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In the past decade, photo-induced superconducting-like behaviors have been reported in a number of
materials driven by intense pump fields. Of particular interest is the high-Tc cuprate YBa2Cu2O6+x,
where such effect has been reported up to the so-called pseudogap temperature T ∗ ∼ 300− 400 K.
In a recent tour-de-force experiment, a transient magnetic field which is proportional to and in the
same direction of an applied field has been observed outside the sample, suggestive of flux exclusion
due to the Meissner effect. In this paper, we point out that the transient magnetic field could be
explained by a model of bilayers of copper-oxygen planes with a local superconducting phase variable
persisting up to the pseudo-gap temperature at equilibrium. Under pumping, the time evolution is
described by a driven sine-Gordon equation. In the presence of an external magnetic field, this model
exhibits a novel instability which amplifies the current at the edges of the bilayer formed by defects
or grain boundaries, producing a giant paramagnetic magnetization in the same direction as the
applied field. We present how this scenario can fit most of the available data and propose additional
experimental tests which can distinguish our proposal from the Meissner flux exclusion scenario.
To the extent that this model can account for the data, we conclude that the experiments have
the important consequence of revealing the presence of local pairing in the pseudogap phase. More
broadly, this work provides a new mechanism for amplifying external magnetic fields at ultra-fast
time scales.

1. INTRODUCTION

Developments in pump and probe experiments have
ushered in a new era of ultra-fast control in condensed
matter systems1–3. Experimental evidence indicates that
pumping materials with an intense laser pulse in the THz
frequency region can unlock collective behaviour on ultra-
fast time-scales, such as ferro-electricity4, magnetism5–8,
band structure topology9, charge ordering10,11 and su-
perconductivity (SC)12–16. A prominent example in this
field is the case of driven high-Tc cuprate YBa2Cu3O6+x

(YBCO)17–21. Under a 20 THz (mid-IR) pulse, at T >
Tc, in the so-called pseudogap phase, time-resolved linear
reflectivity measurements have shown signatures similar
to that of the low temperature superconducting state for
the duration of a few picoseconds after pumping22. The
effect is observed beyond room temperature, up to the
so-called pseudogap temperature T ∗ ∼ 300− 400 K, and
has rightfully attracted a great deal of attention23–31.

The defining property of a superconductor is the Meiss-
ner effect, i.e., perfect diamagnetic screening of the ex-
ternal magnetic field. A key question is whether the re-
ported transient superconductor-like state also exhibits
Meissner-like behavior. A breakthrough experimental
study along this direction was published recently32, ex-
amining the response of driven YBCO above Tc in the
presence of an external magnetic field. Ref. 32 indeed re-
ports the detection of a transient magnetic field outside
the sample which scales roughly linearly with the applied
field and is in the same direction. The transient field’s
magnitude is of order 10 µT for an applied field of 10

mT at 100 K. By analogy with the equilibrium Meissner
effect, Fava et al. have interpreted this phenomenon as
originating from flux being expelled from the bulk of the
sample.

In this paper, we provide an alternative explanation
which does not involve the Meissner effect. Instead, we
argue that the existence of short-range SC correlations
in equilibrium far above Tc can give rise to strong ampli-
fication of the external magnetic field upon driving with
a laser pulse. The impact of our work is twofold. We
provide a microscopic theory that fits the experimental
data in Ref. 32, with strong implications for the nature of
the pseudogap phase in high-Tc cuprate superconductors.
At the same time, we uncover a new instability of the
sine-Gordon (SG) model in the presence of a small static
magnetic field and strong uniform AC drive. This phe-
nomenon has not been noted before, and could be realised
in a broad range of systems such as 2D hetero-structures,
long Josephson junctions, as well as cold atoms experi-
ments employing artificial gauge fields33–41. This insta-
bility of the SG model is discussed in Sec. 3 and can be
read independently of the rest of the paper, which focuses
on the nonlinear dynamics of driven pseudogap YBCO.

Below we consider the pumping geometry implemented
in the experiments of driven YBCO, illustrated in
Fig. 1(a). The YBCO structure consists of strongly cou-
pled Cu-O layers, separated by distance d1 = 4 Å, which
we refer to as bilayers. These bilayers are separated
from each other by a larger distance d2 = 8 Å. In Sec.
2, starting with a minimal set of assumptions concern-
ing the existence of SC phase coherence at equilibrium
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FIG. 1. Schematic of Giant Dynamical Paramagnetism. a Experimental set-up: the bilayer high-Tc cuprate YBCO is
pumped with a pulse propagating along the y-axis, with the electric field polarised along the z-axis, over a spot size of about 100
µm in diameter, in the presence of an external static magnetic field oriented along the y-axis. The sample is broken up into finite
segments by crystal defects, forming edges. Transient paramagnetic current loops are generated at the boundaries due to the
interplay between diamagnetic screening currents at the edges and Josephson nonlinear dynamics originating from short-range
SC coherence in the pseudogap phase. b Above Tc, even though long-range coherence and Meissner effect is absent, short-range
fluctuating SC coherence within a single bilayer generates a Josephson current (colored in blue) between layers, leading to a
small static diamagnetism, which we estimate from experiments42 to be χd ∼ −10−5. c Pumping a single bilayer gives rise to
pre-solitons forming at the boundaries, together with large paramagnetic edge Josephson currents. d Upon pumping a YBCO
bilayer segment, in the presence of a magnetic field, the large paramagnetic edge Josephson currents in each bilayer (colored
red) lead to displacement currents between bilayers (dotted grey). The overall edge current in the bilayer segment generates
a magnetic field that penetrates the entire segment at the speed of light, leading to a large magnetic flux inside the segment.
The photo-generated edge currents lead to a large paramagnetic susceptibility that can be orders of magnitude larger than the
equilibrium diamagnetic response.

above Tc, we map the electrodynamics of the pseudogap
phase of YBCO to the sine-Gordon model. In Sec. 3, we
demonstrate that short-range superconducting coherence
within a single bilayer of YBCO leads to a small diamag-
netic susceptibility |χd| ∼ 10−5, depicted in Fig. 1(b).
The giant dynamical paramagnetic effect can be sum-
marized as an instability of the SG model triggered lo-
cally in each bilayer by a strong laser drive, sketched in
Fig. 1(c). Section 4 illustrates that the different bilay-
ers are capacitively coupled to each other, resulting in
dynamically amplified edge currents (and displacement
currents), outlined in Fig. 1(d). The magnetic field gen-
erated by these currents is paramagnetic and it pene-
trates the entire sample at the speed of light. The photo-
generated paramagnetic response is proportional to the
equilibrium diamagnetic response but can be orders of
magnitude larger in amplitude. In Sec. 5, we discuss in
detail how our theory compares with the experimental
data.

2. MODEL FOR DRIVEN PSEUDOGAP YBCO

For YBCO, the key experimental evidences for
superconducting-like behavior up to now are the out-of
plane optical response and second harmonic generation
due to Josephson plasmons18,19. Since both phenomena
involve current flow perpendicular to the planes, we are
motivated to focus our attention to interlayer Josephson
currents. Our starting assumption is that the phase of a
SC order parameter can be defined locally in space and

time up to the pseudogap temperature T ∗, which we iden-
tify with a mean-field temperature TMF . There is general
agreement that phase fluctuations are responsible for the
destruction of SC in cuprates above Tc

43,44, driven by
the BKT transition through the proliferation of vortices
in each layer, even though the extent of the fluctuation
regime is under debate. While the phase of each individ-
ual layer fluctuates wildly, the vortices between members
of each bilayer are locked if the Josephson energy of a
single bilayer is large enough45. As a result, the rela-
tive phase θ between the layers does not see the vortices
and can retain coherence, resulting in equal and opposite
(counter-flow) supercurrents in the two members of the
bilayer above Tc. This was demonstrated explicitly in a
recent numerical study46, which found coherence in the
relative phase of bilayers and counter-flow supercurrent
up to about twice Tc. We begin by studying in detail a
model where θ is relatively small at equilibrium and its
fluctuations are ignored. We uncover novel phenomena
under strong driving, which we demonstrate to occur on
a relatively short length-scale near the sample edge, so
it is likely that local patches with small θ mod 2π are
sufficient to see the effect. In 1D, we provide support-
ing evidence for this intuition in the Methods section by
repeating our calculations in the presence of a soliton or
an anti-soliton in the initial conditions. We will also offer
an argument for the robustness of our mechanism against
thermal fluctuations in 2D.

In YBCO, the Josephson tunnel coupling between
members of the bilayers is much stronger than that be-
tween bilayers. We therefore introduce an intra-bilayer
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Josephson energy Jc, while the tunneling between bilay-
ers is set to zero.

3. DYNAMICAL PHASE DIAGRAM OF THE
DRIVEN SG MODEL

In a single bilayer, the relative phase between the two
layers, θ(x, y, t), obeys the equation33–35 (see the deriva-
tion in the Supp. Note 1):

∂2
t θ+

σn

ϵ0
∂tθ−

c2β

1 + β
∇2θ+ ω2

J sin θ =
e∗d1
ℏ

∂tEp(t). (1)

In Eq. (1) we include the electric field due to
the pump pulse, which we parametrize as Ep(t) =

E0 e
− (t−tp)2

2σ2 sin[ωp(t − t0)], where E0 (ωp) is the pump
amplitude (frequency) and tp, σ, and t0 define, respec-
tively, the center time, width, and starting time of the
Gaussian envelope. We also accounted for a phenomeno-
logical damping term proportional to the DC normal
conductivity between the layers σn. The intra-bilayer
Josephson plasma resonance frequency, ωJ , is given by
the Josephson coupling, Jc, through the equation ω2

J =
e∗d1Jcϵ0/ℏ, and is set by the upper plasmon frequency in
YBCO: ωJ = 2π × 14 THz. The Josephson coupling de-
termines the current along the z-direction, jz = Jc sin θ.

The dimensionless parameter β = (e∗)2nsd1

2ϵ0mc2 characterizes
the counter-flow supercurrent, and is proportional to the
2D superfluid density in each layer, ns; ϵ0 is the free
space permittivity, m is the mass of an electron, c the
speed of light in the material, and e∗ = 2e is the charge
of a Cooper pair.

We consider the effect of an applied static field Bext

in the plane along the y direction, see Fig.1(a). It is
described by the boundary conditions (BC):

∂xθ|x=0,L =
e∗d1
ℏ

Bext, (2)

where x = 0 (x = L) is intended as the left (right) edge of
the bilayer segment. Since Eq. (2) depends only on x and
the drive is uniform in space, we can consider solutions
where θ is independent of y. In Eq. (1), the ∇ can be re-
placed by ∂x and Eq. (1) simplifies to a one-dimensional
equation: the perturbed SG equation. The SG equa-
tion, as well as its perturbed counterparts, have been
under intense investigation, and a great deal is known
in the literature35,36. What is less studied is the mag-
netic response, under strong AC pulses, in the presence
of a magnetic field. We shall examine the interplay be-
tween strong pumping and the boundary field in the SG
domain.

