
Learning Long Range Dependencies on Graphs
via Random Walks

Dexiong Chen Till Hendrik Schulz Karsten Borgwardt
Max Planck Institute of Biochemistry

82152 Martinsried, Germany
{dchen, tschulz, borgwardt}@biochem.mpg.de

Abstract

Message-passing graph neural networks (GNNs) excel at capturing local relation-
ships but struggle with long-range dependencies in graphs. In contrast, graph
transformers (GTs) enable global information exchange but often oversimplify the
graph structure by representing graphs as sets of fixed-length vectors. This work
introduces a novel architecture that overcomes the shortcomings of both approaches
by combining the long-range information of random walks with local message
passing. By treating random walks as sequences, our architecture leverages recent
advances in sequence models to effectively capture long-range dependencies within
these walks. Based on this concept, we propose a framework that offers (1) more
expressive graph representations through random walk sequences, (2) the ability
to utilize any sequence model for capturing long-range dependencies, and (3) the
flexibility by integrating various GNN and GT architectures. Our experimental
evaluations demonstrate that our approach achieves significant performance im-
provements on 19 graph and node benchmark datasets, notably outperforming
existing methods by up to 13% on the PascalVoc-SP and COCO-SP datasets.
Code: https://github.com/BorgwardtLab/NeuralWalker.

1 Introduction

Message-passing graph neural networks (GNNs) [20] and graph transformers (GTs) [57], have
emerged as powerful tools for learning on graphs. While GNNs are efficient in identifying local
relationships, they often fail to capture distant interactions due to the local nature of message passing,
leading to issues such as over-smoothing [39] and over-squashing [2]. In contrast, GTs [57, 35,
9, 42, 44] address these limitations by directly modeling long-range interactions through global
attention mechanisms, enabling information exchange between all nodes. However, GTs typically
preprocess the complex graph structure into fixed-length vectors for each node, using positional
or structural encodings [42]. This approach essentially treats the graph as a set of nodes enriched
with these vectors. Such vector representations of graph topologies inevitably result in a loss of
structural information, limiting expressivity even when GTs are combined with local message-passing
techniques [60]. In this work, we address these limitations by introducing a novel architecture that
captures long-range dependencies while preserving rich structural information, by leveraging the
power of random walks.

Random walks offer a flexible approach to exploring graphs, surpassing the limitations of fixed-length
vector representations. By traversing diverse paths across the graph, random walks can capture
subgraphs with large diameters, such as cycles, which message passing often struggles to represent,
due to its depth-first nature [21]. More importantly, the complexity of sampling random walks is
determined by their length and sample size rather than the overall size of the graph. This characteristic
makes random walks a scalable choice for representing large graphs, offering clear computational
advantages compared to many computationally expensive encoding methods.

Preprint. Under review.

ar
X

iv
:2

40
6.

03
38

6v
2 

 [
cs

.L
G

] 
 7

 O
ct

 2
02

4

https://github.com/BorgwardtLab/NeuralWalker


While several graph learning approaches have employed random walks, their full potential remains
largely untapped. Most existing approaches either focus solely on short walks [8, 38] or use walks
primarily for structural encoding, neglecting the rich information they contain [15, 35]. A more
recent method, CRaWL [48], takes a novel approach by representing a graph as a set of random walks.
While this approach shows promising results, it has two major practical limitations: 1) its reliance
on convolutional layers to process random walks, particularly with small kernel sizes, constrains its
ability to approximate arbitrary functions on walks and fully capture long-range dependencies within
each walk. 2) Due to the depth-first nature of random walks, it struggles to efficiently capture local
relationships, such as simple subtrees, as illustrated in Figure 1.

Message Passing Random Walks

Figure 1: Message passing efficiently cap-
tures locally sparse subgraphs, like k-star
subgraphs, while random walks struggle,
requiring a length of 2k.

Considering the limitations of existing random-walk-
based models, we propose an approach that leverages
the strengths of two complementary graph exploration
paradigms. Our method combines the local neighbor-
hood information captured by the breadth-first nature
of message passing with the long-range dependencies
obtained through the depth-first nature of random walks.
Unlike GTs [42, 9] which encode random walks into
fixed-length vectors, our approach preserves their se-
quential nature, thereby retaining richer structural in-
formation. Our proposed architecture, named Neural-
Walker, achieves this by processing sets of sampled ran-
dom walks using powerful sequence models. We then
employ local (and optionally global) message passing to capture complementary information. Mul-
tiple alternations of these two operations are stacked to form our model. A key innovation of our
approach is the utilization of long sequence models, such as state space models, to learn from random
walk sequences. To the best of our knowledge, this is the first application of such models in this
context.

Our contributions are summarized as follows. i) We propose a novel framework that leverages both
random walks and message passing, leading to provably more expressive graph representation. ii)
Our model exploits advances in sequence modeling (e.g, transformers and state space models) to
capture long-range dependencies within the walks. iii) Our message-passing block can seamlessly
integrate various GNN and GT architectures, allowing for customization based on specific tasks. iv)
We conduct extensive ablation studies to offer practical insights for choosing the optimal sequence
layer types and message-passing strategies. Notably, the trade-off between model complexity and
expressivity can be flexibly controlled by adjusting walk sampling rate and length, making our model
scalable to graphs with up to 1.6M nodes. v) Our model demonstrates remarkable performance
improvements over existing methods on a comprehensive set of 19 benchmark datasets.

2 Related Work

Local and global message passing. Message-passing neural networks (MPNNs) are a corner-
stone of graph learning. They propagate information between nodes, categorized as either local
or global methods based on the propagation range. Local MPNNs, also known as GNNs (e.g,
GCN [28], GIN [55]), excel at capturing local relationships but struggle with distant interactions
due to limitations like over-smoothing [39] and over-squashing [2]. Global message passing offers
a solution by modeling long-range dependencies through information exchange across all nodes.
GTs [57, 29, 35, 9, 42, 44], using global attention mechanisms, are a prominent example. However,
GTs achieve this by compressing the graph structure into fixed-length vectors, leading to a loss of
rich structural information. Alternative techniques include the virtual node approach [20, 3], which
enables information exchange between distant nodes by introducing an intermediary virtual node.

Random walks for graph learning. Random walks have a long history in graph learning, par-
ticularly within traditional graph kernels. Due to the computational intractability of subgraph or
path kernels [19], walk kernels [19, 27, 5] were introduced to compare common walks or paths in
two graphs efficiently. Non-backtracking walks have also been explored [34] for molecular graphs.
In deep graph learning, several approaches utilize walks or paths to enhance GNN expressivity.
GCKN [8] pioneered short walk and path feature aggregation within graph convolution, further

2



4

5

63

2

7

8

1

1 3 4 6 8
Position Encodings

6 5 3 4 6
Position Encodings

Walk 1

...
Walk m

Iterative Neighbor Sampling

Random Walk Sampler Walk Embedder

1 3 4 6 8Walk i

Node

Embedding

proj( )
Edge

Embedding

+

proj( )
Position

Embedding

+

Walk

Embedding

=

Walk Aggregator

1 3 4 6 8Walk 1

...

6 5 3 4 6Walk m

4

5

63

2

7

8

1

Feature aggregation

Random Walk Sampler

Walk Embedder

Sequence Layer

Walk Aggregator

+

Walk Encoder Block

Local & Global
Message Passing

L× NeuralWalker Blocks

Figure 2: Overview of the NeuralWalker architecture. The random walk sampler samples m random
walks independently without replacement; the walk embedder computes walk embeddings given the
node/edge embeddings at the current layer; the walk aggregator aggregates walk features into the
node features via pooling of the node features encountered in all the walks passing through the node.

explored in Michel et al. [36]. RWGNN [38] leverages differentiable walk kernels for subgraph
comparison and parametrized anchor graphs. The closest work to ours is CRaWL [47]. However,
it lacks message passing and relies on a convolutional layer, particularly with small kernel sizes,
limiting its universality. Additionally, random walks have been used as structural encoding in GTs
such as RWPE [15] and relative positional encoding in self-attention [35].

Sequence modeling. Sequence models, particularly transformers [49] and state space models
(SSMs) [23, 22], have become instrumental in natural language processing (NLP) and audio process-
ing due to their ability to capture long-range dependencies within sequential data. However, directly
leveraging these models on graphs remains challenging due to the inherent structural differences.
Existing approaches like GTs treat graphs as sets of nodes, hindering the application of transformer
architectures to sequences within the graph. Similarly, recent work utilizing SSMs for graph model-
ing [52, 4] relies on node ordering based on degrees, a suboptimal strategy that may introduce biases
or artifacts when creating these artificial sequences that do not reflect the underlying graph topology.

Our work addresses this limitation by explicitly treating random walks on graphs as sequences.
This allows us to leverage the power of state-of-the-art (SOTA) sequence models to capture rich
structural information within these walks, ultimately leading to a more universal graph representation.
Furthermore, by integrating both message passing and random walks, our model is provably more
expressive compared to existing MPNNs and random walk-based models, as discussed in Section 4.

3 Neural Walker

In this section, we present the architecture of our proposed NeuralWalker, which processes sequences
obtained from random walks to produce both node and graph representations. Its components consist
of a random walk sampler, described in Section 3.2, and a stack of neural walker blocks, discussed in
Section 3.3. A visualization of the architecture can be found in Figure 2.

3.1 Notation and Random Walks on Graphs

We first introduce the necessary notation. A graph is a tuple G = (V,E, x, z), where V is the set
of nodes, E is the set of edges, and x : V → Rd and z : E → Rd′

denote the functions assigning
attributes to node and edges, respectively. We denote by G and Gn the space of all graphs and the
space of graphs up to size n, respectively. The neighborhood of a node v is denoted by N (v) and its
degree by d(v). A walk W of length ℓ on a graph G is a sequence of nodes connected by edges, i.e.
W = (w0, . . . , wℓ) ∈ V ℓ+1 such that wi−1wi ∈ E for all i ∈ [ℓ]. We denote by W(G) and Wℓ(G)
the set of all walks and all walks of length ℓ on G, respectively. W is called non-backtracking if
wi−1 ̸= wi+1 for all i and we denote the set of all such walks by Wnb

ℓ (G). A random walk is a

3



Markov chain that starts with some distribution on nodes P0(v) and transitions correspond to moving
to a neighbor chosen uniformly at random. For non-backtracking random walks, neighbors are chosen
uniformly from N (wi)\{wi−1}. We denote by P (W(G), P0) the distribution of random walks with
initial distribution P0, and by P (W(G)) the case where P0 = U(V ) is the uniform distribution on V .

3.2 Random Walk Sampler

The random walk sampler independently samples a subset of random walks on each graph through
a probability distribution on all possible random walks. For any distribution on random walks
P (W(G), P0), we denote by Pm(W(G)) := {W1, . . . ,Wm} a realization of m i.i.d. samples
Wj ∼ P (W(G), P0). Our model is always operating on such realizations. Motivated by the
successful application in Tönshoff et al. [48] and the halting issue in general random walks of
arbitrary length [46], we consider non-backtracking walks of fixed length. Specifically, we consider
the uniform distribution of length-ℓ random walks P (W(G), P0) := P (Wnb

ℓ (G),U(V )). Note
that one could also consider a stationary initial distribution P0(v) = d(v)/2|E| for better theoretical
properties [32].

