough exploration, please consult the supplemen
tary materials S2 (Supplementary S2.1 and Table S2.1). The SSC simulated two crop fields, 
maize (Zea mays L.) and wheat (Triticum aestivum L.), in different growth stages. The fields 
were exposed to varying fertilization and soil moisture gradients. The scene was 100 m × 
100 m, with a bare soil corridor separating the fields. Meteorological data from Majadas de 
Tiétar was used for the simulation, which took place during the summer under high 
radiation and vapour pressure deficit conditions. The SSC campaign simulated ground 
sampling and airborne imagery datasets with the Soil Canopy Observation, 
Photochemistry and Energy model (SCOPE, v1.73) (van der Tol et al. 2009).

2.2.1. Water and nutrient availability treatments
The simulations comprise two crop management treatments. The first was a biochar 
amendment with a nitrogen enrichment along the fields’ North–South (NS) axis (Fig. 
S2.1), which reduced albedo (Fig. S2.2) and increased nitrogen availability. Over the long 
term, it influenced the vegetation properties, such as leaf area index, maximum carbox
ylation rate, and pigment content. The second was a drip irrigation system that created 
varying soil moisture zones within each field shortly before the campaign, inducing 
physiological fast stress responses along the East–West (EW) direction (Fig. S2.3). 
Smooth soil moisture transitions between water regimes were simulated using log func
tions. Biochar also positively impacted soil water retention.

2.2.2. Soil properties and soil moisture stress simulation
The soil input variables of the Brightness – Shape – Moisture (BSM) model of SCOPE 
(Verhoef, van der Tol, and Middleton 2018) were spatially defined, with Gaussian noise 
added to simulate natural variability. Some soil properties, such as soil brightness, field 
capacity (FC), and moisture content (SMC), were affected by fertilization and water 
treatments. A decreasing relationship between the relative soil water content (SMC/FC) 
and the soil resistance for evaporation from the pore space (rss) was defined to reduce soil 
evaporation under low moisture. In contrast, soil thermal emissivity was modulated based 
on SMC to modify energy balance and heat stress (Table S2.1, Table S2.1.3.1).

2.2.3. Vegetation input variables and stress-based radiative transfer modelling
The simulations modelled vegetation parameters based on crop-specific literature. 
Taxonomy, soil moisture, and nitrogen availability were the key drivers of the vegetation 
spatial variability of properties and physiological state (Table S2.1, Table S2.1.4.1). Most 
vegetation properties such as foliar nitrogen content, leaf dry matter content, pigment 
contents, the leaf structural parameter, Vcmax,25, LAI, or canopy height were simulated as 
a function of nitrogen fertilization or nitrogen-dependent variables (Fig S2.4-7). Other 
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variables, such as leaf angle distributions, stomatal sensitivity, fluorescence quantum 
efficiency, and photosystem II-to-I ratio, were estimated or adopted from the literature. 
The rate coefficient of non-photochemical quenching was modelled as a function of 
relative light saturation and soil moisture content (Fig. S2.1.4.1, S2.8). Gaussian noise 
was added to simulate natural variability in all variables.

2.2.4. Airborne campaign
The simulations modelled airborne hyperspectral optical and thermal imagery acquisition 
over a simulated scene. The virtual flight took place at midday (11:45 UTC, 13:45 local 
time) under specific conditions of solar radiation, temperature, and vapour pressure 
deficit. Three hyperspectral sensors were used, similar to the HyPlant+TASI system 
(Hanuš, Fabiánek, and Fajmon 2016; Siegmann et al. 2019). Simulated hemispherical- 
directional reflectance factors (HDRF, Fig. S2.9–11) and outgoing thermal radiance in the 
observation direction of each pixel were convolved to the spectral characteristics 
reported for the visible to near-infrared and shortwave infrared (VNIR + SWIR module) as 
well as the thermal imaging spectrometers. Fluorescence radiances (Fig. S2.12–13) were 
provided in the O2-B and O2-A bands (F687 and F760, respectively). LST was retrieved using 
the TES algorithm (Hanuš, Fabiánek, and Fajmon 2016) from the bottom of the atmo
sphere radiances simulated by SCOPE (Fig. S2.14). Uncertainty levels were considered 
realistic based on previous studies (Table S2.1.5.1). All signals were simulated at 1 m 
spatial resolution, then degraded for fluorescence (4 m) and thermal (2 m) radiances. 
LST was retrieved from the 2 m resolution imagery.

2.2.5. Ancillary data from a field campaign
During the simulated flight campaign, we modelled vegetation sampling at various times. 
Cab, LAI, Vcmax,25, and NPQ were measured at nine points in each field. A randomized 
sampling scheme was employed to minimize bias (Figure 2a). Measurements were con
ducted at different times to account for temporal discrepancies and limitations in 

Figure 2. (a) Location of the field sampling plots and permanent moni-pam. (b) Temporal distribution 
of the different measurements (time ranges) and incoming shortwave incoming radiation (SWin). The 
time on the x-axis is in UTC, local time was UTC + 2, taking the flight one hour before maximum solar 
height.
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instrumentation and personnel. This resulted in a temporal mismatch between airborne 
and field sampling, potentially impacting physiological variables that fluctuate through
out the day.