Equilibrium pseudogap diamagnetism. In equilib-
rium, Eqs. (1) and (2) lead to a diamagnetic response
due to the presence of counter-flow supercurrents par-
tially screening out the Bext field within bilayers, see

Fig. 1(b). The in-plane counter-flow supercurrent is given

by the expression: jx = c2ϵ0ℏβ
e∗d1(1+β)

(
∂xθ − e∗d1

ℏ Bext

)
. In

equilibrium, the relation ∂xθ = 0 holds in the bulk of
the material, leading to a constant diamagnetic current

jx = − c2ϵ0ℏβ
e∗d1(1+β)Bext. The resulting diamagnetic sus-

ceptibility, due to superconducting fluctuations, is given
by χd = −β

3 , estimated from experimental data to be
β ∼ 10−5, as described in the Methods (see also the
Supp. Note 2).
Near the edges of the sample, the in-plane component

of the current goes to zero, being replaced by the Joseph-
son current along the z-axis, as shown schematically in
Fig. 1(b). The penetration depth of the diamagnetic

screening current is given by λ =
√

β
1+β

c
ωJ

. Rescaling

the x coordinate by λ and the t coordinate by ω−1
J , we

obtain the perturbed SG equation (and its BC) in dimen-
sionless form:

∂2
t θ + α∂tθ − ∂2

xθ + sin θ = ∂tV, (3)

∂xθ|x=0,L = q, (4)

where we define the driving term V (t) =

V0 e
− (t−tp)2

2σ2 sin[ωp(t − t0)] with amplitude V0 = e∗d1E0

ℏωJ
,

the damping coefficient α = σn

ϵ0ωJ
and the boundary field

q = e∗d1λBext

ℏ . Motivated by the experimental set-up32,
we choose ωp = 1.2, tp = t0+3σ, σ = 6π/ωp and t0 = 10.
Photo-generated Josephson solitons. In Fig. 2(a), we

plot the dynamical phase diagram of the driven SG
model under a magnetic field, by numerically solving
Eqs. (3) and (4). In particular, we compute the maxi-
mum photo-induced phase difference across a bilayer seg-
ment of length L, ∆θmax

ind = max{θ|x=L
x=0 − θeq|x=L

x=0 } with
θeq = θ(x, t0), as a function of the pump amplitude, V0,
and magnetic field, q. Solitons in the SG model corre-
spond to current loops known as Josephson vortices in
the YBCO bilayer. The phase difference across a bilayer
segment quantifies the net number of solitons injected
inside the system, with ∆θmax

ind = 2π corresponding to
one (net) soliton. In the unpumped limit, V0 = 0, a well
known transition exists for high enough magnetic field,
called the Pokrovsky-Talapov transition47,48, where soli-
tons proliferate inside the segment. Our simulations show
that solitons can also be generated dynamically under
strong driving, even in the presence of very small exter-
nal magnetic field. The soliton regime is marked by red
in Fig. 2(a), and we observe a relatively sharp transition
line as a function of V0, which suggests the onset of an
instability beyond some critical pumping amplitude. In
Fig. 2(b) and (c), the phase and in-plane current spatial
profile are plotted for different times during the drive,
for a (V0, q) pair representative of the soliton regime,
see the green circle in Fig. 2(a). We observe that the
small localized phase profile near the edge, present in
equilibrium, monotonically grows upon driving until it
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FIG. 2. Dynamical phase diagram of the driven SG model. a Heatmap of the maximum photo-induced phase difference
across the entire segment, ∆θmax

ind , in the (V0, q) parameter space (upper plot) and time trace of the pump pulse with amplitude
V0 (lower plot). The Pokrovsky-Talapov transition is observed in the unpumped (V0 = 0) limit for high enough magnetic field.
For V0 > 0, a rather sharp transition occurs between a soliton regime, marked by red, and a pre-soliton regime, marked by
blue. b Snapshots of the phase and c snapshots of in-plane current for the combination V0 = 4 and q = 0.01, representative
of the soliton regime, corresponding to the point annotated with a green circle in panel (a). The small localized phase profile
near the edge, present in equilibrium, monotonically grows upon driving until a full 2π soliton enters the system. We find
a photo-induced sign change of the in-plane current. d Snapshots of the phase and e snapshots of in-plane current for the
combination V0 = 3.5 and q = 0.01, taken in the pre-soliton scenario, corresponding to the point annotated with an orange circle
in panel (a). A boundary-localized feature, resembling a soliton but with much smaller amplitude, develops during pumping.
This induces a sign change of the in-plane current. The following parameters are used in all plots: L = 100, α = 0.5, and
β = 10−5. In both panels (b) and (d), the spatially uniform and fast oscillating component θ̃ is subtracted off the phase θ. The
dashed gray lines in both panels (c) and (e) indicate jx = 0.

becomes a full 2π soliton, which then enters the system.
The typical phase and current profiles observed in the
blue region of the phase diagram, i.e., where full soli-
tons are not excited, are depicted in Fig. 2(d) and (e).
We refer to this region as the pre-soliton regime, as the
boundary-localized dynamical feature resembles a soliton
but has a significantly smaller amplitude. We find that
experiments32 are deep in the pre-soliton regime, with
V0 ≈ 3.5 and q ≈ 10−4 − 10−5 such that θ(t = 0) ≪ 1
and ∆θmax

ind ≲ 0.1. We note that compared with jx, θ
and therefore the Josephson current jz can be greatly
enhanced relative to its initial value. The Josephson cur-
rent, serves as an antenna localized near the edge which
drives an enhanced B field that decays into the bulk.

In Fig. 3(a), we plot the ∆θind = θ|x=L
x=0 − θeq|x=L

x=0
profiles as function of time, for several values of q in the
experimental range, at V0 = 3.5. We find that ∆θind is
positive and increases during pumping, before returning
back to equilibrium after the pump pulse is gone. The full
solution of Eqs. (3) and (4) shows a linear dependence of
∆θmax

ind vs. q in the pre-soliton regime, for fixed V0, see the
orange points in Fig. 3(b). The orange curve in Fig. 3(c)
illustrates the behavior of ∆θmax

ind with respect to pump
fluence, V 2

0 , for fixed q. Here we observe a linear increase,
similar to an inverse Faraday effect49, for small fluences
V 2
0 < 10. Beyond a critical value of V 2

0 ≈ 10, we find an
exponential growth of the maximal photo-induced phase

difference.
Floquet effective model for the pre-soliton regime. To

better understand the physics of the pre-soliton regime,
we decompose the solution of our nonlinear problem into
two parts: θ(x, t) = θ̃(t) + θ′(x, t), where θ̃(t) obeys the
driven damped pendulum equation of motion

∂2
t θ̃ + α∂tθ̃ + sin θ̃ = ∂tV (t), (5)

with BC ∂xθ̃|x=0,L = 0, and θ′(x, t) satisfies the BC given
by Eq. (4). In the small q limit relevant for the pre-soliton
regime, the condition θ′ ≪ 1 holds even if the pump is
strongly nonlinear and θ̃ is not small. In this case, we can
expand the nonlinear term as sin θ ≈ θ′ cos θ̃. We begin
by factorizing this product and replace cos θ̃ by ⟨cos θ̃⟩,
its average over several cycles at the pump frequency. We
obtain the following linear equation, where the drive is
encoded in a modified restoring force η, subject to the
same BC

∂2
t θ

′ + α∂tθ
′ − ∂2

xθ
′ + ηθ′ = 0, (6)

∂xθ
′|x=0,L = q. (7)

By approximating θ̃ ≈ A sin (ωpt), where A(t)
is a slow-varying envelope, we find that η(A) ≈
⟨cos [A sin (ωpt)]⟩ ≈ J0(A) where J0 is the Bessel func-
tion. Importantly, this average can be negative since J0
can reach a minimum value of ∼ −0.4. Thus the oscil-
lator in Eq. (6) can be in the unstable regime, resulting
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FIG. 3. Pre-soliton universality. a Time traces of the photo-induced phase difference across the entire segment, for the full
nonlinear model, at various external magnetic fields (upper plot) and the corresponding pump pulse (lower plot). Circles are
used in the upper panel to the denote the maxima of the different curves, all obtained for V0 = 3.5. b Maximum photo-induced
phase difference vs. the magnetic field, at V0 = 3.5. The orange (purple) points are obtained by numerically solving the
full nonlinear (Floquet effective) model. Despite the strongly nonlinear dynamics, the dependence on the external magnetic
field is linear, and the two models show remarkable quantitative and qualitative agreement. c Maximum photo-induced phase
difference as a function of fluence, V 2

0 , at q = 1.4 × 10−4. The orange points result from numerical integration of the full
nonlinear model, while purple points correspond to the effective Floquet model. An initial linear increase for small fluences is
then followed by an exponential increase beyond a critical amplitude. The two models are in clear quantitative and qualitative
agreement here as well. The following parameters are used in all plots: L = 100, α = 0.5, and β = 10−5.

in the amplification found in the exact solution. It is
clear that the average ⟨cos [A sin (ωpt)]⟩ does not depend
on the phase of the drive, which we have set to be zero.
Therefore the sign of the effect does not depend on the
phase of the drive, which is in agreement with our exact
numerical solution. In the Methods (see also the Supp.
Note 3), we derive a more accurate expression for η(A)
using a Floquet expansion.

Remarkably, there is very close agreement between the
full nonlinear solution and that of the Floquet effective
model shown by the purple points in both Fig. 3(b) and
(c). The effective model gives us an intuitive way to un-
derstand the numerical results: even though the homo-
geneous oscillations caused by the drive are very large,
the effective dynamics for θ′ are linear to a very good
approximation, since q is small. Due to this linearity,
the photo-induced response is proportional to q. On the
other hand, for sufficiently large amplitudes V0, η(A) in
Eq. (6) becomes negative, thereby triggering an instabil-
ity and exponential growth of θ′.

In the Methods, we repeat the SG calculations in the
presence of a soliton or an antisoliton in the initial con-
ditions. Our results indicate that, as long as these exci-
tations are located more than a few penetration depths
(λ < 100 nm) away from the bilayer segment’s edges, the
discovered mechanism is not affected by their presence.

More generally, we argue that our results remain ro-
bust in the presence of thermal fluctuations θ(x, y, t) and
is applicable up to the pseudogap temperature T ∗. Due
to the Josephson energy, which acts as an external field
in the XY model, there will be patches where the equi-
librium θ is pinned to the vicinity of multiples of 2π. If
the correlation length in these patches is longer than the
penetration depth λ, a 2D version of the scaled Eq. (3)

will hold. Assuming the fluctuations evolve slower than
the pump duration, we can take a snapshot as initial con-
ditions for θ and do a similar decomposition into θ̃ and
θ′. For small q, θ′ satisfies Eqs. (6) and (7), with η given
by ⟨cos θ̃(x, y, t)⟩. Upon temporal and space average, the
sensitivity to initial condition will average out, and η can
still become negative, leading to exponential growth of θ′

and a similar phenomenology to the one described in this
section.
Our results show a significant dependence on the dis-

sipation coefficient, α. Since the large enhancement of
∆θmax

ind is triggered by an instability, α directly impacts
the magnitude of the effect by modifying its growth rate.
In the Supp. Note 4, we illustrate this dependence by
presenting simulations for different values of α. Inter-
estingly, while small α leads to a large enhancement of
the effect, in the limit of too small of a dissipation, the
emergence of oscillatory modes such as low-amplitude
breathers37,38 can complicate the simple picture pre-
sented above, leading to a more oscillatory behaviour in
the ∆θind.
For completeness, in the Supp. Note 4, we present a

number of space-time contour plots for the evolution of
the phase and its gradient, θ and ∂xθ, together with ani-
mations of the same numerical runs, to further illustrate
the strongly nonlinear dynamics discussed here.