In practice, we restrict the number of samples m ≤ n where n = |V | for computation efficiency. We
define the sampling rate of random walks as the ratio of random walks to nodes (γ := m/n). Note
that random walks only need to be sampled once for each forward pass and that an efficient CPU
implementation can be achieved through iterative neighbor sampling, with a complexity O(nγℓ),
linear in the number and length of random walks. We remark that during inference, a higher sampling
rate than that used during training can be used to enhance performance. Therefore, we always fix it to
1.0 at inference. In Section 5.3, we empirically study the impact of γ and ℓ used at training on the
performance, showing that once these hyperparameters exceed a certain threshold, their impact on
performance saturates.

Positional encodings for random walks. Similar to [48], we utilize additional encoding features
that store connectivity information captured within random walks. In particular, we consider an
identity encoding which encodes whether two nodes in a walk are identical within a window and
an adjacency encoding which includes information about subgraphs induced by nodes along the
walk. Specifically, for a walk W = (w0, . . . , wℓ) ∈ Wℓ(G) and window size s ∈ N+, the identity
encoding W , denoted idsW , is the binary matrix in {0, 1}(ℓ+1)×s with idsW [i, j] = 1 if wi = wi−j−1

s.t. i − j ≥ 1, and otherwise 0 for any 0 ≤ i ≤ ℓ and 0 ≤ j ≤ s − 1. Similarly, the adjacency
encoding adjsW ∈ {0, 1}(ℓ+1)×(s−1) satisfies adjsW [i, j] = 1 if wiwi−j−1 ∈ E s.t. i − j ≥ 1, and
otherwise 0 for any 0 ≤ i ≤ ℓ and 0 ≤ j ≤ s− 1. A visual example of such encodings is given in
Appendix B.1. Finally, the output of the random walk sampler is the concatenation all encodings into
a single matrix hpe ∈ R(ℓ+1)×dpe together with the sampled random walks.

3.3 Model Architecture

In the following, we describe the architecture of NeuralWalker which conists of several walk encoder
blocks where each block is comprised of three components: a walk embedder, a sequence layer, and
a walk aggregator that are presented in Sections 3.3.1, 3.3.2, and 3.3.3, respectively.

3.3.1 Walk Embedder

The walk embedder generates walk embeddings given the sampled walks, and the node and edge
embeddings at the current layer. It is defined as a function femb : Wℓ(G). Specifically, for any
sampled walk W ∈ Pm(Wℓ(G)), the walk embedding hW := femb(W ) ∈ R(ℓ+1)×d is defined as

hW [i] := hV (wi) + projedge(hE(wiwi+1)) + projpe(hpe[i]), (1)

where hV : V → Rd and hE : E → Rdedge are node and edge embeddings at the current block and
projedge : Rdedge → Rd and projpe : Rdpe → Rd are some trainable projection functions. The resulting
walk embeddings is then processed with a sequence model as discussed below.

4



3.3.2 Sequence Layer on Walk Embeddings

In principle, any sequence model can be used to process the walk embeddings obtained above. A
sequence layer transforms a sequence of feature vectors into a new sequence, i.e., it is a function
fseq : R(ℓ+1)×d → R(ℓ+1)×d. In the following, we discuss several choices for such a function.

1D CNNs are simple and fast models for processing sequences, also used in [48]. They are GPU-
friendly and require relatively limited memory. However, the receptive field of a 1D CNN is limited
by its kernel size, which might fail to capture distant dependencies on long walks.

Transformers are widely used in modeling sequences and graphs due to their universality and strong
performance. However, we found in our experiments (see Table 6) that they are suboptimal encoders
for walk embeddings, even when equipped with the latest techniques like RoPE [45].

SSMs are a more recent approach for modeling long sequences. In our experiments, we employ two
of the latest instances of SSMs, namely S4 [23] and Mamba [22]. In addition to the original version,
we consider the bidirectional version of Mamba [59]. We found that bidirectional Mamba consistently
outperforms other options (Section 5.3). For a more comprehensive background on SSMs, please
refer to Appendix A.3.

3.3.3 Walk Aggregator

The walk aggregator aggregates walk features into node features such that the resulting node features
encode context information from all walks passing through that node. It is defined as a function
fagg : (Pm(Wℓ(G)) → R(ℓ+1)×d) → (V → Rd) and the resulting node feature mapping is given
by hagg

V := fagg(fseq(femb|Pm(Wℓ(G))))) where f |. denotes the function restriction. In this work, we
consider the average of all the node features encountered in the walks passing through a given node.
Specifically, the node feature mapping hagg

V with an average pooling is defined as

hagg
V (v) :=

1

Nv(Pm(Wℓ(G)))

∑

W∈Pm(Wℓ(G))

∑

wi∈Wst. wi=v

fseq(hW )[i], (2)

where Nv(Pm(Wℓ(G))) represents the number of occurrences of v in the union of walks in
Pm(Wℓ(G)). One could also average the edge features in the walks passing through a certain
edge to update the edge features: hagg

E (e) :=
∑

W∈Pm(Wℓ(G))

∑
wiwi+1∈Wst. wiwi+1=e fseq(hW )[i]

up to a normalization factor. In practice, we also use skip connections to keep track of the node
features from previous layers.

3.3.4 Local and Global Message Passing

While random walks are efficient at identifying long-range dependencies due of their depth-first
nature, they are less suited for capturing local substructure information, which often plays an essential
role in many graph learning tasks. To address this limitation, we draw inspiration from classic
node embedding methods [40, 21]. We incorporate a message-passing layer into our encoder block,
leveraging its breadth-first characteristics to complement the information obtained through random
walks. Such a (local) message passing step is given by

hmp
V (v) := hagg

V (v) +MPNN(G, hagg
V (v)), (3)

where MPNN denotes a GNN model, typically with one layer in each encoder block.

Following the local message passing layer, we optionally apply a global message passing, allowing
for a global information exchange, as done in GTs [9]. We particularly consider two global message
passing techniques, namely virtual node [20, 47] and transformer layer [57, 9, 42]. We provide more
details on these techniques in Appendix B.2.

4 Theoretical Results

In this section, we investigate the theoretical properties of NeuralWalker. The proofs of the following
results as well as more background can be found in Appendix C.

We first define walk feature vectors following [48]:

5



Definition 4.1 (Walk feature vector). For any graph G = (V,E, x, z) and W ∈ Wℓ(G), the walk
feature vector XW of W is defined by concatenating the node and edge feature vectors, along with
the positional encodings of W with window size s = ℓ. Formally,

XW = (x(wi), z(wiwi+1), hpe[i])i=0,...,ℓ ∈ R(ℓ+1)×dwalk ,

where hpe represents the positional encoding of Section 3.2, z(wℓwℓ+1) = 0, and dwalk := d+d′+dpe.
For simplicity, we still denote the distribution of walk feature vectors on G by P (W(G)).

For simplicitly, we consider general rather than non-backtracking random walks in this section.
Now assume that we apply an average pooling followed by a linear layer to the output of the walk
aggregator in Eq. (2). By adjusting the normalization factor to a constant mℓ/|V |, we can express the
function gf,m,ℓ on G as an average over functions of walk feature vectors:

gf,m,ℓ(G) =
1

m

∑

W∈Pm(Wℓ(G))

f(XW ) (4)

where f : Rdwalk → R is some function on walk feature vectors.

If we sample a sufficiently large number of random walks, the average function gf,m,ℓ(G) converges
almost surely to gf,ℓ := EXW∼P (Wℓ(G))[f(XW )], due to the law of large numbers. This result can
be further quantified using the central limit theorem, which provides a rate of convergence (see
Theorem C.5 in Appendix). Furthermore, we have the following useful properties of this limit:

Theorem 4.2 (Lipschitz continuity). For some functional space F of functions on walk feature
vectors, we define the following distance dF : G × G → R+:

dF,ℓ(G,G′) := sup
f∈F

∣∣EXW∼P (Wℓ(G))[f(XW )]− EXW ′∼P (Wℓ(G′))[f(XW ′)]
∣∣ . (5)

Then (Gn, dF,ℓ) is a metric space if F is a universal space and ℓ ≥ 4n3.

If F contains f , then for any G,G′ ∈ Gn, we have

|gf,ℓ(G)− gf,ℓ(G
′)| ≤ dF,ℓ(G,G′). (6)

In particular, if f ∈ F is an L-Lipschitz function, the difference in outputs is bounded by the earth
mover’s distance W1(·, ·) between the distributions of walk feature vectors:

|gf,ℓ(G)− gf,ℓ(G
′)| ≤ L ·W1(P (Wℓ(G)), P (Wℓ(G

′))). (7)

The Lipschitz constant, widely used to assess neural network stability under small perturbations [51],
guarantees that NeuralWalker maintains stability when subjected to minor alterations in graph
structure. Notably, parameterizing f with several neural network layers yields a Lipschitz constant
comparable to that of MPNNs on a pseudometric space defined by the tree mover’s distance [11].
However, a key distinction lies in the input space metrics: while MPNNs operate on tree structures,
NeuralWalker focuses on the distribution of walk feature vectors. A more comprehensive comparison
of MPNNs’ and NeuralWalker’s stability and generalization under distribution shift is left for future
research.

Theorem 4.3 (Injectivity). Assume that F is a universal space. If G and G′ are non-isomorphic
graphs, then there exists an f ∈ F such that gf,ℓ(G) ̸= gf,ℓ(G

′) if ℓ ≥ 4max{|V |, |V ′|}3.

The injectivity property ensures that our model with a sufficiently large number of sufficiently long
(≥ 4n3) random walks can distinguish between non-isomorphic graphs. It is worth noting that
although our assumptions include specific conditions on the random walk length to establish the
space as a metric, removing the length constraint still results in a pseudometric space. In this case,
dF,ℓ(G,G′) > 0 if G and G′ are distinguishable by the (⌊ℓ/2⌋+1)-subgraph isomorphism test, where
⌊·⌋ is the floor function (i.e., they do not have the same set of subgraphs up to size (⌊ℓ/2⌋+ 1)).

Using the previous result jointly with the message-passing module, we arrive at the following result,
which particularly highlights the advantage of combining random walks and message passing.

Theorem 4.4. For any ℓ ≥ 2, NeuralWalker equipped with the complete walk set Wℓ is strictly more
expressive than 1-WL and the (⌊ℓ/2⌋+ 1)-subgraph isomorphism test, and thus ordinary MPNNs.

6



Table 1: Test performance on benchmarks from [17]. Metrics with mean ± std of 4 runs are reported.
The result with ⋆ is obtained using the pretraining strategy presented in Section 5.2.