Ten top-of-canopy leaves were measured using a chlorophyll metre. The readings were 
converted into Cab using a calibrated model. The combined measurement and model 
uncertainty for each leaf measurement was 5%. LAI was estimated through destructive 
sampling after the campaign, with an assumed negligible uncertainty of 1.5%. LAI and Cab 

were assumed to have no vertical variation, while Vcmax,25 and NPQ exhibited such 
variability. To simulate top-of-canopy leaf measurements, we averaged variables from 
the top 20 layers of the canopy model, introducing a bias.

Vcmax,25 was simulated using the SCOPE ‘Vcmo’ variable, an input of the model. A 2.5% 
relative uncertainty was assigned to Vcmax,25, assuming a single gas exchange chamber 
measurement. NPQ was calculated using fluorescence variables from Pulse Amplitude 
Modulation (PAM) measurements. Two rounds of NPQ measurements were simulated, 
from 10.50 AM to 12:30 PM and from 12:50 PM to 2:30 PM (local time). Continuous NPQ 
measurements were also simulated using monitoring PAM sensors (Figure 2a). These 
monitoring PAM sensors provided a reference for how NPQ changed over time. Still, they 
could not represent the entire fields because they were located in areas that were heavily 
fertilized. Wheat was irrigated in these areas, but maize was not getting enough water. We 
assumed that the relative uncertainties were 2.5%.

Ceptometer measurements were simulated to provide information on the absorbed 
PAR. The simulations aimed to investigate how participants would address uncertainties 
and mismatches between airborne and field data.

2.3. Analysis of the SSC contributions

2.3.1. Water and nutrient availability treatments
We considered four different aspects when evaluating each participant’s contribution: (1) 
the retrieval method, namely parametric regression (PR), non-parametric regression (NPR), 
physically based (PB), and hybrid regression (HR) (Verrelst et al. 2015); (2) the predictors 
used to estimate each variable, such as HDRF, F687, F760, LST, VI, Cab estimates, protein 
content estimates and meteorological conditions (WX); (3) the use or omission of field 
measurements for constraining, fitting or training the retrieval method; and (4) the 
provision or omission of uncertainty maps for every retrieved variable. To perform this 
analysis, we created an anonymized dataset gathering all the contributions to the SSC. 
The items described above were identified in each submission based on i) the SSC 
description of the methods’ report, ii) the complementing questionnaire, and iii) the 
results provided by each participant.

In the discussion, we considered to what extent the different contributions had 
accounted for spatial and temporal-scale mismatches when linking RS and field datasets, 
hence addressing the scaling issues. We also assessed how participants detected and 
interpreted early vegetation stress from the provided simulated data and/or their estima
tions of ecophysiological traits. Synthesis of these findings enabled us to draw recom
mendations addressing spatial scaling of spectral signals and properties related to 
vegetation’s biophysical and physiological states. All this information was summarized 
in a single table (supplementary material S3) for analysis.
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2.3.2. Statistical and performance analyses
The estimates from every contributor were compared with the corresponding simulated 
variables (Sect. 2.2), i.e. inputs or outputs of the model SCOPE labelled as the benchmark 
dataset (BD). First, the distribution of the retrieved estimates was compared using violin 
plots to understand the general patterns provided by each method in every crop. Then, 
Taylor plots were then applied to assess how well the different contributions reproduced 
the BD without distinguishing vegetation types. These plots consist of a reference point 
representing the observed value, accompanied by the standard deviation of the observed 
and model values. The model outputs were plotted in the diagram, with the distance from 
the reference point indicating the root-mean-square difference between the model and 
the observations after ‘centralisation’ in the units of the standard deviation of the 
measured data. The angle represented the correlation or similarity in spatial patterns 
between the model and the observations. Finally, a statistical analysis with RMSE (Root 
Mean Square Error) and Spearman’s Rank Correlation (ρ) was carried out to compare 
estimates and simulations separately per field.