4. PUMPED MULTI-BILAYER PSEUDOGAP
YBCO

In this section, we present results for the pumped
multi-bilayer case. Although the Josephson coupling be-
tween the bilayers is zero, they remain capacitively cou-
pled through Maxwell equations. We simulate the dy-
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FIG. 4. Photo-induced instability in a multi-bilayer segment. a Snapshots of the effective current along the z-direction,
jz, in units of its magnitude at x = 0 before pumping, |jz(0, t0)|. The inset plot zooms on the 0 ≤ x ≤ 10 region. When
reaching the unstable regime, in the presence of strong enough driving, jz can change sign and become paramagnetic even
though |θ′| monotonically increases. b Snapshots of the average magnetic field induced within a unit cell, Bind, normalized
by the equilibrium diamagnetic field amplitude, |Bextχd|. The field originates from edge currents, and it propagates from the
system’s boundaries inwards at the speed of light in the YBCO crystal. c Snapshots of the dimensionless in-plane current jx,
showing a dynamical behavior analogous to that highlighted for the pre-soliton current loops in a single bilayer. The inset
zooms in to the 0 ≤ x ≤ 15 region. All three plots are obtained using the Floquet effective model extended to multilayers (see
Methods), for the following realistic (normalized) parameter set: L = 3300, V0 = 3.5, q = 2.3 × 10−4, |χd| = 10−5, α1 = 0.4,
α2 = 6, which denote damping in the intra- and inter-bilayer regions (see Methods). The legend in panel (a) applies to panels
(b) and (c) as well, where time is rescaled to 1/ωJ .

namics in a finite segment, with radiative BC, see the
Methods for a detailed account of the equations of mo-
tion. This allows to track both the induced magnetic
field inside a finite pumped YBCO strip, as well as the
emitted radiation outside of the strip. In the Supp. Note
5, we further explore the dependence on dissipation.

Photo-excited edge currents in the multi-bilayer sys-
tem. At the microscopic level, we attribute the origin
of the photo-induced giant paramagnetism to the insta-
bility of the SG model discussed above. More specifically,
within our Floquet effective theory, we established that
the magnitude of the phase inside the bilayer, |θ′|, ex-
ponentially grows when η(A) < 0. At the same time,
the effective current along the z-direction is given by
jz = η(A)Jc sin θ

′, which changes sign and become para-
magnetic when η < 0, as shown in Fig. 4(a), even though
|θ′| monotonically increases during pumping. The latter
current creates a displacement current of similar mag-
nitude across different bilayers due their capacitive and
resistive coupling. This leads to paramagnetic edge cur-
rents, with opposite signs at the two edges. Remarkably,
the key difference between the multilayer and the sin-
gle bilayer is that the space between bilayers now acts
as a wave-guide, so that the displacement current and
the magnetic field it produces propagate into the bulk
at the speed of light in the YBCO crystal from the sys-
tem’s boundaries inwards, see Fig. 4(b). Even though
the current at the edge is similar in magnitude with the
single bilayer case, the upshot is that the magnetic field
extends into the bulk, therefore greatly increasing the
flux that is generated. This mechanism is crucial for
us to obtain a large enough effect to compare with ex-
periment. Using realistic parameters, the induced field

averaged inside and between bilayers, Bind(x), becomes
O(100)-times larger than the equilibrium diamagnetic
field amplitude, |Bextχd|. The traveling-wave character
of the phenomenon in Fig. 4(b) also results in a peculiar
segment-size dependence that is addressed in the Supp.
Note 5. In Fig. 4(c), we show the corresponding in-plane
current jx, whose dynamical structure is consistent with
that of the pre-soliton current loops identified previously
for a single bilayer. For completeness, in our simula-
tions, we also track the magnetic fields emitted outside
the pumped region, which we discuss in the Methods.
In general, due to flux conservation, any short-lived re-
sponse in pumped YBCO with a definite sign, either dia-
magnetic or paramagnetic, will result in a bimodal emis-
sion pattern, i.e., an emitted field carrying both positive
and negative signs, averaging to zero in time. Because of
this observation, we attribute the origin of the paramag-
netic response measured in Ref. 32 to the magnetic field
generated inside the material, rather than to emitted ra-
diation.

5. RELATION TO EXPERIMENTS

Results of our theoretical model are in quantitative
agreement with experimental data. In the Methods, we
provide a point to point comparison for: (i) magnetic field
dependence; (ii) fluence dependent shape of the mag-
netic response; (iii) temperature dependence of the ef-
fect. To explain the experimental data, we argue that
the pump pulse can be Fresnel-diffracted by the mask
protecting the magnetic field detector, see Fig. 5(a) and
the Supp. Note 6, illuminating the region under the de-
tector. In this way, we attribute the response detected in
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FIG. 5. Comparison with experimental observations. a Upper figure: geometry of the detection method in experiments.
A mask is used to protect the magnetic field detector from the pump pulse. Through Fresnel diffraction at the edge of the mask,
the pump pulse can reach and illuminate the portion of the material right below the magnetic detector. Illuminated defects
and edges will give rise to a paramagnetic signal, as the pump pulse propagates with the speed of light along the z-axis. Lower
figure: Fresnel-diffracted pump amplitude as a function of z, at a depth ∆y = 6µm ∼ λYBCO

32 from the mask. b Average
induced magnetic field, ⟨Bind⟩, normalized by the equilibrium diamagnetic field amplitude, |Bextχd|, as a function of time. Here
the symbol ⟨...⟩ indicates averaging over a segment of length L. The obtained peak magnetic response is χind ∼ −100χd, see
the circle. The parameter values for this numerical run are given in Fig. 4. c Dependence of the (normalized) peak magnetic
response, ⟨Bmax

ind ⟩ /Bext, versus the equilibrium susceptibility χd, showing proportionality. Since χd is proportional to the local
superfluid density ns, which goes to zero in a BCS way near T ∗ ≈ TMF as sketched in the inset, we expect the signal to decrease
to zero near T ∗, in agreement with experiment. Here we choose L = 18 c/ωJ , Bext = 10mT, V0 = 3.5, α1 = 0.4, and α2 = 6.

the experiment32 as the giant dynamical paramagnetism
triggered underneath the detector.

Recall that the amplified paramagnetic signal origi-
nates from instabilities of screening currents at edges.
We argue that cracks and crystal defects, like the ones
shown schematically in Fig. 1(a), act as such edges. Since
the typical distance between defects is 10µm, within a
spot size 100µm, such edges will very likely be present.
Using experimentally realistic parameters, we find that
the induced paramagnetism is O(100)-times larger than
the equilbrium diamagnetism, see Fig. 5(b). Since |χd| ≈
10−5, this corresponds to ⟨Bind⟩

Bext
∼ 10−3, consistent with

the experimental value for the maximum detected field.
In Fig. 5(c), we show that the effect is proportional to
the equilibrium diamagnetism, which could explain the
temperature dependence, see the Methods.

We point out that in Ref. 32 the paramagnetic signal is
interpreted as originating from flux exclusion from a giant
diamagnetic response under the pump. This mechanism
can be distinguished from ours in future experiments that
measure the magnetic field directly under the pumped
regions, since opposite signs are predicted50.

DISCUSSION

The phenomena uncovered in this paper crucially de-
pend on the existence of local pairing correlations. While
evidence for such correlations has been reported up to a
temperature of 180K51, the same cannot be stated up to
T ∗ ≈ 300 − 400K. If our interpretation is correct, the
magnetic field response observed in experiments32 would
represent the first evidence of local superconducting cor-

relations surviving up to the pseudogap temperature T ∗.
This point of view will be further supported in a sep-
arate paper52, which shows that the same model can
explain the optical response and second harmonic gen-
eration experiments.18,19. The origin of the pseudogap
has been under debate for decades. Much of the dis-
cussions has centered on anti-ferromagnetic spin fluctu-
ations, identifying the gap as a spin gap due to some
underlying resonating valence bond (RVB) scenario53,
or suppression of spectral weight due to strong corre-
lation near the Mott transition54. Occasionally, pair-
ing scenarios such as pair density waves have also been
proposed55,56. The notion of local pairing surviving up
to T ∗ will clearly have a strong impact towards resolving
the pseudogap puzzle.

Before concluding this paper, we point out that the
instability discussed here can be utilized to achieve the
amplification of magnetic field in systems based on ex-
tended Josephson junctions57.

METHODS

Electrodynamics of the counterflow pseudogap state.
In the pseudogap, there is no long-range superconduct-
ing coherence, so both the in-plane and out-of-plane
DC currents are dissipative due to the proliferation of
vortices. However, strong Josephson coupling within
a single bilayer leads to locking of vortex lines pass-
ing through it. This gives rise to intrabilayer supercon-
ducting coherence45 and dissipationless in-plane currents
flowing in opposite directions46. The minimal model cap-
turing these basic ingredients can be formulated as fol-
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lows for the currents:

∂tjz,1 =
e∗d1
ℏ

Jc,1Ez,1 cos θ1, (8)

∂tjx,1 =
(e∗)2ns

m
Ex,1 + γd (jx,1 + jx,2) , (9)

∂tjx,2 =
(e∗)2ns

m
Ex,2 + γd (jx,1 + jx,2) , (10)

for a generic unit cell, where the label ‘z, 1’ (‘z, 2’) de-
notes the average of a z-component between layers sep-
arated by a distance d1 (d2), and ‘x, 1’ (‘x, 2’) an x-
component evaluated at the z = z1 (z = z2) layer.
Within the bilayer, the superconducting coherence is en-
coded in the Josephson relation. We assume interbilayer
coherence to be completely lost, in accordance with the
experimental and numerical observation of the lower

Josephson plasmon’s disappearance at T = Tc in YBCO.
Furthermore, the total in-plane current, jx,1 + jx,2, is
dissipative due to vortex motion58 (γd is the correspond-
ing friction coefficient), while the counterflow current,
jx,1 − jx,2, remains dissipationless. This assumption can
be relaxed by adopting a two-fluid model, where a normal
component is added to the counter-flow current. This re-
places (e∗)2ns/m by (e∗)2ns/m+ iωσ2D and introduces
an imaginary part to the parameter β, where σ2D is the
in-plane 2D normal conductivity. As a result, an extra
dissipative term of the form ∂t∂xx is added to the equa-
tion below. We find that this term has very little effect
on the results, due to the extra x derivatives.

As we describe in the Supp. Note 1, combining
Eqs. (8)–(10) with a normal-fluid dissipative current con-
tribution and Maxwell’s equations leads to the follow-
ing effective electrodynamic equations for the momentum
qz = 0 response in the pseudogap phase:

∂2
t θ1 +

σn,1

ϵ0
∂tθ1 −

c2(d1 + d2β)

d1 + d2(1 + β)
∂2
xθ1 + ω2

J,1 sin θ1 =
e∗d1
ℏ

∂tEp(t) +
c2d1

d1 + d2(1 + β)
∂2
xθ2, (11)

∂2
t θ2 +

σn,2

ϵ0
∂tθ2 −

c2d2(1 + β)

d1 + d2(1 + β)
∂2
xθ2 =

e∗d2
ℏ

∂tEp(t) +
c2d2

d1 + d2(1 + β)
∂2
xθ1, (12)

which describe a set of capacitively coupled long Joseph-
son junctions. Here σn,1 denotes the normal c-axis con-
ductivity between members of the bilayer and leads to
dissipation. Formally, we introduce a similar quantity
σn,2 in Eq. (12) to describe dissipation of θ2. However,
due to the weak tunnel coupling between bilayers, the
actual normal conductivity is negligible. The σn,2 origi-
nates from the fact that the cavity for the radiation field
formed by the region between bilayers is leaky. The cav-
ity Q leads to dissipation of photon modes, which can be
parameterized by σn,2. Similar to the single bilayer case,
we introduce the dimensionless intra-bilayer and inter-
bilayer damping coefficients α1 =

σn,1

ϵ0ωJ,1
and α2 =

σn,2

ϵ0ωJ,1
,

respectively. Since α1 and α2 have different physical ori-
gins, they can take on very different values, as chosen in
Fig 4 in the main text. The main approximation made
here is to work with averaged quantities between differ-
ent layers. We note in passing that the perturbed SG
model, see Eq. (1) in the main text, is readily recovered
in the d2 → ∞ (single bilayer) limit of Eq. (11).