ZINC MNIST CIFAR10 PATTERN CLUSTER
# GRAPHS 12K 70K 60K 14K 12K
AVG. # NODES 23.2 70.6 117.6 118.9 117.2
AVG. # EDGES 24.9 564.5 941.1 3039.3 2150.9
METRIC MAE � ACC � ACC � ACC � ACC �

GCN [28] 0.367 ± 0.011 90.705 ± 0.218 55.710 ± 0.381 71.892 ± 0.334 68.498 ± 0.976
GIN [55] 0.526 ± 0.051 96.485 ± 0.252 55.255 ± 1.527 85.387 ± 0.136 64.716 ± 1.553
GAT [50] 0.384 ± 0.007 95.535 ± 0.205 64.223 ± 0.455 78.271 ± 0.186 70.587 ± 0.447
GATEDGCN [7] 0.282 ± 0.015 97.340 ± 0.143 67.312 ± 0.311 85.568 ± 0.088 73.840 ± 0.326

GRAPHORMER [57] 0.122 ± 0.006 – – – –
SAT [9] 0.089 ± 0.002 – – 86.848 ± 0.037 77.856 ± 0.104
GPS [42] 0.070 ± 0.004 98.051 ± 0.126 72.298 ± 0.356 86.685 ± 0.059 78.016 ± 0.180
EXPHORMER [44] – 98.55 ± 0.03 74.69 ± 0.13 86.70 ± 0.03 78.07 ± 0.037
GRIT [33] 0.059 ± 0.002 98.108 ± 0.111 76.468 ± 0.881 87.196 ± 0.076 80.026 ± 0.277
CRAWL [48] 0.085 ± 0.004 97.944 ± 0.050 69.013 ± 0.259 – –

NEURALWALKER 0.053 ± 0.002⋆ 98.692 ± 0.079 76.903 ± 0.457 86.977 ± 0.012 78.189 ± 0.188

Table 2: Test performance on LRGB [16]. Metrics with mean ± std of 4 runs are reported. Neural-
Walker improves the best baseline by 10% and 13% on PascalVOC-SP and COCO-SP respectively.

PASCALVOC-SP COCO-SP PEPTIDES-FUNC PEPTIDES-STRUCT PCQM-CONTACT
# GRAPHS 11.4K 123.3K 15.5K 15.5K 529.4K
AVG. # NODES 479.4 476.9 150.9 150.9 30.1
AVG. # EDGES 2,710.5 2,693.7 307.3 307.3 61.0
METRIC F1 � F1 � AP � MAE � MRR �

GCN [28, 47] 0.2078 ± 0.0031 0.1338 ± 0.0007 0.6860 ± 0.0050 0.2460 ± 0.0007 0.4526 ± 0.0006
GIN [55, 47] 0.2718 ± 0.0054 0.2125 ± 0.0009 0.6621 ± 0.0067 0.2473 ± 0.0017 0.4617 ± 0.0005
GATEDGCN [7, 47] 0.3880 ± 0.0040 0.2922 ± 0.0018 0.6765 ± 0.0047 0.2477 ± 0.0009 0.4670 ± 0.0004

GPS [42] 0.3748 ± 0.0109 0.3412 ± 0.0044 0.6535 ± 0.0041 0.2500 ± 0.0005 –
GPS [47] 0.4440 ± 0.0065 0.3884 ± 0.0055 0.6534 ± 0.0091 0.2509 ± 0.0014 0.4703 ± 0.0014
EXPHORMER [44] 0.3975 ± 0.0037 0.3455 ± 0.0009 0.6527 ± 0.0043 0.2481 ± 0.0007 –
GRIT [33] – – 0.6988 ± 0.0082 0.2460 ± 0.0012 –

CRAWL [48] – – 0.7074 ± 0.0032 0.2506 ± 0.0022 –

NEURALWALKER 0.4912 ± 0.0042 0.4398 ± 0.0033 0.7096 ± 0.0078 0.2463 ± 0.0005 0.4707 ± 0.0007

The injectivity in Thm. 4.3 is guaranteed only if F is a universal functional space. This condition
highlights a limitation in approaches like CRaWL [48] which employs CNNs to process walk feature
vectors. CNNs can only achieve universality under strict conditions, including periodic boundary
conditions and a large number of layers [56]. However, random walks generally do not satisfy
periodic boundary conditions, and utilizing an excessive number of layers can exacerbate issues
such as over-squashing and over-smoothing. In contrast, the sequence models considered in this
work, such as transformers and SSMs, are universal approximators for any sequence-to-sequence
functions [58, 53]. Furthermore, the proof of Thm. 4.4 suggests that random walk-based models
without message passing cannot be more expressive than 1-WL. Consequently, our model is provably
more expressive than CRaWL.

Finally, we have the following complexity results:

Theorem 4.5 (Complexity). The complexity of NeuralWalker, when used with Mamba [22], is
O(kdn(γℓ+ β)), where k, d, n, γ, ℓ, β denote the number of layers, hidden dimensions, the (maxi-
mum) number of nodes, sampling rate, length of random walks and average degree, respectively.

5 Experiments

In this section, we compare NeuralWalker to several SOTA models on a diverse set of 19 benchmark
datasets. Furthermore, we provide a detailed ablation study on components of our model. Appendix D
provides more details about the experimental setup, datasets, runtime, and additional results.

7



5.1 Benchmarking NeuralWalker to state-of-the-art methods

We compare NeuralWalker against several popular message passing GNNs, GTs, and walk-based
models. GNNs include GCN [28], GIN [55], GAT [50], GatedGCN [7]. GTs include GraphTrans [54],
SAT [9], GPS [42], Exphormer [44], NAGphormer [10], GRIT [33], Polynormer [12]. Walk-
based models include CRaWL [48]. To ensure diverse benchmarking tasks, we use datasets from
Benchmarking-GNNs [17], Long-Range Graph Benchmark (LRGB) [16], Open Graph Benchmark
(OGB) [25], and node classification datasets from [41, 30].

Benchmarking GNNs. We evaluated NeuralWalker’s performance on five tasks from the Bench-
marking GNNs suite: ZINC, MNIST, CIFAR10, PATTERN, and CLUSTER (results in Table 1).
Notably, NeuralWalker achieved SOTA results on three out of five datasets and matched the best-
performing model on the remaining two. While GRIT exhibited superior performance on the two
small synthetic datasets, its scalability to larger datasets, such as those in LRGB, is limited, as
demonstrated in the subsequent paragraph. It is worth noting that NeuralWalker significantly outper-
forms the previous SOTA random walk-based model, CRaWL. This improvement can be attributed
to the integration of message passing and the Mamba architecture, as discussed in Sections 4. A
more extensive empirical comparison of them is also given in Section 5.3. These results underscore
NeuralWalker’s robust performance across diverse synthetic benchmark tasks.

Long-Range Graph Benchmark. We further evaluated NeuralWalker’s ability to capture long-
range dependencies on the recently introduced LRGB benchmark, encompassing five datasets de-
signed to test this very capability (details in Rampášek et al. [42], Dwivedi et al. [16]). Note that
for PCQM-Contact, we used the filtered Mean Reciprocal Rank (MRR), introduced by [47], as the
evaluation metric. NeuralWalker consistently outperformed all baseline methods across all but one
task (see Table 2). Notably, on PascalVOC-SP and COCO-SP, where previous work has shown
the importance of long-range dependencies (e.g, Tönshoff et al. [47]), NeuralWalker significantly
surpassed the SOTA models by a substantial margin, up to a 10% improvement.

Open Graph Benchmark. To assess NeuralWalker’s scalability on massive quantities of graphs,
we evaluated it on the OGB benchmark, which includes datasets exceeding 100K graphs each.
For computational efficiency, we employed 1D CNNs as the sequence layers in this experiment.
NeuralWalker achieved SOTA performance on two out of the three datasets (Table 3), demonstrating
its ability to handle large-scale graph data. However, the OGBG-PPA dataset presented challenges
with overfitting. On this dataset, NeuralWalker with just one block outperformed its multiblock
counterpart on this dataset, suggesting potential limitations in regularization needed for specific tasks.

Node classification on large graphs. We further explored NeuralWalker’s ability to handle large
graphs in node classification tasks. We integrated NeuralWalker with Polynormer [12], the current
SOTA method in this domain. In this experiment, NeuralWalker utilized very long walks (up to
1,000 steps) with a low sampling rate (≤ 0.01) to capture long-range dependencies, replacing the
transformer layer within Polynormer that still struggles to scale to large graphs even with linear
complexity. Despite eschewing transformer layers entirely, NeuralWalker achieved performance
comparable to Polynormer (Table 5), showing its scalability and effectiveness in modeling large
graphs. Indeed, the complexity of NeuralWalker can be flexibly controlled by its sampling rate and
length, as shown in Section 4. A notable highlight is NeuralWalker’s ability to efficiently process the
massive pokec dataset (1.6M nodes) using a single H100 GPU with 80GB of RAM.

5.2 Masked Positional Encoding Pretraining

Explicitly utilizing random walks as sequences offers a significant advantage: it allows for the
application of advanced language modeling techniques. As a proof-of-concept, we adapt the BERT
pretraining strategy [13] to the positional encodings hpe of random walks. Our approach involves
randomly replacing 15% of the positions in hpe with a constant vector of 0.5, with the objective
of recovering the original binary encoding vectors for these positions. This method can be further
enhanced by combining it with other established pretraining strategies, such as attributes masking [26].
Our experiments, as shown in Table 4, demonstrate that combining these strategies (i.e., we first
pretrain the model with masked positional encoding prediction and then continue with masked
attributes pretraining) significantly enhances performance on the ZINC dataset.

8



Table 3: Test performance on OGB [25]. Metrics with mean
± std of 10 runs are reported.

DATASET OGBG-MOLPCBA OGBG-PPA OGBG-CODE2
# GRAPHS 437.9K 158.1K 452.7K
AVG. # NODES 26.0 243.4 125.2
AVG. # EDGES 28.1 2,266.1 124.2
METRIC AP � ACC � F1 �

GCN 0.2424 ± 0.0034 0.6857 ± 0.0061 0.1595 ± 0.0018
GIN 0.2703 ± 0.0023 0.7037 ± 0.0107 0.1581 ± 0.0026

GRAPHTRANS 0.2761 ± 0.0029 – 0.1830 ± 0.0024
SAT – 0.7522 ± 0.0056 0.1937 ± 0.0028
GPS 0.2907 ± 0.0028 0.8015 ± 0.0033 0.1894 ± 0.0024

CRAWL 0.2986 ± 0.0025 – –

NEURALWALKER 0.3086 ± 0.0031 0.7888 ± 0.0059 0.1957 ± 0.0025

Table 4: Comparison of different
pretraining strategies on the ZINC
dataset. The pretraining was per-
formed on ZINC without using any
external data.

STRATEGY ZINC�

W/O PRETRAIN 0.063 ± 0.001
MASKED ATTR. 0.061 ± 0.001
MASKED PE 0.055 ± 0.004
MASKED PE + ATTR. 0.053 ± 0.002

0.25 0.50 0.75 1.00

Sampling rate γ

0.08

0.10

0.12

ZINC

0.25 0.50 0.75 1.00

Sampling rate γ

0.725

0.750

0.775

0.800

CIFAR10

0.25 0.50 0.75 1.00

Sampling rate γ

0.46

0.48

PascalVOC-SP

1 10 25 50 100

Random walk length `

0.075

0.100

0.125

0.150

1 10 25 50 100

Random walk length `

0.75

0.80

1 10 25 50 100

Random walk length `

0.42

0.44

0.46

0.48

0

5

10

15

0

100

200

300

0

100

200

300

0

5

10

15

0

200

400

0

50

100

150

V
al

id
at

io
n

pe
rf

or
m

an
ce

Tr
ai

n
tim

e
pe

re
po

ch
on

on
e

A
10

0
G

PU
(s

)

Figure 3: Validation performance when varying sampling rate and length of random walks.

5.3 Ablation studies

Here, we dissect the main components of our model architecture to gauge their contribution to
predictive performance and to guide dataset-specific hyperparameter optimization.