3. Results

3.1. SSC participation, methods and approaches

The SSC received 15 contributions from 13 groups or individual participants. NPR, fol
lowed by PR approaches, was most often used (Figure 3a). HR was never applied to 
estimate NPQ, which was mapped only in 13 contributions. The two former results 
suggest that NPQ was the most challenging variable for the participants to retrieve. The 
retrievals relied most often on reflectance factors, either the full spectrum (HDRF) or VIs, 
but F and LST were usually included (Figure 3b), particularly by NPR approaches (supple
mentary material S3) and for the variables linked to physiology (Vcmax,25, and NPQ). The 
estimates of Vcmax,25 and NPQ also involved the use of more predictor and ancillary 
variables across the approaches than LAI and Cab (Figure 3c), mainly. For example, 
meteorological data was used to simulate vegetation physiological condition, and bio
physical parameter estimates (PRTM,est) such as Cab and protein content were used both as 
predictors and inputs of physical models or indirectly as ancillary data in HR simulations. 
Among the NPR approaches, partial least squares regression (PLSR), an algorithm with 
a long history of usage in RS, was the most used (4/7). The other algorithms used (3/7) 
belong to the artificial intelligence family, which are becoming increasingly popular in RS 
as in many other fields: support vector machine (SVM), random forest (RF), and Gaussian 
process regression (GPR). PR, the most historically used approach in RS, predominantly 
involved simple or multiple linear regression models based mainly on VI and field data. 
The use of process-based models and inversion approaches requires deep, specific knowl
edge of the models’ theory and inversion techniques. Those using PB retrievals relied on 
look-up-tables (LUT) generated with the Soil-Canopy Observation Photosynthesis and 
Energy fluxes (SCOPE v2.0), and the inversion was informed with previous estimates of 
biophysical variables (e.g. Cab to estimate Vcmax,25 or NPQ). The HR approaches involved 
using PROSPECT-D or PROSPECT-PRO & the SAIL, or the SCOPE optical RTM simulations to 
train an NPR model (i.e. SVM, RF, and GPR) that, in turn, was used to estimate the variables 
of interest from HDRF. Only one HR participant used field data to constrain the variable 
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Figure 3. Summary of methods and input data used by SSC participants (n = 15). (a) Frequency of the 
different retrieval approaches (parametric regression (PR), non-parametric regression (NPR), physically 
based (PB) and hybrid regression (HR)) used to estimate leaf area index (LAI), leaf chlorophyll content 
(Cab), maximal carboxylation rate (Vcmax,25), and non-photochemical quenching (NPQ). (b) Frequency of 
the predictor variables used to estimate each variable: reflectance factor (HDRF), sun-induced fluores
cence radiance (F), land surface temperature (LST), vegetation indices (VI), crop water stress index (CSWI), 
estimated Cab (Cab,est), protein content (PROest), or LAI (LAIest), a biophysical model (Model), observed 
Vcmax,25 (Vcmax,25,obs), or NPQ (NPQobs). (c) Frequency of use of ancillary information for estimating the 
different vegetation variables, including meteorological variables (Wx), spectral variables, or other 
estimated RTM variables regarding soil, leaf, or canopy properties (PRTM) (d) frequency of use of the 
different field datasets. (e) Frequency of estimation of uncertainty for each vegetation variable. (f) 
Frequency of the approach adopted to deal with the different RS spatial resolutions (imagery used at 
native resolution (native), up-scaled to the coarsest resolution (Up-Scoarsest) or up-scaled using kriging 
(Up-Soptimized)). (g) Frequency of use of species/crop-specific models for the retrieval of each vegetation 
variable. (h) Frequency of approaches used to explicit the change of scale from top of the canopy 
(spectral information) to leaf (i.e. Cab and Vcmax,25) or photosystem (NPQ) levels: no down-scaling is 
explicit (no downscaling), radiative transfer models (RTM) and/or estimates of Cab (Cab,est), or LAI (LAIest). 
(i) Frequency of approaches used to consider or not the temporal mismatch between the acquisition of 
RS and NPQ data: using models informed with meteorological data at the time of the overpass 
(Modoverpass), averaging field NPQ observations acquired at different times of the day (NPQobs,mean), or 
NPQ sampled in the early (NPQ1) or the late (NPQ2) morning.
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ranges of the simulations (see supplementary material S3 for summarized information 
regarding each retrieval approach). All the field vegetation measurements provided were 
used at some point by the participants except absorbed PAR (aPAR) (Figure 3d), among 
which Vcmax,25 was the most often used. Approximately 60% of the contributions provided 
maps of estimated uncertainties (Figure 3e), most commonly generated via model 
ensembles (6/10), followed by GPR or Bayesian inference (2/10), and the model fit RMSE 
(2/10). However, none of the participants accounted for the reported uncertainty of the 
field datasets for fitting or inverting models. One of the HR approaches (#2) added noise 
to the simulated spectral variables to reduce overfitting, which is highly recommended 
based on previous experiences.

Regarding the spatial challenges, most participants used RS data at the native resolu
tion when combining imagery of different pixel sizes (Figure 3f). In two cases, the imagery 
was up-scaled (down-sampling) to the coarsest resolution, and one explored different 
resolutions for Kriging. None of the participants attempted to sharpen the coarsest 
imagery. The predominant use of data-hungry NPR approaches limited the modelling of 
maize and wheat crops separately (Figure 3g). Separated models were most often used by 
PR approaches for which it is hard to capture complex patterns, and, in one case, by NPR. 
All the PB and HR approaches using the SCOPE2.0 model (P. Yang et al. 2021) accounted 
for the canopies’ different photosynthetic pathways (C3 or C4) to retrieve/simulate 
physiological variables.

When estimating leaf or photosystem-scale variables from TOC spectral information, 
a distinction is made between purely statistical models, which do not explicitly consider 
scaling effects, and PB and HR approaches embedding the down-scaling in the RTM 
formulation. While most contributions were data-driven, a few cases included plant traits 
at canopy (i.e. LAI) and leaf (i.e. Cab) scales as predictors of Vcmax,25 and NPQ (Figure 3h). 
Such traits provide information below the remote sensor resolution (particularly Cab), 
adding therefore scale information to the empirical approaches. Finally, the participants 
faced the temporal mismatch between the field measurements of NPQ through the 
diurnal cycle and the sensors’ overpass time. Surprisingly, more participants used the 
NPQ measurements acquired before (NPQ1) than around the (NPQ2) overpass time, which 
were, therefore, less related to the spectral signals captured by the remote sensors 
(Figure 3i). Two participants averaged observations or estimates of both datasets and 
two simulated NPQ with SCOPE using the meteorological conditions of the overpass.