As shown in the Supp. Note 1, the gauge invariant
phase differences between layers, θ1 and θ2, can be di-
rectly related to the average out-of-plane electric fields,

Ez,1 and Ez,2:

∂tθ1 =
e∗d1
ℏ

Ez,1, (13)

∂tθ2 =
e∗d2
ℏ

Ez,2. (14)

By relating the discontinuity of B across each layer to
the in-plane currents, simple expressions for θ1 and θ2
in terms of the average in-plane magnetic fields between
layers, By,1 and By,2, also hold:

∂xθ1 =
e∗d1
ℏ

(
By,1 +

By,1 −By,2

β

)
, (15)

∂xθ2 =
e∗d2
ℏ

(
By,2 +

By,2 −By,1

d2

d1
β

)
. (16)

For earlier theoretical studies of Josephson plasmons
in layered superconductors below Tc, see Refs.59–65.
Diamagnetism due to the dissipationless counterflow

state. To find the static response to an external mag-
netic field Bext, we consider a semi-infinite geometry
with a boundary to air at x = 0, and impose the BC:
By,1|x=0 = By,2|x=0 = Bext. In the Supp. Note 2, the
solution of Eqs. (11)–(12) is shown to be

By,1(x) =

(
β

1 + β
e−x/λ +

1

1 + β

)
Bext, (17)

By,2(x) =Bext, (18)



9

25 50 75 100
t

°200

0

200

400

B
in

d
(0

,t
)+

B
in

d
(L

,t
)

|B
ex

t
¬

d
|

ba Pumped region

Emitted !eldEmitted !eld

20 40 60 80 100
t

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Φ
in
d

√
10

−5

b

20 40 60 80 100
x

− 0.02

0.00

0.02

0.04

(B
L
+

B
R
)
/2

t = 110

c

0 10 20 30 40 50
x

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

∂ x
θ
−

q

t = 45

t = 50

t = 55

t = 60

t = 65

a e

0.00

0.01

0.02

0.03

0.04

Φ
in
d

q = 1 .4 × 10− 5

q = 3 .4 × 10− 5

q = 5 .4 × 10− 5

q = 7 .4 × 10− 5

q = 1 .4 × 10− 4

20 40 60 80 100
t

− 3.5

0.0

3.5

p
u
m
p

0.00 0.25 0.50 0.75 1.00 1.25
q × 10− 4

0.00

0.01

0.02

0.03

0.04

m
ax

{Φ
in
d
}

b

20 40 60 80 100
t

0.00

0.01

0.02

0.03

0.04

Φ
in
d

V 2
0 = 0 .2

V 2
0 = 2 .2

V 2
0 = 6 .2

V 2
0 = 7 .6

V 2
0 = 9 .0

V 2
0 = 10 .6

V 2
0 = 12 .2

0 2 4 6 8 10 12

V 2
0

0.00

0.01

0.02

0.03

0.04

m
ax

{Φ
in
d
}

d

100 101 102

L

0.00

0.01

0.02

0.03

0.04

m
ax

{Φ
in
d
}

f

c

0 5 10 15 20 25

V 2
0

0

1

2

3

4

5

6

m
ax

{Φ
in
d
}

q = 10-2

a

Driven YBCO a

E pump

z

x
y

Bstatic

Equilibrium diamagnetism in
pseudogap YBCO b Dynamically ampli!ed pre-solitons and paramagnetism

pre-solitons

Photo-generated 
edge current

c

d

YBCO

Mask
Magnetic 

!eld detector

y

z

-100 -50 50 100

0.5
1

0

E          (E  )pump 0

  z (μm)

Driven YBCO a

E pump

z

x
y

Bstatic

Equilibrium diamagnetism in
pseudogap YBCO b Dynamically ampli!ed pre-solitons and paramagnetism

pre-solitons

Photo-generated 
edge current

c

Driven YBCO a

E pump

z

x
y

Bstatic

Equilibrium diamagnetism in
pseudogap YBCO b Dynamically ampli!ed pre-solitons and paramagnetism

pre-solitons

Photo-generated 
edge current

c

d

YBCO

Mask
Magnetic 

!eld detector

y

z

-100 -50 50 100

0.5
1

0

E          (E  )pump 0

  z (μm)

Driven YBCO a

E pump

z

x
y

Bstatic

Equilibrium diamagnetism in
pseudogap YBCO b Dynamically ampli!ed pre-solitons and paramagnetism

pre-solitons

Photo-generated 
edge current

c
aPumped region

Emitted !eld Emitted !eld

20406080100
t

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Φ
in
d
√

1
0
−
5

b

20406080100
x

−0.02

0.00

0.02

0.04

(B
L
+
B
R
)
/
2

t=110

c

01020304050
x

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

∂
x
θ
−
q

t=45

t=50

t=55

t=60

t=65

ae

0.00

0.01

0.02

0.03

0.04

Φ
in
d

q=1.4×10−5

q=3.4×10−5

q=5.4×10−5

q=7.4×10−5

q=1.4×10−4

20406080100
t

−3.5

0.0

3.5

p
u
m
p

0.000.250.500.751.001.25
q×10−4

0.00

0.01

0.02

0.03

0.04

m
a
x
{Φ
in
d
}

b

20406080100
t

0.00

0.01

0.02

0.03

0.04

Φ
in
d

V2
0=0.2

V2
0=2.2

V2
0=6.2

V2
0=7.6

V2
0=9.0

V2
0=10.6

V2
0=12.2

024681012

V2
0

0.00

0.01

0.02

0.03

0.04

m
a
x
{Φ
in
d
}

d

100101102

L

0.00

0.01

0.02

0.03

0.04

m
a
x
{Φ
in
d
}

f

c

0510152025

V2
0

0

1

2

3

4

5

6

m
a
x
{Φ
in
d
}

q = 10-2

aPumped region

Emitted !eld Emitted !eld

20406080100
t

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Φ
in
d

√
10
−5

b

20406080100
x

−0.02

0.00

0.02

0.04

(B
L
+
B
R
)
/2

t=110

c

01020304050
x

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

∂x
θ
−
q

t=45

t=50

t=55

t=60

t=65

ae

0.00

0.01

0.02

0.03

0.04

Φ
in
d

q=1.4×10−5

q=3.4×10−5

q=5.4×10−5

q=7.4×10−5

q=1.4×10−4

20406080100
t

−3.5

0.0

3.5

p
u
m
p

0.000.250.500.751.001.25
q×10−4

0.00

0.01

0.02

0.03

0.04

m
ax
{Φ
in
d
}

b

20406080100
t

0.00

0.01

0.02

0.03

0.04

Φ
in
d

V2
0=0.2

V2
0=2.2

V2
0=6.2

V2
0=7.6

V2
0=9.0

V2
0=10.6

V2
0=12.2

024681012

V2
0

0.00

0.01

0.02

0.03

0.04

m
ax
{Φ
in
d
}

d

100101102

L

0.00

0.01

0.02

0.03

0.04

m
ax
{Φ
in
d
}

f

c

0510152025

V2
0

0

1

2

3

4

5

6

m
ax
{Φ
in
d
}

q = 10-2

Emitted field

FIG. 6. Magnetic field emitted from pumped YBCO.
a Sketch of the magnetic pulse emitted from the right edge
(x > L) of a YBCO region illuminated by the pump field. An
analogous emission process occurs at the left edge (x < 0) of
the segment (not shown). b Average induced magnetic field
at the edges, Bind(0, t) + Bind(L, t), normalized by the equi-
librium diamagnetic field amplitude, |Bextχd|. We observe a
bimodal emission profile. The chosen simulation parameters
are identical to that of Fig. 4, see the main text, and time is
rescaled to 1/ωJ,1.

where λ =
√

β
1+β

c
ωJ

is the bilayer penetration depth. For

x ≫ λ, we find a screened intrabilayer magnetic field,
Bsc = Bext

1+β , whereas there is no interbilayer screening.
Averaged over one unit cell, the effective diamagnetic
susceptibility is given by:

χd = −d1β

D
= −d1(e

∗)2ns

D 2ϵ0mc2
, (19)

where, in the second step, we expressed β in terms of
microscopic parameters of the counterflow state, such as
the 2D superfluid density, ns, in each layer.

From existing data in the pseudogap phase of YBCO42,
a geometric analysis of magnetic susceptibility found an
enhanced diamagnetic contribution for the in-plane sus-
ceptibility, which is sensitive to counterflow currents, ver-
sus the out-of-plane magnetic susceptibility, with δχ ∼
10−5. Attributing this difference to the counterflow state,
we estimate β ∼ 10−5.

Radiative BC. Focusing on the physics between two
cracks, BC are required to model the electrodynamics
outside the pumped segment. Specifically, as localized
paramagnetic loops are generated and amplified in the
pre-soliton regime, an equal and opposite flux is expected
to be emitted from the segment’s edges, such that the to-
tal flux is conserved. By imposing appropriate continu-
ity conditions for the average electric and magnetic fields
at the segment-to-exterior interface, as illustrated in the
Supp. Note 1, we obtain:
[
∂xθ

′
1 + ∂xθ

′
2 ∓

1

c
(∂tθ

′
1 + ∂tθ

′
2)

]∣∣∣∣
x=0,L

=
e∗D
ℏ

Bext,

(20)
(
∂xθ

′
1

d1
− ∂xθ

′
2

d2

)∣∣∣∣
x=0,L

=0, (21)

where the − (+) sign applies to the x = 0 (x = L) bound-
ary. As motivated above, we decomposed our dynamics

as θ1,2(x, t) = θ̃1,2(t) + θ′1,2(x, t), with θ̃1,2 being the ho-
mogeneous parts, strongly driven and evolving over the
pump period’s timescale, and θ′1,2 mostly keeping track of
slower (over the pump envelope’s timescale) and spatially
localized features.
In the segment’s exterior, concentrating on the right-

propagating mode sketched in Fig. 6(a), we then have
that

Bem(x > L, t) = Bind(L, t− (x− L)/c), (22)

where Bind = ℏ
e∗D (∂xθ

′
1,ind + ∂xθ

′
2,ind) is the z-averaged

field induced within a unit cell. Taking also into account
the left-propagating mode for x < 0, total flux conserva-
tion readily implies that

Bind(0, t) +Bind(L, t) = − 1

cD
∂tΦind, (23)

with Φind being the induced flux inside the segment.
Therefore, the information about the emitted fields is
encoded in the Bind(0, t) +Bind(L, t) time traces, shown
in Fig. 6(b) for our representative multi-bilayer scenario.
The emission profile is bimodal, which can be understood
as a consequence of flux conservation. To conserve to-
tal flux, as the induced flux in the segment increases,
a diamagnetic pulse is emitted outward from the seg-
ment. Conversely, when the induced flux decreases, a
paramagnetic flux is emitted. In general, we expect any
short-lived paramagnetic or diamagnetic response to give
rise to a bimodal emission, which averages to zero over
time, in accordance with Eq. (23). This observation fur-
ther supports the conclusion that the detected signal32

is the direct magnetic response of the sample under the
detector, rather than emitted radiation.
SG pre-soliton mechanism: length dependence and ro-

bustness to thermal (anti)solitons. Being a spatially ex-
tended excitation, a pre-soliton can only form if the bi-
layer system is large enough to host it. To this end, we
explore the SG model’s (θ1 ≡ θ here) response versus
the (normalized) inverse segment length 0.01 ≤ L−1 ≤ 1,
see Fig. 7(a). We observe a saturating behavior, with a
characteristic inverse length of ∼ 0.1, which is consistent
with the pre-soliton size of ∼ 20 we deduce from, e.g.,
Fig. 2(d) and (e). The latter point confirms, at the SG
level, that this is indeed a boundary effect.
We have not explicitly studied the influence of ther-

mally excited solitons and antisolitons on our mecha-
nism. For T ≳ Tc, our choice is justified because the
density of such fluctuations is presumably very small by
virtue of the large value of the intrabilayer Josephson cou-
pling. However, at higher temperatures, this is no longer
a valid assumption. We can estimate the typical distance
between two solitons through a high temperature expan-
sion66 to be given by in-plane coherence length, ξ.
For the single bilayer, we investigate the robust-

ness of the light-induced paramagnetism phenomenon



10

0.025 0.030 0.035 0.040

x°1
0

0.005

0.010

0.015

0.020

¢
µ

m
ax

1/
2,

in
d

x0

0

2º

µ
(x

,0
)