We perform ablation studies on three datasets, from small to large graphs. Our analysis focuses
on three key aspects: 1) We demonstrate the crucial role of integrating local and global message
passing with random walks. 2) we evaluate various options for the sequence layer to identify the
optimal choice. 3) We examine the impact of varying the sampling rate and length of random walks,
revealing a trade-off between expressivity and computational complexity. Notably, these parameters
allow explicit control over model complexity, a unique feature of our approach compared to subgraph
MPNNs, which typically exhibit high complexity. All ablation experiments were performed on
the validation set, with results averaged over four random seeds. The comprehensive findings are
summarized in Table 6. Since NeuralWalker’s output depends on the sampled random walks at
inference, we demonstrate its robustness to sampling variability in Appendix D.5.

Effect of local and global message passing. Motivated by the limitations of the depth-first nature
inherent in pure random walk-based encoders, as discussed in Section 3.3.4, this study investigates
the potential complementary benefits of message passing. We conducted an ablation study (Table 6a)
comparing NeuralWalker’s variants with and without local or global message passing modules.
For local message passing, we employed a GIN with edge features [55, 24]. Global message
passing was explored using virtual node layers [20] and transformer layers [49, 9]. Keeping the
sequence layer fixed to Mamba, we observed that NeuralWalker with GIN consistently outperforms
the version without, confirming the complementary strengths of random walks and local message
passing. The impact of global message passing, however, varies across datasets, a phenomenon also
noted by Rosenbluth et al. [43]. Interestingly, larger graphs like PascalVOC-SP demonstrate more
significant gains from global message passing. This observation suggests promising directions for
future research, such as developing methods to automatically identify optimal configurations for
specific datasets.

9



Table 5: Test performance on node classification benchmarks from [41] and [30]. Metrics with mean
± std of 10 runs are reported.

DATASET ROMAN-EMPIRE AMAZON-RATINGS MINESWEEPER TOLOKERS QUESTIONS POKEC
# NODES 22,662 24,492 10,000 11,758 48,921 1,632,803
# EDGES 32,927 93,050 39,402 519,000 153,540 30,622,564
METRIC ACC � ACC � ROC AUC � ROC AUC � ROC AUC � ACC �

GCN 73.69 ± 0.74 48.70 ± 0.63 89.75 ± 0.52 83.64 ± 0.67 76.09 ± 1.27 75.45 ± 0.17
GAT(-SEP) 88.75 ± 0.41 52.70 ± 0.62 93.91 ± 0.35 83.78 ± 0.43 76.79 ± 0.71 72.23 ± 0.18

GPS 82.00 ± 0.61 53.10 ± 0.42 90.63 ± 0.67 83.71 ± 0.48 71.73 ± 1.47 OOM
NAGPHORMER 74.34 ± 0.77 51.26 ± 0.72 84.19 ± 0.66 78.32 ± 0.95 68.17 ± 1.53 76.59 ± 0.25
EXPHORMER 89.03 ± 0.37 53.51 ± 0.46 90.74 ± 0.53 83.77 ± 0.78 73.94 ± 1.06 OOM
POLYNORMER 92.55 ± 0.37 54.81 ± 0.49 97.46 ± 0.36 85.91 ± 0.74 78.92 ± 0.89 86.10 ± 0.05

NEURALWALKER 92.92 ± 0.36 54.58 ± 0.36 97.82 ± 0.40 85.56 ± 0.74 78.52 ± 1.13 86.46 ± 0.09

Table 6: Ablation studies of NeuralWalker. Average validation performance over 4 runs is reported.

(a) Comparison of local and global message passing
(MP). The sequence layer is fixed to Mamba. VN de-
notes the virtual node and Trans. denotes the trans-
former layer.

MP (LOCAL + GLOBAL) ZINC� CIFAR10� PASCALVOC-SP�

GIN + W/O 0.085 80.885 0.4611
W/O + W/O 0.090 79.035 0.4525

GIN + VN 0.078 78.610 0.4672
GIN + TRANS. 0.083 80.755 0.4877
GIN + W/O 0.085 80.885 0.4611

(b) Comparison of sequence layers. Local and global
MP are selected to give the best validation perfor-
mance except for the highlighted row corresponding
to CRaWL, which does not use message passing.

SEQUENCE LAYER ZINC� CIFAR10� PASCALVOC-SP�

MAMBA 0.078 80.885 0.4877
MAMBA (W/O BID) 0.089 74.910 0.4522
S4 0.082 77.970 0.4559
CNN 0.088 80.665 0.4652
TRANS. 0.084 72.850 0.4316
CNN (W/O MP) 0.116 78.760 0.3954

Comparison of sequence layer architectures. We investigated the impact of various sequence layer
architectures on walk embeddings, as shown in Table 6b. The architectures examined include CNN,
transformer (with RoPE), and SSMs like S4 and Mamba. Surprisingly, transformers consistently
underperformed compared to other architectures, contrasting with their good performance in other
domains. This discrepancy may be attributed to the unique sequential nature of walk embeddings,
which might not align well with the attention mechanism utilized by transformers.

Mamba emerged as the top performer across all datasets, consistently outperforming its predecessors,
S4 and the unidirectional version. However, CNNs present a compelling alternative for large datasets
due to their faster computation (typically 2-3x faster than Mamba on A100). This presents a practical
trade-off: Mamba offers superior accuracy but requires more computational resources. CNNs
might be preferable for very large datasets or real-time applications where speed is critical. In
our benchmarking experiments, we employed Mamba as the sequence layer, except for the OGB
datasets. Finally, as predicted by Thm. 4.4, both our Mamba and CNN variants with message passing
significantly outperform CRaWL which relies on CNNs and does not use any message passing.

Impact of random walk sampling strategies. We examined the impact of varying random walk
sampling rates and lengths on NeuralWalker’s performance, using Mamba as the sequence layer.
While we adjusted the sampling rate during training, we fixed it at 1.0 for inference to maximize
coverage. As anticipated, a larger number of longer walks led to improved coverage of the graph’s
structure, resulting in clear performance gains (Figure 3). However, this improvement plateaus as
walks become sufficiently long, indicating diminishing returns beyond a certain threshold. Crucially,
these performance gains come at the cost of increased computation time, which scales linearly with
both sampling rate and walk length, as predicted by Thm. 4.5. This underscores the trade-off between
expressivity and complexity, which can be explicitly controlled through these two hyperparameters. In
practice, this trade-off between performance and computational cost necessitates careful consideration
of resource constraints when selecting sampling rates and walk lengths. Future research could explore
more efficient sampling strategies to minimize the necessary sampling rate.

10



6 Conclusion

We have introduced NeuralWalker, a powerful and flexible architecture that combines random walks
and message passing to address the expressivity limitations of structural encoding in graph learning.
By treating random walks as sequences and leveraging advanced sequence modeling techniques,
NeuralWalker achieves superior performance compared to existing GNNs and GTs, as demonstrated
through extensive experiments on various benchmarks. Looking forward, we acknowledge opportuni-
ties for further exploration. First, investigating more efficient random walk sampling strategies with
improved graph coverage could potentially enhance NeuralWalker’s performance. Second, exploring
more self-supervised learning techniques for learning on random walks holds promise for extending
NeuralWalker’s applicability to unlabeled graphs.

Limitations. NeuralWalker demonstrates good scalability to large graphs. However, one potential
limitation lies in the trade-off between the sampling efficiency of random walks and graph coverage
for very large graphs. In this work, we explored a computationally efficient sampling strategy but
probably not with the optimal graph coverage. Investigating more efficient random walk sampling
strategies that improve coverage while maintaining computational efficiency could further enhance
NeuralWalker’s performance.

Additionally, we identify a scarcity of publicly available graph datasets with well-defined long-range
dependencies. While datasets like LRGB provide valuable examples, the limited number of such
datasets hinders comprehensive evaluation and the potential to push the boundaries of long-range
dependency capture in graph learning tasks. Furthermore, based on our experiments and [47], only 2
out of the 5 datasets in LRGB seem to present long-range dependencies.

Broader impacts. While our research primarily focuses on general graph representation learning,
we recognize the importance of responsible and ethical application in specialized fields. When
utilized in domains such as drug discovery or computational biology, careful attention must be paid
to ensuring the trustworthiness and appropriate use of our method to mitigate potential misuse. Our
extensive experiments demonstrate the significant potential of our approach in both social network
and biological network analysis, highlighting the promising societal benefits our work may offer in
these specific areas.

Acknowledgements

We thank Luis Wyss and Trenton Chang for their insightful feedback on the manuscript.

References
[1] Romas Aleliunas, Richard M Karp, Richard J Lipton, László Lovász, and Charles Rackoff.

Random walks, universal traversal sequences, and the complexity of maze problems. In
Symposium on Foundations of Computer Science (SFCS), 1979.

[2] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical
implications. In International Conference on Learning Representations (ICLR), 2021.

[3] Pablo Barceló, Egor V Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan-Pablo Silva.
The logical expressiveness of graph neural networks. In International Conference on Learning
Representations (ICLR), 2020.

[4] Ali Behrouz and Farnoosh Hashemi. Graph mamba: Towards learning on graphs with state
space models. arXiv preprint arXiv:2402.08678, 2024.

[5] Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In International
conference on data mining (ICDM), 2005.

[6] Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Improving
graph neural network expressivity via subgraph isomorphism counting. IEEE Trans. Pattern
Anal. Mach. Intell., 45(1):657–668, 2023.

[7] Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553, 2017.

11



[8] Dexiong Chen, Laurent Jacob, and Julien Mairal. Convolutional kernel networks for graph-
structured data. In International Conference on Machine Learning (ICML), 2020.

[9] Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
representation learning. In International Conference on Machine Learning (ICML), 2022.

[10] Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph
transformer for node classification in large graphs. In International Conference on Learning
Representations (ICLR), 2022.

[11] Ching-Yao Chuang and Stefanie Jegelka. Tree mover’s distance: Bridging graph metrics and
stability of graph neural networks. In Advances in Neural Information Processing Systems
(NeurIPS), 2022.

[12] Chenhui Deng, Zichao Yue, and Zhiru Zhang. Polynormer: Polynomial-expressive graph
transformer in linear time. In International Conference on Learning Representations (ICLR),
2024.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the North
American Chapter of the Association for Computational Linguistics (NAACL), 2019.

[14] R.M̃. Dudley. Real analysis and probability. Cambridge University Press, 2018.
[15] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.

Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations (ICLR), 2021.

[16] Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long range graph benchmark. In Advances in Neural Information
Processing Systems (NeurIPS), 2022.

[17] Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio,
and Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning
Research, 24(43):1–48, 2023.

[18] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[19] Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness results and
efficient alternatives. In Conference on Learning Theory (COLT). Springer, 2003.

[20] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning
(ICML), 2017.

[21] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
Conference on Knowledge Discovery and Data Mining (KDD), 2016.

[22] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023.

[23] Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations (ICLR), 2021.

[24] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In International Conference on
Learning Representations (ICLR), 2019.

[25] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open Graph Benchmark: Datasets for Machine Learning on Graphs.
In Advances in Neural Information Processing Systems (NeurIPS), 2020.

[26] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In International Conference on
Learning Representations (ICLR), 2020.

[27] Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. Marginalized kernels between labeled
graphs. In International Conference on Machine Learning (ICML), 2003.

[28] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations (ICLR), 2016.