3.2. Statistical and performance analyses

3.2.1. Evaluation of estimate’s distributions
NPR-estimated LAI distributions were comparable to those of the benchmark dataset (BD, 
Figure 4a). The contributions (#5, #6, and #12), which used all the available information 
(HDFR, F, LST, and field data) presented more similar distributions than those using only 
HDRF and field data (#3 and #15). The only exception (#10) might be due to a potential 
overfit of the RF model used to predict LAI. PB (#11) and HR (#14), which exclusively used 
HDRF, achieved the least comparable distributions. The PR based on VIs achieved rela
tively comparable distributions; however, in one case (#8), the models provided a highly 
biased maize LAI estimate.
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Most participants obtained consistent Cab estimates (Figure 4b), except PB (#11) and an 
NPR where the RF might not have been properly trained (#10). NPR led to distributions 
closer to BD, whereas PR provided slightly less skewed estimates. The HR cases that either 
added random noise to train the statistical model (#2) or used field data to constrain the 

Figure 4. Comparison of the data distribution for the model simulations relative to the pseudo 
observations for (a) leaf area index (LAI), (b) leaf chlorophyll content (Cab), maximum (c) carboxylation 
rate at optimum temperature (Vcmax,25) and non-photochemical quenching (NPQ). The colours 
separate the baseline dataset (BD) from the retrieval method types: parametric regression (PR), non- 
parametric regression (NPR), physically based (PB), and hybrid regression (HR). The summary table 
below each violin plot summarises: 1) what were the predictors/constraints of each model, including 
hemispherical-directional reflectance factors (HDRF), solar-induced fluorescence radiance (F), land 
surface temperature (LST), vegetation indices (VI), the crop water stress index (CWSI), estimates of 
biophysical variables (EST, such as (Cab), protein content, or LAI). 2) whether the models used field data 
to fit models or as ancillary information (GRND). 3) whether the contributors accounted for the 
reported uncertainty of the field observations during training or retrieval (UNC).
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ranges of the simulations (#7) obtained acceptable distributions, while the case that did 
not (#14) produced bimodal distributions, which might indicate overfitting during the 
training of the statistical model.

The distributions of Vcmax,25 estimates were less comparable to BD than LAI or Cab 

(Figure 4c). While most were close to the BD ranges, as with LAI, contribution #8 (PR 
based on VIs) largely overestimated Vcmax,25 in both crops. In contrast, contribution 
#2 (HR) obtained a long-tailed distribution with large negative values. Other PR and 
NPR contributions also provided negative estimates. Overall, estimates were more 
comparable for maize than wheat. NPQ distributions were the least comparable with 
BD (Figure 4d). However, contribution #8 (PR based on VIs) obtained the closest 
distribution to maize BD and was comparable for wheat. Contributions using PB (#3, 
#11) and an NPR where the RF might not have been properly trained (#10) provided 
estimate ranges that were too narrow, and the PB estimates were particularly biased. 
On the contrary, some NPR (#1, #12) and PR (#2, #13) presented wide distributions 
with a few overestimated values for both fields. In all cases, the biases are not 
related to the fact that the participants used the early NPQ dataset (NPQ1). This 
suggests the uncertainty comes from the models’ formulation or inversion inability to 
adequately capture the relationships between spectral and other information 
and NPQ.

3.2.2. Models’ performance
Figure 5 Taylor plots show that Cab estimates were the most correlated with BD, with 
centred RMSE around 0.60 standard deviations (σ). LAI Pearson correlations (r) are dis
tributed towards lower values with errors RMSE centred around 0.80σ. Vcmax,25 featured 
the lowest r, but most estimates cluster around r ~ 0.80 and RMSE ~ 0.75σ. NPQ estimates 
present two differentiated clusters, the first with r ~ 0.90 and RMSE = 0.50σ, the second 
with r ~ 0.75 and RMSE ~ 0.57σ, and a single point with r < 0.40 and RMSE ~ 0.90σ. Overall, 
Vcmax,25 featured the largest variability of performances.

NPR approaches achieved the lowest errors and strongest correlations (Figures 6 and 7). 
NPR used a larger and more diverse number of predictors than the rest of the methods 
(supplementary material S3), which might increase robustness against observational uncer
tainties and reduce overfitting. PR and PB showed the largest RMSE discrepancies between 
the different crops, suggesting they can be very specific (PR) or case-dependent (PB). 
Compared to the measurement uncertainties of the variables in the field, estimated RMSE 
were ~8.1 (LAI), ~1.1 (Cab), ~15.8 (Vcmax,25), and ~12.3 (NPQ) times larger (supplementary 
material S4, Table S4.1).

3.3. Long-term and short-term stress detection

3.3.1. Long-term biophysical stress responses (NS gradient)
The NS Nitrogen availability gradient (Fig. S3.1) was detected by most contributors 
and identified as ‘continuous’ or ‘long-term’ (e.g. #4, #5) stress. Most contributors 
found higher productivity and biomass in the north, decreasing towards the south, 
based on the retrieved Cab and LAI variables (#1, #3, #4, #5, #6, #7, #8, #9, #12) 
(supplementary material S4, Fig. S4.1. &amp; S4.3). The causes of LAI and Cab 
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variability were generally attributed to slower growth associated with different soil 
types having lower nitrogen and water content towards the south (e.g. #5, #7, #8, 
#9, #12). Heterogeneous soil conditions could also explain such gradients (#12).

In addition to the LAI and Cab gradients, the NS stress trend was also reported based on 
Vcmax,25, and NPQ, as shown in Fig. S4.5. &amp; S4.7. (e.g. #1, #5, #6, #8, #9). Higher LAI, Cab, 
and Vcmax,25 values were considered to be closely related and linked to the plant nutrient 
status (#13, #14), and the NPQ trend was described as ‘inverse’ to the others (e.g. #1, #6) if 
detected. In general, it was reported that the maize field NPQ did not show any spatial 
gradient, unlike wheat (#12). In addition, #10 detected an NS gradient in the Water Deficit 
Index (WDI) (Moran et al. 1994), an index developed to detect crop water deficit using 
surface–air temperature difference and a spectral vegetation index (NDVI), also revealed 
an NS gradient (#10).