10°2 10°1 100

L°1

0.00

0.01

0.02

0.03

0.04
¢
µ

m
ax

in
d

a b

FIG. 7. Size analysis and impact of solitonic initial
conditions. a Dependence of the maximum photo-induced
phase difference versus the (normalized) inverse length of the
bilayer segment. If L < 10, i.e., if the segment is smaller than
the characteristic length of the pre-soliton shown in Fig. 2, the
effect is heavily suppressed, whereas for L < 10 the response
saturates, demonstrating that this is indeed a boundary ef-
fect. b Half-size maximum photo-induced phase difference,
averaged over soliton and antisoliton initial conditions (repre-
sented in the inset), versus the inverse coordinate x−1

0 . Here
the segment length is L = 200. Saturation to the soliton-
free response (see the dashed horizontal line) is observed for
x−1
0 ≲ 0.03, whereas the response gradually decays for larger

x−1
0 . The following (normalized) parameters are used in both

plots: V0 = 3.5, q = 1.4× 10−4, α = 0.5, and β = 10−5.

to (anti)solitons by repeating the SG calculations for
V0 = 3.5 and q = 1.4 × 10−4 using the initial conditions
(in dimensionless form):

θ(x, 0) = −q
e−x − e−(L−x)

1 + e−L
+ 4arctan e±(x−x0), (24)

where the first terms encodes the static diamagnetic re-
sponse within the segment, and the second term corre-
sponds to a SG soliton (+) or antisoliton (−) at a distance
x0 from the x = 0 edge.

We work with 0 < x0 < L/2, and evaluate the sys-
tem response in terms of the half-size maximum photo-

induced phase difference, i.e., ∆θmax
1/2,ind = max{θ|x=L/2

x=0 −
θeq|x=L/2

x=0 }. In particular, expecting the same average
population of solitons and antisolitons, in Fig. 7(b) we
plot ∆θmax

1/2,ind versus x−1
0 upon averaging over the two (±)

different solitonic initial conditions, see also the sketch in
the inset. Our mechanism shows robustness to the pres-
ence of (anti)solitons, as the response saturates to the
soliton-free counterpart (see the dashed horizontal line)
for x−1

0 ∼ 0.03. Beyond this threshold, we observe a grad-
ual suppression of the effect. In fact, when (anti)solitons
are very close to the edge, they can interfere with the
pre-soliton emergence, as well as scatter from the bound-
ary, thereby leading to somewhat convoluted nonlinear
transients.

Floquet framework. According to Eqs. (5)–(7), the
homogeneous solution θ̃ follows the driven damped pen-
dulum equation, and its slowly varying amplitude A(t)
enters the linearized dynamical equation for the inhomo-
geneous part θ′ as a parametric drive η(A). Specifically,
as shown in the Supp. Note 3, a Floquet expansion yields

25 50 75 100
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a b
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FIG. 8. Homogeneous solution and parametric drive.
a θ̃ trajectory (full line), and its smoothly varying envelope
A (dashed line), versus time. b Parametric drive η(A(t)),
comparing the J0-only result, see the light gray line, with
that accounting for higher-frequency (J2n) corrections, see the
gray line. The green shaded area denotes the unstable, η < 0,
region. The (normalized) parameters values V0 = 3.5 and
α = 0.5 are used in both plots.

the expression:

η(A) = J0(A)+2
∑

n

J2n(A)J−2n(A)
[
(2nωd)

2 − J0(A)
]

[(2nωd)2 − J0(A)]
2
+ α2(2nωd)2

,

(25)
where Ji is the i-th Bessel function of the first kind.
We numerically solve for the θ̃ trajectory, and subse-

quently extract a smoothly varying envelope A(t) via a
low-pass-filtered Hilbert transform, see Fig. 8(a). We are
then in position to evaluate the parametric drive η(A(t)),
which features a leading contribution, see the ‘J0’ term
in Eq. (25), as well as higher-frequency corrections, see
the ‘J2n’ summation over n in Eq. (25). In this regard, in
Fig. 8(b) we display the parametric drive relative to the
time trace of Fig. 8(a), comparing the result coming from
the leading contribution alone, see the light gray line,
with that obtained by including the higher-frequency cor-
rections for n ≤ 5, see the gray line. The two plotted η
curves qualitatively look similar: their equilibrium value
is one, and they cross zero–reaching negative values–due
to the strongly nonlinear drive, see the green shaded area
in Fig. 8(b). The η < 0 region is responsible for the un-
stable behavior in the slow variable θ′, and therefore we
expect the system’s response to be sensitive to the ap-
preciable quantitative difference between the two results
shown in Fig. 8(b).
We find that including higher-frequency corrections

tames the instability by a noticeable amount (as com-
pared to the J0-only result), bringing the Floquet theory
into remarkably close agreement with the SG prediction,
as discussed in the main text. As a side note, we observe
that only the very first terms in the ‘J2n’ summation are
seen to matter in the present scenario, which motivates
our choice of evaluating the J2n sum up to n = 5.
Numerical techniques. To computationally handle

the PDEs (in general, systems of coupled PDEs) pre-
sented in this article, we formulate them as systems
of coupled first-order ODEs by employing second-order
finite-difference approximations for the space derivatives.
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For instance, considering the (single bilayer) SG case for
the field θ(x, t), we discretize the spatial domain as N
points separated by steps of length ∆x, and we define the
restriction θ(n∆x, t) ≡ θn(t) for n = 1, ..., N . We then
obtain a set coupled first-order ODEs for the quantities
∂tθn ≡ vn(t) and ∂tvn ≡ an(t), which can be solved via
standard numerical routines, such as scipy.integrate’s
odeint, for a discrete set of M times separated by inter-
vals of duration ∆t.

For the single bilayer numerical runs, we typically use
the following discretization steps values: ∆x ≈ 0.05 and
∆t ≈ ∆x/5. We tested the reliability of our numerical
findings in multiple ways: (i) we checked the stability and
consistency of the simulation outcomes upon systematic
variation of the ∆x and ∆t discretization steps; (ii) we
performed extensive preliminary runs via two other in-
dependent numerical approaches, the first being an im-
plicit implementation based on Thomas’ algorithm and
the other making use of Mathematica’s NDSolve, and we
observed close agreement between the different methods
on the discussed phenomena; (iii) within the pre-soliton
regime, we reproduced the relevant features of the output
of the full nonlinear (SG) model by recasting the prob-
lem in the Floquet picture, as addressed above. Simi-
lar assessments were conducted also for the multi-bilayer
runs, which are presented in this article only for the Flo-
quet effective theory, using step sizes of ∆x ≈ 0.1 and
∆t ≲

√
β∆x/2, the latter choice being determined by

stability considerations on the linearized model.
As a concluding technical remark, we note that

throughout the paper, results are presented after con-
volution with a Gaussian profile over several driving pe-
riods. This reflects the fact that the experiments32 origi-
nally motivating our work use detectors that average over
that timescale.

Relation to experimental data. In the following, we
present a detailed comparison between the experimental
observations of Ref. 32 and the predictions made within
our theoretical framework:

a. The peak magnetic field on the detector is param-
agnetic and linear with applied external magnetic field.
This is recovered by our theory. As discussed above, even
though experimental parameters are deep in the non-
linear dynamical regime of the SG model, the response
scales linearly with the magnetic field, see Fig. 3(b);

b. The induced magnetization measurements show a
highly nonlinear behavior versus fluence, with a satura-
tion trend at the highest fluences. We capture the flu-
ence response seen in experiments for low fluences, see
Fig. 3(c). For higher fluences, we do not observe the re-
ported saturation. To explain the saturating behavior,
we point to the sensitive dependence of the phenomenon
to damping demonstrated in the Supp. Note 4. A heavy
increase of dissipation, due to heating at such higher flu-
ences, could indeed account for the observed saturation;

c. The magnetic pulse on the detector is only param-

agnetic and travels with the speed of light. Within our
model, the pump pulse is assumed to travel along the
z-direction with the speed of light, after being Fresnel-
diffracted by the mask edge, see Fig. 5(a). The purely
paramagnetic signal measured suggests that the field
stems from the pumped YBCO region beneath the de-
tector, rather than being emitted from a pumped region
away from it. As we argued in a previous paragraph,
short-lived changes to the effective magnetic susceptibil-
ity would lead to an emission that is bimodal, i.e., both
paramagnetic and diamagnetic, with null integral over
time;

d. The amplitude of the induced magnetic field is
Bind ≈ 6 µT for an external field of Bext ≈ 10mT. Using
realistic parameters, we obtain a result which quantita-
tively agrees with the experiment, Bind/Bext ∼ 10−3, see
Fig. 5(b). The intra-bilayer conductivity, which deter-
mines the damping coefficient as α = σn

ϵ0ωJ
, is hard to

determine either from first principles or experimentally.
Reducing (increasing) the latter parameter greatly en-
hances (attenuates) the effect;

e. Temperature dependence of the effect. While vari-
ous parameters, such as ωJ and α, can in principle con-
tribute to the temperature dependence of the overall re-
sult for Bind, we start by focusing on the direct propor-
tionality to the equilibrium diamagnetic field shown in
Fig. 5(c): ⟨Bmax

ind (T )⟩ /Bext = −f(T )χd(T ), where ⟨...⟩
indicates averaging over a segment of length L. The equi-
librium diamagnetic response, χd, is proportional to the
local superfluid density, i.e., χd ∝ n2D,s(T ). Assuming a
preformed pair scenario, the critical temperature, Tc, is
associated with a BKT transition, whereas the pseudo-
gap temperature, T ∗, is interpreted as that where Cooper
pairs dissociate, thereby depleting the superfluid density.
In the inset of Fig. 5(c), we plot the temperature depen-
dence of χd, assuming a BCS form for the superfluid den-

sity: ns(T )/ns(Tc) = tanh
(√

κT∗−T
T

)
. The fact that

the photo-induced effect, which is proportional to χd,
can be fitted using this expression, as shown in the ex-
perimental paper32, is highly suggestive for the nature of
the pseudogap phase.
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SUPPLEMENTARY NOTE 1: ELECTRODYNAMICS OF THE PSEUDOGAP BILAYER YBCO

Maxwell equations for the layered YBCO. As sketched in Fig. S.1, the YBCO the structure consists of bilayers
with spacing d1, which are separated from each other by a larger spacing d2. The unit cell dimension along the
z-direction is d1 + d2. We shall employ the layer index i = {1, 2} to denote the bottom and top members of a bilayer,
and l to denote the l-th unit cell. We start our description by considering the Maxwell equations:

1

c2
∂tEz +

1

c2ϵ0
jz = ∂xBy, (S.1)

1

c2
∂tEx +

1

c2ϵ0
jx = ∂zBy, (S.2)