12



[29] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. In Advances in Neural Information
Processing Systems (NeurIPS), 2021.

[30] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[31] Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

[32] László Lovász. Random walks on graphs. Combinatorics, Paul erdos is eighty, 2(1-46):4, 1993.
[33] Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates,

Philip Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing.
In International Conference on Machine Learning (ICML), 2023.

[34] Pierre Mahé, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, and Jean-Philippe Vert. Graph
kernels for molecular structure-activity relationship analysis with support vector machines.
Journal of chemical information and modeling, 45(4):939–951, 2005.

[35] Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph
structure in transformers. arXiv preprint arXiv:2106.05667, 2021.

[36] Gaspard Michel, Giannis Nikolentzos, Johannes F Lutzeyer, and Michalis Vazirgiannis. Path
neural networks: Expressive and accurate graph neural networks. In International Conference
on Machine Learning (ICML), 2023.

[37] Alfred Müller. Integral probability metrics and their generating classes of functions. Advances
in applied probability, 29(2):429–443, 1997.

[38] Giannis Nikolentzos and Michalis Vazirgiannis. Random walk graph neural networks. In
Advances in Neural Information Processing Systems (NeurIPS), 2020.

[39] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for
node classification. In International Conference on Learning Representations (ICLR), 2020.

[40] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. In Conference on Knowledge Discovery and Data Mining (KDD), 2014.

[41] Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila
Prokhorenkova. A critical look at the evaluation of gnns under heterophily: Are we really
making progress? In International Conference on Learning Representations (ICLR), 2022.

[42] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in
Neural Information Processing Systems (NeurIPS), 2022.

[43] Eran Rosenbluth, Jan Tönshoff, Martin Ritzert, Berke Kisin, and Martin Grohe. Distinguished
in uniform: Self-attention vs. virtual nodes. In International Conference on Learning Represen-
tations (ICLR), 2024.

[44] Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal
Sinop. Exphormer: Sparse transformers for graphs. In International Conference on Machine
Learning (ICML), 2023.

[45] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

[46] Mahito Sugiyama and Karsten Borgwardt. Halting in random walk kernels. In Advances in
Neural Information Processing Systems (NeurIPS), 2015.

[47] Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go?
reassessing the long-range graph benchmark. In Learning on Graphs Conference, 2023.

[48] Jan Tönshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Walking out of the weisfeiler
leman hierarchy: Graph learning beyond message passing. Transactions on Machine Learning
Research (TMLR), 2023.

[49] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2017.

13

http://snap.stanford.edu/data


[50] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations
(ICLR), 2018.

[51] Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and
efficient estimation. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

[52] Chloe Wang, Oleksii Tsepa, Jun Ma, and Bo Wang. Graph-mamba: Towards long-range graph
sequence modeling with selective state spaces. arXiv preprint arXiv:2402.00789, 2024.

[53] Shida Wang and Beichen Xue. State-space models with layer-wise nonlinearity are universal ap-
proximators with exponential decaying memory. In Advances in Neural Information Processing
Systems (NeurIPS), 2024.

[54] Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion
Stoica. Representing long-range context for graph neural networks with global attention. In
Advances in Neural Information Processing Systems (NeurIPS), 2021.

[55] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019.

[56] Dmitry Yarotsky. Universal approximations of invariant maps by neural networks. Constructive
Approximation, 55(1):407–474, 2022.

[57] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform badly for graph representation? In Advances
in Neural Information Processing Systems (NeurIPS), 2021.

[58] Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar.
Are transformers universal approximators of sequence-to-sequence functions? In International
Conference on Learning Representations (ICLR), 2020.

[59] Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang.
Vision mamba: Efficient visual representation learning with bidirectional state space model.
arXiv preprint arXiv:2401.09417, 2024.

[60] Wenhao Zhu, Tianyu Wen, Guojie Song, Liang Wang, and Bo Zheng. On structural expressive
power of graph transformers. In Conference on Knowledge Discovery and Data Mining (KDD),
2023.

14



Appendix

This appendix provides both theoretical and experimental materials and is organized as follows:
Section A provides a more detailed background of related work. Section B presents some additional
remarks on Neural Walker, including limitations and societal impacts. Section C provides theoretical
background and proofs. Section D provides experimental details and additional results.

A Background

A.1 Message-Passing Graph Neural Networks

Graph Neural Networks (GNNs) refine node representations iteratively by integrating information
from neighboring nodes. Xu et al. (2019) [55] provide a unifying framework for this process, consist-
ing of three key steps: AGGREGATE, COMBINE, and READOUT. Various GNN architectures can
be seen as variations within these functions.

In each layer, the AGGREGATE step combines representations from neighboring nodes (e.g., using
sum or mean), which are then merged with the node’s previous representation in the COMBINE
step. This is typically followed by a non-linear activation function, such as ReLU. The updated
representations are then passed to the next layer, and this process repeats for each layer in the network.
These steps primarily capture local sub-structures, necessitating a deep network to model interactions
across the entire graph.

The READOUT function ultimately aggregates node representations to the desired output granularity,
whether at the node or graph level. Both AGGREGATE and READOUT steps must be permutation
invariant. This framework offers a comprehensive perspective for understanding the diverse array of
GNN architectures.

A.2 Transformer on Graphs

While Graph Neural Networks (GNNs) explicitly utilize graph structures, Transformers infer node
relationships by focusing on node attributes. Transformers, introduced by [49], treat the graph as a
(multi-)set of nodes and use self-attention to determine node similarity.

A Transformer consists of two main components: a self-attention module and a feed-forward neural
network (FFN). In self-attention, input features X are linearly projected into query (Q), key (K), and
value (V) matrices. Self-attention is then computed as:

Attn(X) := softmax

(
QKT

√
dout

)
V ∈ Rn×dout ,

where dout is the dimension of Q. Multi-head attention, which concatenates multiple instances of this
equation, has proven effective in practice.

A Transformer layer combines self-attention with a skip connection and FFN:
X′ = X+Attn(X),

X′′ = FFN(X′) := ReLU(X′W1)W2.

Stacking multiple layers forms a Transformer model, resulting in node-level representations. However,
due to self-attention’s permutation equivariance, Transformers produce identical representations for
nodes with matching attributes, regardless of their graph context. Thus, incorporating structural
information, typically through positional or structural encoding such as Laplacian positional encoding
or random walk structural encoding [15, 42], is crucial.

A.3 State Space Models

As we treat random walks explicitly as sequences, recent advances in long sequence modeling could
be leveraged directly to model random walks. SSMs are a type of these models that have shown

15



promising performance in long sequence modeling. SSMs map input sequence x(t) ∈ R to some
response sequence y(t) ∈ R through an implicit state h(t) ∈ RN and three parameters (A,B,C):

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t).

For computational reasons, structured SSMs (S4) [23] proposes to discretize the above system by
introducing a time step variable ∆ and a discretization rule, leading to a reparametrization of the
parameters A and B. Then, the discrete-time SSMs can be computed in two ways either as a linear
recurrence or a global convolution. Recently, a selection mechanism [22] has been introduced
to control which part of the sequence can flow into the hidden states, making the parameters in
SSMs time and data-dependent. The proposed model, named Mamba, significantly outperforms
its predecessors and results in several successful applications in many tasks. More recently, a
bidirectional version of Mamba [59] has been proposed to handle image data, by averaging the
representations of both forward and backward sequences after each Mamba block.

B Additional Remarks on Neural Walker

B.1 Illustration of the Position Encodings for Random Walks

Here, we give a visual example of the positional encodings that we presented in Section 3.2. The
example is shown in Figure 4.

4

5

63

2

7

8

1

6

5

3

4

6

Walk p

Identity Encoding

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1







Adjacency Encoding

0 0 0

0 0 0

0 0 0

0 0 1

0 0 0







Figure 4: An example of the identity encoding and adjacency encoding presented in Secion 3.2. On
the random walk colored in red, we have idW [4, 3] = 1 as w4 = w0 = 6. We have adjW [3, 2] = 1
as w3w0 ∈ E is an edge of the graph.

B.2 Global Message Passing Techniques

Even though long random walks could be sufficient to capture global information, we empirically
found that global message passing is still useful in certain tasks. Here, we consider two techniques,
namely virtual node and transformer layer. Similar to Gilmer et al. [20], Tönshoff et al. [48], a
virtual node layer could be a simple solution to achieve this. Such a layer is explicitly defined as the
following:

ht
V (⋆) = MLP

(
ht−1
V (⋆) +

∑

v∈V

hmp
V (v)

)
, hvn

V (v) := hmp
V (v) + ht

V (⋆), (8)

where MLP is a trainable MLP, ht
V (⋆) represents the virtual node embedding at block t and h0

V (⋆) =
0. Alternatively, one could use any transformer layer to achieve this. The vanilla transformer layer is
given by:

hattn
V (v) = hmp

V (v) + Attn(hmp
V )(v), htrans

V (v) = hattn
V (v) +MLP(hattn

V (v)), (9)

where Attn is a trainable scaled dot-product attention layer [49]. This layer is widely used in recent
GT models [57, 9, 42].

16



C Theoretical Results

In this section, we present the background of random walks on graphs and the theoretical properties
of NeuralWalker.
Definition C.1 (Walk feature vector). For any graph G = (V,E, x, z) and W ∈ Wℓ(G), the walk
feature vector XW of W is defined, by concatenating the node and edge feature vectors as well as
the positional encodings along W of window size s = ℓ, as

XW = (x(wi), z(wiwi+1), hpe[i])i=0,...,ℓ ∈ R(ℓ+1)×dwalk ,

where hpe is the positional encoding in Section 3.2, z(wℓwℓ+1) = 0, and dwalk := d+ d′ + dpe. By
abuse of notation, we denote by W(G) the set of walk feature vectors on G, and by P (W(G)) a
distribution of walk feature vectors on G.
Lemma C.2. The walk feature vector with full graph coverage uniquely determines the graph, i.e.,
for two graphs G and G′ in Gn if there exists a walk W ∈ Wℓ(G) visiting all nodes on G and a walk
W ′ ∈ Wℓ visiting all nodes on G′ such that XW = XW ′ , then G and G′ are isomorphic.

Proof. The proof is immediate following the Observation 1 of [48].

Now if we replace the normalization factor Nv(Pm(Wℓ(G))) in the walk aggregator in Section 3.3.3
with a simpler deterministic constant mℓ/|V | and apply an average pooling followed by a linear layer
x 7→ u⊤x+ b ∈ R to the output of the walk aggregator, then the resulting function gf,m,ℓ : G → R
defined on the graph space G can be rewritten as the average of some function of walk feature vectors:

gf,m,ℓ(G) =
1

m

∑

W∈Pm(Wℓ(G))

f(XW ), (10)

where
f(XW ) =

1

ℓ

∑

wi∈W

(u⊤fseq(hW )[i] + b), (11)

and hW defined in Eq. (1) depend on XW .

Note that the above replacement of the normalization factor is not a strong assumption. It is based on
the following lemmas:
Lemma C.3 ([32]). Let G be a connected graph. For a random walk W ∼ P (W(G)) with
W = (w0, w1, . . . , wt, . . . ), we denote by Pt the distribution of wt. Then,

π(v) =
d(v)

2|E|
,

where d(v) denotes the degree of node v, is the (unique) stationary distribution, i.e., if P0 = π then
Pt = P0 for any t. If P0 = π(v), then we have

E[Nv(Pm(Wℓ(G)))] =
mℓd(v)

2|E|
.