Figure 5. Taylor plots comparing simulated and estimated LAI (a), Cab (b), Vcmax,25 (c), and NPQ (d). 
Each code corresponds to the SSC participants’ contributions ranging from 1 to 15. The symbols 
identify the retrieval approach (‘o’ parametric regression, ‘x’ non-parametric regression, ’*’ physical; 
y-based, and ‘◇’ hybrid regression).
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3.3.2. Short-term acute physiological stress responses (EW gradient)
The decreasing EW soil moisture content gradient (Fig. S2.3) proved more difficult to 
detect and was only reported by a few participants through the patterns observed in the 
retrieved NPQ (#13, #14) or the F imagery (#4) (Fig. S4.7). Specifically, the use of F relied on 
F687 normalized by sunlit leaf area (F687,sl, obtained by retrieving leaf angle distribution 
factors from the SCOPE model first, then calculating the sunlit leaf area by using the 

Figure 6. Root mean squared error (RMSE) between simulation and estimation for (a) LAI; (b) Cab; (c) 
Vcmax,25; and (d) NPQ. Colours are based on the method type (similar to fig. 4), and the texture of the 
bars refers to the vegetation type. Note that in panel (a), the y-scale was truncated to improve the 
visibility; the RMSE for maize of model #8 is 6.82 m2 m−2.

Figure 7. Spearman’s rank correlation (ρ) between simulation and estimation for (a) LAI; (b) Cab; (c) 
Vcmax,25; and (d) NPQ. Colours are based on the method type (similar to fig. 4), and the texture of the 
bars refers to the vegetation type.
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retrieved LIDF values), assuming aPAR is the main factor dominating the F signal. A few 
participants also used a combination of parameters/methods (#3, #4, #10) to produce 
stress maps (Fig. S4.9). The fluorescence yield (F687,sl) obtained after post-processing the 
F687 values showed an EW gradient, as did the combined (Vcmax,25, NPQ, and nadir- 
normalized F687-yield and F760-yield) stress map (#4). It was also pointed out that the 
fluorescence yield maps showed the EW but not NS stress gradients.

The EW stress gradient was attributed to acute or management-driven stress (#4). 
Although a few methods were adequate to assess EW trends or soil moisture zones, 
several reports differentiated between long-term (nutrient status) and acute (heat, 
drought) stress effects, and the output maps were considered as a result of the combina
tions of both (#5, #6, #7, #8, #9, #10 #11, #12).

3.3.3. Stress detection across species
Differences were found between maize and wheat stands under stress conditions, as 
observed in both the F imagery and derived variables such as F687,sl (#4), LAI, Cab, 
Vcmax,25, and NPQ maps (#4, #5, #6). Additionally, distinctions were evident in the LST 
imagery (#5, #6, #7, #12) and a water deficit index (#10). The stand differences were also 
evident in the derived relationships and normalized signals that the participants were 
able to interpret. Maize was found to be generally less stressed than wheat, based on 
relationships between NPQ and nadir-normalized F687,nadir values (Hao et al. 2022) and 
from the lower nadir normalized F760,nadir values seen in wheat compared to maize. It 
was also reported that wheat plants experienced more stress than maize due to their C3 
photosynthetic pathway. Maize, being a C4 plant, exhibited a higher light compensation 
point (#13), temperature tolerance (#5, #6, #7, #12, #13), and water use efficiency (#12). 
The increased stress level in the case of the wheat stand was found by the participants 
to be accompanied by increased variability or lower estimation accuracy of Vcmax,25 (#5, 
#7, #8, #9), while on the contrary, maize showed a less variable and higher photosyn
thetic performance (#5, #6, #12) irrespective of the daytime high radiation and 
temperature.

4. Discussion

4.1. Addressing the scaling challenges

The SSC asked the RS community to estimate four variables – LAI, Cab, Vcmax,25, and NPQ – 
featuring different effects on vegetation optical and thermal spectral properties and 
different spatial and temporal scales of variability. Beyond the performance evaluation, 
the SSC sought to assess to what extent and how the participants addressed the different 
scaling problems. Since these scaling issues already limit the exhaustive measurement of 
these variables in the field, the SSC relied on detailed simulations of RS and field 
observations to generate a dataset that enabled an adequate assessment of the results. 
While we acknowledge that the simulation framework produced simplified representa
tions that can be biased or less challenging than the real world, we consider the SSC 
dataset sufficient to assess the degree of understanding and consideration of the scaling 
issues performed by participants. In particular, we simulated different stress types linked 
to vegetation properties and functioning using relationships previously reported in the 
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literature. In addition, we included randomness originating from the natural variability of 
individuals in all vegetation variables and uncertainties related to all simulated measure
ments. The specificities of these relationships and the model SCOPE v1.73 selected for 
conducting the simulation could bias estimates relying on PB models (i.e. SCOPE2.0 
(P. Yang et al. 2021) and different versions of PROSPECT (J. B. Féret et al. 2017; J.-B. 
Féret et al. 2021) + SAIL (Verhoef 1984)), featuring different assumptions or representa
tions of vegetation and related signals.