By = ∂zAx − ∂xAz, (S.3)

where we take the system to be homogeneous along the y-axis. To model the low-energy electrodynamics of the YBCO
system, we assume that physical quantities are approximately constant between CuO layers and can be replaced by
their averages. For the z-component of the electric field, we thus focus on:

Ez,1,l =
1

d1

∫ z2,l

z1,l

dzEz(z), (S.4)

Ez,2,l =
1

d2

∫ z1,l+1

z2,l

dzEz(z). (S.5)

Similarly, for the y-component of the magnetic field we have that:

By,1,l =
Ax,2,l −Ax,1,l

d1
− ∂xAz,1,l, (S.6)

By,2,l =
Ax,1,l −Ax,2,l

d2
− ∂xAz,2,l, (S.7)

where we have defined Ax,1,l = Ax(z = z1,l), Ax,2,l = Ax(z = z2,l), Az,1,l = 1
d1

∫ z2,l
z1,l

dzAz(z), and Az,2,l =
1
d2

∫ z1,l+1

z2,l
dzAz(z). Moreover, we assume that the current along the x-direction is localised at each CuO layer:

jx(z) =
∑

l

[jx,1,lδ(z − z1,l) + jx,2,lδ(z − z2,l)] , (S.8)

Integrating Eq. (S.1) over d1 (distance between layers) and Eq. (S.2) across the layer thickness, we find a set of
closed equations in terms of the intra-bilayer and inter-bilayer fields:

1

c2
∂tEz,1,l +

1

c2ϵ0
jz,1,l = ∂xBy,1,l, (S.9)

1

c2
∂tEz,2,l +

1

c2ϵ0
jz,2,l = ∂xBy,2,l, (S.10)

1

c2ϵ0
jx,1,l =By,2,l−1 −By,1,l, (S.11)

1

c2ϵ0
jx,2,l =By,1,l −By,2,l, (S.12)

where the average currents along the z-direction are given by jz,1,l =
1
d1

∫ z2,l
z1,l

jz(z) and jz,2,l =
1
d2

∫ z1,l+1

z2,l
jz(z).
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FIG. S.1. Sketch of YBCO.
The crystal structure of YBCO
is made up of pairs of CuO2-
layers that below Tc become su-
perconducting. Members of a
CuO2 bilayer are separated by
an Yttrium atom and an inter-
layer distance of d1 = 4 Å, while
different bilayers are separated
by two Barrium atoms and a
distance of d2 = 4 Å. In the fig-
ure we also annotated the posi-
tion of the in-plane and out-of
plane currents.

Dissipationless counter-flow model for pseudogap YBCO. The dissipationless
counter-flow is modelled by a superfluid response in plane, with a friction force
created by the motion of pancake vortices1. According to Ref. 2, vortices flow only
due to the sum of the currents in the two bilayers. When the currents are anti-
symmetric, intra-bilayer coherence can pin the vortices in the two layers, allowing
the counter-flow current to remain dissipationless. This scenario is captured by the
superfluid equations:

∂tj
s
z,1,l =

e∗

ℏ
d1Jc,1 cos(θ1,l)Ez,1,l, (S.13)

∂tj
s
z,2,l =

e∗

ℏ
d2Jc,2 cos(θ2,l)Ez,2,l, (S.14)

∂tj
s
x,1,l =

(e∗)2ns

m
Ex,1,l + γd

(
jsx,1,l + jsx,2,l

)
, (S.15)

∂tj
s
x,2,l =

(e∗)2ns

m
Ex,2,l + γd

(
jsx,1,l + jsx,2,l

)
, (S.16)

where θ1,l = ϕ2,l−ϕ1,l− e∗

ℏ d1Az,1,l and θ2,l = ϕ1,l+1−ϕ2,l− e∗

ℏ d2Az,2,l are the gauge
invariant phases, directly related to the electric fields through the relations ℏ∂tθ1,l =
e∗d1Ez,1,l and ℏ∂tθ2,l = e∗d1Ez,2,l, Ex,1,l = Ex(z = z1,l) and Ex,2,l = Ex(z = z2,l)
are the in-plane electric fields, ns is the 2D superfluid density in each CuO-layer,
and γd is a friction coefficient accounting for the vortex motion in the presence of a
symmetric current in each bilayer. In the counter-flow state, we take Jc,2 = 0 and
assume that the bilayer Josephson coupling is unaffected, i.e., Jc,1 = Jc,1(T = 0K).

We henceforth examine the system’s response at momentum qz = 0, where the
fields have the same amplitude in each unit cell, and drop the l-index dependence.
Equations (S.11) and (S.12) always imply equal and opposite in-plane currents,
jx,2 = −jx,1, thereby leading to dissipationless in-plane relative phase dynamics.
Dissipation is nevertheless included as jnz,1 = σn,1Ez,1 and jnz,2 = σn,2Ez,2, where

σn,1 is the normal c-axis bilayer conductivity and σn,2 is a similar quantity motivated by the cavity to the radiation
field formed by the region in-between bilayers being leaky. The cavity Q leads to dissipation of photon modes, which
can be modeled by adding a term proportional to the intra-bilayer electric field in Eq. (S.10). This will lead to a
dissipative term parametrized by σn,2 in the equation for θ2 below. Note that σn,2 is a parameter that models the
cavity Q and should not be interpreted as conductivity between bilayers.

Equations (S.11)–(S.12) express the discontinuity of the magnetic field By across each layer in terms of the in-
plane current. The latter can be formulated through θ and By by writing the electric field along the x-direction
in terms of the gauge invariant phase, ∂t (ℏ∂xϕ1 − e∗Ax,1) = e∗Ex,1 and ∂t (ℏ∂xϕ2 − e∗Ax,2) = e∗Ex,2, and using
Eqs. (S.15)–(S.16) and Eqs. (S.6)–(S.7). Equations (S.11)–(S.12) become

β

(
∂xθ1 −

e∗

ℏ
d1By,1

)
=By,1 −By,2, (S.17)

d2
d1

β

(
∂xθ2 −

e∗

ℏ
d2By,2

)
=By,2 −By,1 (S.18)

where β = (e∗)2nsd1

2ϵ0mc2 . We use Eqs. (S.17) and (S.18) to solve for By,1 and By,2 in terms of θ1 and θ2. Plugging
into Eqs. (S.9) and (S.10), we arrive at the equations of motion for the gauge invariant phases in the pseudogap
counter-flow state:

1

c2
∂2
t θ1 +

ω2
J,1

c2
sin θ1 +

σn,1

ϵ0c2
∂tθ1 −

1

d2(1 + β) + d1
∂2
x [(d1 + d2β)θ1 + d1θ2] = 0, (S.19)

1

c2
∂2
t θ2 +

σn,2

ϵ0c2
∂tθ2 −

1

d2(1 + β) + d1
∂2
x [d2(1 + β)θ2 + d2θ1] = 0, (S.20)

which depend on the frequency of the upper plasmon ωJ,1 ≈ 2π × 14 THz, the intra-bilayer distance d1 ≈ 4 Å, the
inter-bilayer distance d2 ≈ 8 Å, and the dimensionless parameter β. In the Supplementary Note ‘Equilibrium counter-
flow diamagnetism’, we show that the value β ≈ 10−5 can be estimated from experiments as the diamagnetic response
of the pseudogap phase due to counter-flow screening.
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External driving. In the presence of an homogeneous pump electric field along the z-direction, Ep = E0f(t), the
currents along the z-direction are given by:

jsz,1 = Jc,1 sin

(
θ1 −

e∗

ℏ
d1Ap,1

)
, (S.21)

jnz,i =
σn,i

e∗di
∂t

(
θi −

e∗

ℏ
diAp,i

)
, (S.22)

where i = {1, 2}, ∂tAp,1 = −Ep, and ∂tAp,2 = −Ep. This leads to the driven equations of motion:

1

c2
∂2
t θ1 +

ω2
J,1

c2
sin

(
θ1 −

e∗

ℏ
d1Ap,1

)
+

σn,1

ϵ0c2
∂t

(
θ1 −

e∗

ℏ
d1Ap,1

)
− 1

d2(1 + β) + d1
∂2
x [(d1 + d2β)θ1 + d1θ2] = 0, (S.23)

1

c2
∂2
t θ2 +

σn,2

ϵ0c2
∂t

(
θ2 −

e∗

ℏ
d2Ap,2

)
− 1

d2(1 + β) + d1
∂2
x [d2(1 + β)θ2 + d2θ1] = 0. (S.24)

The latter equations can be expressed in a simpler form via the uniform transformation θ1 = Θ1 + e∗

ℏ d1Ap,1 and

θ2 = Θ2 +
e∗

ℏ d2Ap,2 :

1

c2
∂2
tΘ1 +

ω2
J,1

c2
sinΘ1 +

σn,1

ϵ0c2
∂tΘ1 −

1

d2(1 + β) + d1
∂2
x [(d1 + d2β)Θ1 + d1Θ2] =

e∗d1
ℏc2

∂tEp(t), (S.25)

1

c2
∂2
tΘ2 +

σn,2

ϵ0c2
∂tΘ2 −

1

d2(1 + β) + d1
∂2
x [d2(1 + β)Θ2 + d2Θ1] =

e∗d2
ℏc2

∂tEp(t). (S.26)

In this basis, the equations of motion resemble that solved for coupled systems of driven damped long Josephson
junctions3–7.

Boundary conditions for a periodic bilayer system of finite width. To account for the physics between two cracks, it
is necessary to define the boundary conditions that simulate the electrodynamics outside the pumped finite segment.
Indeed, as local paramagnetic loops are formed and amplified within the pre-soliton regime, an equal and opposite
flux is anticipated to stem from the boundaries, ensuring conservation of the total flux. The boundary conditions at
the x = 0 interface are expressed as follows8:

Ez,air,qz=0|x=0 = Ez,mat,qz=0|x=0 , (S.27)

By,air,qz=0|x=0 = By,mat,qz=0|x=0 , (S.28)

jx,1|x=0 ∝ (By,2 −By,1)|x=0 = 0, (S.29)

where the first two conditions state that the tangential components of the average electric and magnetic fields are
continuous across the interface. We break up the fields in air as externally imposed contributions plus propagating
modes:

Ez,air,qz=0|x=0 = Eair,qx |x=0 + Ep, (S.30)

By,air,qz=0|x=0 = Bair,qx |x=0 +Bext. (S.31)

For a left (right) propagating mode, we have the condition Bair,qx = +(−) 1
cEair,qx , implying:

By,mat,qz=0|x=0 −Bext = +(−)
1

c

[
Ez,mat,qz=0|x=0 − Ep

]
. (S.32)

Taking the average electric field as Ez,mat,qz=0 = ℏ∂tΘ1+∂tΘ2

e∗(d1+d2)
= ℏ∂tθ1+∂tθ2

e∗(d1+d2)
+ Ep, we get the following boundary

conditions:
{
∂xΘ1 + ∂xΘ2 ∓

1

c
[∂tΘ1 + ∂tΘ2 − e∗(d1 + d2)Ep]

}∣∣∣∣
x=0,L

=
e∗(d1 + d2)

ℏ
Bext, (S.33)

(
∂xΘ1

d1
− ∂xΘ2

d2

)∣∣∣∣
x=0,L

=0, (S.34)

where the − (+) sign applies to the x = 0 (x = L) boundary. Throughout this work, we report Eqs. (S.25)–(S.26)
and Eqs. (S.33)–(S.34) and drop the capitals, i.e., we redefine Θ1 ≡ θ1 and Θ2 ≡ θ2.
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Single bilayer limit. Above, we have derived the electromagnetic equations of motion for a multi-bilayer system. A
physically instructive limit to take is that of a single bilayer. To this end, we let d2 → ∞, obtaining the intra-bilayer
equation:

1

c2
∂2
t θ +

ω2
J

c2
sin θ +

σn

ϵ0c2
∂tθ −

β

1 + β
∂2
xθ =

e∗d1
ℏc2

∂tEp, (S.35)

where (as in the main text) we suppressed the ‘1’ subscript: θ1 ≡ θ, ωJ,1 ≡ ωJ , and σn,1 ≡ σn. As the previous
equation indicates, in this limit, the bilayer dynamics is decoupled from that in-between the bilayers. The resulting
equation, referred to in the literature as the perturbed (or driven damped) SG equation5–7, captures the instabilities
discussed in the main text. The multi-bilayer solution then yields corrections to the SG prediction, accounting for
the capacitive coupling between layers. The inter-bilayer dynamics is described by:

∂2
t θ2 +

σn,2

ϵ0
∂tθ2 − c2∂2

xθ2 =
c2

1 + β
∂2
xθ +

e∗d2
ℏ

∂tEp. (S.36)

This highlights that capacitive coupling between neighboring layers remains significant in the present limit and
reinforces the observation that, for large but finite d2, the current generated within the bilayer is converted into a
displacement current between bilayers, resulting in the overall edge current discussed in the main text.