In particular, if G is a regular graph, π(v) = 1/|V | is the uniform distribution nad
E[Nv(Pm(Wℓ(G)))] = mℓ/|V |.
Lemma C.4 ([32]). If G is a non-bipartite graph, then Pt → π(v) as t → ∞.

The above two lemmas link the random normalization factor to the deterministic one.

If we have a sufficiently large number of random walks, by the law of large numbers, we have

gf,m,ℓ(G)
a.s.−−→ gf,ℓ := EXW∼P (Wℓ(G))[f(XW )], (12)

where a.s.−−→ denotes the almost sure convergence. This observation inspires us to consider the
following integral probability metric [37] comparing distributions of walk feature vectors:

dF,ℓ(G,G′) := sup
f∈F

∣∣EXW∼P (Wℓ(G))[f(XW )]− EXW ′∼P (Wℓ(G′))[f(XW ′)]
∣∣ , (13)

where F is some functional class, such as the class of neural networks defined by the NeuralWalker
model. The following result provides us insight into the rate of convergence of gf,m,ℓ to gf,ℓ:

17



Theorem C.5 (Convergence rate). Assume that Var[f(XW )] = σ2 < ∞. Then, as m tends to
infinity, we have

√
m (gf,m,ℓ(G)− gf,ℓ(G))

d−→ N (0, σ2),

where d−→ denotes the convergence in distribution.

Proof. The proof follows the central limit theorem [14].

dF,ℓ is actually a metric on the graph space Gn of bounded order n if F is a universal space and ℓ is
sufficiently large:
Theorem C.6. If F is a universal space and ℓ ≥ 4n3, then dF,ℓ : G × G → R+ is a metric on Gn

satisfying:

• (positivity) if G and G′ are non-isomorphic, then dF,ℓ(G,G′) > 0.

• (symmetry) dF,ℓ(G,G′) = dF,ℓ(G
′, G).

• (triangle inequality) dF,ℓ(G,G′′) ≤ dF,ℓ(G,G′) + dF,ℓ(G
′, G′′).

Proof. The symmetry and triangle inequality are trivial by definition of dF,ℓ. Let us focus on
the positivity. We assume that dF,ℓ(G,G′) = 0. By the universality of F , for any ε > 0 and
f ∈ C(Rdwalk), the space of bounded continuous functions on Rdwalk , there exists a g ∈ F such that

∥f − g∥∞ ≤ ε.

We then make the expansion
∣∣EXW∼P (Wℓ(G))[f(XW )]− EXW ′∼P (Wℓ(G′))[f(XW ′)]

∣∣ ≤∣∣EXW∼P (Wℓ(G))[f(XW )]− EXW∼P (Wℓ(G))[g(XW )]
∣∣+∣∣EXW∼P (Wℓ(G))[g(XW )]− EXW ′∼P (Wℓ(G′))[g(XW ′)]
∣∣+∣∣EXW ′∼P (Wℓ(G′))[g(XW ′)]− EXW ′∼P (Wℓ(G′))[f(XW ′)]
∣∣ .

The first and third terms satisfy
∣∣EXW∼P (Wℓ(G))[f(XW )]− EXW∼P (Wℓ(G))[g(XW )]

∣∣ ≤ EXW∼P (Wℓ(G)) |f(XW )− g(XW )| ≤ ε,

and the second term equals 0 by assumption. Hence,
∣∣EXW∼P (Wℓ(G))[f(XW )]− EXW ′∼P (Wℓ(G′))[f(XW ′)]

∣∣ ≤ 2ε,

for all f ∈ C(Rdwalk) and ε > 0. This implies P (Wℓ(G)) = P (Wℓ(G
′)) by Lemma 9.3.2 of [14],

meaning that the distribution of walk feature vectors of length ℓ in G is identical to the distribution
in G′. Without loss of generality, we assume that G and G′ are connected and our arguments can
be easily generalized to each connected component if G is not connected. Now for a random walk
W ∼ P (W(G)), let us denote by TW the number of steps to reach every node on the graph. Then
E[TW ] is called the cover time. A well-known result in graph theory [1] states that the cover time is
upper bounded:

E[TW ] ≤ 4|V ||E|.
Therefore the cover time for graphs in Gn is uniformly bounded by E[TW ] ≤ 4n3 as |V | ≤ n and
|E| ≤ n2. Then, by applying Markov’s inequality, we have

P[TW < 4n3 + ϵ] = 1− P[TW ≥ 4n3 + ϵ] ≥ 1− E[TW ]

4n3 + ϵ
≥ ϵ

4n3 + ϵ
> 0,

for any ϵ > 0. Thus, P[TW ≤ 4n3] > 0 which means that there exists a random walk of not greater
than 4n3 that visits all nodes in G. As a result, there exists a random walk of length ℓ reaching all
nodes for ℓ ≥ 4n3. P (Wℓ(G)) = P (Wℓ(G

′)) implies that there also exists a random walk W ′ in G′

such that XW = XW ′ . As a consequence, G and G′ are isomorphic following Lemma C.2.

Now if we remove the condition on the random walk length ℓ, we still have a pseudometric space
without the positivity in Thm C.6. Moreover, we define the following isomorphism test:

18



Definition C.7 (k-subgraph isomorphism test). We define that two graphs G and G′ are not distin-
guishable by the k-subgraph isomorphism test iff they have the same set of subgraphs of size k, i.e.,
Sk(G) = Sk(G

′) with Sk(G) denoting the set of subgraphs of size k.

And we have the following result which provides a weak positivity of dF,ℓ for any ℓ > 0:
Theorem C.8. If G and G′ are distinguishable by the (⌊ℓ/2⌋+ 1)-subgraph isomorphism test, then
dF,ℓ(G,G′) > 0.

Proof. We assume that dF,ℓ(G,G′) = 0. Using the same arguments as in Thm. C.6, we have
P (Wℓ(G)) = P (Wℓ(G

′)). Let k := ⌊ℓ/2⌋ + 1. For any subgraph H ∈ Sk(G), there exists a walk
of length ℓ, in the worst case, that visits all its nodes. To see this, let us assume that G is connected
without loss of generality. Then, there exists a spanning tree of H . Through a depth-first search on
this spanning tree, there exists a walk of length 2(k − 1) ≤ ℓ that visits all the nodes, by visiting
each edge at most twice in the spanning tree. Now as G and G′ have the same distributions of walk
feature vectors, the same walk feature vector should be found in G′, thus H ∈ Sk(G

′). Thus, we
have Sk(G) ⊆ Sk(G

′). Similarly, we have the other inclusion and therefore Sk(G) = Sk(G
′).

C.1 Stability Results

Now that we have a metric space (Gn, dF,ℓ) with ℓ ≥ 4n3, we can show some useful properties of
gf,ℓ:
Theorem C.9 (Lipschiz continuity of gf,ℓ). For any G and G′ in Gn, if F is a functional space
containing f , we have

|gf,ℓ(G)− gf,ℓ(G
′)| ≤ dF,ℓ(G,G′). (14)

Proof. The proof is immediate from the definition of dF,ℓ.

The Lipschiz property is needed for stability to perturbations in the sense that if G′ is close to G in
(Gn, dF,ℓ), then their images by gf,ℓ (output of the model) are also close.

C.2 Expressivity Results

Theorem C.10 (Injectivity of gf,ℓ). Assume F is a universal space. If G and G′ are non-isomorphic
graphs, then there exists a f ∈ F such that gf,ℓ(G) ̸= gf,ℓ(G

′) if ℓ ≥ 4max{|V |, |V ′|}3.

Proof. We can prove this by contrapositive. We note that G,G′ ∈ Gnmax
with nmax :=

max{|V |, |V ′|}. Assume that for all f ∈ F , gf,ℓ(G) = gf,ℓ(G
′). This implies that dF,ℓ(G,G′) = 0.

Then by the positivity of dF,ℓ in Gnmax
, G and G′ are isomorphic.

The injectivity property ensures that our model with a sufficiently large number of sufficiently long
(≥ 4n3) random walks can distinguish between non-isomorphic graphs, highlighting its expressive
power.

Complementary to the above results, we now show that the expressive power of our model exceeds
that of ordinary message passing neural networks even when considering random walks of small
size. Additionally, we show that the expressive power of our model is stronger than the subgraph
isomorphism test up to a certain size. We base the following theorem on NeuralWalker’s ability to
distinguish between substructures:
Theorem C.11. For any ℓ ≥ 2, NeuralWalker equipped with the complete walk set Wℓ is strictly more
expressive than 1-WL and the (⌊ℓ/2⌋+ 1)-subgraph isomorphism test, and thus ordinary MPNNs.

For the subgraph isomorphism test, we simply use the above theorem and Thm. C.8 which suggests
that there exists a f ∈ F such that gf,ℓ(G) ̸= gf,ℓ(G

′) if G and G′ are distinguishable by the
(⌊ℓ/2⌋+ 1)-subgraph isomorphism test. Note that 1-WL distinguishable graphs are not necessarily
included in (⌊ℓ/2⌋+ 1)-subgraph isomorphism distinguishable graphs as the size of WL-unfolding
subtrees could be arbitrarily large.

In order to prove the 1-WL expressivity, we first state a result on the expressive power of the walk
aggregator function. We show that there exist aggregation functions such that for a node v this

19



function counts the number of induced subgraphs that v is part of. Since v assumes a particular role
(also refered to as orbit) in the subgraph, we are essentially interested in the subgraph rooted at v.
In the following, let Gv denote the graph G rooted at node v. Then, the set xℓ(G, v) = {{Gv =
G[{w0, . . . , wk = v}],W = (w0, . . . , wℓ),W ∈ Wℓ(G)}} corresponds to the set of subgraphs with
root v that are identified when using random walks of size ℓ.
Lemma C.12. There exists a function hV

agg such that for any node v ∈ G, v′ ∈ G′ and walk length ℓ,
it holds that hV

agg(v) = hV
agg(v

′) if and only if xℓ(G, v) = xℓ(G
′, v′).

Proof. For simplicity, we assume graphs to be unlabeled, by noting that a generalization to the
labeled case requires only slight modifications. Recall that the positional encoding of a walk W
encodes the pairwise adjacency of nodes contained in W . More formally, for a length-ℓ walk
W ∈ Wℓ(G), the k-th row of the corresponding walk feature vector XW encodes the induced
subgraph G[{w0, . . . , wk}]. Assuming wk = v, we can also infer about the structural role of v in
G[{w0, . . . , wk}]. Now, the function hV

agg aggregates this induced subgraph information for sets of
subgraphs into node embeddings. That is, for a node v ∈ G and the set of walks Wℓ(G), the function
hV

agg(v) maps v to an embedding that aggregates the set {{Gv = G[{w0, . . . , wk = v}],W =
(w0, . . . , wℓ),W ∈ Wℓ(G)}}. By considering the complete set of walks Wℓ(G), we guarantee a
deterministic embedding. Assuming a sufficiently powerful neural network, it is easy to see that such
a function hV

agg can be realized by our model. The claim immediately follows.