4.1.1. Methods
NPR models were most used and achieved lower relative RMSE values than the rest 
of the approaches (~15% (LAI), ~62% (Cab), ~64% (Vcmax,25), and ~98% (NPQ)). 
However, these flexible but data-hungry algorithms were trained with relatively 
small datasets (9–18 field observations), likely at the expense of a lack of general
ization (Verrelst et al. 2019; Wang, Guan, Wang, Ainsworth, Zheng, Townsend, Liu, 
et al. 2021). PR was the second most used approach, and unlike the others, it used 
only a small fraction of the information available. Still, these achieved acceptable 
performances in most of the cases. We hypothesize that the smoothness of the 
vegetation gradients favoured the performance of NPR and PR approaches, particu
larly when models were trained per species. In any case, the use of these models is 
limited to the availability of field data, which does not necessarily prevent extrapola
tion (e.g. Moreno-Martínez et al. (2018)). Alternatively, HR approaches only require 
knowledge of the forward use of a physical model since inputs and outputs are 
integrated into an NPR model. HR was used more than PB and often performed 
better, but not as well as NPR. One of the sources of uncertainty for PB and HR is the 
discrepancy between the model and reality (or, in this case, the model used for the 
simulations). For example, contributor #2 used PROSPECT-PRO (J.-B. Féret et al. 2021) 
RTM to estimate Vcmax,25 exploiting the absorption features of proteins in the leaf. 
However, the SCOPE simulations did not present such features, which could explain 
the low correlation obtained by #2 (Figure 7c). Nonetheless, this approach could 
perform better when applied to real vegetation measurements (e.g. Wang, Guan, 
Wang, Ainsworth, Zheng, Townsend, Li, et al. (2021), Camino et al. (2022)). While the 
number of contributions using PB and HR is too low to make clear conclusions, HR 
training error might relax the underlying assumptions of the physical model, improv
ing, in some cases, the retrieval (Verrelst et al. 2019; Wang, Guan, Wang, Ainsworth, 
Zheng, Townsend, Liu, et al. 2021). Overall, better results were obtained when 
retrieving biophysical parameters with a strong effect on the optical signals (i.e. 
LAI and Cab) than the two physiological variables indirectly related to F, LST, and 
PRI (i.e. Vcmax,25, and NPQ) (Figures 5–7). Our results demonstrate that modelling and 
data assimilation improvements are needed to adequately characterize plant physio
logical variables from RS, particularly when no field data is available to calibrate 
empirical models. Finally, none of the contributors used the observational uncertain
ties of the field measurements nor asked about the uncertainty estimates of RS 
imagery. Uncertainties could have been employed to assign weights to each data 
point’s contribution during model training and to subsequently propagate these 
uncertainties to the predictions. Uncertainty maps were exclusively generated 
based on the models’ fitting errors (Porwal and Raftery 2022).
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4.1.2. Scaling challenges
The SSC presented several spatial challenges. The first one was the heterogeneity of 
spatial resolutions in the RS imagery. The spatial resolution is relevant for the retrieval of 
vegetation ecophysiological properties since these relate non-linearly with the spectral 
signals and unresolved heterogeneity (spectral mixture) increase estimation uncertainty 
(Pacheco-Labrador et al. 2022; Vicente et al. 2021). Maybe partly due to the smoothness of 
the simulated crop field, none of the participants attempted to downscale the imagery to 
the finest resolution, which might be more relevant in heterogeneous environments. Still, 
larger errors were found in the borders than in the interior of the fields, where bare soil 
and vegetation signals were mixed (supplementary material S4). While the down-scaling 
of reflectance factors (e.g. fusion of multi and hyperspectral imagery (Vivone 2023)) relies 
on univocal relationships between the data at different scales, the down-scaling of 
physiologically regulated signals transfer (e.g. PRI, or thermal and SIF emissions) is more 
challenging. The latest would require ancillary information (e.g. canopy structure driving 
SIF escape and current incoming PAR) and accounting for the diurnal and seasonal 
dynamics of these signals and their relationship with plant physiology. For example, 
Guzinski et al. (2020) used physical models to downscale evapotranspiration retrievals, 
whereas Duveiller et al. (2020) used LST and semi-empirical stress models to down-scale 
coarse global SIF products.

The second challenge was the species-dependent variability in the relationships 
between vegetation ecophysiological properties and the observed spectral signals for 
the vegetation types represented (i.e. wheat C3 and maize C4). This is particularly true for 
the C3 and C4 plants, which have developed different mechanisms to fix CO2 from the 
atmosphere, resulting in differences in absorbing (LAI, Cab), using (Vcmax,25), and disposing 
(NPQ) radiation (Table S2.1.4.1). Half of the SSC participants modelled both vegetation 
types separately. While the number of contributions did not allow for a complete under
standing of the impact of vegetation-type differentiation, previous studies show that it 
could improve the retrieval of ecophysiological properties (Moreno-Martínez et al. 2018). 
In the SSC, small sample sizes prevented most NPR approaches from characterizing each 
vegetation type separately. Such separation could be strongly recommendable for simple 
PR approaches that are unfit for generalization. In the case of PB and HR, physical models 
impose strong assumptions on the relationships between ecophysiological and spectral 
signals. However, radiative transfer theory offers different formulations (Widlowski et al.  
2015), which could be selected as a function of the vegetation type (Wang, Guan, Wang, 
Ainsworth, Zheng, Townsend, Liu, et al. 2021). C3/C4 differentiation is inherent to phy
siological models often based on the Farquhar – von Caemmerer – Berry biochemical 
photosynthesis model. This must be accounted for by missions studying photosynthesis, 
such as FLEX, which aims to provide a light-response-centred approach for estimating 
photosynthetic efficiency (Liu et al. 2022) accounting for C3 and C4 vegetation types (ESA  
2015). In all cases, vegetation type-oriented modelling relies on vegetation-type mapping, 
where the discrimination between C3 and C4 vegetation from RS remains particularly 
challenging (Poulter et al. 2015).