SUPPLEMENTARY NOTE 2: EQUILIBRIUM COUNTER-FLOW DIAMAGNETISM

Here we consider a semi-infinite geometry with a interface to air at x = 0. In the presence of a magnetic field, the
boundary conditions are given by By,1|x=0 = By,2|x=0 = Bext. In terms of the gauge invariant phases, we get:

∂xθ1|x=0 =
e∗d1
ℏ

Bext, (S.37)

∂xθ2|x=0 =
e∗d2
ℏ

Bext. (S.38)

To analytically solve the equilibrium problem, it is simpler work directly with the magnetic fields, which using
Eqs. (S.17) and (S.18) are found to satisfy:

∂2
xBy,1 =

(
ω2
J,1

c2
cos θ1 +

1

c2
∂2
t +

σn,1

ϵ0c2
∂t

)(
By,1 −By,2

β
+By,1

)
, (S.39)

∂2
xBy,2 =

(
1

c2
∂2
t +

σn,2

c2
∂t

)(
By,2 −By,1

β d2

d1

+By,2

)
. (S.40)

In the static limit θ1 is small, such that cos θ1 ≈ 1, and our equations become:

∂2
xBy,1 =

ω2
J,1

c2

(
By,1 −By,2

β
+By,1

)
, (S.41)

∂2
xBy,2 =0. (S.42)

Solutions of the latest system of equations are readily obtained as:

By,1(x) = (Bext −Bsc) e
−kx +Bsc, (S.43)

By,2(x) =Bext, (S.44)

where Bsc =
1

1+βBext is the screened field and k = λ−1 =
ωJ,1

c

√
1+β
β is the inverse penetration depth. These solutions

imply that, inside the bilayer, we have a diamagnetic susceptibility given by χbilayer = −β. Since the bilayer makes
up 1/3 of the unit cell, the effective diamagnetic susceptibility of the entire structure due to counter-flow currents is
given by:

χd = −β

3
. (S.45)
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According to Ref. 9, which reports on measurements of magnetic properties of YBCO, there exists an excess diamag-
netic contribution of χd = −10−5 in the pseudogap regime. Assuming that such value originates entirely from the
counter-flow diamagnetism described here, we arrive to β = 3× 10−5.

In the single bilayer limit, d2 → ∞, the following expression holds for the magnetic field By,1:

By,2 −By,1(x) =
β

1 + β

(
Bext −

ℏ
e∗d1

∂xθ1

)
(S.46)

and the in-plane screening currents are:

1

c2ϵ0
jx,1 = − 1

c2ϵ0
jx,2 = By,2 −By,1 =

β

1 + β

(
Bext −

ℏ
e∗d1

∂xθ1

)
. (S.47)

SUPPLEMENTARY NOTE 3: FLOQUET EFFECTIVE THEORY FOR THE SG PRE-SOLITON REGIME

We decompose the solutions of the perturbed SG model as θ(x, t) = θ̃(t)+θ′(x, t), where θ̃ is a spatially homogeneous
oscillating component obeying the driven damped pendulum equation (in rescaled units, x → x/λ and t → t ωJ , see
the main text):

∂2
t θ̃ + α∂tθ̃ + sin θ̃ = ∂tV (t), (S.48)

while θ′ satisfies the inhomogeneous boundary conditions and is subject to the effective SG potential created by the
oscillations of θ̃:

∂2
t θ

′ + α∂tθ
′ + cos θ̃ sin θ′ + (cos θ′ − 1) sin θ̃ =0, (S.49)

∂xθ
′|x=0,L = q. (S.50)

We then approximate θ̃(t) as a function oscillating with frequency ωd, but with a slowly time-varying amplitude (that
is, on the timescale of the pump’s envelope):

θ̃(t) = A(t) sin(ωdt). (S.51)

For a fixed amplitude A, we can expand the nonlinear SG potential into harmonics oscillating at multiples of ωd:

cos [A sin(ωdt)] = J0(A) +
∑

n

J2n(A)e−i2nωdt. (S.52)

Even if the pump’s amplitude is very large, in the range of small q of interest for experimental purposes (see the main
text), the dynamical equation for θ′ can be linearized. The resulting effective equation of motion, in frequency space,
takes the form:

[
−ω2 + iαω + J0(A)

]
θ′(ω) +

∑

n

[J2n(A)θ′(ω + 2nωd) + J−2nθ
′(ω − 2nωd)] = 0, (S.53)

where different frequency components of θ′ are coupled to all the Floquet copies. Restricting ω to the first Brillouin
zone of the Floquet problem, ω ∈ (−ωd/2, ωd/2), we can express different Floquet components using the notation,
θ′(n) = θ′(ω + nωd). By means of a Floquet perturbation theory10, we can include the effects of higher θ′ harmonics
on the dynamics of the slowly varying θ′(0)(ω), up to second order in the off-diagonal components J2n(A). Assuming
ω ≪ ωd, the equations of motion become, to leading order:

[
−ω2 + iαω + J0(A)

]
θ′(0) + J2n(A)θ′(2n) + J−2n(A)θ′(−2n) = 0, (S.54)

[
−(2nωd)

2 + iα2nωd + J0(A)
]
θ′(2n) = −J−2n(A)θ′(0), (S.55)

Combining the two equations together, we find the effective equation for θ′(0), to second order in the Floquet expansion:

[
−ω2 + iαω + J0(A)

]
θ′(0) − J2n(A)J−2n(A)

[
1

−(2nωd)2 + iα2nωd + J0(A)
+

1

−(2nωd)2 − iα2nωd + J0(A)

]
θ′(0) = 0,

(S.56)

[
−ω2 + iαω + J0(A)

]
θ′(0) + 2J2n(A)J−2n(A)

{
(2nωd)

2 − J0(A)

[(2nωd)2 − J0(A)]
2
+ α2(2nωd)2

}
θ′(0) = 0. (S.57)
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FIG. S.2. Spatio-temporal behaviors and damping dependence in the driven SG model. a Contour plot of the phase
and b contour plot of the phase gradient for the (normalized) parameter combination V0 = 4 and q = 0.01, representative of the
soliton regime, discussed in the main text. Under driving, small boundary inhomogeneities caused by nonzero-flux boundary
conditions gradually increase until a soliton, located around x = 10 in this example, is excited. c Contour plot of the phase
and d contour plot of the phase gradient for the combination V0 = 3.5 and q = 0.01, taken in the pre-soliton scenario. An
edge-localized excitation, qualitatively similar to a soliton but with much smaller amplitude, develops during pumping. The
following (dimensionless) parameters are used in panels (a)-(d): L = 100, α = 0.5, and β = 10−5. e Time traces of the
photo-induced phase difference across the entire segment and f maximum photo-induced phase difference versus the damping
coefficient, for V0 = 2.5, q = 1.4 × 10−4, L = 100, and β = 10−5. As dissipation decreases, we observe an enhancement in
the system’s peak pre-solitonic response. The lower dissipation scenario, however, is also characterized by more pronounced
oscillatory transients.

This leads to a parametric drive term η:

η(A) = J0(A) + 2
∑

n

J2n(A)J−2n(A)

{
(2nωd)

2 − J0(A)

[(2nωd)2 − J0(A)]
2
+ α2(2nωd)2

}
. (S.58)

In practice, we solve for θ̃ numerically, and then extract its envelope via a Hilbert transform. Due to the nonlinear
nature of the pendulum equation, θ̃ is not described just by a single harmonic, θ̃ = A sin(ωdt), but in general higher
harmonic contributions will come into play. Indeed, the envelope we compute usually presents some fast components
on top of a smooth background. We neglect such higher harmonic contributions by employing a low-pass filter. We
find this scheme to provide a simple yet accurate approximation for most of our purposes; however, at very large
pump amplitudes, the neglected higher harmonics should also be included in the Floquet analysis.

SUPPLEMENTARY NOTE 4: DYNAMICAL SG RESPONSE

Dynamically excited SG solitons and pre-solitons. In Fig. S.2(a) and (b), we present contour plots of the phase
and its gradient, respectively, to illustrate how solitons can enter the system through the cooperative action of a small
boundary field and strong spatially uniform driving. The latter induces an fast oscillating background, over which
initial boundary-localized profiles surf and get amplified. This eventually leads to the penetration of a full soliton,
located at x ≈ 10 in the shown example, as indicated by the 2π phase step or equivalently by the peak gradient
response of roughly 2. We note in passing that the soliton, if formed sufficiently away from the edge, persists long
after the pump pulse has passed by virtue of its topological robustness. In Fig. S.2(c) and (d), we show the spatio-
temporal phase and gradient profiles for a case representative of the pre-soliton regime. Here, in the presence of strong
driving, a soliton-like structure emerges out of the equilibrium configuration, which is characterized by very small
gradients at the edges and is zero elsewhere, surfing over the (pump-induced) uniform oscillations. In this scenario,
the localized feature we refer to as pre-soliton has a much smaller amplitude than an actual SG soliton, and it fades
away once the pump pulse is gone at a rate influenced by the damping coefficient.
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Damping dependence within the SG pre-soliton regime. We now address the sensitivity of our SG pre-soliton
results to damping, by varying the α parameter over an order of magnitude: α ∈ (0.1, 1). As shown in Fig. S.2(e),
the time traces of the photo-induced phase difference indicate a more pronounced overall response as dissipation is
decreased, with both larger peak values and oscillations on the way back to equilibrium. It should be pointed out
that, to precisely illustrate the dynamical traits under discussion, here we do not perform any convolution operation
on the simulation results, as opposed to what is mostly done elsewhere in this work (e.g., in the main text’s plots,
oscillations at a period of ∼ 1/ωp during the pre-solitonic build-up are filtered out). The results’ dependence on α
is further highlighted by considering the peak response, see Fig. S.2(f). In this case, we observe a power-law-type
attenuation of the maximum photo-induced phase difference with the dissipation strength. In general, as previously
hinted in our work, the α → 0 limit can be rather subtle: as exploring the full SG excitation spectrum progressively
becomes easier, complications to the simple instability picture painted above can gradually arise. For example, the
emergence of long-lived (for α → 0) breather-like modes can enhance the oscillatory character of the ∆θind time traces,
as compared to the mostly positive result obtained in the medium-to-large dissipation range.