Notice that the above theorem is defined on the entire set of walks of up to size ℓ in order to ensure
a complete enumeration of subgraphs. By using an aggregation function that fulfills Lemma C.12,
the resulting node embeddings encode the set of induced subgraphs that the nodes are part of. For
example, with walk length ℓ = 2, the node embeddings contain information about the number of
triangles that they are part of. In the subsequent message passing step, NeuralWalker propagates this
subgraph information. Analogously to e.g. [6], it can easily be shown that with a sufficient number
of such message passing layers and a powerful readout network, the resulting graph representations
are strictly more powerful than ordinary MPNNs, proving Thm. C.11 above.

C.3 Complexity Results

Theorem C.13 (Complexity). The complexity of NeuralWalker, when used with the Mamba sequence
layer [22], is O(kdn(γℓ+ β)), where k, d, n, γ, ℓ, β denote the number of layers, hidden dimensions,
the (maximum) number of nodes, sampling rate, length of random walks, and the average degree,
respectively.

Proof. The complexity of sampling random walks is O(nγℓ). The Mamba model with k layers and
hidden dimensions d operates on O(nγ) random walks of length ℓ. As Mamba scales linearly to the
sequence length, number of layers, and hidden dimensions [22], its complexity is O(kdnγℓ). The
complexity of k message passing layers of hidden dimensions d is O(kdnβ) where β should be much
smaller than γℓ in general.

D Experimental Details and Additional Results

In this section, we provide implementation details and additional experimental results

D.1 Dataset Description

We provide details of the datasets used in our experiments. For each dataset, we follow their respective
training protocols and use the standard train/validation/test splits and evaluation metrics.

ZINC (MIT License) [17]. The ZINC dataset is a subset of the ZINC database, containing 12,000
molecular graphs representing commercially available chemical compounds. These graphs range
from 9 to 37 nodes in size, with each node corresponding to a "heavy atom" (one of 28 possible types)
and each edge representing a bond (one of 3 types). The goal is to predict the constrained solubility
(logP) using regression. The dataset is conveniently pre-split for training, validation, and testing, with
a standard split of 10,000/1,000/1,000 molecules for each set, respectively.

20



Table 7: Summary of the datasets [17, 16, 25] used in this study.
DATASET # GRAPHS

AVG. # AVG. # DIRECTED
PREDICTION PREDICTION METRIC

NODES EDGES LEVEL TASK

ZINC 12,000 23.2 24.9 NO GRAPH REGRESSION MEAN ABS. ERROR
MNIST 70,000 70.6 564.5 YES GRAPH 10-CLASS CLASSIF. ACCURACY
CIFAR10 60,000 117.6 941.1 YES GRAPH 10-CLASS CLASSIF. ACCURACY
PATTERN 14,000 118.9 3,039.3 NO INDUCTIVE NODE BINARY CLASSIF. ACCURACY
CLUSTER 12,000 117.2 2,150.9 NO INDUCTIVE NODE 6-CLASS CLASSIF. ACCURACY

PASCALVOC-SP 11,355 479.4 2,710.5 NO INDUCTIVE NODE 21-CLASS CLASSIF. F1 SCORE
COCO-SP 123,286 476.9 2,693.7 NO INDUCTIVE NODE 81-CLASS CLASSIF. F1 SCORE
PEPTIDES-FUNC 15,535 150.9 307.3 NO GRAPH 10-TASK CLASSIF. AVG. PRECISION
PCQM-CONTACT 529,434 30.1 61.0 NO INDUCTIVE LINK LINK RANKING MRR
PEPTIDES-STRUCT 15,535 150.9 307.3 NO GRAPH 11-TASK REGRESSION MEAN ABS. ERROR

OGBG-MOLPCBA 437,929 26.0 28.1 NO GRAPH 128-TASK CLASSIF. AVG. PRECISION
OGBG-PPA 158,100 243.4 2,266.1 NO GRAPH 37-TASK CLASSIF. ACCURACY
OGBG-CODE2 452,741 125.2 124.2 YES GRAPH 5 TOKEN SEQUENCE F1 SCORE

Table 8: Summary of the datasets for transductive node classification [41, 30] used in this study.
DATASET HOMOPHILY SCORE # NODES # EDGES # CLASSES METRIC

ROMAN-EMPIRE 0.023 22,662 32,927 18 ACCURACY
AMAZON-RATINGS 0.127 24,492 93,050 5 ACCURACY
MINESWEEPER 0.009 10,000 39,402 2 ROC AUC
TOLOKERS 0.187 11,758 519,000 2 ROC AUC
QUESTIONS 0.072 48,921 153,540 2 ROC AUC
POKEC 0.000 1,632,803 30,622,564 2 ACCURACY

MNIST and CIFAR10 (CC BY-SA 3.0 and MIT License) [17]. MNIST and CIFAR10 are adapted
for graph-based learning by converting each image into a graph. This is achieved by segmenting the
image into superpixels using SLIC (Simple Linear Iterative Clustering) and then connecting each
superpixel to its 8 nearest neighbors. The resulting graphs maintain the original 10-class classification
task and standard dataset splits (i.e., 55K/5K/10K train/validation/test for MNIST and 45K/5K/10K
for CIFAR10.).

PATTERN and CLUSTER (MIT License) [17]. PATTERN and CLUSTER are synthetic graph
datasets constructed using the Stochastic Block Model (SBM). They offer a unique challenge for
inductive node-level classification, where the goal is to predict the class label of unseen nodes.
PATTERN: This dataset presents the task of identifying pre-defined sub-graph patterns (100 possible)
embedded within the larger graph. These embedded patterns are generated from distinct SBM
parameters compared to the background graph, requiring the model to learn these differentiating
connection characteristics. CLUSTER: Each graph in CLUSTER consists of six pre-defined clusters
generated using the same SBM distribution. However, only one node per cluster is explicitly labeled
with its unique cluster ID. The task is to infer the cluster membership (ID) for all remaining nodes
based solely on the graph structure and node connectivity information.

PASCALVOC-SP and COCO-SP (Custom license for Pascal VOC 2011 respecting Flickr terms
of use, and CC BY 4.0 license) [16]. PascalVOC-SP and COCO-SP are graph datasets derived
from the popular image datasets Pascal VOC and MS COCO, respectively. These datasets leverage
SLIC superpixellization, a technique that segments images into regions with similar properties. In
both datasets, each superpixel is represented as a node in a graph, and the classification task is to
predict the object class that each node belongs to.

PEPTIDES-FUNC and PEPTIDES-STRUCT (CC BY-NC 4.0) [16]. Peptides-func and Peptides-
struct offer complementary views of peptide properties by leveraging atomic graphs derived from
the SATPdb database. Peptides-func focuses on multi-label graph classification, aiming to predict
one or more functional classes (out of 10 non-exclusive categories) for each peptide. In contrast,
Peptides-struct employs graph regression to predict 11 continuous 3D structural properties of the
peptides.

PCQM-CONTACT (CC BY 4.0) [16]. The PCQM-Contact dataset builds upon PCQM4Mv2 [25]
by incorporating 3D molecular structures. This enables the task of binary link prediction, where
the goal is to identify pairs of atoms (nodes) that are considered to be in close physical proximity

21



(less than 3.5 angstroms) in 3D space, yet appear far apart (more than 5 hops) when looking solely
at the 2D molecular graph structure. The standard evaluation metric for this ranking task is Mean
Reciprocal Rank (MRR). As noticed by [47], the original implementation by [16] suffers from false
negatives and self-loops. Thus, we use the filtered version of the MRR provided by [47].

OGBG-MOLPCBA (MIT License) [25]. The ogbg-molpcba dataset, incorporated by the Open
Graph Benchmark (OGB) [25] from MoleculeNet, focuses on multi-task binary classification of
molecular properties. This dataset leverages a standardized node (atom) and edge (bond) feature
representation that captures relevant chemophysical information. Derived from PubChem BioAssay,
ogbg-molpcba offers the task of predicting the outcome of 128 distinct bioassays, making it valuable
for studying the relationship between molecular structure and biological activity.

OGBG-PPA (CC-0 license) [25]. The PPA dataset, introduced by OGB [25], focuses on species
classification. This dataset represents protein-protein interactions within a network, where each
node corresponds to a protein and edges denote associations between them. Edge attributes provide
additional information about these interactions, such as co-expression levels. We employ the standard
dataset splits established by OGB [25] for our analysis.

OGBG-CODE2 (MIT License) [25]. CODE2 [25] is a dataset containing source code from the
Python programming language. It is made up of Abstract Syntax Trees where the task is to classify
the sub-tokens that comprise the method name. We use the standard splits provided by OGB [25].

ROMAN-EMPIRE (MIT License) [41]. This dataset creates a graph from the Roman Empire
Wikipedia article. Each word becomes a node, and edges connect words that are either sequential
in the text or grammatically dependent (based on the dependency tree). Nodes are labeled by their
syntactic role ( 17 most frequent roles are selected as unique classes and all the other roles are grouped
into the 18th class). We use the standard splits provided by [41].

AMAZON-RATINGS (MIT License) [41]. Based on the Amazon product co-purchase data, this
dataset predicts a product’s average rating (5 classes). Products (books, etc.) are nodes, connected
if frequently bought together. Mean fastText embeddings are used for product descriptions as node
features and focus on the largest connected component for efficiency (5-core). We use the standard
splits provided by [41].

MINESWEEPER (MIT License) [41]. This is a synthetic dataset with a regular 100x100 grid where
nodes represent cells. Each node connects to its eight neighbors (except edges). 20% of nodes are
randomly mined. The task is to predict which are mines. Node features are one-hot-encoded numbers
of neighboring mines, but are missing for 50% of nodes (marked by a separate binary feature). This
grid structure differs from other datasets due to its regularity (average degree: 7.88). Since mines are
random, both adjusted homophily and label informativeness are very low. We use the standard splits
provided by [41].

TOLOKERS (MIT License) [41]. This dataset features workers (nodes) from crowdsourcing
projects. Edges connect workers who have collaborated on at least one of the 13 projects. The
task is to predict banned workers. Node features include profile information and performance statis-
tics. This graph (11.8K nodes, avg. degree 88.28) is significantly denser compared to other datasets.
We use the standard splits provided by [41].

QUESTIONS (MIT License) [41]. This dataset focuses on user activity prediction. Users are nodes,
connected if they answered each other’s questions (Sept 2021 - Aug 2022). The task is to predict
which users remained active. User descriptions (if available) are encoded using fastText embeddings.
Notably, 15% lack descriptions and are identified by a separate feature. We use the standard splits
provided by [41].

POKEC (unknown License) [30]. This dataset was retrieved from SNAP [30] and preprocessed
by [31]. The dataset contains anonymized data of the whole network of Pokec, the most popular
online social network in Slovakia which has been provided for more than 10 years and connects more
than 1.6 million people. Profile data contains gender, age, hobbies, interests, education, etc, and the

22



Table 9: Hyperparameters for the 5 datasets from GNN Benchmarks [17].
HYPERPARAMETER ZINC MNIST CIFAR10 PATTERN CLUSTER
# BLOCKS 3 3 3 3 16
HIDDEN DIM 80 80 80 80 32
SEQUENCE LAYER MAMBA (BIDIRECTIONAL)
LOCAL MESSAGE PASSING GIN
GLOBAL MESSAGE PASSING VN NONE NONE VN VN
DROPOUT 0.0 0.0 0.0 0.0 0.0
GRAPH POOLING SUM MEAN MEAN – –

RW SAMPLING RATE 1.0 0.5 0.5 0.5 0.5
RW LENGTH 50 50 50 100 200
RW POSITION ENCODING WINDOW SIZE 8 8 8 16 32
BATCH SIZE 50 32 32 32 32
LEARNING RATE 0.002 0.002 0.002 0.002 0.01
# EPOCHS 2000 100 100 100 100
# WARMUP EPOCHS 50 5 5 5 5
WEIGHT DECAY 0.0 1E-6 1E-6 0.0 0.0

# PARAMETERS 502K 112K 112K 504K 525K
TRAINING TIME (EPOCH/TOTAL) 16S/8.4H 90S/2.5H 95S/2.6H 57S/1.6H 241S/6.7H

task is to predict the gender. The dataset was not released with a license. Thus, we only provide
numerical values without any raw texts from the dataset.