A third challenge was the spatial scale of each retrieved variable (i.e. photosystem, leaf, 
or canopy). LAI is a canopy variable with strong control over all spectral signals, whereas 
Cab is a foliar variable with substantial radiation control in the visible spectral region. Both 
influence vegetation photosynthesis and transpiration via aPAR and gas exchange area. 
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On the other hand, Vcmax,25 is a foliar property with a weak manifestation in spectral 
signals (mainly in F). Finally, NPQ is not a vegetation property but a state that varies 
dynamically over time according to environmental conditions. SSC simulations only 
represented vertical profiles of Vcmax,25 and NPQ, and the participants were informed 
these had been sampled from the upper layers of the canopy. While the participants did 
not consider the vertical gradients when training models or evaluating their estimates, no 
systematic biases were found in the retrievals (Figure 4), which suggests other factors 
dominated uncertainties. PB and HR approaches embed the down-scaling from TOC to 
leaf (i.e. Cab) or photosystem (i.e. Vcmax,25, and NPQ) level in the RTM formulations. 
However, the complexity of coupled physiological-RTM models accounting for environ
mental factors and vertical gradients within the canopy made the use of fully coupled 
models rare. Despite their complexity, these approaches performed worse than the 
empirical ones. In all cases, the retrieval of biophysical (LAI and Cab) and physiological 
variables (Vcmax,25, and NPQ) was separated into two steps where the first estimates 
informed the retrieval of the second, an approach that can reduce equifinality in the 
retrieval of least influencing variables (Pacheco-Labrador et al. 2019). PR and NPR do not 
provide an explicit-scale transfer. However, they can include biophysical variables relevant 
to the change of scale as predictors. Whereas LAI estimates did not support the retrieval of 
Cab, LAI or Cab, and even protein content estimates became predictors of Vcmax,25 or NPQ. 
A second alternative could be to jointly model variables of different scales to exploit 
potential covariances, reducing equifinality and maybe providing more consistent 
estimates.

The fourth challenge relates to the temporal mismatch between vegetation between 
variables and spectral observations. LAI and Cab were simulated as being static in time, as 
intra-daily variation is usually neglected. Vcmax,25 measurements were simulated under 
conditions similar to those inside a leaf chamber. However, it must be considered that the 
actual carboxylation rate achieved by the plant is variable, which can bias the relationship 
between Vcmax,25 and spectral signals influenced by physiology (i.e. F, PRI, and LST) over 
time, the links not necessarily being coherent. NPQ is highly dynamic; two datasets were 
provided: the first prior to the flight (NPQ1) and the second centred around the overflight 
time (NPQ2). Despite this temporal mismatch being most often disregarded, no systematic 
biases were found for the contributions using NPQ1, suggesting that the retrieval drives 
uncertainty.

4.2. Stress assessment

SSC considered three types of stress: (1) long-term nitrogen limitation (NS), resulting in 
slow plant responses; (2) short-term water limitation (EW), resulting in fast plant 
responses; and (3) inherent differences between wheat and maize due to different 
photosynthetic pathways. In SSC, changes in growth responses were more easily detected 
by the different retrieval methodologies of common biophysical variables than physiolo
gical stress.

Plants balance the extent or size of roots and canopy and regulate the biosynthesis of 
photosynthetic pigments and the chlorophyll-to-carotenoid ratio in response to the long- 
term deficit of water or nutrient availability (Ru et al. 2023; Song et al. 2023). The long- 
term nitrogen-induced stress was evident in maps of retrieved variables with decreasing 
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values of LAI, Cab, Vcmax,25, and increasing values of NPQ from N to S, which were coherent 
with the simulated nutrient availability (Fig. S3.1). Most contributors identified the simu
lated long-term nutritional stress via the retrieved biophysical variables.

Early stress induced by a sudden change in soil moisture content was evident in the 
provided airborne imagery: F687, F760, and more subtly PRI (Fig. S2.12, S2.13 and S2.11, 
respectively) presented clear EW stripe patterns (Fig. S3.3) despite being superimposed 
to the nutrient-stress induced patterns of LAI, Cab, Vcmax,25, and other variables. 
Nonetheless, the SSC simulated two relatively homogeneous crop fields, facilitating 
the interpretation, which could be more complex in natural ecosystems. Short-term 
stress was also evident in the NPQ (Fig. S2.8) was collected in the field at several 
locations. However, these patterns were unclear in the estimated NPQ maps (Fig. S4.7) 
and were less often identified. In a few cases, the spatial patterns of F or corrected 
versions were related to stress. Furthermore, NPQ retrieval errors did not systematically 
relate to the fact of not taking into account spatial and temporal mismatches. These 
results suggest that despite RS signals being able to identify differences in physiolo
gical stress, we still lack suitable methods for retrieving physiological variables that 
disentangle such information from the rest of the biophysical and structural factors 
affecting the RS signals. The standardization of the collected data and field sampling 
(e.g. F and NPQ) to a common measurement time and the F post-processing towards 
fluorescence quantum efficiency (fqe) maps (Moncholi-Estornell et al. 2023; Wieneke 
et al. 2024) could contribute to overcoming the retrieval challenges.