SUPPLEMENTARY NOTE 5: FLOQUET MULTI-BILAYER RESPONSE

Multi-bilayer Floquet effective framework. We start from Eqs. (S.25) and (S.26) derived above, which we now write
in rescaled units, x → x/λ and t → t ωJ,1:

∂2
t θ1 + sin θ1 + α1∂tθ1 −

1 + β

β
∂2
x

(
K+

1 θ1 +K2θ2
)
= ∂tV (t), (S.59)

∂2
t θ2 + α2∂tθ2 −

1 + β

β
∂2
x

(
K+

2 θ2 +K1θ1
)
=

d2
d1

∂tV (t), (S.60)

where K+
1 = d1+d2β

d2(1+β)+d1
, K2 = d1

d2(1+β)+d1
, K+

2 = d2(1+β)
d2(1+β)+d1

, and K1 = d2

d2(1+β)+d1
. We decompose our phase profiles

as θ1,2(x, t) = θ̃1,2(t)+ θ′1,2(x, t), with the spatially homogeneous components defined as the solutions of the following
equations:

∂2
t θ̃1 + sin θ̃1 + α1∂tθ̃1 = ∂tV (t), (S.61)

∂2
t θ̃2 + α2∂tθ̃2 =

d2
d1

∂tV (t), (S.62)

and the boundary-condition-sensitive components obeying:

∂2
t θ

′
1 + ηθ′1 + α1∂tθ

′
1 −

1 + β

β
∂2
x

(
K+

1 θ′1 +K2θ
′
2

)
=0, (S.63)

∂2
t θ

′
2 + α2∂tθ

′
2 −

1 + β

β
∂2
x

(
K+

2 θ′2 +K1θ
′
1

)
=0, (S.64)

where the equation of motion of θ′1 is linearized via the Floquet approach illustrated above, such that η is a parametric
drive term that we extract from the driven damped pendulum solution. We evaluate the ratio between the z-averaged
magnetic field within the unit cell and the equilibrium diamagnetic field amplitude as:

By

|Bextχd|
=

d1By,1 + d2By,2

(d1 + d2) |Bextχd|
=

d1
d1 + d2

∂xθ
′
1 + ∂xθ

′
2

|qχd|
. (S.65)

We can conveniently apply a shift to the inter-bilayer phase gradient, ∂xθ
′
2 → ∂xθ

′
2 − q

(
d2

d1
+ 1

1+β

)
, which does not

influence the dynamical equations, so that we get:

d1
d1 + d2

∂xθ
′
1 + ∂xθ

′
2

|qχd|
=

d1 (By,1 −Bsc) + d2 (By,2 −Bext)

(d1 + d2) |Bextχd|
∼ Bind

|Bextχd|
. (S.66)

In other words, our gradient shift amounts to subtracting off the bulk equilibrium contribution when computing
the average magnetic field. We conclude this brief survey by listing the boundary conditions we use in our Floquet
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FIG. S.3. Multi-bilayer spatio-temporal behaviors. a Contour plot of the intra-bilayer phase θ′1, b contour plot of the
inter-bilayer phase θ′2, and c contour plot of the average magnetic field induced within a unit cell, Bind, normalized by the
equilibrium diamagnetic field amplitude, |Bextχd|. Upon pumping, θ′1 and θ′2 monotonically grow in opposite directions (with
θ′1 increasing negatively and θ′2 positively at the left edge), their profiles are mainly localized within a few penetration depths,
but θ′1 develops an appreciable tail into the bulk of the segment. The magnetic field originates from edge currents, as explicitly
addressed in the main text, and it propagates from the system’s boundaries inwards at the speed of light. Oscillations at the
edges of the segment represent the field emitted by the strip. These three plots are obtained for the parameter set (identical
to that of Fig. 4 in the main text): L = 3300, V0 = 3.5, q = 2.3× 10−4, α1 = 0.4, α2 = 6, and |χd| = 10−5. Panels (a) and (b)
focus on the 0 ≤ x ≤ L/100 region.

calculations:

∂xθ
′
1|x=0,L = q ±

√
β

1 + β

d1
d1 + d2

(∂tθ
′
1 + ∂tθ

′
2)|x=0,L , (S.67)

∂xθ
′
2|x=0,L = − q

1 + β
±
√

β

1 + β

d2
d1 + d2

(∂tθ
′
1 + ∂tθ

′
2)|x=0,L , (S.68)

where the + (−) sign applies to the x = 0 (x = L) edge and we neglect the fast Ep oscillations in Eq. (S.33). We
note that, by taking c → c/n in Eq. (S.33), we can model propagation in an exterior medium with refractive index n,
and the limit n → 0 approaches Neumann boundary conditions. Throughout this work we use the value n = 1 unless
stated otherwise.

Representative case. In Fig. S.3(a), (b), and (c), we report contour plots illustrating the typical spatio-temporal be-
havior of, respectively, the intra-bilayer phase θ′1, the inter-bilayer phase θ

′
2, and the magnetic field ratio Bind/|Bextχd|,

see Eq. (S.66). The phases θ′1 and θ′2 are enhanced in opposite directions during the pump, with θ′1 growing negatively
and θ′2 positively at the x = 0 boundary, which is the focus of Fig. S.3(a) and (b) (similar features, with opposite
signs w.r.t. that at x = 0, dynamically emerge also at x = L). While their profiles are mostly concentrated within
a few penetration depths, resembling the pre-solitonic excitations identified in the SG scenario, θ′1 develops a tail
reaching further into the segment bulk. In Fig. S.3(c), we can appreciate how the magnetic field, which originates
from the edge-instability, is established at the speed of light within the segment’s interior. Our simulation also keeps
track of the field emitted by the multi-bilayer system, as it is obtained through the radiative boundary conditions in
Eqs. (S.67) and (S.68), see the oscillations occurring at the two boundaries. Furthermore, we observe that, as a result
of the field propagating symmetrically from both ends to the interior, a collision-like event unfolds around the center
of the segment, leading to a standing-wave-type pattern. The magnitude of the latter profile is reasonably tied to
the perfect geometry considered here, therefore we work with a phenomenological inter-bilayer damping coefficient α2

to account for leaks in the cavity to the radiation field formed by the region between bilayers. We consider a rather
substantial value of α2 = 6 to suppress these oscillatory transients, with negligible influence on our peak magnetic
response, see below.

Effects of segment size, dielectric environment, and inter-bilayer damping. Figure S.3(c) highlights the traveling-
wave nature of the total magnetic field in the multi-bilayer strip. In Figure S.4 (a) we plot the length dependence of
the ratio ⟨Bmax

ind ⟩ /|Bextχd|. Even though the effect is triggered at the edges of the sample, it is relatively system size
independent due to the fact that the magnetic field enhancement travels to the bulk of the sample. Starting from
a constant in small segments, the peak response increases with length. The propagation in the bulk is ultimately
limited, either by the pump pulse duration or by dissipation of the photon modes. This gives a new characteristic
length-scale localizing the propagating mode, lloc = c/tloc where tloc ∼ min{∆tpulse, 1/α2}. Beyond this length-scale,
the maximum induced flux saturates to constant value. As a result, the magnetic field averaged over the segment falls
of as 1/L, as confirmed by the green dashed line in our plot. Another important point highlighted by Fig. S.4(a) is
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FIG. S.4. Dependence on the L, n, and α2 parameters. a Dependence of the peak magnetic response ratio to the
equilibrium diamagnetic field, ⟨Bmax

ind ⟩ /|Bextχd|, where ⟨...⟩ stands for segment averaging, versus the segment size L. The
traveling wave character illustrated in Fig. S.3(c) suggests that, although the instability stems from the edges, it is not strictly
proportional to the number of edges, i.e., inversely proportional to L. It instead shows a peculiar length dependence due to
the precise response of the excited bulk modes. For very large segment sizes, the magnetic field pulse cannot travel all the way
inside the bulk, and the effect is localized to the boundary in space, over a length-scale determined by either the finite pump
duration or the dissipation of the bulk modes. Beyond this point, the generated flux saturates, and the average magnetic field
decays as 1/L, see the green dashed line. The observed phenomenon is universal in |χd|, as indicated by the accordance between
the different sets of data points included the plot. Here the fixed parameters are: V0 = 3.5, α1 = 0.4, and α2 = 6. b Time
traces of the average induced magnetic field, normalized by the equilibrium diamagnetic field amplitude, for different values of
the refraction index n of the dielectric environment, with fixed parameters L = 3300λ, V0 = 3.5, q = 2.3 × 10−4, α1 = 0.4,
α2 = 6, and |χd| = 10−5. The dielectric environment is seen to influence the peak response, with the largest value obtained
in the Neumann limit of n → 0. c Time-traces of the average induced magnetic field for different values of the inter-bilayer
damping parameter α2, with fixed parameters L = 3300λ, V0 = 3.5, q = 2.3 × 10−4, α1 = 0.4, n = 1, and |χd| = 10−5. The
inter-bilayer dissipation strength has little effect on the reported magnetic field build-up and maximum, but it suppresses the
bounce-back oscillations we observe in the time profiles due to Fabry-Pérot interferences.

the universality in |χd|. The accordance between the displayed data sets implies that ⟨Bmax
ind ⟩ /Bext is proportional to

|χd|, which is in turn proportional to the local superfluid density ns. This is shown also Fig. 5(c) in the main text,
and it reflects the fact that our dynamical response originates from the pump acting on the equilibrium diamagnetic
screening properties, which are indeed encoded in the susceptibility |χd|, see the Supplementary Note ‘Equilibrium
counter-flow diamagnetism’.

We now turn to a description of Fig. S.4(b), where we report time traces of ⟨Bind⟩ /|Bextχd| for different values
of the refraction index n, mimicking an interface to distinct dielectric environments. We observe that the overall
magnitude of the system’s response monotonically increases as the n parameter goes down. Indeed, as compared to
the result for our standard choice of n = 1 throughout this work (marked here in orange), the peak average magnetic
field shows a factor of 2 enhancement in the Neumann (n → 0) limit, see the blue curve. Finally, in Fig. S.4(c), we
address the effect of dissipation between bilayers by displaying time traces of ⟨Bind⟩ /|Bextχd| computed by varying the
α2 coefficient. The latter quantity has minimal impact on the magnetic response’s build-up and peak value. However,
it plays a significant role in reducing the bounce-back oscillations observed as the system relaxes back to equilibrium.

SUPPLEMENTARY NOTE 6: PUMP FIELD PROFILE BENEATH THE MASK

Here we define y = 0 to be at the edge of the mask, and expand our profile into plane waves:

Ep(y = 0, z) = e−iωt

∫
dk

2π
Ake

ikz, (S.69)

where Ak = 1
ik is the Fourier transform of the infinite half-plane, which encodes the boundary conditions imposed by

the mask (assumed to begin at z = 0) and k the momentum along the z-direction. At finite y, each k component of

the pump pulse evolves with in-plane momentum q =
√

ω2

c2eff
− k2 ≈ ω

ceff
− k2ceff

ω along the y-axis, where ceff is effective

speed of light at the frequency of the pump. The pump profile as a function of y and z is given approximately by:

Ep(y, z) = e
−iωt+i ω

ceff
y
∫

dk

2π

1

ik
eikz−i

k2ceff
ω y. (S.70)
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The latter function is plotted in Fig. 5(a) of the main text, for y = 6µm, ceff = 6, and ω = ωp = 2π × 17 THz. We
can conveniently rescale the integrand of the previous formula to u = k

√
ceff
ω y and obtain:

Ep(y, z) = e
−iωt+i ω

ceff
y
∫

du

2π

1

iu
e
iu z√

λωy
−iu2

, (S.71)

which gives an universal function for z measured in units of
√
λωy, where λω = ceff

ω . We also find that, at large
distances away from the edge, the field amplitude falls off as 1/z:

|Ep(y, z)| ≈ 0.564

√
λωy

z
. (S.72)
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