D.2 Computing details

We implemented our models using PyTorch Geometric [18] (MIT License). Experiments were
conducted on a shared computing cluster with various CPU and GPU configurations, including a mix
of NVIDIA A100 (40GB) and H100 (80GB) GPUs. Each experiment was allocated resources on a
single GPU, along with 4-8 CPUs and up to 60GB of system RAM. The run-time of each model was
measured on a single NVIDIA A100 GPU.

D.3 Hyperparameters

Given the large number of hyperparameters and datasets, we did not perform an exhaustive search
beyond the ablation studies in Section 5.3. For each dataset, we then adjusted the number of layers,
the hidden dimension, the learning rate, the weight decay based on hyperparameters reported in the
related literature [42, 48, 12, 47].

For the datasets from Benchmarking GNNs [17] and LRGB [16], we follow the commonly used
parameter budgets of 500K parameters.

For the node classification datasets from [41] and [30], we strictly follow the experimental setup
from the state-of-the-art method Polynormer [12]. We only replace the global attention blocks from
Polynormer with NeuralWalker’s walk encoder blocks and use the same hyperparameters selected by
Polynormer [12].

We use the AdamW optimizer throughout our experiments with the default beta parameters in Pytorch.
We use a linear warm-up increase of the learning rate at the beginning of the training followed by
its cosine decay as in [42]. The test sampling rate is always set to 1.0 if not specified. The detailed
hyperparameters used in NeuralWalker as well as the model sizes and runtime on different datasets
are provided in Table 9, 10, 11, and 12.

D.4 Additional Results for Ablation Studies

We provide more detailed results for ablation studies in Table 13.

D.5 Detailed Results and Robustness to Sampling Variability

Since NeuralWalker’s output depends on the sampled random walks, we evaluate its robustness to
sampling variability. Following Tönshoff et al. [48], we measure the local standard deviation (local

23



Table 10: Hyperparameters for the 5 datasets from LRGB [16].
HYPERPARAMETER PASCALVOC-SP COCO-SP PEPTIDES-FUNC PEPTIDES-STRUCT PCQM-CONTACT

# BLOCKS 6 6 6 6 3
HIDDEN DIM 52 56 56 56 80
SEQUENCE LAYER MAMBA (BIDIRECTIONAL)
LOCAL MESSAGE PASSING GIN
GLOBAL MESSAGE PASSING TRANS. NONE VN VN VN
DROPOUT 0.0 0.0 0.0 0.0 0.0
GRAPH POOLING – – MEAN MEAN –

RW SAMPLING RATE 0.5 0.25 0.5 0.5 0.5
RW LENGTH 100 100 100 100 75
RW POSITION ENCODING WINDOW SIZE 16 16 16 32 16
BATCH SIZE 32 32 32 32 256
LEARNING RATE 0.002 0.002 0.002 0.004 0.001
# EPOCHS 200 200 200 200 150
# WARMUP EPOCHS 10 10 10 10 10
WEIGHT DECAY 1E-06 0.0 0.0 0.0 0.0

# PARAMETERS 556K 492K 530K 541K 505K
TRAINING TIME (EPOCH/TOTAL) 218S/12H 1402S/78H 112S/6.2H 112S/6.2H 528S/22H

Table 11: Hyperparameters for the 3 datasets from OGB [25].
HYPERPARAMETER OGBG-MOLPCBA OGBG-PPA OGBG-CODE2
# BLOCKS 4 1 3
HIDDEN DIM 500 384 256
SEQUENCE LAYER CONV. CONV. CONV.
LOCAL MESSAGE PASSING GATEDGCN GIN GIN
GLOBAL MESSAGE PASSING VN PERFORMER TRANS.
DROPOUT 0.4 0.4 0.0
GRAPH POOLING MEAN MEAN MEAN

RW SAMPLING RATE 0.5 0.5 0.5
RW LENGTH 25 200 100
RW POSITION ENCODING WINDOW SIZE 8 32 64
BATCH SIZE 512 32 32
LEARNING RATE 0.002 0.002 0.0003
# EPOCHS 100 200 30
# WARMUP EPOCHS 5 10 2
WEIGHT DECAY 0.0 0.0 0.0

# PARAMETERS 13.0M 3.1M 12.5M
TRAINING TIME (EPOCH/TOTAL) 226S/6.3H 671S/37H 1597S/13.3H

std) by computing the standard deviation of performance metrics obtained with five independent sets
of random walks (details in Tönshoff et al. [48]). The complete results for all datasets are presented in
Table 14. Notably, by comparing the local std to the cross-model std obtained from training different
models with varying random seeds, we consistently observe a smaller local std. This finding suggests
that NeuralWalker’s predictions are robust to the randomness inherent in the random walk sampling
process.

24



Table 12: Hyperparameters for node classification datasets from Platonov et al. [41] and Leskovec
and Krevl [30]. The other hyperparameters strictly follow Polynormer [12].

HYPERPARAMETER ROMAN-EMPIRE AMAZON-RATINGS MINESWEEPER TOLOKERS QUESTIONS POKEC

SEQUENCE LAYER MAMBA CONV.
DROPOUT 0.3 0.2 0.3 0.1 0.2 0.1

RW SAMPLING RATE 0.01 0.01 0.01 0.01 0.01 0.001
RW TEST SAMPLING RATE 0.1 0.1 0.1 0.1 0.05 0.001
RW LENGTH 1000 1000 1000 1000 1000 500
RW POSITION ENCODING WINDOW SIZE 8 8 8 8 8 8
LEARNING RATE 0.0005 0.0005 0.0005 0.001 5E-5 0.0005

TRAINING TIME (EPOCH/TOTAL) 0.50S/0.35H 0.6S/0.45H 0.22S/0.12H 0.67S/0.19H 0.67S/0.32H 6.44S/4.5H

Table 13: Ablation studies of NeuralWalker on different choices of the sequence layer, local and
global message passing. Validation performances with mean ± std of 4 runs are reported. We compare
different choices of sequence layers (Mamba, S4, CNN, and Transformer), local (with or without
GIN) and global (virtual node (VN), Transformer, or none (w/o)) message passing layers. Note that
the row highlighted with the light gray color corresponds to the choices of CRaWL [48].

SEQUENCE LAYER LOCAL MP GLOBAL MP ZINC CIFAR10 PASCALVOC-SP

MAMBA GIN VN 0.078 ± 0.004 78.610 ± 0.524 0.4672 ± 0.0077
MAMBA GIN TRANS. 0.083 ± 0.003 80.755 ± 0.467 0.4877 ± 0.0042
MAMBA GIN W/O 0.085 ± 0.003 80.885 ± 0.769 0.4611 ± 0.0036
MAMBA W/O VN 0.086 ± 0.008 78.025 ± 0.552 0.4570 ± 0.0064
MAMBA W/O W/O 0.090 ± 0.002 79.035 ± 0.850 0.4525 ± 0.0044
MAMBA (W/O BID) GIN VN 0.089 ± 0.004 74.910 ± 0.547 0.4522 ± 0.0063
S4 GIN VN 0.082 ± 0.004 77.970 ± 0.506 0.4559 ± 0.0064
CNN GIN VN 0.088 ± 0.004 80.240 ± 0.767 0.4652 ± 0.0058
CNN GIN TRANS. 0.092 ± 0.004 80.665 ± 0.408 0.4790 ± 0.0081
CNN GIN W/O 0.102 ± 0.003 80.020 ± 0.279 0.4155 ± 0.0050
CNN W/O W/O 0.116 ± 0.003 78.760 ± 0.242 0.3954 ± 0.0080
TRANS. GIN VN 0.084 ± 0.003 72.850 ± 0.373 0.4316 ± 0.0072

Table 14: Detailed results for all the datasets. Note that different metrics are used to measure the
performance on the datasets. For each experiment, we provide the cross-model std using different
random seeds and the local std using different sets of random walks.

DATASET METRIC
TEST VALIDATION

SCORE CROSS MODEL STD LOCAL STD SCORE CROSS-MODEL STD

ZINC MAE 0.0646 0.0007 0.0005 0.0782 0.0038
MNIST ACC 0.9876 0.0008 0.0003 0.9902 0.0006
CIFAR10 ACC 0.8003 0.0019 0.0009 0.8125 0.0053
PATTERN ACC 0.8698 0.0001 0.0001 0.8689 0.0003
CLUSTER ACC 0.7819 0.0019 0.0004 0.7827 0.0007

PASCALVOC-SP F1 0.4912 0.0042 0.0019 0.5053 0.0084
COCO-SP F1 0.4398 0.0033 0.0011 0.4446 0.0030
PEPTIDES-FUNC AP 0.7096 0.0078 0.0014 0.7145 0.0033
PEPTIDES-STRUCT AP 0.2463 0.0005 0.0004 0.2389 0.0021
PCQM-CONTACT MRR 0.4707 0.0007 0.0002 0.4743 0.0006

OGBG-MOLPCBA AP 0.3086 0.0031 0.0010 0.3160 0.0032
OGBG-PPA ACC 0.7888 0.0059 0.0004 0.7460 0.0058
OGBG-CODE2 F1 0.1957 0.0025 0.0005 0.1796 0.0031

ROMAN-EMPIRE ACC 0.9292 0.0036 0.0005 0.9310 0.0032
AMAZON-RATINGS ACC 0.5458 0.0036 0.0009 0.5491 0.0049
MINESWEEPER ROC AUC 0.9782 0.0040 0.0003 0.9794 0.0047
TOLOKERS ROC AUC 0.8556 0.0075 0.0010 0.8540 0.0096
QUESTIONS ROC AUC 0.7852 0.0113 0.0009 0.7902 0.0086
POKEC ACC 0.8646 0.0009 0.0001 0.8644 0.0003

25


	Introduction
	Related Work
	Neural Walker
	Notation and Random Walks on Graphs
	Random Walk Sampler
	Model Architecture
	Walk Embedder
	Sequence Layer on Walk Embeddings
	Walk Aggregator
	Local and Global Message Passing


	Theoretical Results
	Experiments
	Benchmarking NeuralWalker to state-of-the-art methods
	Masked Positional Encoding Pretraining
	Ablation studies

	Conclusion
	Background
	Message-Passing Graph Neural Networks
	Transformer on Graphs
	State Space Models

	Additional Remarks on Neural Walker
	Illustration of the Position Encodings for Random Walks
	Global Message Passing Techniques

	Theoretical Results
	Stability Results
	Expressivity Results
	Complexity Results

	Experimental Details and Additional Results
	Dataset Description
	Computing details
	Hyperparameters
	Additional Results for Ablation Studies
	Detailed Results and Robustness to Sampling Variability