In the case of drought stress and different responses by C3 and C4 plants, plant 
hormone-driven (abscisic acid-mediated) stomatal closure is considered the first acclima
tion response with an immediate decrease in canopy evapotranspiration and an increase 
in surface temperature (Fahad et al. 2017; Zandalinas et al. 2018). However, the C3 and C4 
plants differ in their drought tolerance due to different molecular, physiological, and 
developmental processes (Song et al. 2023), resulting in an altered sensitivity and timing 
of stomatal responses. This phenomenon was clearly detected in the wheat stand with 
a higher LST and a larger NPQ (in the field datasets NPQ1 or NPQ2) by the participants. The 
differences in F were also evident but were not used to discriminate drought tolerance 
between the two vegetation types. Despite the magnitudes being different, other bio
physical parameters (e.g. LAI or Cab) could challenge the interpretation of these differ
ences, particularly when prior knowledge of the vegetation photosynthetic paths is 
unavailable.

The results regarding the interpretation and mapping of short-term stress suggest that 
expertise on this topic is less generalized than the study of biophysical properties of 
vegetation. The advent of new RS missions (e.g. FLEX, LSTM, CHIME, etc.) will increase the 
combination of different signals (e.g. F, LST and hyperspectral reflectance factors) and, 
therefore, the possibilities of assessing vegetation physiology from space. More specific 
training, open-source tools, and group collaboration will be necessary to extend this 
specific knowledge to a broader RS community.

5. Conclusions

In the context of the COST Action ‘Optical synergies for spatiotemporal SENsing of 
Scalable ECOphysiological traits’ (SENSECO) (CA17134), the SSC challenged the RS 
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community to down-scale and retrieve two biophysical and two physiological plant 
variables from a simulated airborne and field data and diagnose the vegetation stress.

Based on the SSC results and discussions held during the SENSECO COST Action 
activities, we have identified a number of areas where further research is necessary to 
foster operational down-scaling of biophysical/physiological variables as well as the early 
detection of vegetation stress. The following six prospective research areas of future work 
were summarized:

(1) Synergetic multi-sensor detection of early stress and plant physiology character
isation. Vegetation expresses these responses to an ever-changing environment 
at different rates in different spectral regions. Therefore, no single spectral 
variable can be expected to characterize the physiological status and reveal 
early stress completely. Methods for combining and assimilating RS images of 
different resolutions and quality, acquired at different times of the day, that are 
suitable to characterize plant physiology still need to be developed. The best 
option would be to use high-quality aerial and field datasets while addressing 
the subsequent considerations.

(2) Accounting for the temporal dynamics of the physiological parameters or resulting 
plant status. Light intensity and vapour pressure deficit regulate diurnal changes in 
leaf temperature, Vcmax, NPQ, fluorescence, and photochemistry, resulting in diur
nal changes in LTS, F, and PRI. These changes must be considered when combining 
spectral information and vegetation variables in physical or empirical models or 
when comparing observations at different times of the day. Also, long-term stress 
(e.g. sustained NPQ) should be included in the modelling.

(3) Accounting for the variability of biophysical/physiological parameters through the 
plant canopy vertical profile. While optical and thermal RS imagery provides infor
mation about the upper canopy layers, the vertically varying environmental con
ditions within the canopy (light quality, wind speed, etc.) trigger different 
biophysical/physiological responses (e.g. Cab and Vcmax profiles). This fact should 
be considered to determine vegetation status and/or early stress detection, parti
cularly when top-of-canopy spectral information or field measurements of specific 
layers of the canopy are used to quantify or represent the whole vegetation’s 
volume physiology.

(4) Accounting for the spatial heterogeneity and intrapixel variability. The inherent 
coarse resolution of most sensors able to capture physiologically driven signals 
makes the characterization of physiology particularly sensitive to the mixture of 
different surfaces, especially bare soil, inside a pixel (e.g. the SSC found large 
uncertainties in the crop boundaries). Such a mixture should be characterized 
and taken into account by physical or statistical models.

(5) Down-scaling of spectral information from the top-of-canopy to the leaf and the 
photosystem levels. Characterising the physiological status requires understanding 
vegetation properties at different scales where spectral information is either gen
erated or transformed. Therefore, the interpretation of the spectral signals should 
be considered explicitly (physical models with the right formulations) or implicitly 
(empirical approaches, which can be supported by the inclusion of estimates of 
foliar and structural biophysical variables).
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(6) Accounting for uncertainties. Solving the former steps involves combining different 
datasets for model inversion or fitting. However, not all the observations are 
equally valuable. Further efforts are needed to quantify and account for the 
observational uncertainties, minimize equifinality or biased predictions, and quan
tify the uncertainty of the estimated ecophysiological variables. This is fundamental 
to determine the level of confidence and the significance of the difference between 
two estimates (and, hence, the capability to discriminate stress).

Accounting for all these factors is demanding and requires deep knowledge. While very 
experienced research groups work and apply methods that comply with these needs, 
their use must be considered by less experienced researchers and popularized via open- 
access code or protocols that facilitate applying specialized data processing for the study 
of vegetation physiology from RS.
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